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ABSTRACT

Large Vision-Language Models (LVLMs) exhibit outstanding performance on
vision-language tasks but struggle with hallucination problems. Through in-depth
analysis of LVLM activation patterns, we reveal two key findings: 1) truthfulness
and visual perception capabilities predominantly engage different subsets of at-
tention heads within the model architecture; and 2) truthfulness steering vectors
vary significantly across different semantic contexts. Based on these observations,
we propose Dynamic Multimodal Activation Steering, a training-free, plug-and-
play approach for hallucination mitigation. Our method constructs a semantic-
based truthfulness steering vector database and computes visual perception steer-
ing vectors, enabling context-aware interventions during inference by dynamically
selecting the most relevant steering vectors based on input semantic similarity and
applying them to the most influential attention heads. We conduct comprehensive
experiments across multiple models and datasets, demonstrating that our approach
significantly enhances model performance, outperforming existing state-of-the-art
methods.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) have demonstrated remarkable performance on visual
question answering (VQA), image captioning, and related tasks Liu et al. (2023; 2024c); Bai et al.
(2023); Chen et al. (2024); Dai et al. (2023). However, these models suffer from significant hallu-
cination phenomena, manifested as fabricating non-existent objects or incorrectly describing image
content Liu et al. (2024b); Bai et al. (2024). Such hallucinations limit the applicability of LVLMs in
downstream applications including autonomous driving Cui et al. (2024), robotics Li et al. (2024b),
and other safety-critical domains.

Due to the complex architecture of LVLMs, the causes of multimodal hallucinations are diverse.
To address these multimodal hallucination issues, numerous approaches have been proposed Leng
et al. (2024); Huang et al. (2024); An et al. (2025); Yin et al. (2024); Liu et al. (2024a), which can be
broadly categorized into two classes: training-based and decoding-based methods. Training-based
methods primarily focus on constructing less biased datasets to fine-tune LVLMs, such as LRV Liu
et al. (2024a), or employing reinforcement learning to train LVLMs, as demonstrated by RLHF-V
Yu et al. (2024a). The limitations of these approaches lie in their requirements for carefully curated
data and substantial computational resources, as well as the need to retrain models separately for
different architectures. Decoding-based methods, on the other hand, modify the decoding strategies
of LVLMs, such as VCD Leng et al. (2024) and ICD Wang et al. (2024b). While these methods
avoid the need for training, they often compromise the quality of the generated content Yin et al.
(2025).

More recently, researchers have begun investigating activation engineering Zou et al. (2023); Li
et al. (2023b); Wang et al. (2024a) as an alternative approach to reduce hallucinations through tar-
geted intervention in model representations. ICT Chen et al. (2025) is an image-object cross-level
trusted intervention method that mitigates model hallucinations by applying noise to both images
and objects, thereby enhancing the model’s attention to visual information. However, this approach
primarily focuses on visual-level interventions, neglecting the multimodal characteristics of LVLMs.
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VTI Liu et al. (2025) intervenes in the hidden states of both the visual encoder and large language
model during inference by pre-computing steering vectors for visual and textual modalities. Never-
theless, this method employs fixed steering vectors regardless of input variation, ignoring potential
semantic differences across diverse contexts. The uniformly applied steering vectors fail to account
for the nuanced semantic variations that exist across different inputs.

To address these challenges, we propose dynamic multimodal activation steering (DMAS), a
training-free, plug-and-play approach for hallucination mitigation in LVLMs. Our method focuses
on two types of attention heads in LVLMs: truthfulness-related and visual perception-related. For
truthfulness heads, we explicitly model how truthfulness steering vectors vary across semantic con-
texts. We cluster data semantically and create sample pairs with and without hallucinations within
each cluster. By contrasting attention activations between factual and hallucination-prone samples,
we extract truthfulness steering vectors. These vectors are stored alongside their cluster embeddings
in a key-value database.

For visual perception, we calculate activation differences between noise-free and noisy image inputs
to derive perception steering vectors that enhance visual attention. During inference, we dynamically
retrieve the most semantically relevant truthfulness steering vector for the input query and apply both
truthfulness and visual perception vectors to the top-K attention heads with the largest activation
differences. This dual intervention effectively reduces hallucinations. The main contributions of our
paper are:

• We investigate activation differences in LVLMs, revealing that truthfulness and visual percep-
tion capabilities predominantly engage different subsets of attention heads, and demonstrate that
truthfulness vectors vary significantly across different semantic contexts through visualization,
indicating the necessity for dynamic rather than static intervention approaches.

• We propose dynamic multimodal activation steering, a training-free method for hallucination mit-
igation that constructs a semantic-based truthful steering vector database and visual perception
steering vector, enabling context-aware interventions during inference by dynamically selecting
appropriate steering vectors based on input semantic similarity.

• We conduct comprehensive experiments on multiple models across discriminative tasks and open-
ended generation datasets. The experimental results demonstrate that our method achieves signif-
icant improvements: increasing total scores by 94.66 on MME and reducing 20.2% hallucinations
on CHAIR, outperforming existing state-of-the-art methods. These results highlight the effective-
ness of our approach in hallucination mitigation.

2 RELATED WORK

2.1 LARGE VISION-LANGUAGE MODELS

Large Vision-Language Models (LVLMs) have recently undergone rapid development, achieving
excellent performance in image captioning and VQA tasks Yin et al. (2023); Jin et al. (2024). They
typically consist of a vision encoder, a connection layer, and an LLM. As for the vision encoder, the
VIT from CLIP Radford et al. (2021) is commonly used. For the connection layer, some models use
simple MLP layers for alignment, such as LLaVA Liu et al. (2023; 2024c), Shikra Chen et al. (2023),
PandaGPT Su et al. (2023), etc.; some models use Q-former for alignment, like BLIP2 Li et al.
(2023a), InstructBLIP Dai et al. (2023), etc.; while others design special architectures. However,
these LVLMs suffer from serious hallucination problems, and effectively eliminating hallucinations
remains a popular research topic.

2.2 HALLUCINATION MITIGATION FOR LVLMS

Recently, numerous approaches have been proposed to mitigate multimodal hallucinations Liu et al.
(2024b); Bai et al. (2024), addressing this issue across three key stages: training, inference, and
post-processing. At the training stage, some research concentrates on constructing better data to
train models. For example, LRV Liu et al. (2024a) constructs a high-quality instruction fine-tuning
dataset containing balanced positive and negative samples, while other studies introduce reinforce-
ment learning to the multimodal domain to reduce hallucination, such as RLHF-V Yu et al. (2024a)
and RLAIF-V Yu et al. (2024b). These methods typically require carefully constructed training data
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(a) The difference of truthfulness at-
tention head activation.

(b) The difference of visual percep-
tion attention head activation.

(c) Steering vectors visualiza-
tion.

Figure 1: Activation differences in LLaVAv1.5.

and consume substantial computational resources during training. Research on mitigating hallucina-
tions at the inference stage often requires no training. VCD Leng et al. (2024) uses the distribution
from noise-added images and the original output distribution to jointly determine the final distribu-
tion to mitigate hallucination. ICD Wang et al. (2024b) reduces hallucinations by contrasting output
distributions between standard and deliberately disturbed instructions. These contrastive decoding
methods often compromise the quality of the generated content Yin et al. (2025). Post-processing
approaches correct the generated content from LVLMs to achieve hallucination reduction effects.
For instance, LURE Zhou et al. (2024) constructs a dataset to train a hallucination revisor. How-
ever, these methods require the construction of a complex pipeline and increase the time required
to obtain final outputs. To overcome these limitations, we propose dynamic multimodal activation
steering, a training-free plug-and-play approach to mitigate hallucination in LVLMs by dynamically
intervening in attention heads during inference time.

3 PRELIMINARY STUDY

To understand the internal mechanisms underlying multimodal hallucinations, we conduct a sys-
tematic analysis of attention patterns in LLaVAv1.5 Liu et al. (2024c) across 3,000 samples from
the SEED Li et al. (2024a) and AMBER Wang et al. (2023) datasets. Our investigation focuses on
identifying which attention heads are most sensitive to truthfulness versus visual perception.

We design two complementary experiments to isolate attention mechanisms responsible for dif-
ferent aspects of multimodal processing. In the first experiment, we examine truthfulness related
attention head by contrasting model activations when processing identical visual inputs paired with
text prompts either with ground truth or hallucinated answers. This approach enables us to iden-
tify attention heads most relevant to truthfulness, we measure how each head’s activation changes
between truthful and hallucinated content by computing the difference: truthful activation minus
hallucinated activation. In the second experiment, we investigate visual perception related attention
head by comparing activations between clean images and their noise-corrupted counterparts, calcu-
lating activation differences by subtracting the activation values of non-noisy inputs from those with
noise. As shown in Figures 1a and 1b, the activation patterns differ significantly between these two
experiments. For truthfulness (Figure 1a), the most active attention heads appear predominantly in
layer 30. In contrast, for visual perception (Figure 1b), the highest activation differences concen-
trate in layer 31. These distinct activation patterns provide a foundation for our targeted intervention
approach that addresses both aspects simultaneously.

Furthermore, we divide the SEED and AMBER datasets into four semantic clusters and compute
the activation differences for each cluster. Using t-SNE to visualize these differences in a two-
dimensional space (Figure 1c), we observe a clear separation between clusters, with each occupying
a distinct region in the projection space. This separation indicates that truthfulness direction vectors
vary significantly across different semantic contexts. The heterogeneity in these patterns suggests
that a static intervention approach would be insufficient, as it cannot account for the semantic-
dependent nature of hallucinations. This observation directly motivates our dynamic multimodal
activation steering method, which can adaptively select appropriate steering vectors based on the
semantic content of the input query.
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4 METHOD

In this section, we introduce dynamic multimodal activation steering. As shown in Figure 2, the
method has three steps: the first step is to establish a dynamic truthfulness steering vector database,
the second step is to calculate the steering vector for the model’s visual perception attention heads,
and the third step is to apply dynamic interventions to different attention heads during inference.

4.1 TRUTHFULNESS STEERING VECTOR DATABASE

We select the AMBER Wang et al. (2023) and SEED Li et al. (2024a) datasets as our data sources
and divide the datasets into 4 clusters based on semantics. The questions in these two datasets are in
the form of multiple-choice and discriminative questions, making it easy for us to create hallucinated
answers for each sample (for discriminative questions, we change the answer to the opposite; for
multiple-choice questions, we randomly select an incorrect option). Each cluster Ci comprises the
question prompt T , visual input V , ground truth response Ypos, and incorrect response Yneg for
every sample.

We input (V, T + Ypos) and (V, T + Yneg) separately into LVLMs and preserve the attention head
activation values of the last token at each layer, denoted as Apos and Aneg . We define the truthful-
ness steering vector as the activation difference between non-hallucinated outputs and hallucinated
outputs within each cluster according to Equation 1:

Di =
1

|Ci|
∑
j∈Ci

(Apos,j −Aneg,j) (1)

|Ci| represents the number of samples in cluster Ci, and j indexes the samples within the cluster.
Subsequently, we apply principal component analysis (PCA) to Di to reduce insignificant noise,
thereby extracting the principal components that influence truthfulness. The magnitude of Di effec-
tively quantifies the significance of each attention head in governing this specific model behavior.

Next, we construct a truthful steering vector database where the average embedding representation of
questions from each cluster serves as the key, with the corresponding steering vector Di as the value.
During inference, our approach dynamically matches the semantic content of the input question to
retrieve the most semantically similar steering vector, enabling context-appropriate interventions.
We obtain key embeddings in the database and input text embeddings via sentence transformer.1
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Figure 2: Overview of the DMAS framework.

1https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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4.2 VISUAL PERCEPTION STEERING VECTOR

Given a visual input V and a distorted visual input V ′ (obtained by adding noise to the image
following the forward diffusion process in image generation Ho et al. (2020)), we first input V into
an object detector YOLOv11 Khanam & Hussain (2024) to obtain a list of objects O present in the
image, and insert them into a simple template 'The image depicts objects ' , denoted as YO. At the
same time, we randomly select an equal number of objects O′ from a predefined object library that
are not in O, also inserting them into the template, denoted as YO′ . The prompt T is fixed as 'Please
describe this image.' Next, we obtain the final inputs (V, T + YO) and (V ′, T + YO′), and input
these two samples separately into LVLMs, preserving the attention head activation values of the last
token at each layer, denoted as Av and Av′ respectively. We define visual perception steering vector
as the activation difference between visual input and distorted visual input according to Equation 2:

Dv = Av −Av′ (2)
Similarly, we apply PCA to Dv to reduce noise, thereby extracting the principal components most
relevant to visual perception.

4.3 DYNAMIC INTERVENTION FOR INFERENCE

During the inference phase, for a given text input T and visual input V , we dynamically retrieve the
most appropriate steering vector by computing semantic similarity between the input and each key
in database as shown in Equation 3.

Df = Dî, where î = argmax
i

sim(E(T ),Keyi) (3)

where E(T ) is the embedding representation of the input text, Keyi represents the key embedding
for cluster i, and sim(·, ·) denotes the cosine similarity function. This process identifies the most
relevant truthfulness steering vector for the current input.

To achieve more precise control over model behavior, rather than intervening on all attention heads,
we selectively target the most influential heads in both Df and Dv .We define binary mask matrices
Mf and Mv as Equation 4:

M
(l,h)
{f,v} =

{
1, if (l, h) ∈ TopK(D{f,v},K)

0, otherwise
(4)

where (l, h) denotes the h-th attention head in the l-th layer, D represents the sum of activation
differences for each attention head in D and TopK(D{f,v},K) returns the indices of the K largest
attention heads in either Df or Dv , representing the most influential attention heads for truthfulness
and visual perception respectively.

Building upon the standard attention mechanism, we modify the computation for layers where in-
tervention is applied. Our intervention-enhanced computation is formulated as Equation 5:

x(l+1) = x(l) + Concat(0∼H)

[
Attn(l,h)(x(l))

+ α ·M (l,h)
f ·D(l,h)

f

+ β ·M (l,h)
v ·D(l,h)

v

]
·W(l)

o

(5)

where x(l) represents the hidden states at the l-th layer, H is the number of attention heads per
layer, α and β are hyperparameters controlling the intervention strength for truthfulness and visual
perception respectively. The binary masks ensure that interventions are only applied to the most
influential attention heads, allowing for precise and targeted steering of the model’s behavior.

5 EXPERIMENTAL SETUP

5.1 DATASETS AND EVALUATION METRICS

To comprehensively evaluate our proposed approach, we test our method on discriminative tasks,
including MME Fu et al. (2023) and POPE Li et al. (2023c), as well as on open-ended generation
tasks using CHAIR Rohrbach et al. (2018).
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Model Method Existence↑ Count ↑ Position↑ Color↑ Total Scores↑

LLaVAv1.5

Regular 175.67 124.67 114.00 151.00 565.33
VCD 184.66 138.33 128.67 153.00 604.66

OPERA 180.67 133.33 123.33 155.00 592.33
VAF 195.00 158.33 128.33 155.00 636.67

AGLA 195.00 153.89 129.44 161.67 640.00
ICT 190.00 160.43 128.67 170.00 649.10
Ours 195.00 158.33 133.33 173.33 659.99
∆ ↑19.33 ↑33.66 ↑19.33 ↑22.33 ↑94.66

QwenVL

Regular 155.00 127.67 131.67 173.00 587.33
VCD 156.00 131.00 128.00 181.67 596.67
VAF 165.00 155.00 133.33 175.00 628.33
ICT 180.00 145.00 108.33 173.33 606.66
Ours 170.00 145.00 133.33 185.00 633.33
∆ ↑15.00 ↑17.33 ↑1.66 ↑12.00 ↑46.00

Table 1: Results on MME. The best results are shown in bold. ∆ represents the improvement
achieved by our method compared to the original model.

MME Fu et al. (2023) is a comprehensive evaluation benchmark for LVLMs, comprising 14 sub-
tasks. For questions in this dataset, models are required to respond with either ”yes” or ”no”. Fol-
lowing Yin et al. (2024) and Leng et al. (2024), we selected ”existence,” ”count,” ”position,” and
”attribute” as the hallucination test sets. Consistent with Fu et al. (2023), we adopt the sum of
accuracy and accuracy+ as the evaluation metrics.

POPE Li et al. (2023c) is a benchmark designed specifically to evaluate object hallucination.
The benchmark features three sampling strategies of varying difficulty levels: random (randomly
sampling nonexistent objects), popular (selecting frequently appearing objects), and adversarial (se-
lecting objects that frequently co-occur with objects present in the image). We report Accuracy,
Precision, Recall, F1 Score as the evaluation metrics.

CHAIR Rohrbach et al. (2018) is an open-ended generation task. This benchmark comprises 500
images sourced from MSCOCO Lin et al. (2014), where LVLMs are required to generate captions
for the images, followed by evaluation of hallucinations present in these captions at sentence level
CHAIRS and image level CHAIRI .

5.2 BASELINES AND IMPLEMENTATION DETAILS

We validate the effectiveness of our method on mainstream LVLMs: LLaVAv1.5 7B Liu et al.
(2024c) and QwenVL 7B Bai et al. (2023). We also compare our model with state-of-the-art meth-
ods: ICT Chen et al. (2025), AGLA An et al. (2025), VAF Yin et al. (2025), VTI Liu et al. (2025) ,
VCD Leng et al. (2024), and OPERA Huang et al. (2024).

Our method has three key parameters: α, β, and K. α and β respectively regulate the intensity of
interventions for truthfulness and visual perception, while K refers to the intervention on the top K
most active attention heads. We set the range of α and β to {0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the
range of K to {32, 64, 128, 256, 512, 1024}, and employ grid search to determine the parameters.
All experiments are conducted on an NVIDIA RTX 4090(48GB) GPU.

6 EXPERIMENT

6.1 RESULTS ON MME

The results on the MME Fu et al. (2023) dataset are presented in Table 1. Our method demonstrates
significant improvements of 94.66 and 46 points compared to the baseline models LLaVAv1.5 and
QwenVL, respectively. On the LLaVAv1.5 model, our approach outperforms the existing state-of-
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the-art method ICT Chen et al. (2025) by 10.89 points, while on QwenVL, it surpasses the current
state-of-the-art method VAF Yin et al. (2025) by 5 points. Across all subtasks, we observe notable
improvements over regular baselines, which can be attributed to our dynamic intervention mecha-
nism that retrieves the most semantically similar steering vector for each query.

6.2 RESULTS ON POPE

Dataset Setting Method Accuracy ↑ Precision Recall F1 Score ↑

MSCOCO

LLaVAv1.5

Regular 81.38 88.04 72.78 79.65
VCD 84.33 85.93 83.28 84.52

OPERA 84.21 88.23 79.79 83.72
VAF 86.90 89.43 83.77 86.47

AGLA 85.82 93.78 76.83 84.44
VTI 86.48 90.11 82.09 85.90
ICT 87.35 - - 87.12
Ours 86.81(↑5.43) 87.23 86.57 86.79(↑10.14)

QwenVL

Regular 83.71 93.30 72.69 81.70
VCD 86.67 90.66 81.94 83.04

OPERA 84.26 94.40 73.52 82.65
AGLA 83.9 96.20 70.62 81.44

VTI 85.18 91.31 78.18 84.08
ICT 87.53 - - 86.98
Ours 87.63(↑3.92) 87.92 87.3 87.65(↑5.95)

GQA

LLaVAv1.5

Regular 78.33 79.33 79.13 79.13
VCD 81.16 77.31 89.08 82.67

OPERA 80.80 - - 83.24
VAF 83.67 81.50 88.00 84.50

AGLA 84.41 84.63 84.67 84.55
ICT 85.27 - - 85.50
Ours 85.27(↑6.94) 83.86 87.51 85.63(↑6.50)

QwenVL

Regular 77.47 81.54 71.37 76.06
VCD 82.48 81.73 83.93 82.77

OPERA 82.74 - - 82.68
AGLA 81.14 86.87 73.53 79.63

ICT 83.28 - - 83.26
Ours 84.40(↑6.93) 85.19 83.53 84.32(↑8.26)

Table 2: Results on POPE. Best results are in bold, and second-best values are underlined.

The experimental results of POPE Li et al. (2023c) are shown in Table 2. We conduct experiments
on MSCOCO Lin et al. (2014) and GQA Hudson & Manning (2019) under random, popular, and
adversarial settings. Table 2 presents the average results across these three settings, with detailed
experimental results provided in the Appendix. Our method improved LLaVAv1.5’s performance on
MSCOCO by 5.43% in accuracy and 7.14% in F1 score, while for QwenVL, it achieved improve-
ments of 3.92% in accuracy and 5.95% in F1 score. On GQA, our method enhances LLaVAv1.5 by
6.94% in accuracy and 6.5% in F1 score, and improves QwenVL by 6.93% in accuracy and 8.26% in
F1 score. Compared to existing methods, our approach achieves best results in most cases, demon-
strating its significant effectiveness in mitigating object hallucination. Notably, while the ICT Chen
et al. (2025) method applies noise to objects in images to increase the LVLMs’ attention to these
objects, our method achieves superior performance in most cases without such specialized design
elements.

6.3 RESULTS ON CHAIR

We evaluate our method on open-ended generation tasks, with experimental results on CHAIR
Rohrbach et al. (2018) presented in Table 3. Our method reduces hallucinations by 20.2 at the
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(a) Impact of α and β. (b) Impact of K. (c) Impact of Clusters.

Figure 3: Impact of key hyperparameters

sentence level (CHAIRS) and by 3.8 at the image level (CHAIRI ). Compared to existing methods,
our approach reduces sentence-level hallucinations by 5 points over the state-of-the-art method VTI
Liu et al. (2025), and matching VTI’s performance on image-level hallucinations. In summary, our
method achieves significant improvements in hallucination mitigation on both discriminative tasks
and open-ended generation tasks.

Method CHAIRS↓ CHAIRI↓
Regular 51.0 15.2

VCD 51.0 14.9
OPERA 47.0 14.6
AGLA 43.0 14.1

VTI 35.8 11.1
Ours 30.8(↓20.2) 11.4(↓3.8)

Table 3: Results on CHAIR.

Method CHAIR POPE

CS↓ CI↓ Acc↑ F1↑
Ours 30.8 11.4 81.70 82.47

w/o visual vector 34.2 11.7 81.67 82.42
w/o truthfulness vector 42.4 13.2 81.40 82.01

w/o both 51.0 15.2 75.08 76.06

Table 4: Ablation studies on CHAIR and POPE. CS repre-
sents CHAIRS , CI represents CHAIRI .

6.4 FURTHER ANALYSIS

6.4.1 ABLATION STUDIES

To demonstrate the effectiveness of using both truthfulness steering vector and visual perception
steering vector, we compare the results when utilizing only one intervention at a time. We con-
duct experiments on LLaVAv1.5 using the CHAIR and POPE. As shown in Table 4, 'w/o visual
vector' indicates intervention with only the truthfulness steering vector, while 'w/o truthfulness vec-
tor' indicates intervention with only the visual perception steering vector. We observe that even
when using only one intervention method, there is a notable improvement compared to the Reg-
ular baseline (w/o both). Furthermore, each intervention method exhibits hallucination mitigation
effects on both discriminative and generation tasks. The optimal results are achieved when the two
interventions are combined.

6.4.2 EFFECT OF DYNAMIC INTERVENTION

To validate our designed strategy of dynamically invoking the truthfulness steering vector based on
semantics, we compare our method with combining all truthfulness steering vectors into a single
fixed steering vector for intervention. We conduct experiments on QwenVL and LLaVAv1.5 using
the MME, with results shown in Figure 4. We observe that dynamically invoking steering vectors
based on semantics achieves optimal performance across all subtasks. When using a fixed steering
vector, the improvement is smaller than with our method, and it even underperforms the original
model on the Position subtask of QwenVL, which demonstrates the necessity of our designed dy-
namic invocation strategy.

6.4.3 IMPACT OF HYPERPARAMETERS

8
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Figure 4: Effect of dynamic intervention.

In this section, we investigate the impact of key
parameters α, β, and K on the experimental re-
sults. Here, α and β control the intervention
strength, while K denotes the number of atten-
tion heads receiving intervention. Experiments
conducted on QwenVL using the POPE GQA
random subset are shown in Figure 3. Figure
3a illustrates the relationship between F1 score
and parameters α and β. When α and β are
negative, we observe a decrease in F1 score,
which effectively represents intervention in the
opposite direction, pushing activations toward
hallucination. As α and β increase, F1 score
exhibits an upward trend; however, when α and
β become excessively large, F1 score shows a
precipitous decline, indicating that the model’s fundamental capabilities become impaired. Figure
3b shows how F1 varies with the number of intervened attention heads, revealing similar patterns
for both truthfulness and visual perception attention heads. Few intervened heads produce minimal
impact with no significant F1 improvement. As intervention extends to more heads, F1 score in-
creases, but excessive intervention causes a dramatic decline in F1, indicating degradation of model
performance.

6.4.4 IMPACT OF CLUSTERS

In this section, we investigate the impact of cluster quantity on the performance of our proposed
method. We vary the number of clusters across {2, 3, 4, 5} and conduct experiments on both
QwenVL and LLaVAv1.5 using the MME benchmark. The experimental results are presented in
Figure 3c. We observe that both LLaVAv1.5 and QwenVL achieve optimal performance when
the number of clusters is set to 4. When the cluster count is insufficient, the semantic granularity
becomes too coarse for effective representation. Conversely, when too many clusters are employed,
the sample size within each cluster diminishes, leading to less stable steering vectors.

6.4.5 ANALYSIS OF GENERALITY

To verify the generalizability of our method, we tested our approach on ScienceQA Lu et al. (2022)
which is subject-based VQA dataset and ViQuAE Lerner et al. (2022) which is a knowledge-based
VQA dataset. The accuracy are shown in Table 5. Our method also achieved significant improve-
ments on these datasets. These datasets are completely different from the dataset types we used to
construct the steering vector, which demonstrates the generalizability of our method.

Method ScienceQA ViQuAE

LLaVAv1.5 QwenVL LLaVAv1.5 QwenVL

Regular 52.75 46.41 43.38 50.09
Ours 62.27 48.04 56.00 54.08

Table 5: Generality on ScienceQA and ViQuAE.

7 CONCLUSION

This paper proposes dynamic multimodal activation steering, a training-free plug-and-play approach
to mitigate hallucination in LVLMs by dynamically intervening in attention head activations. The
experimental results on multiple benchmarks demonstrate the effectiveness of our method, with
LLaVA v1.5 achieving a remarkable 94.66-point improvement on MME and an average of 6.82-
point increase on POPE, outperforming existing SOTA methods. We compare the experimental
performance of our proposed semantic-dynamic strategy for steering vector selection against random
selection and fixed steering vector approaches, demonstrating the effectiveness and necessity of
semantic-dynamic steering vector selection.

9
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A APPENDIX

A.1 AI WRITING ASSISTANCE STATEMENT

Large language models were utilized solely for minor linguistic improvements, including enhanced
phrasing and clarity. These tools played no role in content generation, experimental design, data
analysis, or interpretation. The authors are entirely responsible for all ideas, results, and conclusions
presented in this paper.

A.2 MORE DETAILS ON CHAIR

In this paper, we report CHAIRS and CHAIRI as evaluation metrics. The calculation of CHAIRS

and CHAIRI is shown in Equation 6, where we set the maximum number of new tokens to 512 in
our experiments.

CHAIRS =
|{sentences with hallucinated objects}|

|{all sentences}|

CHAIRI =
|{hallucinated objects}|
|{all objects mentioned}|

(6)

A.3 RESULTS ON POPE

The complete experimental results on POPE are presented in Table 6. Our method achieves signifi-
cant improvements across all three experimental settings: random, popular, and adversarial.

Dataset Setting Method Accuracy ↑ Precision Recall F1 Score ↑

MSCOCO

Random
Regular 83.29 92.13 72.80 81.33

VCD 87.73 91.42 83.28 87.16
Ours 90.03 90.51 90.03 90.02

Popular
Regular 81.88 88.93 72.80 80.06

VCD 85.38 86.92 83.28 85.06
Ours 87.33 89.16 85.00 87.03

Adversarial
Regular 78.96 83.06 72.75 77.57

VCD 80.88 79.45 83.29 81.33
Ours 83.07 82.04 84.67 83.33

GQA

Random
Regular 83.73 87.16 79.12 82.95

VCD 86.65 84.85 89.24 86.99
Ours 89.57 88.92 90.40 89.60

Popular
Regular 78.17 77.64 79.12 78.37

VCD 80.73 76.26 89.24 82.24
Ours 84.53 83.51 86.07 84.77

Adversarial
Regular 75.08 73.19 79.16 76.06

VCD 76.09 70.83 88.75 78.78
Ours 81.70 79.15 86.07 82.47

Table 6: Results on LLaVAv1.5. The best results are shown in bold.

A.4 RESULTS ON AMBER

We conduct an evaluation of LLaVA v1.5 on the AMBER Wang et al. (2023). AMBER contains
both discriminative tasks and generative tasks. The experimental results are shown in Table 7.
Our method outperforms existing methods on both discriminative and generative tasks, achieving
significant effects in hallucination mitigation.
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Discriminative Generative

Method Acc↑ F1↑ CHAIR↓ Hal↓ AMBER SCORE↑
Regular 67.4 71.2 11.6 47.7 79.80
VCD Leng et al. (2024) 68.1 71.1 9.8 43.8 80.65
ICD Wang et al. (2024b) 70.3 73.4 8.8 38.7 82.3
IBD Zhu et al. (2025) 69.2 72.2 9.8 42.2 81.2
DeFG Zhang et al. (2025) 70.2 73.0 9.1 39.9 81.95
CICD Zhao et al. (2025) 71.1 73.1 6.6 34.8 83.25
Ours 81.9 87.2 4.9 20.9 90.01

Table 7: Results on AMBER. The best results are shown in bold.
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Figure 5: Effect of dynamic intervention.

A.5 SCALABILITY ANALYSIS ACROSS MODEL SIZES

To verify that our method has hallucination mitigation effects for models of different sizes, we select
the discriminative task dataset MME and the generative task dataset CHAIR on LLaVA1.5 7B and
13B models. The experimental results show in Table 8 that our model achieves significant effects
for models of different sizes in both discriminative and generative tasks.

MME CHAIR

Model Method Existence↑ Count ↑ Position↑ Color↑ Total Scores↑ CHAIRS↓ CHAIRI↓

LLaVAv1.5 7B Regular 175.67 124.67 114.00 151.00 565.33 51.0 15.2
Ours 195.00 158.33 133.33 173.33 659.99 30.8 11.4

LLaVA1.5 13B Regular 185.00 131.67 95.00 175.00 586.67 45.0 11.8
Ours 185.00 158.33 103.33 180.00 626.66 38.0 10.8

Table 8: Scalability Analysis Across Model Sizes on MME and CHAIR. The best results are shown
in bold.

A.6 ANALYSIS OF INFERENCE SPEED

In this section, we investigate DMAS’s inference speed. We use LLaVA1.5 7B and set the generation
content lengths to {64, 128, 256} respectively, then compare the inference speed of our method with
the original model and VCD. The experimental results show in Figure 5 that our method has faster
inference speed compared to the decoding method VCD. VCD’s inference latency is almost twice
that of the original model, but our model achieves good hallucination mitigation effects while adding
only a small amount of inference time.

A.7 CASE STUDY

To intuitively demonstrate the hallucination mitigation effectiveness of our method, we conduct
case studies on LLaVA v1.5. We utilize cases from MME and CHAIR datasets, with results shown
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in Figure 6. Our method effectively mitigates multimodal hallucination issues across both VQA
tasks and image captioning tasks. For VQA tasks, we present various question types, demonstrating
our method’s effectiveness in reducing hallucinations at different levels including object, attribute,
relation, and count. For image captioning tasks, our method not only generates fewer hallucinations
but also maintains the quality of the output content.

Original model：
No.        

Ours：
Yes.                

Original model：
The image features a large room with a unique design, resembling a barn or a 
store. The room is filled with various cow statues, including a large cow statue in 
the center and several smaller cow statues scattered throughout the space. The 
cow statues are positioned in different areas of the room, creating a visually 
interesting scene.

Ours：
The image features a large, open room with a fake ceiling that resembles a 
green field. In this room, there are two fake cows hanging from the ceiling, 
creating a unique and eye-catching display. The room also has a few potted 
plants placed around the space, adding a touch of nature to the environment.
        

Question：Are there a 
white dish in the image? 
Please answer yes or no.        

Original model：
Yes.        

Ours：
No.                

Question：Is the cricket 
bat under the batter's 
body Please answer yes 
or no.       

Original model：
No.        

Ours：
Yes.                

Question：Is there only 
one dog in the image? 
Please answer yes or no.        

Original model：
No.        

Ours：
Yes.                

Question：Is there a 
backpack in this image? 
Please answer yes or no.        

Figure 6: Case study on LLaVAv1.5.
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