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Abstract
Scaling language models unlocks impressive
capabilities, but the accompanying computational
and memory demands make both training and
deployment expensive. Existing efficiency efforts
typically target either parameter sharing or adap-
tive computation, leaving open the question of
how to attain both simultaneously. We introduce
Mixture-of-Recursions (MoR), a unified frame-
work that combines the two axes of efficiency in-
side a single Recursive Transformer. MoR reuses
a shared stack of layers across recursion steps to
achieve parameter efficiency, while lightweight
routers enable adaptive token-level thinking by
dynamically assign recursion depth to tokens,
thereby focusing quadratic attention computation
only where it is most useful. Further enhancing
its efficiency, MoR incorporates a recursion-wise
key-value caching mechanism that eliminates
redundant memory access across recursion steps
by selectively storing only the key-value caches
for designated tokens. Across pretraining runs
at model scales ranging from 135M to 1.7B
parameters, MoR forms a new Pareto frontier: at
equal training FLOPs and smaller model sizes, it
significantly lowers validation perplexity and im-
proves few-shot accuracy, while delivering higher
throughput compared with vanilla and existing
recursive baselines. These gains demonstrate that
MoR is an effective path towards large-model
quality without incurring large-model cost.
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1. Introduction
Scaling Transformer networks to hundreds of billions of
parameters has unlocked impressive few-shot generaliza-
tion and reasoning abilities (Brown et al., 2020; Chowdhery
et al., 2023; Grattafiori et al., 2024; OpenAI, 2023; Reid
et al., 2024; DeepSeek-AI et al., 2024). However, the accom-
panying memory footprint and computational requirements
make both training and deployment outside hyperscale data
centers challenging (Patterson et al., 2021; Momeni et al.,
2024). This has motivated researchers to seek alternative “ef-
ficient” designs (Tay et al., 2022; Wan et al., 2023). Among
the different axes of efficiency, parameter efficiency (De-
hghani et al., 2018; Bae et al., 2024; Shazeer et al., 2017; Fe-
dus et al., 2022)—reducing or sharing model weights—and
adaptive computation (Raposo et al., 2024; Schuster et al.,
2022; Fedus et al., 2022; Leviathan et al., 2023)—spend-
ing more compute only when it is needed—are promising,
actively studied research direction.

One proven route to parameter efficiency is layer tying, in
which a shared set of weights is reused across multiple lay-
ers (Dehghani et al., 2018; Lan et al., 2019; Gholami &
Omar, 2023; Bae et al., 2024; Takase & Kiyono, 2021). For
adaptive computation, a common approach is early-exiting,
which dynamically allocates compute by exiting earlier in
the network when predicting simpler tokens (Elhoushi et al.,
2024; Schuster et al., 2022; Elbayad et al., 2020; Bae et al.,
2023). In contrast, an architecture that effectively unifies
both parameter efficiency and adaptive computation is still
missing. Recursive Transformers (Bae et al., 2024; Fan
et al., 2024; Giannou et al., 2023; Yang et al., 2023; Saunshi
et al., 2025; Geiping et al., 2025), models that repeatedly
apply the same set of shared layers multiple times, offer a
strong foundation due to weight sharing. However, prior
attempts at dynamic recursion have often been constrained
by practical hurdles, such as requiring additional special-
ized training or deployment inefficiency. This has led most
approaches to default to a fixed-depth recursion, incapable
of delivering adaptive token-level compute allocation.

In this work, we introduce Mixture-of-Recursions (MoR), a
unified framework that fully leverages the potential of Re-
cursive Transformers (see Figure 1). MoR trains lightweight
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Figure 1: Overview of Mixture-of-Recursions (MoR). (Left) Each recursion step consists of a fixed stack of layers and a
router that determines whether each token should pass through or exit. This recursion block corresponds to the gray box in
the middle. (Middle) The full model structure, where the shared recursion step is applied up to Nr times for each token
depending on the router decision. (Right) An example routing pattern showing token-wise recursion depth, where darker
cells indicate active computation through the recursion block. Below shows the number of recursion steps of each text token,
shown in colors: 1 , 2 , and 3 .

routers end-to-end to assign token-specific recursion depths:
it decides how many times a shared parameter block is
applied to each token according to its required depth of
“thinking”, thereby directing computation to where it is most
needed. This dynamic, token-level recursion inherently fa-
cilitates recursion-wise key–value (KV) caching, selectively
storing and retrieving key–value pairs corresponding to each
token’s assigned recursion depth. This targeted caching strat-
egy reduces memory traffic, improving throughput without
post-hoc modifications. Therefore, MoR simultaneously (i)
ties weights to cut parameters, (ii) routes tokens to cut re-
dundant FLOPs, and (iii) caches key-values recursion-wise
to cut memory IO—within a single architecture.

Conceptually, MoR provides a pre-training framework for
latent space reasoning—performing non-verbal thinking by
iteratively applying a single parameter block (Hao et al.,
2024; Geiping et al., 2025; Goyal et al., 2023). However,
unlike approaches that deliberate on augmented continuous
prompts (Liu et al., 2024b; Goyal et al., 2023; Hao et al.,
2024; Shen et al., 2025), MoR enables this latent thinking
directly during the decoding of each token (Zelikman et al.,
2024). Furthermore, routing mechanism facilitates adaptive
reasoning along the model’s vertical axis1, moving beyond
the fixed thinking depth common in prior work (Geiping
et al., 2025; Tack et al., 2025). MoR enables models to
efficiently adjust their thinking depth on a per-token basis,
unifying parameter efficiency with adaptive computation.

1While thinking occurs along the depth axis, it is analogous to
continuous thoughts along the horizontal sequence axis.

Contributions. In summary, our key contributions in this
paper are as follows.

• Unified framework for efficient language modeling:
We present Mixture-of-Recursions (MoR), the first archi-
tecture to unify efficiency paradigms—parameter shar-
ing (§2.1), token-level adaptive thinking depth (§2.2.1),
and memory-efficient KV caching (§2.2.2)—within a sin-
gle framework.

• Dynamic recursion routing: We introduce a router
trained from scratch to assign dynamic per-token recur-
sion depths. This aligns training with inference-time be-
havior and eliminates the need for costly, performance-
degrading post-hoc routing stages used in conventional
methods.

• Extensive empirical validation: Across models from
135M to 1.7B parameters2 under equal compute budgets,
MoR establishes a new Pareto frontier by improving vali-
dation loss and few-shot accuracy relative to vanilla and
recursive baselines (§3.1, §3.2).

• Efficient architecture: MoR dramatically reduces train-
ing FLOPs by selectively engaging only essential se-
quences in attention operations. Simultaneously, re-
duction in KV cache sizes leads to enhanced inference
throughput itself, further boosted by continuous depth-
wise batching (§3.3).

2These are base model sizes, while MoR models have fewer
unique parameters due to parameter sharing.
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2. Method
2.1. Preliminary

Recursive Transformers. The standard Transformer
(Vaswani et al., 2017) constructs token representations
through a stack of L unique layers, each with a self-attention
and a feed-forward network. At time step t, the hidden state
h evolves as: hℓ+1

t = f
(
hℓ
t; Φℓ

)
, where ℓ = 0, . . . , L−1

and Φℓ represents the parameters of the ℓ-th layer. Recursive
Transformers (Bae et al., 2024; Fan et al., 2024; Giannou
et al., 2023; Yang et al., 2023; Saunshi et al., 2025) aim
to reduce parameter count by reusing layers across depth.
Instead of having L distinct sets of weights, they partition
the model into Nr recursion blocks, where each block uses
a shared pool of parameters Φ′. This design allows for more
computation (by increasing the effective network depth)
without increasing parameter size.

Parameter-sharing strategies. We examine four
parameter-sharing strategies: Cycle, Sequence, and their
variants Middle-Cycle and Middle-Sequence. Table 3
summarizes details of these strategies. In Cycle sharing,
recursion blocks are reused cyclically. For example,
consider an original non-recursive model with L=9 layers
and its recursive counterpart using Nr=3 recursions. Under
the “Cycle” strategy, the layers are shared and unrolled as
[(0, 1, 2), (0, 1, 2), (0, 1, 2)]. In “Sequence” sharing, each
recursion block reuses the same layer consecutively before
moving to the next, resulting in [(0, 0, 0), (1, 1, 1), (2, 2, 2)]
for the same configuration. Furthermore, the “Middle”
variants preserve full-capacity parameters at the first and
last layers (Φ0 and ΦL−1), while sharing weights among
the intermediate layers.

Limitations in prior works. Although model parame-
ters are tied, the distinct KV caches are typically used for
each depth. This design fails to reduce the cache sizes,
meaning the high retrieval latency still remains a severe
inference bottleneck. Moreover, most existing recursive
models simply apply a fixed recursion depth to all tokens,
ignoring the varying complexity. While post-hoc methods
like early-exiting methods can introduce some adaptivity,
they often require separate training phases that can degrade
performance (Schuster et al., 2022; Elhoushi et al., 2024;
Bae et al., 2024). Ideally, the recursion depth should be
learned dynamically during pretraining, allowing the model
to adapt its computational path to each token’s difficulty in
a data-driven manner. However, such dynamic paths intro-
duce a new challenge: exited tokens will have missing KV
pairs at subsequent recursion depths. Addressing this would
require a parallel decoding mechanism (Bae et al., 2023;
Elhoushi et al., 2024; Kim et al., 2023) to efficiently com-
pute the actual KV pairs, but this requires separate, complex
engineering and complicates the system.

2.2. Mixture-of-Recursions

We propose Mixture-of-Recursions (MoR)—a framework
that dynamically adjusts recursion step for each token
during pretraining and inference. The core of MoR lies
in two components: a routing mechanism that assigns
token-specific recursion steps to adaptively concentrate
computation on more challenging tokens, and a KV caching
strategy that defines how KV pairs are stored and selectively
utilized for attention at each recursive step.

2.2.1. ROUTING STRATEGIES: EXPERT-CHOICE VS.
TOKEN-CHOICE

Expert-choice routing. (Figure 2a) Inspired by top-k
gating in MoD models (Raposo et al., 2024), in expert-
choice routing, each recursion depth becomes an expert and
selects their preferred top-k tokens (e.g., for Nr = 3, we
have three experts: Expert 1 applies the first recursion step,
Expert 2 applies the second recursion, and so on). At each
recursion step r, the corresponding router uses the hidden
stateHr

t (input to the r-th recursion block) and its routing
parameters θr to compute a scalar score grt = G(θ⊤r Hr

t )
for token t. Here, G represents an activation function like
sigmoid or tanh. Then, the top-k tokens are selected
to pass through the recursion block:

Hr+1
t =

{
grt f(Hr

t , Φ
′) +Hr

t , if grt > Pβ(G
r)

Hr
t , otherwise

(1)

where Pβ(G
r) is the β-percentile threshold over all scores

at recursion step r.

To ensure coherent progression through steps, we adopt
hierarchical filtering: only tokens selected at recursion step
r can be re-evaluated at r+1. This simulates early-exit
behavior while learning from scratch. As deeper layers tend
to encode abstract and sparse information (Li et al., 2022;
Yang et al., 2024; Nawrot et al., 2024), this mechanism
prioritizes computation for only the most demanding tokens.

Token-choice routing. (Figure 2b) Unlike expert-choice,
where token selection is made at each recursion step, token-
choice commits each token to a full sequence of recursion
blocks from the start. Formally, given the hidden stateH1

t

(in Middle-Cycle strategy,H1
t = h1

t ), the router computes a
non-linear function (softmax or sigmoid) over experts:
gt = G(θ⊤r H1

t ), where gjt denotes the routing score for
expert j ∈ {1, . . . , Nr}. The token is assigned to expert
i = argmaxj g

j
t (top-1 gating), which corresponds to se-

quentially applying the recursion i times. The hidden state
is then updated recursively as:

Hr+1
t =

{
grt f(Hr

t , Φ
′) +H1

t , if r = i

grt f(Hr
t , Φ

′), otherwise
(2)
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Figure 2: Architectural components of Mixture-of-Recursions (MoR). (a) Expert-choice routing: At each recursion step, a
router selects top-k tokens to continue, progressively narrowing the set of active tokens with depth. (b) Token-choice routing:
Each token is assigned a fixed recursion step at the outset via a single routing decision, defining its complete compute path
through the model. (c) KV caching strategies: Each square in the matrix represents whether a token (row) attends to another
token’s cached key (column). In “recursion-wise KV caching” (Top), only the keys of currently selected (non-dropped) tokens
at each recursion step are cached ( blue ), and attention is restricted only to these entries. In “recursive KV sharing” (Bottom),
all keys of previous tokens are cached at the first recursion step ( purple ) and shared across subsequent recursion steps.

To compare routing strategies under equal compute, we
align the token allocation budgets of expert-choice with that
of token-choice. Specifically, we calibrate token capacity
(i.e., top-k) of expert-choice to match the expected token dis-
tribution of token-choice routing with perfect load balancing.
In perfectly balanced token-choice, each token is assigned
to recursion depth i ∈ {1, . . . , Nr} with equal probability
1/Nr. Thus, recursion step j processes (Nr − j+1)/Nr of
the tokens. For example, when Nr = 3, recursion steps 1,
2, and 3 handle {3/3, 2/3, 1/3} of tokens, respectively.

Strengths and limitations. (Table 1–Left) Although
expert-choice routing guarantees perfect load balancing
with static top-k selection, it suffers from information leak-
age (Zhou et al., 2022; Wang et al., 2024; Raposo et al.,
2024). This violation of causality during training forces to
exploit an auxiliary router or a regularization loss (Zhou
et al., 2022; Raposo et al., 2024), aiming to precisely de-
tect top-k tokens at inference without access to future to-
ken information. Meanwhile, token-choice is free from
such leakage, but requires a balancing loss or loss-free al-
gorithms (Wang et al., 2024; Fedus et al., 2022; Zoph et al.,
2022) due to its inherent load balancing challenges. We
explore each of these components for MoR in detail (§L.1).

2.2.2. KV CACHING STRATEGIES: RECURSION-WISE
CACHING VS. RECURSIVE SHARING

Dynamic-depth models often struggle with KV cache con-
sistency during autoregressive decoding. When a token exits
early, its corresponding keys and values in deeper layers will
be missing, which can be crucial information for subsequent

tokens. Some methods attempt to reuse stale entries (Schus-
ter et al., 2022) or run parallel decoding (Bae et al., 2023),
but these solutions still introduce overhead and complexity.
To this end, we design and explore two KV cache strate-
gies tailored to MoR models: recursion-wise caching and
recursive sharing.

Recursion-wise KV caching. (Figure 2c–Top) Inspired
by Raposo et al. (2024), we cache KV pairs selectively: only
tokens routed to a given recursion step store their key–value
entries at that level. Thereby, the KV cache size at each
recursion depth is determined exactly by the capacity factor
in expert-choice, or according to actual balancing ratios in
token-choice. Attention is then restricted to those locally
cached tokens. This design promotes block-local compu-
tation, which improves memory efficiency and reduces IO
demands.

Recursive KV sharing. (Figure 2c–Bottom) A key
design choice for our MoR model is that all tokens traverse
at least the first recursion block3. We leverage this by
caching KV pairs exclusively at this initial step and reusing
them across all subsequent recursions. Therefore, the query
length might get shorter at each recursion depth based on
the selection capacity, but the key and value lengths will
consistently maintain the full sequence. This ensures that
all tokens can access to past context without recomputation,
despite any distribution mismatch.

Strengths and limitations. (Table 1–Right) Recursion-
wise caching cuts KV memory and IO to approximately
(Nr + 1)/2Nr times across the entire model (when assum-

3Though it is not a strict requirement of the MoR framework.
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Table 1: Comparison of routing strategies and key-value caching strategies. (Left) Summary of two routing strategies: expert-
choice and token-choice, highlighting their pros, cons, and mitigating solutions from previous works (Raposo et al., 2024;
Wang et al., 2024; Zoph et al., 2022). (Right) Relative cost efficiency of caching strategies against a vanilla Transformer
(normalized to 1). Here, Nr denotes the number of recursions, and k (k < Nctx) denotes the number of selected tokens
per layer. KV cache memory and IO are measured across the entire model, whereas attention FLOPs are reported per layer.

Expert-choice Token-choice

Pros Static compute budget No leakage

Cons Causality violation Load imbalance
⌞Sol Aux Rout, Aux Loss Bal Loss, Loss-free

Recursion-wise Caching Recursive Sharing

KV Memory (Nr + 1)/2Nr 1/Nr

KV Cache IO (Nr + 1)/2Nr 1

Attn FLOPs k2/N2
ctx k/Nctx

Table 2: Comparison of MoR, Recursive, and Vanilla Transformers under both fixed FLOPs (16.5e9) and token (20B) settings.
All models are trained on FineWeb-Edu (Penedo et al., 2024) and evaluated by validation negative log-likelihood (NLL)
and few-shot accuracy. For the isoFLOP rows, the number of training tokens (Ntok) varies by model efficiency. For the
fixed-token rows, we report the effective FLOPs consumed. For the model sizes, we report non-embedding parameter counts.

MoR Recursion Pretrain NLL ↓ Few-shot Accuracy ↑
Models Type KV Share NR Param FLOPs Ntok FineWeb LD HS PQ WG ARC MMLU Avg

Vanilla - - - - 315M 16.5 20B 2.7824 32.0 37.8 65.6 50.5 39.6 28.0 42.3

Recursive
- - M-Cyc 2 167M 16.5 20B 2.8079 31.0 37.1 66.7 52.3 40.8 27.5 42.6
- - M-Cyc 3 118M 16.5 20B 2.8466 29.8 35.9 65.0 52.3 39.0 27.2 41.5
- - M-Cyc 4 98M 16.5 19B 2.8781 28.2 35.4 65.5 52.5 38.0 26.8 41.0

Expert ✗ M-Cyc 2 167M 16.5 27B 2.7511 34.4 39.3 65.7 51.2 39.6 28.1 43.1
Expert ✗ M-Cyc 3 118M 16.5 30B 2.7925 33.1 37.9 66.9 52.1 38.3 27.4 42.6
Expert ✗ M-Cyc 4 98M 16.5 30B 2.8204 30.1 37.3 65.0 51.1 38.9 27.4 41.6

Expert ✗ M-Cyc 2 167M 12.3 20B 2.7749 33.2 38.3 65.2 52.6 40.1 28.1 42.9
Expert ✗ M-Cyc 3 118M 11.0 20B 2.8246 31.9 37.0 65.7 50.5 38.3 27.4 41.8
Expert ✗ M-Cyc 4 98M 11.0 20B 2.8519 30.2 36.5 64.3 52.3 38.6 27.2 41.5

Token ✗ M-Cyc 3 118M 16.5 30B 2.9163 27.6 34.1 63.8 50.6 37.4 26.8 40.0

MoR (ours)

Expert ✓ M-Cyc 3 118M 16.5 31B 2.7983 31.7 37.2 65.1 51.0 39.0 27.1 41.9

ing capacity factors follow a sequence like Nr/Nr, · · · ,
1/Nr over Nr recursion steps). It also reduces per-layer
attention FLOPs to a factor of (k/Nctx)

2 of those in vanilla
models, resulting in substantially improved efficiency for
both training and inference phases. Meanwhile, recursive
sharing can yield maximal memory savings by globally
reusing context. Specifically, significant speedups can be
achieved by skipping KV projection and prefill operations
at shared depths (Sun et al., 2024). However, attention
FLOPs only decrease by a factor of k/Nctx, and high
volume of KV IO still leads to a decoding bottleneck.

3. Experiments
We pretrain our models from scratch using a LLaMA-
based Transformer architecture4 (Dubey et al., 2024), imple-
mented with the SmolLM open-source configurations (Allal
et al., 2024), on a deduplicated subset of the FineWeb-Edu

4Experiments on Llama are conducted without direction or
involvement from Google advisors.

dataset (Penedo et al., 2024). We evaluate few-shot accuracy
on seven benchmarks. Details are described in Appendix D.

3.1. Main Results

MoR outperforms baselines with fewer parameters un-
der equal train compute. Under an equal training budget
of 16.5e9 FLOPs, we compared our Mixture-of-Recursions
(MoR) model against both Vanilla and Recursive Transform-
ers. As shown in Table 2, the MoR model using expert-
choice routing and two recursions Nr = 2 not only achieves
a lower validation loss but also surpasses the vanilla baseline
in average few-shot accuracy (43.1% vs. 42.3%). Remark-
ably, this superior performance is achieved despite using
nearly 50% fewer parameters. This is attributed to MoR’s
higher computational efficiency, which allows it to process
more training tokens within the same FLOPs budget. Fur-
thermore, as Nr increases to 3 or 4, MoR maintains its
competitive accuracy, consistently outperforming the recur-
sive baselines while remaining within a tight margin of the
full-capacity vanilla model.
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Figure 3: Validation loss as a function of compute budget across four model sizes: 135M, 360M, 730M, and 1.7B
parameters. MoR consistently outperforms recursive baselines and matches or exceeds the Vanilla Transformer at larger
scales, despite using significantly fewer parameters (approximately one-third due to layer tying with NR = 3). These results
highlight MoR’s favorable scaling behavior.

MoR outperforms baselines with less compute at equal
data. To isolate architectural differences, we analyze per-
formance under a fixed number of training tokens (20B).
Specifically, our MoR model with Nr = 2 outperforms both
vanilla and recursive baselines—achieving lower validation
loss and higher average accuracy—despite using 25% less
fewer training FLOPs. This theoretical efficiency translates
into significant practical gains: compared to the vanilla base-
line, our model reduces training time by 19% and cuts peak
memory usage by 25%. These improvements stem from our
hierarchical filtering and recursion-wise attention mecha-
nism, which shortens sequence lengths to achieve a superior
compute-accuracy trade-off, even during pretraining.

MoR performance varies with routing and caching
strategies. We also evaluate a few design variants within
MoR framework, specifically with Nr = 3 that is
lightweight and still comparable with Vanilla. In this
case, using token-choice routing yields lower performance
(40.0%) compared to expert-choice routing (42.6%), in-
dicating that routing granularity plays a pivotal role in
model performance. Additionally, applying KV cache shar-
ing slightly reduces performance compared to independent
caching, while providing improved memory efficiency. This
trade-off remains favorable for practical deployment when
memory usage is a key concern.

3.2. IsoFLOP Analysis

A core criterion for evaluating a new model architectural de-
sign is whether performance continues to improve as model
and compute scales grow (Kaplan et al., 2020). There-
fore, we evaluate MoR against both Vanilla and Recursive
Transformers across a wide range of model sizes and com-
putational budgets to show that it maintains competitive or
superior predictive performance as the scale increases.

Experimental Setup. We experiment with four
scales—135M, 360M, 730M, and 1.7B parameters—fixing
the number of recursions to three for both Recursive and
MoR configurations, resulting in roughly one-third the
number of unique parameters. Each model is pretrained
under three different FLOPs budgets: 2e9, 5e9, and 16.5e9.

MoR is a scalable and parameter-efficient architecture.
As shown in Figure 3, MoR consistently outperforms
recursive baselines across all model sizes and compute
budgets. While it underperforms the vanilla model at the
smallest model size (135M)—likely due to a recursive
capacity bottleneck—this gap closes rapidly at scale. For
>360M parameters, MoR not only matches but often
exceeds the Vanilla Transformer, particularly under low
and mid-range budgets. Overall, these results highlight
that MoR is a scalable and efficient alternative to standard
Transformers. It achieves strong validation performance
with significantly lower parameter counts, making it a
strong candidate for both pretraining and large-scale
deployment. Further details are presented in Appendix E.

3.3. Throughput Evaluation

We highlight the substantial improvement in infer-
ence throughput of Mixture-of-Recursions over Vanilla
Transformers in continuous depth-wise batching scenar-
ios (Hooper et al., 2023; Pope et al., 2022). This practical
setting maintains high and consistent GPU utilization by im-
mediately replacing completed sequences with incoming to-
kens during decoding. MoR seamlessly integrates with this
setup, dynamically substituting tokens that exit early at shal-
low recursion depths with new tokens. In practice, all MoR
variants outperform the vanilla baseline, trading a slight
increase in log-likelihood for significant throughput gains.
Detailed settings and results are summarized in Appendix F.
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4. Conclusion
Mixture-of-Recursions (MoR) presents a unified Trans-
former architecture that simultaneously leverages parameter
sharing, adaptive recursion depth, and efficient KV caching
without compromising model quality. By dynamically as-
signing recursion depth to tokens via lightweight routers
and selectively caching key-value states for selected tokens,
MoR reduces both quadratic attention computation and re-
dundant memory access costs. Extensive empirical evalu-
ations show that MoR lowers validation perplexity and im-
proves average few-shot accuracy compared to both vanilla
and previous recursive baselines, even with higher inference
throughput. These results demonstrate that MoR offers an ef-
fective path towards achieving large-model capabilities with
significantly reduced computational and memory overhead.
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A. Limitations and Future Works
Reasoning MoR models. Recent studies have highlighted the redundancy within reasoning chains and address it by
applying token-level adaptive computation, like early-exit mechanisms (Yang et al., 2025; Jiang et al., 2025; Dai et al.,
2025). Our MoR framework inherently enables latent reasoning by adaptively determining the necessary recursion depth for
individual tokens. Therefore, a crucial future work involves exploring how the router can dynamically learn to adjust to the
necessity of chain-of-thought (CoT) chains when post-trained on actual reasoning datasets. Developing advanced routing
strategies that explicitly align recursion depth with reasoning complexity may enhance reasoning accuracy, computational
efficiency, and even interpretability.

Further scaling model family. Our experiments have been limited to models with up to 1.7 billion parameters due
to compute constraints. The natural next step is to train MoR models at larger scales (over 3 billion parameters) on
substantially larger corpora. This will allow us to test whether the observed isoFLOP scaling advantages persist and to
uncover optimization issues that only emerge at extreme scales. To further reduce overall pre-training costs, we could also
explore continued pre-training (i.e., uptraining), starting from existing pre-trained vanilla LLM checkpoints. As future work,
we plan to investigate MoR performance using various initialization strategies for recursive transformers, as explored in
prior work (Bae et al., 2024).

Adaptive capacity control. Expert-choice routing offers the significant advantage of guaranteeing perfect load balancing
through pre-determined capacity factors (Raposo et al., 2024; Zhou et al., 2022). However, a limitation arises when we want
to allocate different capacities during inference. Specifically, in our MoR models, we observe that when using an auxiliary
loss, the router outputs for selected and unselected tokens are almost perfectly separated. This makes it challenging to adjust
top-k values after training. Therefore, a more adaptive model design, which can leverage different capacities during both
training and inference phases, is needed to address this limitation.

Compatibility with sparse algorithms. Given MoR’s token-level adaptive recursion, we can further optimize computation
by integrating structured sparsity. This approach allows for the selective activation of subnetworks or parameters (Liu et al.,
2023b), dynamically pruning unnecessary computations at both the token and layer levels (Raposo et al., 2024; Elhoushi
et al., 2024). This investigation into sparse model designs promises significant efficiency improvements. We believe many
sparsity-based techniques, such as pruning (Han et al., 2015) or quantization (Jacob et al., 2018), are highly complementary
to MoR. This will provide deeper insights into effective sparse architectures within recursive models, offering promising
directions for future research.

Expansion to multimodal and non-text domains. MoR’s recursion block is inherently modality-agnostic, allowing
its adaptive depth mechanism to extend beyond text processing. This crucial property enables MoR to readily integrate
into vision, speech, and unified multimodal transformer architectures. Applying token-adaptive recursion to long-context
video or audio streams holds the potential for even greater memory efficiencies and substantial throughput gains, crucial for
real-world applications. By dynamically adjusting the processing depth for each token or segment, MoR could unlock these
significant benefits.

B. Related Work
Adaptive computation. Many works have shown that dynamic compute allocation can markedly reduce the cost of
training and inference, from traditional neural networks (Bengio et al., 2015; Huang et al., 2016; Teerapittayanon et al., 2016;
Panda et al., 2016) to large language models (Hou et al., 2020; Elbayad et al., 2020; Fedus et al., 2022; Bae et al., 2023;
Elhoushi et al., 2024; Raposo et al., 2024). Early exiting methods learn to halt processing for “easy” samples (e.g., tokens or
sequences in language modeling) by skipping the remaining layers (Elbayad et al., 2020; Schuster et al., 2022; Dehghani
et al., 2018; Mofakhami et al., 2024). Alternatively, early exits can be combined with speculative decoding techniques (Chen
et al., 2023; Leviathan et al., 2023) during inference time by leveraging lower layers for fast drafting (Elhoushi et al., 2024).
Recently, Mixture-of-Depths (MoD) (Raposo et al., 2024) reframed adaptive depth as a routing problem: a lightweight router
at each layer selects a subset of tokens to receive the full computation, while the rest bypass the layer, yielding finer-grained
conditional compute. This new form of adaptive allocation is well suited to Transformer architectures and has already
been extended to other modalities (Zhang et al., 2024a; Luo et al., 2024), highlighting a promising paradigm of dynamic
compute at token-level granularity. MoR applies the MoD routing idea to recursive Transformers: tokens are dynamically
sent through repeated calls of a single, weight-tied block instead of through distinct layers. This shift keeps parameter count
constant, allows arbitrarily deep (adaptive) compute beyond the model’s physical depth.
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Recursive Transformers. Parameter sharing provides an orthogonal path to efficiency (Dehghani et al., 2018; Lan et al.,
2019; Xia et al., 2019; Takase & Kiyono, 2021; Bae et al., 2024; Jaegle et al., 2021). The Universal Transformer first
showed that repeatedly applying a single block can match the representational power of deep, non-shared stacks (Dehghani
et al., 2018). Looped Transformers shown to be effective, can act as programmable computers (Giannou et al., 2023),
learn iterative data-fitting algorithms (Yang et al., 2023), generalize to much longer inputs on algorithmic tasks (Fan et al.,
2024), and illuminate few-shot learning by mimicking multi-step optimizers (Gatmiry et al., 2024). Furthermore, Bae et al.
(2024) mitigate the accuracy loss often associated with weight tying by adding low-rank adaptation (LoRA) adapters (Hu
et al., 2022) in each loop, yielding Relaxed Recursive Transformers. Recent work further demonstrates that Recursive
Transformers excel at latent reasoning via recurrent depth (Geiping et al., 2025). While most prior studies focus on the
efficiency gains from weight tying, the recursive architecture itself offers a second level: inspired by early-exiting (Schuster
et al., 2022) and compute routing (Raposo et al., 2024), one can vary the number of recursions per input (e.g., per token),
allocating compute only where it is most beneficial during both training and inference.

Routing mechanism. LLMs have increasingly employed routers to enable adaptive computation, primarily in sparse
Mixture-of-Experts (MoE) frameworks (Shazeer et al., 2017; Lepikhin et al., 2020; Dai et al., 2022; Zoph et al., 2022), i.e.,
each token is processed by a subset of expert networks chosen by a learned router, dramatically increasing model capacity
without a computational overhead. Early MoE architectures (Lepikhin et al., 2020; Fedus et al., 2022; Jiang et al., 2024)
adopted a token-choice routing strategy, wherein the router selects the top-k experts for each token based on its hidden state.
While effective, this approach often leads to load imbalance across experts, necessitating auxiliary balancing losses. To
address this, expert-choice routing (Zhou et al., 2022; Guo et al., 2025) has been proposed, wherein each expert selects the
tokens to serve, ensuring perfect load balancing and improved efficiency. Building on this, a few works employed trainable
routers to determine which layers to skip (Zeng et al., 2023; Raposo et al., 2024; Gadhikar et al., 2024). Unlike traditional
early-exit methods, these expert-choice routing mechanisms enforce a static compute budget by capping the number of
tokens processed per layer (or depth).

Key-value caching. Key–value (KV) caching stores the per-token key and value tensors produced at each layer during
autoregressive decoding; reusing them eliminates quadratic-time recomputation and boosts throughput (Shazeer, 2019; Ge
et al., 2023; Liu et al., 2024a; Xiao et al., 2023; Pope et al., 2022; Kang et al., 2024; Brandon et al., 2024). Unfortunately,
retaining these tensors quickly saturates GPU memory, especially for long contexts and large batches (Chowdhery et al.,
2023; Brandon et al., 2024). Prior work tackles this issue by quantizing KV activations to lower precision (Hooper et al.,
2024; Zhang et al., 2024b), discarding entries that contribute little to the final output (Zhang et al., 2023; Liu et al., 2023a),
and sharing keys and values across attention heads (Shazeer, 2019; Ainslie et al., 2023b). Brandon et al. (2024) push this idea
further, allowing adjacent layers to share the same key and value tensors and achieving additional memory savings with negli-
gible quality loss. Our Mixture-of-Recursions offer a complementary avenue: KV caches generated in early recursions can be
reused in later ones, potentially reducing memory consumption even further. This provides the advantage of only needing to
run the first recursion during prefill phase (Sun et al., 2024), promising significant speedups for prompt settings over 1 million
tokens. Two caching strategies in MoR can be optimized based on their distinct benefits to suit various deployment settings.

Latent reasoning. An emerging line of work enables LLMs to perform reasoning internally within hidden states rather
than through explicit verbalization (Goyal et al., 2023; Pfau et al., 2024; Zelikman et al., 2024; Cheng & Van Durme, 2024;
Tack et al., 2025). Many approaches adopt a fixed latent reasoning depth: they insert special tokens or structured prompts
(e.g., a learnable “pause” token (Goyal et al., 2023) or filler punctuation (Pfau et al., 2024)) that allow the model to execute
a predetermined number of hidden reasoning passes before producing an answer. Others reuse the model’s hidden states in a
closed loop for a fixed number of iterations by feeding final hidden states back as input to simulate chain-of-thought (Hao
et al., 2024; Shen et al., 2025; Saunshi et al., 2025). Another line of research enhances latent reasoning by augmenting
hidden states with intermediate semantic signals (Zelikman et al., 2024; Tack et al., 2025). However, these methods lack the
flexibility to allocate computation where it is most needed, leading to unnecessary overhead on easy inputs and insufficient
reasoning on complex ones. Building upon recent findings that looping enhances model reasoning capabilities (Chen et al.,
2025; Geiping et al., 2025; Saunshi et al., 2025), we believe our MoR framework provides a crucial foundation for bridging
adaptive compute and latent reasoning.

C. Details of Mixture-of-Recursions Design Choices
In this section, we provide detailed descriptions of the design choices employed in Mixture-of-Recursions, expanding upon
the summary provided in the main pages.
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Table 3: Parameter-sharing strategies in Recursive Transformers. This table shows Cycle, Middle-Cycle, Sequence, and
Middle-Sequence schemes with layer reuse, where Middle-* retains unique first and last layers.
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C.1. Parameter-sharing Strategy

Table 3 shows formulation and visualization of four parameter-sharing strategies: Cycle, Middle-Cycle, Sequence and
Middle-Sequence. These strategies determine how a shared pool of blocks Φ′ are reused across a total of L unrolled layers.

In the Cycle strategy, a fixed set of parameters is reused cyclically across all recursion steps. This approach efficiently reduces
the number of unique parameters, enabling a compact model representation. However, because the same transformations
are applied repeatedly regardless of input variation, it may limit the model’s capacity to learn diverse or highly specialized
features.

On the other hand, the Sequence strategy assigns distinct parameters to each recursion block in sequential order, allowing
the model to capture more specialized and diverse representations at different recursion depths. Notably, prior studies have
observed that adjacent Transformer layers often learn similar features, suggesting that sharing parameters among sequential
layers may cause less performance degradation.

Building upon these strategies, the Middle sharing variant further refines parameter reuse by preserving unique parameters
at the first and last layers while sharing weights only among the intermediate layers. This approach aims to balance the
trade-off between parameter efficiency and representational flexibility, maintaining distinct entry and exit transformations
while benefiting from reduced parameter redundancy in the middle layers. Consequently, Middle sharing can capture
important input and output nuances more effectively than pure Cycle or Sequence sharing, without significantly increasing
model size.

C.2. Routing Strategy

In this section, we provide an in-depth explanation of the two routing strategies employed in Mixture-of-Recursions:
Expert-choice and Token-choice routers. Each approach has distinct advantages and inherent limitations, which we first
outline before discussing the mitigation techniques we employed.

Expert-choice Router. The expert-choice router offers several advantages, including a fixed compute budget that simplifies
resource management. However, it suffers from a key issue: the top-k selection operation, which requires tokens that appear
later in the sequence, violates causality in autoregressive inference. This non-causal dependency can cause unexpected
behavior during inference, potentially reducing model reliability.

To address these challenges, we explore two approaches: the auxiliary router and the auxiliary loss (Raposo et al., 2024).
The auxiliary router is an additional lightweight network trained jointly but used only during inference; it predicts whether
a token will be among the top-k. This network is trained with a binary cross-entropy loss, where the main router’s outputs
serve as logits and the top-k selections define the targets. Importantly, its training is isolated from the main objective through
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gradient blocking, so it does not affect the primary model training. The auxiliary loss applies the binary cross-entropy loss
to the main router, enabling it to simultaneously learn to accurately identify top-k tokens during training and to reliably
predict whether each token will be included in the top-k during inference.

Token-choice Router. In contrast, the token-choice router assigns recursion depths on a per-token basis without enforcing
a fixed compute budget, thus avoiding leakage of information across tokens and preserving autoregressive properties.
However, this introduces load imbalance across experts, which results in uneven token distribution across experts (or
recursion depths), potentially causing inefficient compute allocation and unbalanced training.

To mitigate load imbalance, we employ two solutions from existing literature. Balancing Loss (Lepikhin et al., 2020; Fedus
et al., 2022) regularizes for a more uniform distribution of tokens across experts. For a sequence of length T , a balancing
loss for MoR is calculated as follows:

LBalance = α

N∑
i=1

qiPi,

qi =
Nr

T

T∑
t=1

1(Token t selects Expert i),

Pi =
1

T

T∑
t=1

git,

(3)

where Nr is the total number of experts (which is also the number of recursion), git is the routing score of expert i for
token t, qi represents the fraction of tokens routed to expert i, Pi denotes the average routing scores of expert i, and λ
is a hyperparameter controlling the strength of the auxiliary loss.

Loss-free (Wang et al., 2024) utilizes router biasing without explicit regularization. Specifically, this method adjusts per-
expert bias terms bi to balance token assignments across experts. During each training batch, routing scores are computed,
and the number of tokens assigned to each expert ci is counted. The load violation error is calculated as ei = c̄i − ci where
c̄i is the average token count for expert i. Biases are then updated via

bi ← bi + u× sign(ei), (4)

where u is a bias update rate. The routing scores for selecting expert are calculated as

gi,t =

{
gi,t, gi,t + bi = max ({gj,t + bj | 1 ≤ j ≤ N}) ,
0, otherwise.

(5)

C.3. KV Caching Strategy

This work investigates two principal strategies for key-value (KV) caching to optimize memory usage during Recursive
Transformer computations: recursion-wise caching and recursive KV sharing.

Recursion-wise caching keeps separate KV caches for each recursion step, ensuring tokens attend only to the KV pairs
generated in their current recursion block. This prevents distribution mismatches between recursion steps and helps maintain
model accuracy while reducing memory and computational costs proportionally to the number of recursion steps.

Recursive KV sharing, in contrast, reuses KV pairs computed in the first recursion step for all subsequent steps. Although
this approach further lowers memory usage, it introduces potential mismatches as later recursion steps receive KV represen-
tations originally intended for earlier steps. Such mismatch can negatively impact model performance when token routing is
precise.

Therefore, recursion-wise caching is generally preferred in settings with selective token routing to avoid performance
degradation, while recursive KV sharing may be considered when routing is less accurate and memory efficiency is
prioritized.

D. Experimental Setup
Training Settings We utilized a Llama-based Transformer architecture (Dubey et al., 2024), referring to the configurations
of the open-source SmolLM models (Allal et al., 2024). All models were pretrained on a deduplicated subset of the FineWeb-
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Edu dataset (Penedo et al., 2024), which comprises 220 billion tokens sourced from educational materials. Pretraining
was conducted using four H100 or A100 GPUs. In our main and isoFLOPs analysis experiments, we utilized a Trapezoid
learning rate scheduler, which consists of warmup, stable, and cooldown phases. This approach allows us to efficiently
continue pretraining for scaling laws from intermediate checkpoints, eliminating the need to train all models independently.
In contrast, for all other experiments, we used a simple cosine annealing scheduler.

Evaluation Settings To assess model performance, we evaluated few-shot accuracy on seven benchmarks—LAMBADA
(LD), HellaSwag (HS), PIQA (PQ), WinoGrande (WG), ARC (Easy and Challenge), and MMLU—using the Language
Model Evaluation Harness. For all few-shot datasets, excluding LAMBADA, WinoGrande, and MMLU, we normalized
accuracy by the byte length of the target string. We adhered to the standard number of shots for each dataset, and used the
continuation task specifically for MMLU for simplicity. All evaluation performance measurements were conducted using a
single H100 or A100 GPU.

Model Architecture Details Table 4 summarizes the architectural specifications of the four Vanilla Transformer models
used as the base for our recursive models. Each model variant differs in scale, ranging from 135M to 1.7B total parameters
(including both non-embedding and embedding components). For consistency and comparability, all models are trained
using a vocabulary size of 49K and a maximum input sequence length of 2K tokens.

Table 4: Key parameters of four model size variants. A model’s size is defined by the total number of its non-embedding and
embedding parameters. Three small models utilize Grouped-Query Attention (Ainslie et al., 2023a), reducing the number of
key-value heads. We refer to the base configurations of the open-sourced SmolLM models (Allal et al., 2024).

Base Configuration Attention & Feed-Forward Input

Models N-emb Emb NL dmodel Nhead NKV dhead dinter Vocab Lctx

Vanilla 135M 106M 28M 30 576 9 3 64 1536 49K 2K
Vanilla 360M 315M 47M 32 960 15 5 64 2560 49K 2K
Vanilla 730M 654M 75M 26 1536 24 8 64 4096 49K 2K
Vanilla 1.7B 1.61B 101M 24 2048 32 32 64 8192 49K 2K

E. Expanded Results of IsoFLOP Analysis
Experimental Recap. In the main paper (§3.2) we compared Vanilla, Recursive and our Mixture-of-Recursions (MoR)
models under matched training compute. Four base model capacities were studied—135M, 360M, 730M and 1.7B
parameters. For Recursive and MoR we fix the recursion count to Nr=3, so the number of unique parameters is roughly
one-third of the Vanilla counterpart. Each architecture is trained once for the largest compute budget (16.5EB)5 and the
resulting checkpoint is re-used to obtain the 5EB and 2EB variants, as detailed below.

Trapezoid Learning-rate Schedule with Checkpoint Reuse. To avoid retraining every model from scratch for each
FLOPs slice we employ the trapezoid schedule. The schedule is

η(t) =


t
w ηmax, 0 ≤ t < w (warm-up),

ηmax, w ≤ t < p (plateau),

ηmax

(
1− t−p

d

)
, p ≤ t < p+ d (cool-down),

(6)

where w denotes the warm-up interval, p− w the constant-LR plateau, and d the cool-down segment.

We save checkpoints at the optimizer steps whose cumulative compute—including the short cool-down tail specific to each
slice—reaches 5EB and 2EB, respectively. For the warm-up we allocate 5% of the total training steps of the smallest budget
(2EB), and we set the cool-down steps to 20% of the total training steps for each corresponding budget.

Results at a Glance. Table 5 reports NLL on FineWeb-Edu and few-shot accuracy. Three clear takeaways:

51EB =1018 floating-point operations.
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1. More compute leads to better models. Higher FLOPs always lowers NLL and lifts accuracy.

2. Recursive lags. Weight-sharing alone stays behind Vanilla (e.g. 360M,16.5EB: +0.06 NLL, –1.1pp).

3. MoR wins. Token-routed MoR catches up and then beats Vanilla from 360M upward, while using only one-third of the
parameters; the edge persists at 730M and 1.7B.

Table 5: IsoFLOP results using a trapezoid learning-rate schedule. Negative log-likelihood (NLL ↓) on the FineWeb-Edu
validation set and few-shot accuracy (% ↑) on seven downstream tasks for four base model sizes (135M, 360M, 730M,
1.7B), each trained once up to 16.5EB and sliced back to 5EB and 2EB via mid-training checkpoints using a trapezoid
learning-rate schedule. Every block of three rows compares Vanilla, Recursive (Nr=3) and Mixture-of-Recursions (MoR)
variants.

Pretrain Recursion NLL ↓ Few-shot Accuracy ↑
Models Base N-Emb NL FLOPs Ntok Share Loop FineWeb LD HS PQ WG ARC MMLU Avg

Vanilla 135M 106M 30 2.0e+18 6.5B - - 3.0922 22.80 30.93 62.35 51.14 36.28 26.29 38.30
Recursive 135M 42M 1+10+1 2.0e+18 6.1B M-Cyc 3 3.2058 19.79 29.32 60.17 50.59 34.83 25.40 36.68
MoR 135M 42M 1+10+1 2.0e+18 9.2B M-Cyc 3 3.1077 21.13 31.00 59.79 49.09 34.87 25.63 36.92

Vanilla 135M 106M 30 5.0e+18 16.1B - - 2.9464 26.88 33.69 63.98 51.46 37.08 27.07 40.03
Recursive 135M 42M 1+10+1 5.0e+18 15.1B M-Cyc 3 3.0534 24.51 31.57 62.40 50.83 35.78 25.94 38.51
MoR 135M 42M 1+10+1 5.0e+18 23.1B M-Cyc 3 3.0192 22.01 32.53 61.75 49.88 35.39 26.19 37.96

Vanilla 135M 106M 30 16.5e+18 53.3B - - 2.8432 30.16 36.51 64.80 53.43 40.17 27.82 42.15
Recursive 135M 42M 1+10+1 16.5e+18 50.0B M-Cyc 3 2.9552 25.98 33.36 63.98 51.78 36.96 26.68 39.79
MoR 135M 42M 1+10+1 16.5e+18 76.2B M-Cyc 3 2.9490 22.61 33.99 61.92 47.83 35.95 26.36 38.11

Vanilla 360M 315M 32 2.0e+18 2.4B - - 3.3785 17.27 27.90 59.36 51.38 32.10 25.49 35.58
Recursive 360M 118M 1+10+1 2.0e+18 2.4B M-Cyc 3 3.4864 10.34 26.66 58.00 51.54 30.94 24.94 33.74
MoR 360M 118M 1+10+1 2.0e+18 3.6B M-Cyc 3 3.1026 24.14 30.53 61.86 50.99 34.74 25.50 37.96

Vanilla 360M 315M 32 5.0e+18 6.0B - - 3.0097 25.17 32.10 63.22 48.62 36.01 26.69 38.63
Recursive 360M 118M 1+10+1 5.0e+18 6.0B M-Cyc 3 3.0722 23.29 31.19 62.62 51.30 35.85 25.99 38.37
MoR 360M 118M 1+10+1 5.0e+18 9.0B M-Cyc 3 2.9161 28.33 34.53 63.22 51.07 36.70 26.98 40.14

Vanilla 360M 315M 32 16.5e+18 19.8B - - 2.7824 31.94 37.92 66.10 51.30 39.70 27.95 42.49
Recursive 360M 118M 1+10+1 16.5e+18 19.8B M-Cyc 3 2.8466 29.75 35.92 64.91 51.46 39.12 27.18 41.39
MoR 360M 118M 1+10+1 16.5e+18 29.7B M-Cyc 3 2.7924 33.15 37.94 66.97 52.09 38.46 27.49 42.68

Vanilla 730M 654M 26 2.0e+18 1.2B - - 3.7164 07.74 26.58 57.62 51.14 29.74 24.46 32.88
Recursive 730M 252M 1+8+1 2.0e+18 1.2B M-Cyc 3 3.8136 05.53 26.25 55.77 50.59 29.88 24.63 32.11
MoR 730M 252M 1+8+1 2.0e+18 1.8B M-Cyc 3 3.3300 17.93 28.74 59.30 51.46 33.14 25.37 35.99

Vanilla 730M 654M 26 5.0e+18 3.1B - - 3.0821 22.05 31.99 62.68 50.67 35.88 26.12 38.23
Recursive 730M 252M 1+8+1 5.0e+18 3.1B M-Cyc 3 3.1640 18.51 30.72 62.13 47.83 35.97 25.84 36.83
MoR 730M 252M 1+8+1 5.0e+18 4.5B M-Cyc 3 3.0067 26.18 32.76 62.46 50.91 36.93 26.37 39.27

Vanilla 730M 654M 26 16.5e+18 10.1B - - 2.7048 34.50 40.29 66.81 49.49 40.82 28.66 43.43
Recursive 730M 252M 1+8+1 16.5e+18 10.1B M-Cyc 3 2.7886 30.76 37.84 65.51 52.41 39.26 27.51 42.21
MoR 730M 252M 1+8+1 16.5e+18 14.9B M-Cyc 3 2.7438 32.93 39.55 66.32 54.38 40.00 28.09 43.55

Vanilla 1.7B 1.61B 24 2.0e+18 0.6B - - 5.1349 00.00 24.96 51.03 51.38 25.75 23.07 29.37
Recursive 1.7B 0.67B 1+8+1 2.0e+18 0.5B M-Cyc 3 5.3277 00.00 25.27 51.36 48.62 26.52 22.98 29.13
MoR 1.7B 0.67B 1+8+1 2.0e+18 0.8B M-Cyc 3 4.1175 01.44 25.80 53.97 49.64 27.56 24.08 30.42

Vanilla 1.7B 1.61B 24 5.0e+18 1.5B - - 3.6926 08.33 26.84 57.29 51.30 29.72 24.51 33.00
Recursive 1.7B 0.67B 1+8+1 5.0e+18 1.3B M-Cyc 3 3.8876 03.14 26.57 54.73 49.17 29.01 24.49 31.19
MoR 1.7B 0.67B 1+8+1 5.0e+18 2.0B M-Cyc 3 3.2905 17.62 28.32 59.03 49.80 32.14 25.28 35.37

Vanilla 1.7B 1.61B 24 16.5e+18 4.8B - - 2.8658 26.94 35.61 64.74 50.59 38.55 26.81 40.54
Recursive 1.7B 0.67B 1+8+1 16.5e+18 4.5B M-Cyc 3 3.0042 23.25 32.09 62.95 50.75 37.64 26.53 38.87
MoR 1.7B 0.67B 1+8+1 16.5e+18 6.5B M-Cyc 3 2.8316 28.10 36.18 64.64 50.99 38.68 27.25 40.97
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F. Details of Throughput Evaluation
We implement a continuous depth-wise batching system to evaluate decoding throughput. Queries are enqueued and
scheduled dynamically during decoding using the FineWeb-Edu test set. In particular, for MoR, when some queries exit
early, the vacant slots in the batch were immediately filled with new queries waiting in the queue, maintaining a fully utilized
batch at all times.

We conduct decoding on 1,000 query samples, each with an average decoding length of 256 tokens. The lengths of these
samples are randomly truncated to simulate variable-length inputs.

For the experiments, we use a fixed batch size of 32 to compare Vanilla Transformers and MoR variants. Notably, MoR
employs recursion-wise KV caching, which significantly reduces KV cache size. This reduction alone allows a substantial
increase in batch size for throughput gains: MoR with recursion depth 2 can accommodate a batch size of 42 with the same
KV cache memory as vanilla, while recursion depths 3 and 4 support batch sizes up to 47.

As shown in Figure 4, combining MoR with continuous depth-wise batching further increases effective batch size and
throughput. These results demonstrate that our approach provides a highly efficient architecture for scaling throughput
without sacrificing model capacity.
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Figure 4: Pareto frontier of inference throughput and log-likehood for MoR and Vanilla Transformer under continuous
depth-wise batching scenario.

G. Expanded Results of Parameter Sharing Strategy
We revisit the four weight-tying schemes—Cycle, Sequence, Middle-Cycle, and Middle-Sequence—on two base capacities
(135 M and 360 M non-embedding parameters) and two recursion depths (Nr = 2 and 3). All models were trained
from scratch for 10 B tokens under identical optimization hyper-parameters. Validation negative log-likelihood (NLL) on
FineWeb-Edu and averaged few-shot accuracy over seven benchmarks are reported in Table 6.

Middle-Cycle is consistently the safest choice.

• 360 M models. Middle-Cycle achieves the lowest NLL at both depths (2.8295 vs. 2.8487 for Cycle at Nr = 2, and 2.8760
vs. 2.9363 at Nr = 3) and enjoys the largest margin in average accuracy (+0.83 pp at Nr = 2, +1.67 pp at Nr = 3).

• 135 M models. While Cycle is slightly ahead at the shallow setting (3.0071 vs. 3.0330), Middle-Cycle overtakes when
depth rises (3.1048 vs. 3.1154) and shows a steadier accuracy profile.

Sequence variants lag in both quality and stability. Pure Sequence sharing records the worst NLL in all four settings
(e.g., 3.1093 at 135 M/Nr = 2 and 3.0245 at 360 M/Nr = 3), and its accuracy deficit widens with depth (−.85 pp vs. Cycle
at 360 M/Nr = 3).

Depth amplifies the benefit of Middle-Cycle. Figure 5 plots NLL for each strategy at the two recursion depths (panels
Figure 5a and Figure 5b). The gap between Middle-Cycle and the others grows when stepping from two to three recursions,
especially for the 360 M model.
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Table 6: Comparison of parameter-sharing strategies (Cycle, Sequence, Middle-Cycle, Middle-Sequence) across two model
scales (135M and 360M) and two recursion depths (NR = 2 and NR = 3), with all models pretrained from scratch on
10B tokens. We report validation negative log-likelihood (NLL) on FineWeb and few-shot accuracy across seven tasks.
Middle-Cycle consistently outperforms other strategies in both NLL and average task accuracy, especially at higher recursion
depth. ARC values are averaged over ARC-Easy and ARC-Challenge.

Pretrain Recursion NLL ↓ Few-shot Accuracy ↑
Base Model N-Emb NL Ntok Share Loop FineWeb LD HS PQ WG ARC MMLU Avg

Vanilla 135M 106M 30 10B - - 3.0323 24.14 31.12 61.15 52.01 34.74 25.95 38.19
Vanilla 135M 53M 15 10B - - 3.0818 23.64 30.10 60.94 50.99 35.38 25.93 37.83
Vanilla 135M 35M 10 10B - - 3.1582 21.46 29.30 60.01 52.01 34.40 25.53 37.12

Vanilla 135M 53M 15 10B Cyc 2 3.0071 25.52 31.25 61.10 50.99 36.08 26.11 38.51
Vanilla 135M 53M 15 10B Seq 2 3.1093 22.39 29.60 61.10 50.12 34.46 25.72 37.23
Vanilla 135M 57M 1+14+1 10B M-Cyc 2 3.0330 23.40 31.20 61.59 50.59 35.44 25.54 37.96
Vanilla 135M 57M 1+14+1 10B M-Seq 2 3.0991 21.70 30.06 60.45 49.41 35.20 25.74 37.09

Vanilla 135M 35M 10 10B Cyc 3 3.1154 21.42 30.14 60.61 49.72 34.15 25.57 36.94
Vanilla 135M 35M 10 10B Seq 3 3.1637 19.99 29.39 59.25 51.62 33.79 25.32 36.56
Vanilla 135M 39M 1+9+1 10B M-Cyc 3 3.1048 22.41 30.35 61.04 49.01 34.80 25.91 37.26
Vanilla 135M 39M 1+9+1 10B M-Seq 3 3.1602 20.69 29.35 61.43 51.30 34.40 25.51 37.11

Vanilla 360M 315M 32 10B - - 2.8471 27.27 34.78 64.20 52.80 38.29 26.72 40.68
Vanilla 360M 157M 16 10B - - 2.8908 27.01 33.49 64.42 52.09 37.40 26.54 40.16
Vanilla 360M 98M 10 10B - - 2.9449 26.41 32.93 63.38 50.36 37.15 26.48 39.45

Vanilla 360M 157M 16 10B Cyc 2 2.8487 28.47 34.79 63.06 49.96 37.38 26.81 40.08
Vanilla 360M 157M 16 10B Seq 2 2.9467 26.33 32.49 62.89 52.41 36.37 26.24 39.46
Vanilla 360M 167M 1+15+1 10B M-Cyc 2 2.8295 28.59 34.98 64.53 50.51 39.68 27.20 40.91
Vanilla 360M 167M 1+15+1 10B M-Seq 2 2.9303 26.14 32.71 62.79 51.38 36.31 25.73 39.18

Vanilla 360M 98M 10 10B Cyc 3 2.9363 25.87 32.98 62.89 50.28 36.35 26.54 39.15
Vanilla 360M 98M 10 10B Seq 3 3.0245 24.55 31.48 63.11 49.25 35.65 25.73 38.30
Vanilla 360M 118M 1+10+1 10B M-Cyc 3 2.8760 28.51 34.89 64.31 50.51 39.51 27.20 40.82
Vanilla 360M 118M 1+10+1 10B M-Seq 3 2.9753 24.18 31.89 62.08 49.72 36.47 26.27 38.44
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Figure 5: Validation negative log-likelihood (lower is better) on FineWeb-Edu for four parameter-sharing strate-
gies—Sequence (Seq), Middle-Sequence (M-Seq), Cycle (Cyc), and Middle-Cycle (M-CYC). Bars are grouped by model
capacity (135M vs. 360M parameters); the two panels correspond to recursion depths NR=2 (left) and NR=3 (right).
Middle-Cycle (teal) consistently attains the lowest NLL, with its margin widening as either model size or depth increases.
Horizontal dashed lines mark the untied (no-sharing) baselines: the lower red line is the fully untied model, while the upper
black line is a parameter-matched truncated model whose footprint equals that of a single recursion.
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Behaviour under continued pre-training (up-training). Table 7 extends the study by “up-training” models—continuing
from open-sourced SmolLM checkpoints for an additional 5B tokens. Middle-Cycle not only maintains its lead but is also
the only sharing scheme that closes both the NLL and accuracy gap to the full-capacity baseline (e.g., 2.8603→2.8295 NLL
and +2.3 pp accuracy at 360 M/Nr = 2). The other strategies plateau earlier, hinting at limited capacity-growth headroom.

Table 7: Extended results on parameter sharing strategies with up-training with 5B tokens. Models are trained on FineWeb-
Edu and evaluated by train negative log-likelihood (NLL) and few-shot accuracy across seven benchmarks. ARC denotes
average of ARC-Easy and ARC-Challenge tasks, MMLU denotes the MMLU-Cont task.

Pretrain Recursion NLL ↓ Few-shot Accuracy ↑
Base Model N-Emb NL Ntok Share Init Loop FineWeb LD HS PQ WG ARC MMLU Avg

Vanilla 360M 315M 32 5B - - 2.4825 41.67 50.63 70.35 55.09 46.99 30.82 49.26
Vanilla 360M 157M 16 5B - Step 1 2.7168 31.85 37.59 64.74 53.20 41.06 27.34 42.63
Vanilla 360M 157M 16 5B Cyc Avg 1 2.8603 22.14 30.36 60.07 48.22 34.99 25.56 36.89
Vanilla 360M 157M 16 5B Seq Avg 1 2.7919 25.40 32.35 62.30 50.12 35.88 26.19 38.71
Vanilla 360M 98M 10 5B - Step 1 2.8915 26.63 35.03 64.42 52.09 38.75 26.86 40.63
Vanilla 360M 98M 10 5B Cyc Avg 1 3.0512 23.19 31.27 62.30 51.22 36.71 26.29 38.50
Vanilla 360M 98M 10 5B Seq Avg 1 2.9915 25.67 32.21 62.30 51.38 36.68 26.56 39.14

Vanilla 360M 157M 16 5B Cyc Step 2 2.7165 31.30 37.68 64.91 52.17 39.29 27.53 42.15
Vanilla 360M 157M 16 5B Cyc Avg 2 2.8263 23.21 30.52 60.55 50.28 36.01 25.50 37.68
Vanilla 360M 157M 16 5B Cyc Lower 2 2.8024 27.67 34.71 63.49 49.88 38.12 26.87 40.13
Vanilla 360M 157M 16 5B Cyc Upper 2 2.7915 18.26 34.88 63.06 51.85 39.27 26.88 39.03
Vanilla 360M 157M 16 5B Cyc Rand 2 2.7575 25.29 34.78 61.64 52.01 38.09 26.62 39.74

Vanilla 360M 157M 16 5B Seq Step 2 2.6862 34.14 42.49 67.90 53.35 43.24 28.80 44.99
Vanilla 360M 157M 16 5B Seq Avg 2 2.7508 29.01 34.13 63.60 52.09 36.31 26.58 40.29
Vanilla 360M 157M 16 5B Seq Lower 2 2.8300 27.50 33.28 63.38 51.38 37.44 26.32 39.88
Vanilla 360M 157M 16 5B Seq Upper 2 2.7498 30.49 40.07 65.61 52.25 40.28 28.17 42.81
Vanilla 360M 157M 16 5B Seq Rand 2 2.7153 32.00 41.31 66.10 53.35 42.13 28.52 43.90

Vanilla 360M 167M 1+15+1 5B M-Cyc Step 2 2.6800 35.47 42.39 67.19 50.99 42.54 28.79 44.56
Vanilla 360M 167M 1+15+1 5B M-Cyc Avg 2 2.7314 33.81 40.42 66.87 51.78 41.68 28.17 43.79
Vanilla 360M 167M 1+15+1 5B M-Cyc Lower 2 2.7449 30.76 39.50 66.16 50.99 41.12 28.07 42.77
Vanilla 360M 167M 1+15+1 5B M-Cyc Upper 2 2.6605 34.41 43.74 67.46 53.20 43.75 28.93 45.25
Vanilla 360M 167M 1+15+1 5B M-Cyc Rand 2 2.6730 35.65 43.04 67.74 52.17 42.60 28.62 44.97

Vanilla 360M 167M 1+15+1 5B M-Seq Step 2 2.6627 35.09 43.34 67.57 51.22 43.66 28.91 44.97
Vanilla 360M 167M 1+15+1 5B M-Seq Avg 2 2.7143 33.92 40.93 66.49 51.70 40.72 28.24 43.66
Vanilla 360M 167M 1+15+1 5B M-Seq Lower 2 2.7696 30.74 38.36 65.94 51.78 41.27 27.73 42.64
Vanilla 360M 167M 1+15+1 5B M-Seq Upper 2 2.6931 32.66 42.35 67.14 52.80 42.83 28.49 44.38
Vanilla 360M 167M 1+15+1 5B M-Seq Rand 2 2.6908 35.07 42.03 66.32 53.75 43.11 28.42 44.78

Vanilla 360M 98M 10 5B Cyc Step 3 2.8901 27.46 35.26 63.82 51.54 39.35 27.44 40.81
Vanilla 360M 98M 10 5B Seq Step 3 2.8258 30.43 37.37 63.76 52.33 40.55 27.65 42.02
Vanilla 360M 118M 1+10+1 5B M-Cyc Step 3 2.7735 31.38 39.31 65.51 50.51 40.70 27.65 42.51
Vanilla 360M 118M 1+10+1 5B M-Seq Step 3 2.7678 31.67 39.23 65.89 52.09 40.65 27.90 42.91
Vanilla 360M 118M 1+10+1 5B M-Cyc Upper 3 2.8100 28.86 37.61 65.51 52.57 41.44 28.17 42.36

H. Expanded Results of Design Choices for Router
In this section, we report detailed explanation and results for ablations studies about router configurations.

H.1. Details of Router Design and Training Configurations

We investigate various router design choices to improve performance and stability. Specifically, we tune the coefficient
values controlling the strength of auxiliary or balancing loss terms (Coeff ), and adjust the scaling factor applied after
the router function (α) to modulate routing weights. Different activation functions (Func), such as sigmoid or softmax,
are evaluated, with architectural variations (Arch) of the router network, including linear layer, 2-layer MLP with GELU
activation, Wide-MLP that expands the hidden layer size by a factor of four.
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We also incorporate several techniques to stabilize training. To improve training stability, we introduce the router z-loss (Zoph
et al., 2022), which penalizes large logits produced by the gating network. Large logits can cause numerical instability and
hinder effective training of the router. The z-loss is computed as follows:

Lz(x) =
1

B

B∑
i=1

log

Nr∑
j=1

ex
(i)
j

2

, (7)

where B is the number of tokens in the batch, Nr is the number of experts, and x ∈ RB×Nr denotes the logits input to the
router. This regularization encourages the gating network to produce smaller logits, promoting more stable and reliable
routing decisions.

Additionally, we apply capacity warmup, where the capacity gradually decreases from an initial value to 1.0 over a predefined
number of warmup steps. The warmup duration is set equal to the learning rate warmup (i.e., 5% of total training steps).
The capacity increases following a smooth cosine schedule based on the current training step. If no warmup is specified, the
capacity remains fixed at its initial value throughout training.

H.2. Extended Evaluation of Router Designs

In the expert-choice routing, we evaluate sampling accuracy and dead token ratio to assess the router’s selection behavior.
The dead token ratio measures the proportion of tokens at specific positions within the batch that are consistently unselected
during the final recursion step, indicating a positional bias where certain token positions are systematically neglected by
the router. The sampling accuracy how well the router used during inference predicts whether a token belongs to the
top-k tokens identified during training, reflecting the router’s ability to consistently select the most relevant tokens. Ideally,
high sampling accuracy with a low dead token ratio indicates a router that both identifies important tokens accurately and
maintains diversity in token selection.

The results presented in Table 8 indicate that although both the auxiliary router and auxiliary loss methods enhance sampling
accuracy, they are also associated with high dead token ratios. In particular, some auxiliary router variants exhibit dead token
ratios as high as 66.7%, suggesting that the router always selects tokens from the same positions across inputs, reflecting
a positional bias. Notably, employing a linear router architecture in conjunction with auxiliary loss and z-loss effectively
reduces the dead token ratio without compromising sampling accuracy.

In token-choice routing, we evaluate the router’s ability to balance token assignments across experts using MaxVio (maximum
violation) and entropy metrics, which measure load imbalance and distribution uncertainty, respectively. MaxVio (Wang
et al., 2024) measures the load imbalance across experts:

MaxVio =
maxi Loadi − Loadi

Loadi
, (8)

where Loadi denotes the actual number of tokens assigned to the i-th expert, and Loadi represents the expected load per
expert assuming perfect balance.

To measure the diversity of token assignments across experts, we compute the Entropy of the average selection probabilities
for each expert:

H = −
Nr∑
i=1

pi log pi, (9)

where pi is the average probability of selecting the i-th expert over all tokens in the evaluation batch, and Nr is the total
number of experts. A higher entropy indicates a more uniform distribution of tokens among experts, reflecting balanced and
diverse routing decisions.

Results from Table 9 reveal that applying an explicit balancing loss significantly reduces MaxVio and increases entropy,
leading to improved load balance without sacrificing sampling accuracy or overall model performance. Loss-free approaches,
while simpler, tend to show higher MaxVio and lower entropy, indicating less balanced token routing. Architectures such

24



Mixture-of-Recursions: Learning Dynamic Recursive Depths for Efficient Language Modeling

Table 8: Ablation results on using expert-choice router with different routing configurations. Coeff denotes coefficient
values for auxiliary loss term, and α denotes scaling term after router function. Dead token ratio denotes the proportion of
tokens that remain unselected during the last recursion step, measured within evaluation batch size of 500.

Expert-choice Configurations Router Metrics NLL ↓ Few-shot Accuracy ↑
Sampling Coeff Func α Arch Warmup Z-loss Dead ↓ Samp-Acc ↑ FineWeb LD HS PQ WG ARC MMLU Avg

- - rand - - ✗ ✗ 0.0 - 2.9335 26.0 33.1 61.6 52.3 35.8 26.2 39.1

Aux Router - - - MLP ✗ ✗ 66.7 50.0 NaN 0.0 25.04 49.5 49.6 23.9 23.0 28.5
Aux Router - σ 0.1 MLP ✗ ✗ 0.0 89.2 2.8893 26.1 33.8 62.0 51.5 36.6 26.4 39.4
Aux Router - σ 1.0 MLP ✗ ✗ 66.7 50.0 2.8867 26.4 33.6 63.0 52.4 37.0 24.1 39.8
Aux Router - tanh 0.1 MLP ✗ ✗ 66.7 98.6 2.8720 13.9 31.8 60.7 49.3 35.8 25.8 36.2
Aux Router - tanh 1.0 MLP ✗ ✗ 66.7 97.0 3.0624 18.26 29.7 60.1 50.9 34.6 25.5 36.5

Aux Loss 0.01 - - MLP ✗ ✗ 66.7 50.0 NaN 0.0 25.04 49.5 49.6 23.9 23.0 28.5
Aux Loss 0.01 σ 0.1 MLP ✗ ✗ 0.0 99.6 2.8967 24.8 33.6 63.3 50.3 36.6 26.6 39.2
Aux Loss 0.01 σ 1.0 MLP ✗ ✗ 65.9 100.0 2.9189 12.0 31.6 59.4 51.5 33.2 25.3 35.5
Aux Loss 0.01 tanh 0.1 MLP ✗ ✗ 32.8 99.7 2.9426 23.5 32.4 62.4 49.8 35.6 26.0 38.3
Aux Loss 0.01 tanh 1.0 MLP ✗ ✗ 0.0 98.8 3.2743 16.4 28.14 58.8 52.2 31.6 24.8 35.3

Aux Loss 0.1 σ 0.1 MLP ✗ ✗ 0.0 99.8 3.0416 21.5 31.0 61.8 50.3 35.0 26.0 37.6
Aux Loss 0.001 σ 0.1 MLP ✗ ✗ 0.0 99.1 2.8816 27.6 34.3 63.0 51.6 36.7 26.5 40.0
Aux Loss 0.001 tanh 0.1 MLP ✗ ✗ 0.0 56.4 2.9933 25.0 32.3 61.5 51.5 36.6 26.0 38.8

Aux Loss 0.001 σ 0.1 Linear ✗ ✗ 0.1 99.2 2.8667 27.4 34.6 63.2 51.5 37.2 26.5 40.1
Aux Loss 0.001 σ 0.1 W-MLP ✗ ✗ 0.4 99.2 2.8716 27.8 33.9 62.4 49.9 36.3 26.3 39.4

Aux Loss 0.001 σ 0.1 Linear ✓ ✗ 4.9 99.1 2.8744 26.0 33.9 62.0 51.2 36.1 26.1 39.2
Aux Loss 0.001 σ 0.1 Linear ✗ ✓ 0.0 99.3 2.8824 26.9 34.0 63.8 52.3 36.8 26.4 40.0

as MLP and Linear routers perform comparably under balancing loss, with z-loss often contributing to improved routing
stability and model accuracy. These findings highlight the importance of explicit balancing mechanisms in maintaining
effective token-choice routing behavior.

Table 9: Ablation results on token-choice router under different routing configurations. Coeff denotes coefficient values for
balancing loss term, and u values for loss-free method. MaxVio measures the maximum relative deviation of token load
assigned to any expert, quantifying the degree of load imbalance.

Token-choice Configurations Router Metrics NLL ↓ Few-shot Accuracy ↑
Balancing Coeff Func α Arch Z-loss MaxVio ↓ Entropy ↑ FineWeb LD HS PQ WG ARC MMLU Avg

- - rand - - ✓ 0.007 1.099 3.0268 24.8 32.0 61.4 52.2 35.5 26.1 38.7

Loss 0.1 soft 1.0 MLP ✓ 0.200 1.076 3.0239 24.2 31.9 61.4 51.5 35.7 26.2 38.5
Loss 0.01 soft 1.0 MLP ✓ 0.682 0.921 2.9118 28.0 33.3 62.8 49.7 36.4 26.2 39.4

Loss-free 0.01 soft 1.0 MLP ✓ 1.788 0.297 2.9078 25.5 32.5 61.3 52.3 36.1 26.0 38.9
Loss-free 0.01 σ 0.1 MLP ✓ 0.956 0.646 3.1144 21.8 29.8 60.3 51.6 34.0 25.7 37.2
Loss-free 0.01 σ 1.0 MLP ✓ 0.918 0.749 3.0188 23.4 31.3 59.9 50.0 35.2 25.8 37.6
Loss-free 0.001 soft 1.0 MLP ✓ 0.852 0.915 2.9081 25.8 33.6 62.8 50.6 37.5 26.7 39.5
Loss-free 0.001 σ 0.1 MLP ✓ 1.281 0.551 2.9165 23.9 33.1 61.2 51.6 37.3 26.2 38.9
Loss-free 0.001 σ 1.0 MLP ✓ 0.542 0.941 3.0188 24.9 32.0 61.9 51.4 35.5 25.9 38.6

Loss 0.1 soft 1.0 Linear ✓ 0.492 0.960 2.9974 23.7 31.3 62.2 50.3 36.7 26.0 38.4
Loss 0.1 soft 1.0 W-MLP ✓ 0.384 1.037 3.0293 25.3 31.5 62.2 51.2 36.4 26.3 38.8

Loss 0.1 soft 1.0 Linear ✗ 0.266 1.056 2.9358 25.7 32.6 61.9 51.7 36.4 26.5 39.1
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I. Expanded Results of KV Cache Sharing
I.1. KV Representation Trends in Recursive Transformers

Sharing KV caches across model depths has emerged as a promising approach to improve inference throughput in Vanilla
Transformers (Brandon et al., 2024). This technique not only reduces the memory footprint required for KV caches, but
also decreases the time needed to transfer them from HBM to SRAM within the GPU hierarchy. Due to the high degree of
freedom in Vanilla models—where trainable parameters can be optimized for shared caches—these models exhibit only
marginal performance drops when KV caches are shared between adjacent layers.

In contrast, Recursive Transformers have far fewer parameters available for aligning to tied key-value states. Nevertheless,
we hypothesize that similar patterns may emerge between shared attention blocks. To investigate this, we pretrained
Recursive Transformers using the Middle-Cycle strategy with a recursion depth of 3, decomposed the KV states into
magnitude and directional components, and visualized the results in Figure 6 and Figure 7.
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Figure 6: Average L2 norm magnitude of (a) hidden states, (b) key states, and (c) value states across layers in a Middle-Cycle
Recursive Transformer 360M with 3 recursion steps. Note that the last hidden states correspond to the final hidden states
after the last layer normalization.
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Figure 7: Cosine similarity matrices showing the layer-wise similarity of (a) hidden states, (b) key states, and (c) value states
in Recursive Transformer with Middle-Cycle strategy and recursion depth 3. Results are from a 360M parameter model with
32 layers. The hidden states matrix includes the final hidden states after the last layer normalization.

As shown in Figure 6, the sharing of key and value projection layers across recursion depths leads to clear recursive patterns
in the magnitude values. Although the magnitudes of hidden states tend to increase, the projection layers appear to be
trained to produce similar signal sizes at corresponding depths within each recursion.

We also measured the cosine similarity between the unit vectors of KV states. In these visualizations, red indicates
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higher similarity between the key or value states of each layer, while blue indicates lower similarity. As illustrated in
Figure 7, distinct diagonal patterns emerge, suggesting that shared projection layers generate highly similar key and value
representations. While sharing value states across recursions appears to be more challenging than sharing key states, these
findings suggest that the performance drop from KV cache sharing can remain marginal even in Recursive Transformers.

I.2. Performance Comparison of KV Sharing Strategy

In Table 10, we present the performance results when applying KV cache sharing to Vanilla, Recursive, and MoR models.
Especially, we tested various strategies for KV caches, including Cycle or Sequence strategies that share the same concepts
as parameter sharing (see subsection C.1 for details). Interestingly, KV cache sharing even improves the performance of
vanilla models, where sharing acts as a regularization technique. For recursive models, we aligned the sharing strategy for
parameters and KV caches. Despite some variations in the results after applying KV sharing, the Middle-Cycle strategy (the
best parameter sharing strategy) showed a slight perplexity drop, albeit not substantial.

When moving to MoR models, they still introduced a small amount of degradation in our best settings (expert-choice router).
However, considering the reduced parameter sizes and cache sizes, we believe this minor drop is acceptable. Furthermore,
we explored an additional caching strategy (indicated by †) that utilized shared caches for inactive (unselected) positions
while updating active positions through actual computation. Although it did not provide additional benefits, it is still worth
exploring combinations of KV sharing and actual updates, such as only updating current a single token position, which
would not introduce additional memory footprint with minimal FLOPs requirements during decoding.

Table 10: Comparison of KV cache sharing strategies across Vanilla, Recursive, and MoR Transformers. Models are
evaluated using negative log-likelihood (NLL) on train set and few-shot accuracy across benchmarks. KV sharing denotes
use of recursive KV sharing. † indicates training with KV sharing that updates the KV cache with the outputs generated
after each recursion step.

Pretrain Recursion MoR KV Sharing NLL ↓ Few-shot Accuracy ↑
Models N-Emb NL Share Loop Type Share Loop FineWeb LD HS PQ WG ARC MMLU Avg

Vanilla 315M 32 - - - - - 2.8471 27.3 34.8 64.2 52.8 38.3 26.7 40.7
Vanilla 315M 32 - - - Seq 2 2.7848 30.0 36.5 64.6 50.7 39.4 26.9 41.3
Vanilla 315M 32 - - - Cyc 2 2.7650 30.0 36.7 65.2 51.1 39.6 27.5 41.7

Vanilla 295M 30 - - - - - 2.8069 29.1 35.6 65.1 50.4 38.5 27.3 41.0
Vanilla 295M 30 - - - Seq 3 2.7879 28.3 36.4 64.3 52.7 39.4 27.3 41.4
Vanilla 295M 30 - - - Cyc 3 2.7890 28.9 36.5 64.6 51.4 39.0 27.6 41.3

Recursive 157M 16 Seq 2 - - - 2.9467 26.3 32.5 62.9 52.4 36.4 26.2 39.5
Recursive 157M 16 Seq 2 - Seq 2 2.8904 26.4 33.4 64.0 51.0 37.0 26.9 39.8
Recursive 157M 16 Cyc 2 - - - 2.8487 28.5 34.8 63.1 50.0 37.4 28.8 40.1
Recursive 157M 16 Cyc 2 - Cyc 2 2.8577 26.2 34.5 64.2 51.4 37.3 26.9 40.1
Recursive 167M 1+15+1 M-Cyc 2 - - - 2.8295 28.6 35.0 64.5 50.5 39.7 27.2 40.9
Recursive 167M 1+15+1 M-Cyc 2 - M-Cyc 2 2.8451 27.3 34.7 63.7 50.5 37.8 27.0 40.2

Recursive 98M 10 Seq 3 - - - 3.0245 24.6 31.5 63.1 49.3 35.7 25.7 38.3
Recursive 98M 10 Seq 3 - Seq 3 2.9554 24.2 32.3 62.5 52.7 36.6 26.2 39.1
Recursive 98M 10 Cyc 3 - - - 2.9363 25.9 33.0 62.9 50.3 36.4 26.5 39.2
Recursive 98M 10 Cyc 3 - Cyc 3 2.9155 24.1 32.9 62.4 51.2 37.4 26.7 39.1
Recursive 118M 1+10+1 M-Cyc 3 - - - 2.8760 28.5 34.9 64.3 50.5 39.5 27.2 40.8
Recursive 118M 1+10+1 M-Cyc 3 - M-Cyc 3 2.8854 27.3 33.8 63.3 52.3 37.5 26.8 40.2

MoR 118M 1+10+1 M-Cyc 3 Expert - - 2.8667 27.4 34.6 63.2 51.5 37.2 26.5 40.1
MoR 118M 1+10+1 M-Cyc 3 Expert M-Cyc 3 2.8895 34.0 61.6 50.2 26.0 36.5 27.0 39.2
MoR 118M 1+10+1 M-Cyc 3 Expert M-Cyc† 3 2.8653 24.8 34.3 62.0 50.1 36.7 26.7 39.1

MoR 118M 1+10+1 M-Cyc 3 Token - - 2.9358 25.7 32.6 61.9 51.7 36.4 26.5 39.1
MoR 118M 1+10+1 M-Cyc 3 Token M-Cyc 3 2.9155 25.7 32.6 61.8 49.4 36.2 26.0 38.6
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We also investigated relaxing the constraints on KV sharing in Table 11, similar to the approach taken by Bae et al. (2024)
for parameter sharing. Specifically, we re-examined four relaxation techniques for standard Recursive Transformers with
very small ranks or prefix lengths. Our results indicate that these techniques do not yield significant performance gains,
which makes sense in that they introduce only a small number of additional parameters. Although we hypothesized that
incorporating prefix-based approaches (such as adding trainable prefixes to attention) into KV sharing might lead to greater
benefits, our experiments did not reveal substantial differences in this regard. Further exploration of more sophisticated
techniques for efficiently relaxing KV cache sharing constraints remains an open direction for future research.

Table 11: Comparison of KV Cache sharing and relaxation methods in Recursive Transformers trained on FineWeb-
Edu (Penedo et al., 2024) with 10B tokens and 360M parameters. Models are evaluated on train NLL and few-shot accuracy
across multiple benchmarks. Relaxation types include encoding trainable parameters on recursion hidden states (Enc),
LoRA and DoRA applied to QV matrices and adaptation prompt tuning (Adapt-P). All models use the Middle-Cycle sharing
strategy with 3 recursion depths.

Pretrain Relaxation KV Sharing NLL ↓ Few-shot Accuracy ↑
Models N-Emb NL Type Rank Len Share Loop FineWeb LD HS PQ WG ARC MMLU Avg

Recursive 118M 1+10+1 - - - - - 2.8854 27.3 33.8 63.3 52.3 37.5 26.8 40.2
Recursive 118M 1+10+1 Enc - - - - 2.8604 27.3 34.6 63.9 53.4 38.6 26.7 40.2
Recursive 124M 1+10+1 LoRA 64 - - - 2.8599 27.3 34.6 64.3 50.9 38.0 26.9 39.7
Recursive 124M 1+10+1 DoRA 64 - - - 2.8945 26.4 33.6 64.4 50.6 37.4 26.5 39.2
Recursive 126M 1+10+1 Adapt-P - 256 - - 2.8626 27.1 34.7 64.0 51.9 37.6 26.8 39.7

Recursive 118M 1+10+1 - - - M-Cyc 3 2.8854 27.3 33.8 63.3 52.3 37.5 26.8 40.2
Recursive 126M 1+10+1 Adapt-P - 256 M-Cyc 3 2.9030 24.5 33.1 63.0 52.2 26.7 37.6 39.5

J. Compute-optimal Scaling Analysis
Figure 8a shows that Mixture-of-Recursions exhibits a distinct scaling behavior compared to Vanilla and Recursive
Transformers under isoFLOPs constraints. The sharper curvature along the model size axis suggests that MoR gains more
from increasing parameter count, while its relatively flat trajectory in terms of compute implies that extending training
length yields smaller marginal benefits. This indicates that, for MoR, allocating budget toward larger models trained for
shorter durations may be more effective, highlighting a different trade-off dynamic from that of baseline architectures.

K. Test-time Scaling Analysis
We visualize how log-likelihood evolves across recursion steps in MoR models with Nr = {2, 3, 4} in Figure 8b. For
each model, we plot the log-likelihoods of tokens that exit at each recursion depth, shown as overlaid bars. As recursion
proceeds, the log-likelihood consistently improves, indicating that additional compute through deeper recursion leads to
better performance. These results support the view that MoR enables test-time scaling: allocating more recursion steps at
inference can improve generation quality.

L. Qualitative Results
L.1. MoR Router Weights

To gain insight into the optimization of router output distributions, we visualized the results in Figure 9. Our analysis
reveals that various routing mechanisms are trained to balance loads of experts according to the desired capacity. Notably,
expert-choice routers achieved nearly perfect load balancing with the auxiliary loss, resulting in almost binary values (1
or 0) for selected and unselected tokens, respectively. Other strategies also demonstrated good balancing properties, with
reasonable router values that will be multiplied to refine the outputs of corresponding recursion depths. However, most cases
failed to converge to optimal balancing (i.e., these are edge cases where they achieved their own optimal load balancing),
highlighting the challenges of achieving consistent performance except expert-choice with auxiliary loss.
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Figure 8: (a) Compute-optimal scaling analysis. Each star indicates the optimal combination of model size and number
of training tokens for each architecture under a fixed compute budget. (c) Test-time scaling analysis showing the cumulative
log-likelihood improvement with each additional recursion loop, measured over 500 samples.
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Figure 9: Distribution of router weights for selected and unselected tokens at each recursion step in expert-choice and
token-choice MoR (Nr=3). The subplots show results for (a) expert-choice routing with auxiliary loss, (b) auxiliary router,
(c) token-choice routing with balancing loss, and (d) loss-free routing.
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L.2. Analysis on adaptive computation paths

Table 12 illustrates a qualitative analysis of the recursion depth assigned to each text token across ten diverse samples. This
visualization provides a detailed insight into how tokens within each sample exhibit varying levels of recursive processing.
Notably, some tokens exit early (blue), while others require deeper processing (purple and red), reflecting the model’s
ability to focus more compute on challenging parts of the input.

Table 12: Visualization of the recursion depth for each text token, with colors representing the number of recursion steps:
1 , 2 , and 3 . Each row corresponds to a different sample.

Sample Text

Sample #1 code and will serve as a good introduction to the syntax necessary for creating shell

programs. We will continue by ... ... Dedu ction ¿¿ Federal : Char

Sample #2 2 014, 7:57 AM Space X Falcon 9 –R Rocket Suff ers ... ... the Ottoman Empire seems

to have succeeded.

Sample #3 children ? Who else ( if anyone) would you want to know about your genetic test results?

Object ives ... ... We urge you to reject the pipeline and

Sample #4 keep tar sands oil in the ground where it belongs. The representatives were joined

by the National Wildlife Federation and ... ... -W . Va ., called the

Sample #5 9 PR Newsw ire . All rights reservedA report released Thursday on the Slide Fire in Oak

Creek ... ... he has selected a small hob bit like

Sample #6 Bil bo to accompany the dwarves to fight the enemy. He says, “S ar uman believes it is ...

... to a new area. Light -Trans

Sample #7 mitting Plants After four years of research, most of it in total darkness , a

Stanford University plant biologist has ... ... the type of price spikes that could create

Sample #8 an impression of market power abuses or other market failures. In some cases, however, prices may spike

to higher ... ... , the sun (and associated physics ),

Sample #9 and spaceflight and spacecraft. covers elementary astronomy , Newtonian mechanics , the

Sun and related physics and spaceflight . Also ... ... deployment in underlying database

and network infrastructure ,

Sample #10 a well established role in scientific computing, and a recent increased presence in

desktop computing, it almost certain that contemporary ... ... export them. Functions

are memory resident shell
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