
Incorporating Arbitrary Matrix Group Equivariance into KANs

Lexiang Hu 1 Yisen Wang 1 2 Zhouchen Lin 1 2 3

Abstract
Kolmogorov-Arnold Networks (KANs) have seen
great success in scientific domains thanks to
spline activation functions, becoming an alterna-
tive to Multi-Layer Perceptrons (MLPs). How-
ever, spline functions may not respect symme-
try in tasks, which is crucial prior knowledge
in machine learning. In this paper, we pro-
pose Equivariant Kolmogorov-Arnold Networks
(EKAN), a method for incorporating arbitrary ma-
trix group equivariance into KANs, aiming to
broaden their applicability to more fields. We
first construct gated spline basis functions, which
form the EKAN layer together with equivari-
ant linear weights, and then define a lift layer
to align the input space of EKAN with the fea-
ture space of the dataset, thereby building the
entire EKAN architecture. Compared with base-
line models, EKAN achieves higher accuracy
with smaller datasets or fewer parameters on
symmetry-related tasks, such as particle scatter-
ing and the three-body problem, often reducing
test MSE by several orders of magnitude. Even
in non-symbolic formula scenarios, such as top
quark tagging with three jet constituents, EKAN
achieves comparable results with state-of-the-art
equivariant architectures using fewer than 40% of
the parameters, while KANs do not outperform
MLPs as expected. Code and data are available at
https://github.com/hulx2002/EKAN.

1. Introduction
Kolmogorov-Arnold Networks (KANs) (Liu et al., 2024b;a)
are a novel type of neural network inspired by the
Kolmogorov-Arnold representation theorem (Tikhomirov,

1State Key Lab of General AI, School of Intelligence Sci-
ence and Technology, Peking University 2Institute for Artificial
Intelligence, Peking University 3Pazhou Laboratory (Huangpu),
Guangzhou, Guangdong, China. Correspondence to: Zhouchen
Lin <zlin@pku.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1991; Braun & Griebel, 2009), which offers an alternative to
Multi-Layer Perceptrons (MLPs) (Haykin, 1998; Cybenko,
1989; Hornik et al., 1989). Unlike MLPs, which utilize
fixed activation functions on nodes, KANs employ learnable
activation functions on edges, replacing the linear weight
parameters entirely with univariate functions parameterized
as splines (De Boor, 1978). On the other hand, each layer of
KANs can be viewed as spline basis functions followed by a
linear layer (Dhiman, 2024). This architecture allows KANs
to achieve better accuracy in symbolic formula represen-
tation tasks compared with MLPs, particularly in function
fitting and scientific applications. Subsequent works based
on KANs have demonstrated superior performance in other
areas, such as sequential data (Vaca-Rubio et al., 2024;
Genet & Inzirillo, 2024b;a; Xu et al., 2024), graph data
(Bresson et al., 2024; De Carlo et al., 2024; Kiamari et al.,
2024; Zhang & Zhang, 2024), image data (Cheon, 2024b;a;
Azam & Akhtar, 2024; Li et al., 2024a; Seydi, 2024; Bodner
et al., 2024), and so on.

However, KANs themselves perform poorly on non-
symbolic formula representation tasks (Yu et al., 2024). One
reason for this is that splines struggle to respect data type
and symmetry, both of which play important roles in ma-
chine learning. Many recent works utilize symmetry in data
to design network architectures, achieving better efficiency
and generalization on specific tasks. For example, Con-
volutional Neural Networks (CNNs) (LeCun et al., 1989)
and Group equivariant Convolutional Neural Networks (GC-
NNs) (Cohen & Welling, 2016) leverage translational and
rotational symmetries in image data, while DeepSets (Za-
heer et al., 2017) and equivariant graph networks (Maron
et al., 2019; Keriven & Peyré, 2019; Satorras et al., 2021) ex-
ploit the permutation symmetry in set and graph data. Equiv-
ariant Multi-Layer Perceptrons (EMLP) (Finzi et al., 2021)
propose a general method that allows MLPs to be equiv-
ariant with respect to arbitrary matrix groups for specific
data types, thereby unifying the aforementioned specialized
network architectures.

Inspired by these equivariant architectures, we propose
Equivariant Kolmogorov-Arnold Networks (EKAN), which
embed matrix group equivariance into KANs. By specifying
the data type and symmetry, EKAN can serve as a general
framework for applying KANs to various areas. In Section 2,
we introduce the preliminary knowledge of group theory. In

1

https://github.com/hulx2002/EKAN

Incorporating Arbitrary Matrix Group Equivariance into KANs

Section 3, we summarize related works. In Section 4, we
construct a layer of EKAN. We add gate scalars to the input
and output space of each layer, and define gated spline basis
functions between the input and post-activation space. To
ensure equivariance when linearly combining gated basis
functions, we construct the equivariant constraint and solve
for the equivariant linear weights. In Section 5, we build
the entire EKAN architecture. We insert a lift layer before
the first layer and discard the gate scalars from the output of
the final layer, so that the input and output space of EKAN
can be consistent with the original dataset. In Section 6,
we evaluate EKAN on tasks with known symmetries. We
show that EKAN can achieve higher accuracy than baseline
models with smaller datasets or fewer parameters. In Sec-
tion 7, we conclude this work. In Figure 1, we compare the
architectures of KANs and EKAN.

Kolmogorov-Arnold Network (KAN)

sum

B-spline functions

linear weights

basis functions

Equivariant Kolmogorov-Arnold Network (EKAN)

equivariant linear weights

gated basis functionsgate

gate

Figure 1. Comparison of the architectures of Kolmogorov-Arnold
Networks (KANs) and Equivariant Kolmogorov-Arnold Networks
(EKAN).

In summary, our contributions are as follows: (1) We pro-
pose EKAN, an architecture that makes KANs equivariant
to matrix groups. To our knowledge, EKAN is the first
attempt to combine equivariance with KANs, and we expect
that it can serve as a general framework to broaden the ap-
plicability of KANs to more areas. (2) We specify the space
structures of the EKAN Layer and define gated spline basis
functions. We theoretically prove that gated basis functions
can ensure equivariance between the gated input space and
the post-activation space. Then, we insert a lift layer to pre-
process the raw input feature, which aligns the input space
of EKAN with the feature space of the dataset. (3) Exper-
iments on tasks with matrix group equivariance, such as
particle scattering and the three-body problem, demonstrate
that EKAN often significantly outperforms baseline models,
even with smaller datasets or fewer parameters. In the task
of non-symbolic formula representation, where KANs are
not proficient, such as top quark tagging with three jet con-
stituents, EKAN can still achieve comparable results with
state-of-the-art equivariant architectures while using fewer
than 40% of the parameters.

2. Background
Before presenting related works and our method, we first
introduce some preliminary knowledge of group theory.

Groups and generators. The matrix group G̃ is a sub-
group of the general linear group GL(n), which consists of
n× n invertible matrices. Each group element g ∈ G̃ can
be decomposed into a continuous and a finite component
g = g1g2. We can obtain the continuous component g1
from a Lie algebra element A ∈ g through the exponential
map exp : g → G̃, i.e., g1 = exp(A) =

∑∞
k=0

Ak

k! . Repre-
senting the space where the Lie algebra resides as a basis
{Ai}Di=1, we have g1 = exp

(∑D
i=1 αiAi

)
. On the other

hand, the finite component g2 can be generated by a set
of group elements {hi}Mi=1 and their inverses h−k = h−1

k ,
formally speaking g2 =

∏N
i=1 hki . Overall, we can express

the matrix group element as:

g = exp

(
D∑
i=1

αiAi

)
N∏
i=1

hki
, (1)

where {Ai}Di=1 are called infinitesimal generators and
{hi}Mi=1 are called discrete generators. We introduce com-
mon matrix groups and their generators in Appendix A.

Group representations. The group representation ρV :
G̃ → GL(m) maps group elements to m × m invert-
ible matrices, which describes how group elements act on
the vector space V = Rm through linear transformations.
For g1, g2 ∈ G̃ it satisfies ρV (g1g2) = ρV (g1)ρV (g2).
Similarly, the Lie algebra representation is defined as
dρV : g → gl(m), and for A1, A2 ∈ g, we have
dρV (A1 + A2) = dρV (A1) + dρV (A2). We can relate
the Lie group representation to the Lie algebra representa-
tion through the exponential map. Specifically, for A ∈ g,
ρV (exp(A)) = exp(dρV (A)) holds. Then, combining with
Equation (1), the matrix group representation can be written
as:

ρV (g) = exp

(
D∑
i=1

αidρV (Ai)

)
N∏
i=1

ρV (hki
). (2)

We can construct the complex vector space from the base
vector space using the dual (∗), direct sum (⊕), and tensor
product (⊗) operations. To give a concrete example, let
V1 and V2 be base vector spaces. The multi-channel vec-
tor space, matrix space and parameter space of the linear
mapping V1 → V2 can be represented as V1 ⊕ V2, V1 ⊗ V2,
and V2 ⊗ V ∗

1 , respectively. In general, given a matrix group
G̃, we can normalize a vector space U into a polynomial-
like form with respect to the base vector space V of G̃ (the
space where the group representation is the identity map-
ping ρV (g) = g; intuitively, the transformation matrix is

2

Incorporating Arbitrary Matrix Group Equivariance into KANs

the matrix group element itself):

U =

A⊕
a=1

T (pa, qa) =

A⊕
a=1

V pa ⊗ (V ∗)qa , (3)

where V pa = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
pa

and (V ∗)qa =

V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
qa

. Its group representation and Lie alge-

bra representation can be generated by the following rules:

ρV ∗(g) = ρV (g
−1)⊤,

ρV1⊕V2
(g) = ρV1

(g)⊕ ρV2
(g),

ρV1⊗V2(g) = ρV1(g)⊗ ρV2(g),

dρV ∗(A) = −dρV (A)⊤,

dρV1⊕V2
(A) = dρV1

(A)⊕ dρV2
(A),

dρV1⊗V2
(A) = dρV1

(A)⊞ dρV2
(A),

(4)

where ⊕ is the direct sum, ⊗ is the Kronecker product, and
⊞ is the Kronecker sum. We provide concrete examples of
the space structure in Appendix B to help readers understand
it intuitively.

Equivariance and invariance. The symmetry can be di-
vided into equivariance and invariance, meaning that when a
transformation is applied to the input space, the output space
either transforms in the same way or remains unchanged.
Formally, given a group G̃, a function f : Ui → Uo is
equivariant if:

∀g ∈ G̃, vi ∈ Ui : ρo(g)f(vi) = f(ρi(g)vi), (5)

where ρi and ρo are group representations of Ui and Uo,
respectively. Specifically, when ρo(g) = I , the function f
is invariant.

3. Related Works
Equivariant networks. Equivariant networks have gained
significant attention in recent years due to their ability to
respect and leverage symmetries in data. GCNNs (Cohen &
Welling, 2016) embed discrete group equivariance into tradi-
tional CNNs through group convolutions. Steerable CNNs
(Cohen & Welling, 2017) introduce steerable filters, which
provide a more flexible and efficient way to achieve equiv-
ariance compared with GCNNs. Subsequently, SFCNNs
(Weiler et al., 2018b) and E(2)-equivariant steerable CNNs
(Weiler & Cesa, 2019) extend GCNNs and steerable CNNs
to continuous group equivariance, while 3D Steerable CNNs
(Weiler et al., 2018a) extend these models to 3D volumetric
data. On the other hand, some works use partial differential
operators (PDOs) to construct equivariant networks (Shen
et al., 2020; 2021; 2022; He et al., 2022; Li et al., 2024b;
2025). Furthermore, equivariant self-supervised learning

(Wang et al., 2020; Dangovski et al., 2022; Lee et al., 2022;
Garrido et al., 2023; Gupta et al., 2024) has also achieved
outstanding results. Based on these theoretical frameworks,
equivariant networks are widely applied in various fields,
such as mathematics (Zhao et al., 2023), physics (Wang
et al., 2021; Hu et al., 2025), biochemistry (Bekkers et al.,
2018; Winkels & Cohen, 2019; Graham et al., 2020), and
others. EMLP (Finzi et al., 2021) embeds matrix group
equivariance into MLPs layerwise, which we discuss in
detail in Appendix C.

Kolmogorov-Arnold Networks (KANs). KANs (Liu
et al., 2024b;a) place learnable activation functions on the
edges and then sum them to obtain the output nodes, replac-
ing the fixed activation functions applied to the output nodes
of linear layers in MLPs. Formally, the l-th KAN layer can
be expressed as:

xl+1,j =

nl∑
i=1

ϕl,j,i(xl,i), j = 1, . . . , nl+1, (6)

where nl is the number of nodes in the l-th layer, xl,i

is the value of the i-th node in the l-th layer, and ϕl,j,i

is the activation function that connects xl,i to xl+1,j . In
practice, ϕl,j,i consists of a spline function and a silu
function. The spline basis functions are determined by
grids, which are updated based on the input samples. Then
we can write the post-activation of ϕl,j,i as ϕl,j,i(xl,i) =∑G+k−1

b=0 wl,j,i,bBl,i,b(xl,i)+wl,j,i,G+ksilu(xl,i), where G,
k, and Bl,i,b represent the number of grid intervals, the order,
and the b-th basis function of splines at node xl,j , respec-
tively. Therefore, the KAN layer can be viewed as spline
basis functions Bl,i,b and a silu function, followed by a
linear layer with wl,j,i,b as parameters (Dhiman, 2024):

xl+1,j =

nl∑
i=1

[
G+k−1∑
b=0

wl,j,i,bBl,i,b(xl,i)

+ wl,j,i,G+ksilu(xl,i)

]
, j = 1, . . . , nl+1. (7)

4. EKAN Layer
In this section, we construct the EKAN layer, which is
equivariant with respect to the matrix group G̃. First, we
define the space structures and explain their relationships.
Then, we introduce gated basis functions and equivariant
linear weights, which together form a layer of EKAN. We
summarize the space structures and network architecture of
the EKAN layer in Figure 2.

4.1. Space Structures

A key aspect of equivariant networks is how group elements
act on the feature space. Therefore, unlike conventional

3

Incorporating Arbitrary Matrix Group Equivariance into KANs

gate

gate

equivariant linear weights

gated basis functions

gated output space

gated input space

post-activation space

input space

output space

user specified

actual input feature

actual output feature

data flow
control flow

Figure 2. (Left) The space structures of the EKAN layer and their relationships. (Right) The architecture of the EKAN layer, which
consists of gated basis functions and equivariant linear weights.

networks, which only focus on the dimensions of the fea-
ture space, equivariant networks need to further clarify the
structure of the feature space. For example, for the group
SO(2), two feature spaces U1 = V ⊕ V = R2 ⊕ R2 and
U2 = V ⊗ V = R2 ⊗ R2 have different group representa-
tions ρU1

and ρU2
, but conventional networks treat them as

the same space U = R4.

We specify the input space and the output space of EKAN
layer as Ui and Uo, respectively. Their structures can be
normalized into the form of Equation (3). In particular, for
ease of later discussion, we extract the scalar space terms
T0 = T (0, 0) and rewrite them as:Ui = ciT0 ⊕

[⊕Ai

a=1 T (pi,a, qi,a)
]
,

Uo = coT0 ⊕
[⊕Ao

a=1 T (po,a, qo,a)
]
,

(8)

where pi,a, qi,a, po,a, qo,a, ci, co, Ai, Ao ∈ N, pi,a + qi,a >
0, po,a + qo,a > 0, and cT0 = T0 ⊕ T0 ⊕ · · · ⊕ T0︸ ︷︷ ︸

c

.

We have to emphasize that the actual input/output feature
does not lie within Ui/Uo. To align with gated basis func-
tions, we add a gate scalar T0 to each non-scalar term
T (pi,a, qi,a)/T (po,a, qo,a) in Ui/Uo to obtain the actual in-
put/output space. The mechanism behind this approach will
be discussed in detail in Section 4.2. We denote this actual
input/output space as the gated input/output space Ugi/Ugo:Ugi = ciT0 ⊕

[⊕Ai

a=1 T (pi,a, qi,a)
]
⊕AiT0,

Ugo = coT0 ⊕
[⊕Ao

a=1 T (po,a, qo,a)
]
⊕AoT0.

(9)

As shown in Equation (7), we split the KAN layer into basis
functions and linear weights. From this perspective, we
correspondingly construct gated basis functions and equiv-
ariant linear weights to form the EKAN layer. We refer
to the space where the activation values reside after gated
basis functions and before equivariant linear weights as the
post-activation space Um. The structure of Um depends on
Ui, which we will elaborate on in Section 4.2.

We summarize the aforementioned space structures and their
relationships in Figure 2 (Left). The user first specifies the
input space Ui and the output space Uo for the EKAN layer.
Then the gated input space Ugi and the post-activation space
Um are calculated based on Ui, and the gated output space
Ugo is calculated based on Uo. The actual input feature in
Ugi passes through gated basis functions to obtain the acti-
vation value in Um, which then passes through equivariant
linear weights to obtain the actual output feature in Ugo.

4.2. Gated Basis Functions

Since spline basis functions are nonlinear and have relatively
complex iterative forms, directly solving the equivariance
constraint in Equation (5) is quite challenging. Recently, gat-
ing mechanisms have been widely used in various areas, not
only in language models to improve performance (Dauphin
et al., 2017; Shazeer, 2020; Gu & Dao, 2023) but also in
the design of equivariant networks (Weiler et al., 2018a;
Finzi et al., 2021). Inspired by this, we propose gated basis
functions to make the basis functions in KANs (spline basis
functions and the silu function) equivariant. Suppose that
the input feature vgi ∈ Ugi can be decomposed according
to the space structure shown in Equation (9):

vgi =

(
ci⊕

a=1

si,a

)
⊕

(
Ai⊕
a=1

vi,a

)
⊕

(
Ai⊕
a=1

s′i,a

)
, (10)

where si,a, s
′
i,a ∈ T0 and vi,a ∈ T (pi,a, qi,a). For the

non-scalar term vi,a, we apply the basis functions to the
corresponding gate scalar s′i,a and then multiply the result
by vi,a. For the scalar term si,a, we consider it as its own
gate scalar, which is equivalent to applying basis functions
element-wise to si,a. Formalizing the above content, the
post-activation value vm ∈ Um can be written as:

vm =

G+k⊕
b=0

vm,b, (11)

4

Incorporating Arbitrary Matrix Group Equivariance into KANs

where

vm,b =

[
⊕ci

a=1 si,aBb(si,a)]⊕
[⊕Ai

a=1 vi,aBb(s
′
i,a)
]
,

b < G+ k,

[
⊕ci

a=1 si,asilu(si,a)]⊕
[⊕Ai

a=1 vi,asilu(s
′
i,a)
]
,

b = G+ k.
(12)

Note that vm,b ∈ ciT0⊕
[⊕Ai

a=1 T (pi,a, qi,a)
]
= Ui. There-

fore, we obtain the structure of the post-activation space
Um:

Um = (G+ k + 1)Ui. (13)

The following theorem guarantees the equivariance between
the gated input space and the post-activation space (see
Appendix D for proof).
Theorem 4.1. Given a matrix group G̃, the gated input
space Ugi and the post-activation space Um can be ex-
pressed in the forms of Equations (9) and (13), respectively.
The function f : Ugi → Um is defined by Equations (10)
to (12), that is, vm = f(vgi). Then, f is equivariant:

∀g ∈ G̃, vgi ∈ Ugi : ρm(g)f(vgi) = f(ρgi(g)vgi),
(14)

where ρgi and ρm are group representations of Ugi and Um,
respectively.

4.3. Equivariant Linear Weights

The output feature vgo ∈ Ugo is obtained by a linear
combination of the post-activation value vm ∈ Um. Let
Ui = Rdi and Ugo = Rdgo , then Equation (13) indi-
cates that Um = R(G+k+1)di . The linear weight ma-
trix W ∈ Rdgo×(G+k+1)di can be partitioned as W =
[W0 W1 . . . WG+k], where Wb ∈ Rdgo×di . Combining
with Equation (11), we have:

vgo = Wvm =

G+k∑
b=0

Wbvm,b. (15)

To ensure the equivariance between the post-activation space
and the gated output space, we obtain:

∀g ∈ G̃, vm ∈ Um : ρgo(g)Wvm = Wρm(g)vm, (16)

where ρgo is the group representation of Ugo. Using the
structure of Um shown in Equation (13) and applying the
rules from Equation (4), we can derive that ρm(g) =⊕G+k

b=0 ρi(g), where ρi is the group representation of Ui.
Therefore, from Equation (11), we have ρm(g)vm =⊕G+k

b=0 ρi(g)vm,b. Then Equation (16) can be written as:

∀g ∈ G̃, {vm,b}G+k
b=0 ∈ Ui :

G+k∑
b=0

ρgo(g)Wbvm,b =

G+k∑
b=0

Wbρi(g)vm,b. (17)

The coefficients of each term in {vm,b}G+k
b=0 are equal:

∀g ∈ G̃, b ∈ {0, 1, . . . , G+ k} : ρgo(g)Wb = Wbρi(g).
(18)

Flattening the linear weight blocks {Wb}G+k
b=0 into vectors,

we obtain:

∀g ∈ G̃, b ∈ {0, 1, . . . , G+ k} :

ρgo,i(g)vec(Wb) = vec(Wb), (19)

where ρgo,i = ρgo ⊗ ρ∗i is the group representation of
Ugo ⊗ U∗

i . We use the same method as EMLP (Finzi et al.,
2021) to solve for the equivariant basis Q and equivariant
projector P = QQ⊤ of vec(Wb). Similar to the transition
from Equation (27) to Equation (28) (in Appendix C), we de-
compose the group representation ρgo,i(g) into discrete and
infinitesimal generators to obtain the following constraint:

∀b ∈ {0, 1, . . . , G+ k} :

Cvec(Wb) =

dρgo,i(A1)
...

dρgo,i(AD)
ρgo,i(h1)− I

...
ρgo,i(hM)− I

vec(Wb) = 0. (20)

Note that the equivariant linear weight blocks {Wb}G+k
b=0 lie

in the same subspace, which corresponds to the nullspace
of the coefficient matrix C. We can obtain it via SVD.

We summarize the architecture of the EKAN layer in Fig-
ure 2 (Right). In this example, the EKAN layer is equivari-
ant with respect to a 2-dimensional matrix group G̃ (such
as the SO(2) group). The user specifies the input space
Ui = T0 ⊕ T1 (where we abbreviate T (p, 0) = V p as Tp),
which represents a scalar space and a vector space, and spec-
ifies the output space Uo = T2, which represents a matrix
space. Then, the gated input space Ugi = T0 ⊕ T1 ⊕ T0

and the gated output space Ugo = T2 ⊕ T0 each add a gate
scalar to the vector space T1 and the matrix space T2. The
basis functions are applied to the gate scalars of T0 (itself)
and T1, which are then multiplied by the original terms
to obtain the post-activation space Um = 3Ui. The linear
weights W ∈ R5×9 between Um and Ugo are within the
subspace determined by Equation (20) to ensure equivari-
ance. Similar to KANs (Liu et al., 2024b), EKAN updates
grids based on the input activations, which we discuss in
detail in Appendix E.

5. EKAN Architecture
In this section, we construct the entire EKAN architecture.
The main body of EKAN is composed of stacked EKAN
layers. The output space of the l-th layer serves as the input

5

Incorporating Arbitrary Matrix Group Equivariance into KANs

EKAN layer

gate

gate (dropped)

lift layer
gated input space

input space

gated output space

gated latent space

dataset determined

output space

user specified

latent space

data flow
control flow raw input feature

final output label (after dropping)

Figure 3. (Left) The space structures of EKAN and their relationships. (Right) The EKAN architecture, which consists of a lift layer and
stacked EKAN layers.

space of the (l + 1)-th layer, which we refer to as the latent
space Ul. For the dataset, we usually know its data type, or
in other words, how group elements act on it. To embed
this prior knowledge into EKAN, we set the input space
of the first layer as the feature space of the dataset Ui and
the output space of the final layer as the label space of the
dataset Uo.

However, the actual input/output features of the EKAN layer
stack lie in Ugi/Ugo. Therefore, we need to add extensions
to align the network with the dataset. First, the gate scalars
of the actual output feature are directly dropped to obtain
the final output label of EKAN, which resides in Uo. Then,
we add a lift layer before the first layer to preprocess the raw
input feature of EKAN, which is essentially an equivariant
linear layer between Ui and Ugi (see Section 4.3).

We summarize the space structures and network architecture
of EKAN in Figure 3. The space structures of EKAN can be
analogous to the dimensions of a conventional network. The
user specifies the latent space Ul of EKAN, which corre-
sponds to specifying the hidden dimension in a conventional
network. The input space Ui and the output space Uo are de-
termined by the dataset, similar to how the input and output
dimensions are defined in a conventional network. In the
concrete example, the feature space and label space of the
dataset are Ui = T0 ⊕ T1 and Uo = T2, respectively. After
passing through the lift layer, a new gate scalar is added to
the raw input feature for T1, resulting in the actual input
feature Ugi = T0 ⊕ T1 ⊕ T0 for the first EKAN layer. The
gate scalar in the actual output space Ugo = T2 ⊕ T0 of the
last EKAN layer is dropped to obtain the final output label.

6. Experiments
In this section, we evaluate the performance of EKAN on
regression and classification tasks with known symmetries.
Compared with general models such as MLPs, KANs, and

equivariant architectures like EMLP (Finzi et al., 2021) and
CGENN (Ruhe et al., 2023), EKAN achieves lower test
loss and higher test accuracy with smaller datasets or fewer
parameters. Additionally, for all trained models in this
section, we evaluate their equivariant errors in Appendix F.

6.1. Particle Scattering

In electron-muon scattering, we can observe the four-
momenta of the incoming electron, incoming muon,
outgoing electron, and outgoing muon, denoted as
qµ, pµ, q̃µ, p̃µ ∈ R4, respectively. We aim to predict
the matrix element, which is proportional to the cross-
section (Finzi et al., 2021): |M|2 ∝ [pµp̃ν − (pαp̃α −
pαpα)g

µν][qµq̃ν − (qαq̃α − qαqα)gµν]. According to Ein-
stein’s summation convention, in a monomial, if an in-
dex appears once as a superscript and once as a subscript,
it indicates summation over that index. The metric ten-
sor is given by gµν = gµν = diag(1,−1,−1,−1), and
aµ = gµνa

ν = (a0,−a1,−a2,−a3). The matrix element
is invariant under Lorentz transformations. In other words,
this task exhibits O(1, 3) invariance (see Appendix A.2 for
more details), with the feature space Ui = 4T1 and the label
space Uo = T0. The data generation process for particle
scattering is entirely consistent with that in EMLP (Finzi
et al., 2021).

We embed the group O(1, 3) and its subgroups SO+(1, 3)
and SO(1, 3) equivariance into EKAN. Models are evalu-
ated on synthetic datasets with different training set sizes,
which are generated by sampling qµ, pµ, q̃µ, p̃µ ∼ N (0, 1

42).
Both EKAN and KAN have the depth of L = 2, the spline
order of k = 3, and grid intervals of G = 3. Although
the lift layer increases the parameter overhead, we set the
width of the middle layer in EKAN to n1 = 1000 (shape
as [16, 1000, 1], and the software will automatically calcu-
late the appropriate feature space structure based on the
user-specified dimension), and set the width of the mid-

6

Incorporating Arbitrary Matrix Group Equivariance into KANs

Table 1. Test MSE of different models on the particle scattering dataset with different training set sizes. We present the results in the
format of mean ± std.

Models Training set size
102 102.5 103 103.5 104

MLP (7.33± 0.01)× 10−1 (6.97± 0.09)× 10−1 (3.64± 0.30)× 10−1 (5.04± 0.37)× 10−2 (1.66± 0.07)× 10−2

MLP + augmentation (1.90± 0.22)× 10−1 (3.97± 0.52)× 10−2 (1.25± 0.08)× 10−2 (1.08± 0.03)× 10−2 (1.34± 0.22)× 10−2

EMLP-SO+(1, 3) (1.27± 0.35)× 10−2 (2.21± 0.56)× 10−3 (3.30± 0.86)× 10−4 (2.24± 0.55)× 10−4 (1.99± 0.33)× 10−4

EMLP-SO(1, 3) (1.47± 0.91)× 10−2 (2.58± 0.25)× 10−3 (3.69± 1.25)× 10−4 (2.73± 0.30)× 10−4 (2.12± 0.15)× 10−4

EMLP-O(1, 3) (8.88± 2.51)× 10−3 (1.95± 0.18)× 10−3 (3.30± 0.43)× 10−4 (2.66± 0.66)× 10−4 (2.64± 0.28)× 10−4

KAN (6.70± 1.35)× 10−1 (6.16± 1.18)× 10−1 (3.46± 0.15)× 10−1 (1.21± 0.07)× 10−1 (2.57± 0.08)× 10−2

KAN + augmentation (5.98± 0.67)× 10−1 (4.72± 1.52)× 10−1 (9.07± 2.36)× 10−2 (5.61± 0.70)× 10−2 (1.58± 0.06)× 10−1

EKAN-SO+(1, 3) (Ours) (6.86± 6.28)× 10−3 (1.85± 1.75)× 10−3 (2.01± 1.93)× 10−5 (1.93± 1.11)× 10−5 (4.29± 3.38)× 10−6

EKAN-SO(1, 3) (Ours) (6.86± 6.27)× 10−3 (1.85± 1.75)× 10−3 (2.06± 1.88)× 10−5 (2.17± 1.51)× 10−5 (3.85± 2.77)× 10−6

EKAN-O(1, 3) (Ours) (7.77± 5.85)× 10−3 (1.64± 1.87)× 10−3 (2.85± 3.09)× 10−5 (7.31± 4.15)× 10−6 (3.81± 2.83)× 10−6

Table 2. Test MSE of different models with different numbers of parameters on the three-body problem dataset. We present the results in
the format of mean ± std.

Models Number of parameters
104.5 104.75 105 105.25 105.5

MLP (4.84± 0.19)× 10−3 (4.70± 0.30)× 10−3 (4.60± 0.12)× 10−3 (4.17± 0.24)× 10−3 (4.24± 0.27)× 10−3

MLP + augmentation (9.43± 0.88)× 10−3 (9.65± 0.54)× 10−3 (1.01± 0.09)× 10−2 (9.89± 0.65)× 10−3 (9.91± 0.46)× 10−3

EMLP-SO(2) (2.28± 1.17)× 10−3 (6.87± 5.29)× 10−3 (3.55± 1.59)× 10−3 (2.01± 1.09)× 10−3 (5.34± 3.78)× 10−3

EMLP-O(2) (7.72± 8.71)× 10−3 (1.18± 0.22)× 10−3 (1.42± 1.86)× 10−2 (7.37± 7.60)× 10−3 (1.37± 0.07)× 10−3

KAN (4.32± 3.08)× 10−1 (2.21± 0.65)× 10−2 (1.18± 0.18)× 10−2 (1.23± 0.34)× 10−2 (9.15± 1.76)× 10−3

KAN + augmentation (7.94± 0.15)× 10−3 (7.15± 0.24)× 10−3 (6.91± 0.34)× 10−3 (6.88± 0.06)× 10−3 (6.76± 0.12)× 10−3

EKAN-SO(2) (Ours) (1.12± 0.13)× 10−3 (7.06± 0.65)× 10−4 (6.09± 0.27)× 10−4 (4.26± 0.19)× 10−4 (4.84± 0.68)× 10−4

EKAN-O(2) (Ours) (1.48± 0.37)× 10−3 (1.12± 0.24)× 10−3 (7.91± 0.52)× 10−4 (6.06± 0.36)× 10−4 (6.02± 0.88)× 10−4

dle layer in KAN to n1 = 3840 (shape as [16, 3840, 1]) to
keep the parameter count similar. Both EMLP and MLP
have the depth of L = 4 and the middle layer width of
n1 = n2 = n3 = 384 (shape as [16, 384, 384, 384, 1]). In
these settings, EKAN (435k) has fewer parameters than
EMLP (450k) and KAN (461k). We provide more imple-
mentation details in Appendix G.1.

We repeat experiments with three different random seeds
and report the mean ± std of the test MSE in Table 1. The
results of EMLP and MLP come from the original paper
(Finzi et al., 2021) under the same settings. Although EMLP
performs better than non-equivariant models, our EKAN
with different group equivariance further surpasses it com-
prehensively, especially showing an orders-of-magnitude
advantage on large datasets (training set size ≥ 103). More-
over, our EKAN with just 103 training samples achieves
approximately 10% of the test MSE of EMLP with 104

training samples.

6.2. Three-Body Problem

The study of the three-body problem on a plane (Greydanus
et al., 2019) focuses on the motion of three particles, with
their center of mass at the origin, under the influence of grav-
ity. Their trajectories are chaotic and cannot be described by

an analytical solution. Specifically, we observe the motion
states of three particles over the past four time steps, denoted
as {qi1, pi1, qi2, pi2, qi3, pi3}t−1

i=t−4, and predict their mo-
tion states at time t, denoted as {qt1, pt1, qt2, pt2, qt3, pt3}.
Here, qij ∈ R2 and pij ∈ R2 indicate the position and
momentum coordinates of the j-th particle at time i, re-
spectively. The dataset contains 30k training samples and
30k test samples. When the input motion states are simul-
taneously rotated by a certain angle or reflected along a
specific axis, the output motion states should undergo the
same transformation. Therefore, this task has O(2) equivari-
ance (see Appendix A.1 for more details), with the feature
space Ui = 4× 6T1 = 24T1 and the label space Uo = 6T1.
The dataset for the three-body problem comes from HNN
(Greydanus et al., 2019), and we note that they predict the
motion trajectories of three particles, differing from the
setup in CGENN (Ruhe et al., 2023), which addresses an
N -body problem involving five particles.

We embed the group O(2) and its subgroup SO(2) equivari-
ance into EKAN and EMLP. Both EKAN and KAN have
the depth of L = 2, the spline order of k = 3, and grid
intervals of G = 3, while both EMLP and MLP have the
depth of L = 4. The number of parameters is controlled
by adjusting the middle layer width N for comparison (the
shape of EKAN and KAN is [48, N, 12], while the shape of

7

Incorporating Arbitrary Matrix Group Equivariance into KANs

Table 3. Test accuracy (%) of different models on the top quark tagging dataset (ncomp = 3) with different training set sizes. We present
the results in the format of mean ± std.

Models Training set size Parameters
102 102.5 103 103.5 104

MLP 52.96± 0.21 54.31± 0.48 57.47± 0.32 62.72± 0.60 69.30± 1.03
83KMLP + augmentation 52.72± 0.35 60.16± 0.41 61.29± 1.66 58.71± 1.37 59.45± 1.90

EMLP-SO+(1, 3) 65.48± 1.21 72.59± 0.84 74.40± 0.26 76.34± 0.14 77.10± 0.02
133KEMLP-SO(1, 3) 61.86± 5.92 73.09± 0.92 74.37± 0.17 76.46± 0.12 77.12± 0.04

EMLP-O(1, 3) 62.66± 7.35 73.65± 1.01 74.22± 0.53 76.26± 0.05 77.12± 0.04

KAN 49.89± 0.39 49.91± 0.43 49.89± 0.37 50.00± 0.02 49.84± 0.25
35KKAN + augmentation 49.83± 0.28 50.09± 0.09 49.73± 0.40 50.02± 0.01 50.27± 0.67

CGENN 62.63± 2.24 68.74± 0.77 70.29± 1.29 75.10± 0.47 77.05± 0.03 85K

EKAN-SO+(1, 3) (Ours) 71.92± 0.88 73.98± 0.39 76.15± 0.11 76.69± 0.08 76.93± 0.02
34KEKAN-SO(1, 3) (Ours) 70.49± 2.85 73.96± 0.37 76.15± 0.11 76.69± 0.08 76.93± 0.02

EKAN-O(1, 3) (Ours) 71.68± 1.21 73.95± 0.36 76.15± 0.11 76.69± 0.07 76.93± 0.03

EMLP and MLP is [48, N,N,N, 12]). More implementa-
tion details can be found in Appendix G.2.

The mean ± std of the test MSE over three runs with differ-
ent random seeds are reported in Table 2. Our EKAN-SO(2)
and EKAN-O(2) consistently outperform baseline models
with the same number of parameters, often by orders of mag-
nitude. Notably, our EKAN with 104.5 parameters achieves
comparable or even lower test MSE than baseline models
with 105.5 parameters, saving 90% of the parameter over-
head.

6.3. Top Quark Tagging

The research on top quark tagging (Kasieczka et al., 2019)
involves classifying hadronic tops from the QCD back-
ground. In particle collision experiments, top quark decays
or other events produce several jet constituents. We ob-
serve the four-momenta pµ1 , p

µ
2 , p

µ
3 ∈ R4 of the three jet

constituents with the highest transverse momentum pT , and
predict the event label (1 for top, 0 for QCD). The category
of the event will not change when all jet constituents un-
dergo the same Lorentz transformation. Consequently, this
task possesses O(1, 3) invariance (see Appendix A.2 for
more details), with the feature space Ui = 3T1 and the label
space Uo = T0. The top quark tagging dataset is sourced
from Kasieczka et al. (2019), and we assume that only the
ncomp = 3 jet constituents with the highest transverse mo-
mentum pT are observed, which differs from the setup in
CGENN (Ruhe et al., 2023) and LorentzNet (Gong et al.,
2022), where all ncomp = 200 jet constituents are available.

Similar to particle scattering, we embed the group O(1, 3)
and its subgroups SO+(1, 3) and SO(1, 3) equivariance into
EKAN and EMLP. Furthermore, we embed O(1, 3) equivari-
ance into CGENN (Ruhe et al., 2023). We sample training

sets of different sizes from the original dataset for evalua-
tion. Both EKAN and KAN have the depth of L = 2, the
spline order of k = 3, and grid intervals of G = 3. We set
the width of the middle layer in EKAN to n1 = 200 (shape
as [12, 200, 1]) and the width of the middle layer in KAN to
n1 = 384 (shape as [12, 384, 1]) to control the number of
parameters. Both MLP, EMLP and CGENN have the depth
of L = 4 and the middle layer width n1 = n2 = n3 = 200
(shape as [12, 200, 200, 200, 1]). We apply the sigmoid func-
tion to the model’s output and use BCE as the loss function
for binary classification. More implementation details are
provided in Appendix G.3.

We report the mean ± std of the test accuracy over three
runs with different random seeds, as well as the number of
parameters of the models in Table 3. Since we have not
observed all the jet constituents, the relationship between
the labels and input features cannot be accurately expressed
as an explicit function. In this case of non-symbolic formula
representation, KAN cannot achieve higher accuracy with
fewer parameters than MLP as expected. On the other hand,
our EKAN achieves comparable results with EMLP and
CGENN using fewer than 40% of the parameters, improving
test accuracy by 0.23% ∼ 6.44% on small datasets (training
set size < 104), while decreasing by 0.19% on large datasets
(training set size = 104).

7. Conclusion
To our knowledge, this work is the first attempt to com-
bine equivariance and KANs. We view the KAN layer as
a combination of spline functions and linear weights, and
accordingly define the (gated) input space, post-activation
space, and (gated) output space of the EKAN layer. Gated
basis functions ensure the equivariance between the gated

8

Incorporating Arbitrary Matrix Group Equivariance into KANs

input space and the post-activation space, while equivari-
ant linear weights guarantee the equivariance between the
post-activation space and the gated output space. The prior
work has demonstrated that “EMLP > MLP” on tasks with
symmetries and “KAN > MLP” on symbolic formula rep-
resentation tasks. Our experimental results further indicate
that on symbolic formula representation tasks with symme-
tries, “EKAN > EMLP” and “EKAN > KAN”. Moreover,
on non-symbolic formula representation tasks with symme-
tries, although it may be that “KAN < MLP”, we show that
“EKAN > EMLP”. We expect that EKAN can become a
general framework for applying KANs to more fields, such
as computer vision and natural language processing, just as
EMLP unifies classic works like CNNs and DeepSets.

8. Limitations
One limitation of our approach is that the use of gating
mechanisms can reduce the expressive power of EKAN,
as discussed in Appendix D of EMLP (Finzi et al., 2021).
However, due to the inherently complex structure of KANs
(which involve intricate B-spline formulations), introducing
symmetries into KANs is challenging. Therefore, for the
sake of simplicity and clarity, we opt to incorporate gated
non-linearities in a hierarchical manner. We anticipate that
future improvements could enhance the expressive power
and flexibility of EKAN.

Another limitation is that when data is sufficient, the ad-
vantages of EKAN diminish compared with baselines. We
provide additional experimental results in Appendix H to
illustrate this point. This implies that EKAN enhances gen-
eralization on small data but does not unlock the upper limit
of expressive power.

Acknowledgements
Z. Lin was supported by National Key R&D Program
of China (2022ZD0160300) and the NSF China (No.
62276004).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Azam, B. and Akhtar, N. Suitability of KANs for com-

puter vision: A preliminary investigation. arXiv preprint
arXiv:2406.09087, 2024.

Bekkers, E. J., Lafarge, M. W., Veta, M., Eppenhof, K. A.,

Pluim, J. P., and Duits, R. Roto-translation covari-
ant convolutional networks for medical image analysis.
In Medical Image Computing and Computer Assisted
Intervention–MICCAI 2018: 21st International Confer-
ence, Granada, Spain, September 16-20, 2018, Proceed-
ings, Part I, pp. 440–448. Springer, 2018.

Bodner, A. D., Tepsich, A. S., Spolski, J. N., and Pourteau,
S. Convolutional Kolmogorov-Arnold networks. arXiv
preprint arXiv:2406.13155, 2024.

Braun, J. and Griebel, M. On a constructive proof of Kol-
mogorov’s superposition theorem. Constructive approxi-
mation, 30:653–675, 2009.

Bresson, R., Nikolentzos, G., Panagopoulos, G., Chatzianas-
tasis, M., Pang, J., and Vazirgiannis, M. KAGNNs:
Kolmogorov-Arnold networks meet graph learning. arXiv
preprint arXiv:2406.18380, 2024.

Cheon, M. Demonstrating the efficacy of Kolmogorov-
Arnold networks in vision tasks. arXiv preprint
arXiv:2406.14916, 2024a.

Cheon, M. Kolmogorov-Arnold network for satellite im-
age classification in remote sensing. arXiv preprint
arXiv:2406.00600, 2024b.

Cohen, T. and Welling, M. Group equivariant convolu-
tional networks. In International Conference on Machine
Learning, pp. 2990–2999. PMLR, 2016.

Cohen, T. S. and Welling, M. Steerable CNNs. In Interna-
tional Conference on Learning Representations, 2017.

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

Dangovski, R., Jing, L., Loh, C., Han, S., Srivastava, A.,
Cheung, B., Agrawal, P., and Soljacic, M. Equivariant
self-supervised learning: Encouraging equivariance in
representations. In International Conference on Learning
Representations, 2022.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. Lan-
guage modeling with gated convolutional networks. In
International Conference on Machine Learning, pp. 933–
941. PMLR, 2017.

De Boor, C. A practical guide to splines, volume 27.
springer New York, 1978.

De Carlo, G., Mastropietro, A., and Anagnostopoulos,
A. Kolmogorov-Arnold graph neural networks. arXiv
preprint arXiv:2406.18354, 2024.

Dhiman, V. KAN: Kolmogorov-Arnold networks: A review.
2024.

9

Incorporating Arbitrary Matrix Group Equivariance into KANs

Finzi, M., Welling, M., and Wilson, A. G. A practical
method for constructing equivariant multilayer percep-
trons for arbitrary matrix groups. In International Con-
ference on Machine Learning, pp. 3318–3328. PMLR,
2021.

Garrido, Q., Najman, L., and Lecun, Y. Self-supervised
learning of split invariant equivariant representations.
In International Conference on Machine Learning, pp.
10975–10996. PMLR, 2023.

Genet, R. and Inzirillo, H. A temporal Kolmogorov-Arnold
transformer for time series forecasting. arXiv preprint
arXiv:2406.02486, 2024a.

Genet, R. and Inzirillo, H. TKAN: Temporal Kolmogorov-
Arnold networks. arXiv preprint arXiv:2405.07344,
2024b.

Gong, S., Meng, Q., Zhang, J., Qu, H., Li, C., Qian, S.,
Du, W., Ma, Z.-M., and Liu, T.-Y. An efficient Lorentz
equivariant graph neural network for jet tagging. Journal
of High Energy Physics, 2022(7):1–22, 2022.

Graham, S., Epstein, D., and Rajpoot, N. Dense steerable
filter CNNs for exploiting rotational symmetry in histol-
ogy images. IEEE Transactions on Medical Imaging, 39
(12):4124–4136, 2020.

Greydanus, S., Dzamba, M., and Yosinski, J. Hamiltonian
neural networks. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Gupta, S., Robinson, J., Lim, D., Villar, S., and Jegelka,
S. Structuring representation geometry with rotationally
equivariant contrastive learning. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

Haykin, S. Neural networks: a comprehensive foundation.
Prentice Hall PTR, 1998.

He, L., Chen, Y., Shen, Z., Yang, Y., and Lin, Z. Neural
ePDOs: Spatially adaptive equivariant partial differential
operator based networks. In The Eleventh International
Conference on Learning Representations, 2022.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral networks, 2(5):359–366, 1989.

Hu, L., Li, Y., and Lin, Z. Symmetry discovery for different
data types. Neural Networks, pp. 107481, 2025.

Kasieczka, G., Plehn, T., Thompson, J., and Russel, M. Top
quark tagging reference dataset. (No Title), 2019.

Keriven, N. and Peyré, G. Universal invariant and equivari-
ant graph neural networks. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Kiamari, M., Kiamari, M., and Krishnamachari, B. GKAN:
Graph Kolmogorov-Arnold networks. arXiv preprint
arXiv:2406.06470, 2024.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. Backpropaga-
tion applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989.

Lee, J., Kim, B., and Cho, M. Self-supervised equivariant
learning for oriented keypoint detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4847–4857, 2022.

Li, C., Liu, X., Li, W., Wang, C., Liu, H., and Yuan, Y. U-
KAN makes strong backbone for medical image segmen-
tation and generation. arXiv preprint arXiv:2406.02918,
2024a.

Li, Y., Qiu, Y., Chen, Y., He, L., and Lin, Z. Affine equivari-
ant networks based on differential invariants. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 5546–5556, 2024b.

Li, Y., Qiu, Y., Chen, Y., and Lin, Z. Affine steerable
equivariant layer for canonicalization of neural networks.
In The Thirteenth International Conference on Learning
Representations, 2025.

Liu, Z., Ma, P., Wang, Y., Matusik, W., and Tegmark, M.
KAN 2.0: Kolmogorov-Arnold networks meet science.
arXiv preprint arXiv:2408.10205, 2024a.

Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halver-
son, J., Soljačić, M., Hou, T. Y., and Tegmark, M.
KAN: Kolmogorov-Arnold networks. arXiv preprint
arXiv:2404.19756, 2024b.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
Invariant and equivariant graph networks. In International
Conference on Learning Representations, 2019.

Ruhe, D., Brandstetter, J., and Forré, P. Clifford group equiv-
ariant neural networks. Advances in Neural Information
Processing Systems, 36:62922–62990, 2023.

Satorras, V. G., Hoogeboom, E., and Welling, M. E(n)
equivariant graph neural networks. In International Con-
ference on Machine Learning, pp. 9323–9332. PMLR,
2021.

Seydi, S. T. Unveiling the power of wavelets: A wavelet-
based Kolmogorov-Arnold network for hyperspectral
image classification. arXiv preprint arXiv:2406.07869,
2024.

10

Incorporating Arbitrary Matrix Group Equivariance into KANs

Shazeer, N. GLU variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Shen, Z., He, L., Lin, Z., and Ma, J. PDO-eConvs: Partial
differential operator based equivariant convolutions. In
International Conference on Machine Learning, pp. 8697–
8706. PMLR, 2020.

Shen, Z., Shen, T., Lin, Z., and Ma, J. PDO-eS2CNNs:
Partial differential operator based equivariant spherical
CNNs. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 35, pp. 9585–9593, 2021.

Shen, Z., Hong, T., She, Q., Ma, J., and Lin, Z. PDO-
s3DCNNs: Partial differential operator based steerable
3D CNNs. In International Conference on Machine
Learning, pp. 19827–19846. PMLR, 2022.

Tikhomirov, V. On the representation of continuous func-
tions of several variables as superpositions of continuous
functions of a smaller number of variables. In Selected
Works of AN Kolmogorov, pp. 378–382. Springer, 1991.

Vaca-Rubio, C. J., Blanco, L., Pereira, R., and Caus, M.
Kolmogorov-Arnold networks (KANs) for time series
analysis. arXiv preprint arXiv:2405.08790, 2024.

Wang, R., Walters, R., and Yu, R. Incorporating symmetry
into deep dynamics models for improved generalization.
In International Conference on Learning Representations,
2021.

Wang, Y., Zhang, J., Kan, M., Shan, S., and Chen, X. Self-
supervised equivariant attention mechanism for weakly
supervised semantic segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12275–12284, 2020.

Weiler, M. and Cesa, G. General E(2)-equivariant steer-
able CNNs. Advances in Neural Information Processing
Systems, 32, 2019.

Weiler, M., Geiger, M., Welling, M., Boomsma, W., and
Cohen, T. S. 3D steerable CNNs: Learning rotation-
ally equivariant features in volumetric data. Advances in
Neural Information Processing Systems, 31, 2018a.

Weiler, M., Hamprecht, F. A., and Storath, M. Learning
steerable filters for rotation equivariant CNNs. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 849–858, 2018b.

Winkels, M. and Cohen, T. S. Pulmonary nodule detection
in CT scans with equivariant CNNs. Medical image
analysis, 55:15–26, 2019.

Xie, X., Zhou, P., Li, H., Lin, Z., and Yan, S. Adan: Adap-
tive Nesterov momentum algorithm for faster optimizing

deep models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

Xu, K., Chen, L., and Wang, S. Kolmogorov-Arnold net-
works for time series: Bridging predictive power and
interpretability. arXiv preprint arXiv:2406.02496, 2024.

Yu, R., Yu, W., and Wang, X. KAN or MLP: A fairer
comparison. arXiv preprint arXiv:2407.16674, 2024.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. Ad-
vances in Neural Information Processing Systems, 30,
2017.

Zhang, F. and Zhang, X. GraphKAN: Enhancing feature ex-
traction with graph Kolmogorov Arnold networks. arXiv
preprint arXiv:2406.13597, 2024.

Zhao, L., Zhu, X., Kong, L., Walters, R., and Wong, L. L.
Integrating symmetry into differentiable planning with
steerable convolutions. In The Eleventh International
Conference on Learning Representations, 2023.

11

Incorporating Arbitrary Matrix Group Equivariance into KANs

A. Common Matrix Groups and Their Generators
A.1. Groups SO(2) and O(2)

The group SO(2) represents rotation transformations in two-dimensional space. Its group elements can be expressed as:

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
. (21)

It corresponds to an infinitesimal generator:

A1 =

[
0 −1
1 0

]
. (22)

Then we can obtain the group elements through the exponential map R(θ) = exp(θA1).

The group O(2) represents orthogonal transformations in two-dimensional space, including rotations and reflections. Based
on the group SO(2), it has an additional discrete generator:

h1 =

[
1 0
0 −1

]
. (23)

A.2. Groups SO+(1, 3), SO(1, 3), and O(1, 3)

The group SO+(1, 3) represents Lorentz transformations that preserve both orientation and the direction of time. It includes
six infinitesimal generators:

A1 =

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , A2 =

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , A3 =

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 ,

A4 =

0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 , A5 =

0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 , A6 =

0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

 ,

(24)

where A1, A2, A3 correspond to Lorentz boosts, and A4, A5, A6 correspond to spatial rotations.

The group SO(1, 3) represents Lorentz transformations that preserve orientation. Based on the group SO+(1, 3), it has an
additional discrete generator:

h1 =

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (25)

which corresponds to orientation reversal.

The group O(1, 3) represents all Lorentz transformations. Based on the group SO(1, 3), it has an additional discrete
generator:

h2 =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (26)

which corresponds to time reversal.

B. Concrete Examples of Space Structure
First, let’s intuitively understand the dual (∗), direct sum (⊕), and tensor product (⊗) operations. Consider two vector spaces
X = R2, Y = R3, and vectors x = (x1, x2) ∈ X, y = (y1, y2, y3) ∈ Y . Then, all x ⊕ y = (x1, x2, y1, y2, y3) form the

12

Incorporating Arbitrary Matrix Group Equivariance into KANs

space X ⊕ Y = R5, all x⊗ y = (x1y, x2y) = (x1y1, x1y2, x1y3, x2y1, x2y2, x2y3) form the space X ⊗ Y = R6, and all
the coefficients vec(W) of the linear maps Wx = y form the space Y ⊗X∗ = R6.

Then, if we define how the group transformation acts on X,Y , the form of its action on these composite spaces can naturally
be derived. Equation (4) provides the derivation rules. This paper assumes the group to be a matrix group. If a group element
g ∈ G acts on a vector x ∈ X in the form of its corresponding linear transformation gx, then we call X the base vector
space of G.

We have defined the “addition” and “multiplication” between spaces. Thus, for the base vector space V of a group G,
any complex space structure can be organized into the form of a “polynomial” with respect to V , which is the origin of
Equation (3). Note that Equation (3) simultaneously defines T (p, q) = V p ⊗ (V ∗)q . We abbreviate T (p, 0) as Tp.

In the vast majority of scenarios, the feature space of a dataset takes simple forms such as vector stacking cT1 = cV or
matrices T2 = V ⊗ V , while complex spaces like T (p, q) rarely appear. However, the latent spaces between equivariant
layers can be highly intricate (e.g., they may have 384 dimensions), and their decomposition forms with respect to the base
vector space V often involve T (p, q) (the decomposition is automatically handled by the software based on dimensionality,
as described in Section 6). The practical implication is that, according to the rules of Equation (4), we define how group
transformations operate on the latent spaces.

It is not correct that any (continuous, real, finite-dimensional) representation U of a matrix group can be written as in
Equation (3). It can be shown (in the case of a compact Lie group for example) that U is a subrepresentation of the direct
sum on the right hand side. However, it is worth noting that, for the vast majority of practical applications, considering
input/output representations of this form should suffice.

C. Equivariant Multi-Layer Perceptrons (EMLP)
EMLP (Finzi et al., 2021) embeds matrix group equivariance into MLPs layerwise. Given the input space Ui and output space
Uo, the linear weight matrix W ∈ Uo ⊗ U∗

i should satisfy Equation (5), i.e., ∀g ∈ G̃, vi ∈ Ui : ρo(g)Wvi = Wρi(g)vi. So
the coefficients of each term in vi are equal ∀g ∈ G̃ : ρo(g)W = Wρi(g). Flattening the linear weight matrix W into a
vector, we have ∀g ∈ G̃ :

[
ρo(g)⊗ ρi(g

−1)⊤
]
vec(W) = vec(W). Combined with Equation (4), the linear weight matrix

W is invariant in the space Uo ⊗ U∗
i :

∀g ∈ G̃ : ρo,i(g)vec(W) = vec(W), (27)

where ρo,i = ρo ⊗ ρ∗i is the group representation of Uo ⊗ U∗
i . Decomposing the group representation ρo,i(g) into discrete

and infinitesimal generators as shown in Equation (2), Equation (27) is equivalent to the following constraint:

Cvec(W) =

dρo,i(A1)
...

dρo,i(AD)
ρo,i(h1)− I

...
ρo,i(hM)− I

vec(W) = 0. (28)

By performing singular value decomposition (SVD) on the coefficient matrix C, we can obtain its nullspace, which
corresponds to the subspace where the equivariant linear weights reside.

D. Proof of Theorem 4.1
Theorem 4.1. Given a matrix group G̃, the gated input space Ugi and the post-activation space Um can be expressed in
the forms of Equations (9) and (13), respectively. The function f : Ugi → Um is defined by Equations (10) to (12), that is,
vm = f(vgi). Then, f is equivariant:

∀g ∈ G̃, vgi ∈ Ugi : ρm(g)f(vgi) = f(ρgi(g)vgi), (14)

where ρgi and ρm are group representations of Ugi and Um, respectively.

13

Incorporating Arbitrary Matrix Group Equivariance into KANs

Proof. Let vm,b = fb(vgi), then Equation (11) can be written as:

f(vgi) =

G+k⊕
b=0

fb(vgi). (29)

Using the structure of Um shown in Equation (13) and applying the rules from Equation (4), we can derive the group
representation of Um:

ρm(g) =

G+k⊕
b=0

ρi(g), (30)

where ρi is the group representation of Ui. Combining Equations (29) and (30), we have:

ρm(g)f(vgi) =

G+k⊕
b=0

ρi(g)fb(vgi). (31)

Note that the group transformation in the scalar space T0 is the identity transformation, then we can obtain the group
representation of Ugi from Equation (9):

ρgi(g) = Ici ⊕

[
Ai⊕
a=1

ρi,a(g)

]
⊕ IAi , (32)

where ρi,a is the group representation of T (pi,a, qi,a). Therefore, applying the group transformation to vgi in Equation (10)
results in:

ρgi(g)vgi =

(
ci⊕

a=1

si,a

)
⊕

(
Ai⊕
a=1

ρi,a(g)vi,a

)
⊕

(
Ai⊕
a=1

s′i,a

)
. (33)

Substitute Equation (33) into Equation (12):

fb(ρgi(g)vgi) =

[
⊕ci

a=1 si,aBb(si,a)]⊕
[⊕Ai

a=1 ρi,a(g)vi,aBb(s
′
i,a)
]
, b < G+ k,

[
⊕ci

a=1 si,asilu(si,a)]⊕
[⊕Ai

a=1 ρi,a(g)vi,asilu(s
′
i,a)
]
, b = G+ k.

(34)

Similar to Equation (32), we can derive the group representation of Ui from Equation (8):

ρi(g) = Ici ⊕

[
Ai⊕
a=1

ρi,a(g)

]
. (35)

Note that the right-hand side of Equation (34) is the result of applying ρi(g) to fb(vgi), which means:

fb(ρgi(g)vgi) = ρi(g)fb(vgi). (36)

Substitute Equation (36) into Equation (29):

f(ρgi(g)vgi) =

G+k⊕
b=0

ρi(g)fb(vgi). (37)

Combining Equations (31) and (37), Equation (14) is proven.

E. Grid Update
Similar to KANs (Liu et al., 2024b), EKAN updates grids based on the input activations. At the same time, the linear
weights should also be updated in order to keep the output features unchanged. Let the post-activation values of the
grids before and after the update be denoted as Vm, V ′

m ∈ RN×(G+k+1)di , where N is the number of samples. We first
project the linear weight blocks into the equivariant subspace as vec(W̃b) = Pvec(Wb) and compute the output activations
Vgo = VmW̃⊤ =

∑G+k
b=0 Vm,bW̃

⊤
b , where P is the equivariant projector obtained from Equation (20). Then, the updated

equivariant linear weights W̃ ′ should satisfy Vgo = V ′
mW̃ ′⊤, and we have W̃ ′ = V ⊤

go(V
′⊤
m)†. We finally restore the updated

linear weight blocks vec(W ′
b) = P †vec(W̃ ′

b).

14

Incorporating Arbitrary Matrix Group Equivariance into KANs

F. Equivariant Error Evaluation
For all trained models fθ in Section 6, we use Lequi = Ex,g∥ρo(g)fθ(x)− fθ(ρi(g)x)∥2 to evaluate their equivariant errors.
The experimental results are presented in Tables 4 to 6, which indicate that our EKAN and EMLP can structurally guarantee
strict equivariance, whereas non-equivariant models cannot. For particle scattering, the results of EMLP and MLP are
sourced from the original paper (Finzi et al., 2021), so we do not present their equivariant errors here.

Table 4. Equivariant error of different models on the particle scattering dataset with different training set sizes. We present the results in
the format of mean ± std.

Models Training set size
102 102.5 103 103.5 104

KAN (3.14± 0.08)× 10−1 1.02± 0.69 (4.88± 2.02)× 10−1 (6.90± 3.25)× 10−1 (1.64± 0.41)× 10−1

KAN + augmentation (2.78± 0.30)× 10−1 (8.81± 8.41)× 10−1 (1.08± 0.55)× 10−1 (1.32± 0.52)× 10−1 (2.36± 0.17)× 10−1

EKAN-SO+(1, 3) (Ours) (6.13± 1.76)× 10−14 (9.32± 2.75)× 10−14 (7.48± 1.61)× 10−14 (8.33± 0.69)× 10−14 (6.57± 0.06)× 10−14

EKAN-SO(1, 3) (Ours) (1.13± 0.78)× 10−13 (7.64± 1.67)× 10−14 (6.86± 0.11)× 10−14 (7.98± 0.45)× 10−14 (6.62± 0.89)× 10−14

EKAN-O(1, 3) (Ours) (5.67± 0.87)× 10−14 (7.95± 2.67)× 10−14 (5.88± 0.81)× 10−14 (9.00± 0.63)× 10−14 (8.43± 0.18)× 10−14

Table 5. Equivariant error of different models with different numbers of parameters on the three-body problem dataset. We present the
results in the format of mean ± std.

Models Number of parameters
104.5 104.75 105 105.25 105.5

MLP (1.44± 0.13)× 10−3 (1.51± 0.14)× 10−3 (1.54± 0.03)× 10−3 (1.33± 0.17)× 10−3 (1.33± 0.10)× 10−3

MLP + augmentation (3.16± 0.32)× 10−3 (3.47± 0.24)× 10−3 (3.43± 0.24)× 10−3 (3.35± 0.16)× 10−3 (3.32± 0.26)× 10−3

EMLP-SO(2) (2.80± 2.18)× 10−13 (1.57± 1.39)× 10−13 (2.17± 0.37)× 10−14 (2.99± 2.51)× 10−14 (1.87± 0.61)× 10−14

EMLP-O(2) (7.87± 6.26)× 10−13 (1.87± 1.32)× 10−12 (3.22± 4.53)× 10−11 (1.46± 2.03)× 10−12 (7.23± 6.13)× 10−14

KAN (3.00± 2.28)× 10−1 (1.21± 0.26)× 10−2 (5.90± 0.78)× 10−3 (5.93± 1.45)× 10−3 (4.03± 0.81)× 10−3

KAN + augmentation (2.78± 0.10)× 10−3 (2.49± 0.11)× 10−3 (2.37± 0.11)× 10−3 (2.35± 0.11)× 10−3 (2.29± 0.08)× 10−3

EKAN-SO(2) (Ours) (3.80± 3.84)× 10−13 (3.02± 3.05)× 10−13 (9.66± 5.85)× 10−14 (3.33± 1.47)× 10−14 (3.31± 1.31)× 10−14

EKAN-O(2) (Ours) (9.79± 6.13)× 10−13 (1.46± 1.30)× 10−13 (2.99± 2.77)× 10−13 (1.75± 1.55)× 10−13 (7.62± 4.91)× 10−14

Table 6. Equivariant error of different models on the top quark tagging dataset (ncomp = 3) with different training set sizes. We present
the results in the format of mean ± std.

Models Training set size
102 102.5 103 103.5 104

MLP (4.94± 0.40)× 10−1 (4.00± 0.17)× 10−1 (3.73± 0.05)× 10−1 (3.24± 0.11)× 10−1 (1.87± 0.03)× 10−1

MLP + augmentation (4.73± 0.28)× 10−1 (2.15± 0.12)× 10−1 (1.90± 0.55)× 10−1 (3.73± 0.39)× 10−1 (3.40± 0.63)× 10−1

EMLP-SO+(1, 3) (2.92± 2.30)× 10−6 (1.09± 0.84)× 10−7 (3.88± 1.44)× 10−9 (3.54± 2.47)× 10−9 (1.65± 2.11)× 10−8

EMLP-SO(1, 3) (6.81± 8.20)× 10−7 (1.36± 1.82)× 10−7 (5.49± 2.92)× 10−9 (2.69± 1.48)× 10−9 (1.71± 0.36)× 10−9

EMLP-O(1, 3) (2.41± 1.68)× 10−7 (1.86± 1.80)× 10−7 (6.20± 0.59)× 10−9 (1.14± 1.36)× 10−8 (1.26± 0.28)× 10−9

KAN (1.36± 1.78)× 10−1 (1.35± 1.77)× 10−1 (1.34± 1.77)× 10−1 (9.90± 14.00)× 10−5 (1.27± 1.79)× 10−1

KAN + augmentation (1.20± 1.61)× 10−1 (2.10± 2.97)× 10−3 (1.10± 1.51)× 10−1 (1.52± 2.15)× 10−4 (1.44± 1.78)× 10−1

EKAN-SO+(1, 3) (Ours) (3.41± 2.99)× 10−7 (1.66± 0.85)× 10−8 (1.62± 0.51)× 10−9 (1.65± 1.01)× 10−9 (1.64± 1.53)× 10−9

EKAN-SO(1, 3) (Ours) (3.10± 1.81)× 10−7 (1.09± 0.60)× 10−8 (1.11± 0.41)× 10−9 (1.13± 0.70)× 10−9 (1.14± 1.10)× 10−9

EKAN-O(1, 3) (Ours) (3.14± 2.32)× 10−7 (1.46± 0.79)× 10−8 (1.50± 0.46)× 10−9 (1.50± 0.92)× 10−9 (1.54± 1.50)× 10−9

G. Implementation Details
G.1. Particle Scattering

In particle scattering, we generate training sets of different sizes, and the corresponding test sets have the same sizes as the
training sets. We train EKAN using the Adan optimizer (Xie et al., 2024) with the learning rate of 3× 10−3 and the batch
size of 500. For datasets with the training set size < 1000, we set the number of epochs to 7000, while for datasets with the
training set size ≥ 1000, we set the number of epochs to 15000, which is sufficient for the MSE loss to converge to the

15

Incorporating Arbitrary Matrix Group Equivariance into KANs

minimum. We perform this experiment on a single-core NVIDIA GeForce RTX 3090 GPU with available memory of 24576
MiB.

G.2. Three-Body Problem

In the three-body problem, we control the number of parameters by adjusting the middle layer width N of the model. We
list the correspondence between the model’s shape and the number of parameters in Table 7. We train all models using
the Adan optimizer (Xie et al., 2024) with the learning rate of 3× 10−3, the batch size of 500, and for 5000 epochs. The
grids of EKAN and KAN are updated every 5 epochs and stop updating at the 50th epoch. We perform this experiment on a
single-core NVIDIA GeForce RTX 3090 GPU with available memory of 24576 MiB.

Table 7. The correspondence between the model’s shape and the number of parameters.

Models Number of parameters
104.5 104.75 105 105.25 105.5

MLP [48, 111, 111, 111, 12] [48, 153, 153, 153, 12] [48, 209, 209, 209, 12] [48, 283, 283, 283, 12] [48, 383, 383, 383, 12]
EMLP [48, 84, 84, 84, 12] [48, 110, 110, 110, 12] [48, 147, 147, 147, 12] [48, 214, 214, 214, 12] [48, 281, 281, 281, 12]
KAN [48, 76, 12] [48, 134, 12] [48, 238, 12] [48, 423, 12] [48, 752, 12]
EKAN (Ours) [48, 45, 12] [48, 88, 12] [48, 151, 12] [48, 262, 12] [48, 457, 12]

G.3. Top Quark Tagging

In top quark tagging, we train all models using the Adan optimizer (Xie et al., 2024) with the learning rate of 3× 10−3 and
the batch size of 500. For datasets with the training set size ≤ 1000, we set the number of epochs to 1000, while for datasets
with the training set size > 1000, we set the number of epochs to 2000, which is sufficient for the BCE loss to converge to
the minimum. The grids of EKAN and KAN are updated every 5 epochs and stop updating at the 50th epoch. We perform
this experiment on a single-core NVIDIA GeForce RTX 3090 GPU with available memory of 24576 MiB.

H. Additional Experiments
For top quark tagging, we increase the number of observed jet components for further comparison. We present the results
using the SO+(1, 3)-equivariant network as a representative, while the results of SO(1, 3) and O(1, 3)-equivariant networks
are very similar. We set the number of jet components to ncomp = 10 and ncomp = 20 respectively, and the experimental
results are shown in Tables 8 and 9. Together with Table 3 in Section 6, we note that all models exhibit significant
improvements in accuracy as the observed information increases. When ncomp is larger, our EKAN achieves comparable
results to the baselines, but it does not show superior performance. This suggests that EKAN may only have advantages
in scenarios with insufficient observation information (as shown in Table 3), benefiting from its stronger generalization
capability.

Table 8. Test accuracy (%) of different models on the top quark tagging dataset (ncomp = 10) with different training set sizes. We present
the results in the format of mean ± std.

Models Training set size
102 102.5 103 103.5 104

EMLP-SO+(1, 3) 78.95± 2.24 81.52± 0.48 81.18± 0.42 82.50± 0.30 85.03± 0.04

CGENN 71.82± 3.28 80.35± 0.57 79.85± 1.01 81.56± 0.23 84.17± 0.76

EKAN-SO+(1, 3) (Ours) 78.57± 0.63 79.77± 0.78 82.90± 0.61 84.83± 0.19 87.14± 0.03

16

Incorporating Arbitrary Matrix Group Equivariance into KANs

Table 9. Test accuracy (%) of different models on the top quark tagging dataset (ncomp = 20) with different training set sizes. We present
the results in the format of mean ± std.

Models Training set size
102 102.5 103 103.5 104

EMLP-SO+(1, 3) 83.71± 0.49 83.57± 0.69 83.14± 0.35 85.00± 0.35 86.81± 0.14

CGENN 76.24± 1.28 82.34± 0.80 81.85± 0.40 84.67± 0.87 86.76± 0.50

EKAN-SO+(1, 3) (Ours) 80.36± 1.99 81.25± 0.70 82.89± 1.18 86.21± 0.21 89.30± 0.12

17

