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Abstract
Generic statements (e.g.,Birds can fly) express001
generalizations about the world. However,002
generics are not universally true – while spar-003
rows and penguins are both birds, penguins004
can’t fly. Understanding cases when a generic005
statement is true or false is crucial for ma-006
chine reasoning. In this work, we present a007
novel framework to generate pragmatically rel-008
evant true and false instances of a generic. We009
use pre-trained language models, constrain-010
ing the generation based on our computational011
framework, and produce ∼20k EXEMPLARS012
for ∼650 generics. Our system outperforms013
few-shot generation from GPT-3 (by 12.5 pre-014
cision points) and our analysis highlights the015
importance of constrained decoding for this016
task and the implications of generics EXEM-017
PLARS for non-monotonic reasoning and NLI.018

1 Introduction019

Generics are statements that express generaliza-020

tions about the world (see Figure 1). These state-021

ments are accepted as true even if real-word preva-022

lence of the asserted phenomenon is unspecified023

(e.g., baby birds can’t fly). They have been ex-024

tensively studied in semantics, philosophy, and025

psychology for their puzzling properties such as026

generalizing about an uncommon property (e.g.,027

“Mosquitoes carry malaria.1” Krifka 1987; Cohen028

1996), and for their connections to non-monotonic029

reasoning (Elio and Pelletier, 1996). Understand-030

ing generics and generating instances when they031

do and do not hold is crucial for replicating the nu-032

ances of human reasoning, particularly the efficient033

use of generalizations (Mercier and Sperber, 2017).034

A generic asserts a relationship between a con-035

cept (“Birds”) and a property (“fly”) without a036

quantifier2 that signals prevalence of the property037

with respect to the concept (Figure 1). Since this is038

1Approximately 7-9% of the females of the species
Anopheles (one among 3500 species) transmit malaria (CDC).

2We specifically focus on statements without quantifica-
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Figure 1: We study understanding and reasoning with
generics by generating valid applications (i.e., INSTAN-
TIATIONS) of and EXCEPTIONS to the generic, exclud-
ing pragmatically irrelevant instances.

a generalization without quantification, it allows for 039

INSTANTIATIONS—cases where specified relation- 040

ship holds (e.g., “Sparrows can fly”) and EXCEP- 041

TIONS—cases where it does not hold (e.g., “Pen- 042

guins cannot fly”). Identifying EXCEPTIONS is 043

particularly challenging because an EXCEPTION 044

must both violate the relationship asserted by the 045

generic and be pragmatically relevant (“Cats can’t 046

fly” is not a valid EXCEPTION in Figure 1). 047

In this work, we present a novel computational 048

framework for constructing and generating EXEM- 049

PLARS (INSTANTIATIONS and EXCEPTIONS) for 050

a generic that incorporates various theories from 051

semantics. Bringing together categories of gener- 052

ics (Leslie, 2007, 2008) and exceptions (Greenberg, 053

2007) (see categorization in Table 1), we use gener- 054

ics from (Anonymous, 2022) and automatically 055

generate 8429 EXCEPTIONS and 11771 INSTAN- 056

TIATIONS. We analyze our output using human 057

evaluation and ablation studies. 058

Recent advances in language modeling have 059

been extremely successful at generating text for 060

a range of tasks in a few-shot manner (Brown et al., 061

2020). However, such generation is both expensive 062

and does not provide the degree of control neces- 063

sary for this task (i.e., the output must have a spe- 064

cific semantic relationship to the input). Therefore, 065

in this work we present a novel constrained gen- 066

tion. Statements with explicit quantification (e.g., “Most birds
can fly” or “Birds can usually fly”) do not allow exceptions
and are excluded from this study.
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Category Generic (G) INSTANTIATION EXCEPTION
(a) quasi-def “Quakes produce seismic waves” “Quakes produce pressure waves” “Quakes produce shaky ground”

K(x) ∧ r(x, y) =⇒ P (y) K(x) ∧ r(x, y) ∧ P (y) K(x) ∧ r(x, y)∧ ∼ P (y)
“Birds can fly” “Owls can fly” “Penguins can’t fly”

(b) principled “Sharks attack swimmers” “Threatened sharks attack swimmers”
“Sharks don’t attack swimmers

in the shallows”
K(x) ∧ P (y) =⇒ r(x, y) K(x) ∧ r(x, y) ∧ P (y) K(x) ∧ ¬r(x, y) ∧ P (y)

“Cars have CD Players”
(c) characterizing “Cars have radios”

LG is ambiguous
“2014 Prius model C has a radio ”
K(x) ∧ r(x, y) ∧ P (y)

K(x) ∧ r(x, y)∧ ∼ P (y)
“Newer cars don’t have radios”
K(x) ∧ ¬r(x, y) ∧ P (y)

Table 1: Generic types with their EXEMPLARS. The logical forms for the generic (LG) and its INSTANTIATION
and EXCEPTION are also below the examples. K is the concept, P the property, ∼ P the semantic negation (§3.3).

eration approach using the NeuroLogic Decoding067

algorithm (Lu et al., 2021) with output constraints068

derived from semantic theories. Our system both069

outperforms (by 12.5 precision points on average)070

and is more controllable than few-shot generation.071

We note that although generics admit EXCEP-072

TIONS, increasing research in psychology and phi-073

losophy has shown that humans, from children to074

adults, often accept generics as the default for a075

concept (Khemlani et al., 2009, 2012; Leslie et al.,076

2011) even when the inference is not deductively077

valid. Such default inheritance reasoning (Lifs-078

chitz, 1989) is a specific form of non-monotonic079

reasoning (i.e., adding new premises can cause the080

withdrawal of previous conclusions without alter-081

ing existing premises) that underpins human gut-082

reactions (i.e., generalizations) to new information083

and situations. Such generalization ability is funda-084

mental to human reasoning (Mercier and Sperber,085

2017). Thus, recognizing and automatically pro-086

ducing the cases when and when not to generalize087

is critical for flexible machine reasoning and deci-088

sion making (Reiter, 1978; Ginsberg, 1987a).089

Our contributions are as follows : (1) we present090

a novel framework grounded in linguistic theory091

for representing generics and EXEMPLARS, (2) we092

present the first, to the best of our knowledge,093

method to automatically generate generic EXEM-094

PLARS and show it outperforms few-shot genera-095

tion, and (3) we present analysis showing the im-096

portance of controllability for this task and we097

use our generated data to highlight the insuffi-098

ciency of current NLI methods for representing099

default inheritance reasoning. Our system and data100

will be made publicly available.101

2 Related Work102

Generics have been studied extensively in seman-103

tics, philosophy, and psychology to develop a sin-104

gle logical form for all generics (Lewis and Keenan, 105

1975; Carlson, 1977, 1989; Krifka, 1987) or a 106

probabilistic definition (Cohen, 1996, 1999, 2004; 107

Kochari et al., 2020), categorize generics (Leslie, 108

2007, 2008), and analyze specific types (Prasada 109

and Dillingham, 2006, 2009; Haward et al., 2018; 110

Mari et al., 2012; Krifka et al., 2012). Mecha- 111

nisms to tolerate EXCEPTIONS have also been pro- 112

posed (Kadmon and Landman, 1993; Greenberg, 113

2007; Lazaridou-Chatzigoga and Stockall, 2013) 114

but these are primarily theoretical and use carefully 115

chosen examples. In contrast, our work combines 116

existing EXCEPTION tolerance mechanisms with 117

generic categorization and proposes a novel, large- 118

scale, computational framework for EXEMPLARS. 119

While large-scale KBs capture a range of com- 120

monsense knowledge (Speer et al., 2017; Sap et al., 121

2019; Forbes et al., 2020; Hwang et al., 2021) these 122

resources do not distinguish between generic (e.g., 123

“Birds can fly”) and non-generic facts (e.g., “Birds 124

usually fear cats”). Although GenericsKB (Bhak- 125

thavatsalam et al., 2020) does explicitly contain 126

generics, no attempt is made to provide EXEM- 127

PLARS for the generics and many of the statements 128

are specific scientific facts, rather than generaliza- 129

tions. In contrast, in our work we categorize a large 130

set of machine-generated generics from (Anony- 131

mous, 2022) using crowdsourcing and automati- 132

cally generate EXEMPLARS for these generics. 133

The application of generics to specific individ- 134

uals is influenced by prototypicality (Rips, 1975; 135

Osherson et al., 1990), with small sets of prototypi- 136

cal norms collected in cognitive science for a range 137

of kinds (Devereux et al., 2014; McRae et al., 2005; 138

Overschelde et al., 2004). However, recent work 139

has shown that neural models have only moderate 140

success at mimicking human prototypicality (Misra 141

et al., 2021; Boratko et al., 2020) or producing com- 142

monsense facts without guidance (Petroni et al., 143
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Generic INSTANTIATION EXCEPTION
“A chest pain has a physical cause.” “an angina pectoris has an

underlying cause” (5)
“a chest pain has an emotional or

psychological origin” (1)
“Aloe is used to treat dry skin.” “aloe vera can be used to relieve

the symptoms of eczema” (6)
“aloe vera plant is used to relieve

pain and inflammation” (1)
“A gun are used for hunting.” “a shotgun is used for small

game” (7)
“semiautomatics can be used for

target practice” (2)

Table 2: Examples of generated INSTANTIATIONS and EXCEPTIONS. The template used in the prompt for genera-
tion is indicated in parentheses (see Table 3).

2019) and additionally exceptions are often not pro-144

totypical. Hence, we combine neural models with145

a KB of concepts, using linguistic-theory-guided146

decoding, to generate generics EXEMPLARS.147

Reasoning with generics is closely related to non-148

monotonic reasoning (Ginsberg, 1987b,a); specifi-149

cally default inheritance reasoning (Brewka, 1987;150

Hanks and McDermott, 1986; Horty and Thoma-151

son, 1988; Imielinski, 1985; Poole, 1988; Reiter,152

1978, 1980). Contrary to the proposed solutions153

for linguistic tests on default inheritance reasoning154

(Lifschitz, 1989) (e.g., can a conclusion about in-155

heritance be inferred based on provided evidence?),156

later works showed that the presence of generics157

EXEMPLARS in the evidence impacts what humans158

perceive as the correct answer (Elio and Pelletier,159

1996; Pelletier and Elio, 2005; Pelletier, 2009).160

These results highlight the importance of identify-161

ing generics and analyzing how to accurately model162

their relationships in machine reasoning. While163

natural language inference (NLI), a form of deduc-164

tive reasoning that has been well studied in NLP165

(e.g., Dagan et al. (2013); Bowman et al. (2015);166

Rudinger et al. (2020)), captures notions of infer-167

ence, studies on non-monotonic reasoning and NLI168

are limited (Wang et al., 2019) and do not include169

default inheritance reasoning. Therefore, in this170

work we analyze the interactions between generics171

EXEMPLARS and NLI and highlight the importance172

of modeling this relationship in machine reasoning.173

3 Framework for EXEMPLARS174

We will discuss how theories on generic types and175

interpretations (§3.1) are combined (§3.2) to derive176

logical forms for generics (§3.3) and for EXEM-177

PLARS (§3.4). From our logical forms we derive178

templates that are suitable for generation (§3.5).179

3.1 Generics Background180

Generic statements express generalizations about181

the world without explicit quantification. A generic182

statement describes a relationship (relation) be- 183

tween a concept and a property (see Figure 1). A 184

concept is typically a type or kind (e.g., cat) while 185

a property is typically an ability (e.g., purr) or 186

quality (e.g., furry). As proposed by Greenberg 187

(2007), the relationship in a generic may either 188

be true in-virtue-of a second unspecified but nor- 189

mative property of the concept (e.g., birds can fly 190

in-virtue-of having wings) or may be merely de- 191

scriptive of a non-accidental relationship between 192

concept and property. 193

3.2 Generic Type Definitions 194

To categorize a given generic, we unify the theo- 195

ries from Greenberg (2007) with five generic types 196

proposed by Leslie (2007, 2008) (see Appendix B 197

for detailed discussion) and formulate three cat- 198

egories of generics, for which we collect human 199

annotations on a set of generics. Our three generic 200

categories are (see examples Table 1): 201

(a) Quasi-definitional: concern properties that 202

are assumed to be universal among a concept. 203

They are descriptive, since the property is con- 204

sidered defining for the concept. 205

(b) Principled: concern properties that are preva- 206

lent among or connected to a concept in a prin- 207

cipled way (Prasada and Dillingham, 2006, 208

2009; Haward et al., 2018) and generics that 209

concern properties that are uncommon and 210

often dangerous (Leslie, 2017). 211

(c) Characterizing: concern properties that are 212

not deeply connected with a concept. 213

3.3 Logical Forms for Generics 214

We assert that each generic category corresponds 215

to a specific logical form LG (Table 1). For quasi- 216

definitional generics, since the property is defining 217

we assert that the property logically follows from 218

the combination of concept and relationship. In 219

contrast, for principled generics the focus is on 220
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principled relationship and so we assert that con-221

cept and property together then logically imply the222

relationship. Finally, for characterizing generics,223

the logical form depends on the interpretation of224

the generic as either principled or descriptive. Log-225

ical forms are shown in Table 1.226

Given a logical form, we define the following227

satisfaction criteria. For a concept T (e.g., cat) or228

property (e.g., sleep): we will say that T (i) is true if229

i is a subtype of T (e.g., i=Tabby cat or i=Garfield,230

for T=cat), or T itself. Additionally, we say that231

∼ T (i) is true if T ′(i) is true for some contextually232

relevant second type T ′, where T ′ is not T nor any233

of its subtypes (e.g., T ′=dog for T=cat). We say a234

relation r(x, y) is satisfied if r holds between the235

individuals x and y.236

3.4 EXEMPLARS Logical Forms237

INSTANTIATIONS An INSTANTIATION for a238

generic is a contextually relevant individual of the239

concept that possesses the desired property. Specifi-240

cally, an INSTANTIATION is member of the concept241

for which LG is satisfied. The same logical form242

applies to all cases of INSTANTIATIONS regardless243

of the category (see Table 1).244

EXCEPTIONS Greenberg (2007) notes that EX-245

CEPTIONS can be established by specifying a mem-246

bers of the concept without the generic property247

(e.g.,“Owls can fly” for “Birds can fly”) or by posit-248

ing alternative properties when the concept cannot249

do without the property (e.g., “Quakes produce seis-250

mic waves” for “Quakes produce shaky ground”).251

Therefore, an EXCEPTION is not only an instance252

whereLG is not satisfied but where ¬LG is also sat-253

isfied3. The logical form of the exception depends254

on the type of the generic (see Table 1).255

3.5 Logical Forms to Templates256

Based on our proposed formulae (Table 1) for EX-257

EMPLARS and their satisfaction criteria (§3.3), we258

define seven templates for generation (Table 3).259

Each template represents an instance that satisfies260

the logical form of an EXEMPLAR, potentially with261

subtypes. Each template consists of two sets of262

content requirements: for the input and for the263

completion (i.e., the decoder output).264

For INSTANTIATIONS, we define three templates265

with subtypes of the concept, property, or both.266

However, for EXCEPTIONS we subtype only the267

3In LG, for the concept/property T , ¬T ≡∼ T

Output For Template
EXCEPTIONS:
quasi-def &
characterizing

[K + REL]input [NEG-P]comp

[Ksub + REL]input [NEG-P]comp
(1)
(2)

EXCEPTIONS:
˙ principled &

characterizing

[K + NEG-REL]input [Psub]
comp

[Ksub + NEG-REL]input [P]comp
(3)
(4)

INSTANTIATIONS:
all categories

[Ksub + REL]input [P]comp

[K + REL]input [Psub]
comp

[Ksub + REL]input [Psub]
comp

(5)
(6)
(7)

Table 3: Templates for generating EXEMPLARS, de-
rived from their logical forms (§3.4). sub indicates a
subtype, K the concept, P the property and its negation
NEG-P (§3.3). comp is the completion of the input.

concept or property. This is because when the ex- 268

ception has two subtypes, the individual described 269

is now no longer exceptional (i.e., they do not lack 270

property entirely) nor contextually irrelevant (i.e., 271

they are still a member of the concept). 272

4 Methodology 273

Our system takes as input a generic G, along with 274

its type and associated templates (§3.5) and outputs 275

a set of generated EXEMPLARS (Figure 2). The sys- 276

tem populates the templates according to the input 277

generic (§4.1). Filled templates are converted into 278

a set of prompts and constraints that control the de- 279

coding process (§4.2). The final output is filtered to 280

remove false (§4.3) or invalid EXEMPLARS (§4.4). 281

4.1 Template Assembly 282

To populate our templates, we use a dependency 283

parser4 to identify text spans for the concept, re- 284

lation, and property in a generic. Then, we ex- 285

tract subtypes for the concept and property and use 286

these to populate the input template, via genera- 287

tion prompts, and the completion template, through 288

lexical constraints. 289

Subtype Extraction We first extract subtypes 290

from ConceptNet (Speer et al., 2017)5. However, 291

many natural and valid subtypes may be missing 292

from ConceptNet (e.g., modifier phrases attached 293

to a concept: “young Arctic fox”). Therefore, to 294

increase the coverage and diversity of our subtypes 295

we also use GPT-36 (Brown et al., 2020) by cate- 296

gorizing the concepts and using category-specific 297

prompt to obtain subtypes (see Appendix E). 298

4https://spacy.io/
5Relations: IsA, InstanceOf, Synonym
6We only use GPT-3 for subtypes of the concept, since

by increasing the diversity in the prompt we may encourage
diversity in the generated properties.

4
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Figure 2: Overview of our method for an input generic.

Input Template Assembly We populate the in-299

put template by constructing generation prompts.300

Following the template, each prompt consists of301

either the concept (or a subtype) and the relation-302

ship (or its negation) (see Table 3). To each prompt,303

we additionally prepend the generic itself and a304

connective (e.g., “however”). We rank the prompts305

by perplexity and take the top kp prompts across306

subtypes to use for generation.307

Completion Template Assembly Following the308

templates, we want to constrain the generation out-309

put to describe the property (or a subtype) or its310

negation (see Table 3). We construct a set of com-311

pletion constraints (e.g., “include ’fly’ in the out-312

put”) to specify that the output should include the313

property and exclude the concept itself. We use314

lexical items including subtypes, synonyms, and315

morphological derivations to define constraints.316

4.2 Generation317

In order to generate output that follows specific se-318

mantic requirements with respect to the input with-319

out requiring training, we use the NeuroLogic? (Lu320

et al., 2021) decoding algorithm. NeuroLogic? is321

an unsupervised decoding algorithm that takes as322

input a prompt xp and set of lexical constraints C 323

and produces a completion of the prompt ŷ which 324

has high likelihood given the prompt and high satis- 325

faction of the constraints (estimated throughout the 326

decoding). A lexical constraint consists of a set of 327

n-grams w = (w1
i , . . . , w

m
i ) and is satisfied when 328

at least one wi ∈ w is in ŷ (inclusion constraints) 329

or is not in ŷ (exclusion constraints). 330

By using the input prompts (as xp) and comple- 331

tion constraints (as C) derived from our templates 332

(§4.1), we can control the output content, syntactic 333

form, and pragmatic relevance. Additionally, since 334

we cannot define the set of relevant potential can- 335

didates for a property’s negation (§3.3), decoding 336

constraints must be used to generate EXCEPTIONS. 337

Output Ranking We rank the outputs from 338

NeuroLogic? per template and prompt and we take 339

the top kr outputs as potential EXEMPLARS. We 340

rank the outputs by perplexity (for fluency) and 341

by the probability of a specific NLI label (for rele- 342

vance) and average the two ranks. For NLI labels 343

we use contradiction for EXCEPTIONS and entail- 344

ment for INSTANTIATIONS. We hypothesize that a 345

good EXCEPTION aligns with NLI’s contradiction, 346

as does a good INSTANTIATION with entailment 347

(see Figure 2). While this alignment is useful for 348

ranking, the relationship between the EXEMPLARS 349

and NLI labels is not straightforward as we will 350

discuss (§6.3). Note that ranking only by perplex- 351

ity could limit the diversity of the output set, since 352

small variations (e.g., word order changes) may re- 353

sult in multiple similar outputs ranked highly, and 354

could also result in non-salient outputs (e.g., out- 355

put “Hats can be made of many materials” for the 356

generic “Hats are made of wool”) ranked highly. 357

4.3 Filtering For Truthfulness 358

Since pre-trained language models have a tendency 359

to hallucinate facts (Rohrbach et al., 2018), we ap- 360

ply a truth filtering step to the ranked outputs from 361

our generation. To do this, we train a discriminator 362

to predict whether an output is true and viable or 363

not viable (e.g., false or too vague) using human 364

annotated examples (see Appendix C for details). 365

The generations predicted not viable by the trained 366

discriminator are removed from the dataset. 367

4.4 Output Selection 368

After removing the non-viable generations, our fi- 369

nal task is to select the examples that are valid 370

EXEMPLARS. To do this, we collect gold labels 371
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from humans for whether an EXEMPLARS is valid.372

We use separate annotation tasks for the genera-373

tions from the INSTANTIATION and EXCEPTION374

templates. We use our human annotations to train375

two validity discriminators: one for EXCEPTIONS,376

one for INSTANTIATIONS. The trained validity dis-377

criminators are used to rank and select the best378

generations for each generic as our output.379

5 Experiment Details380

Full hyperparameters are given in Appendix D.381

5.1 Data Source382

We use a subset of the GenGen dataset (Anony-383

mous, 2022), a set of 30K generics built upon com-384

mon everyday concepts (e.g., “hammers”) and re-385

lations (e.g., “used for”) sourced from resources386

such as GenericsKB (Bhakthavatsalam et al., 2020)387

and ConceptNet (Speer et al., 2017). The dataset388

includes a diverse variety of concepts, e.g., general389

knowledge (“Dogs bark”), locative generics (“In a390

hotel, you will find a bed”), and comparative gener-391

ics (“Cars are faster than people”). For this study,392

we use 653 generics from GenGen, excluding hu-393

man referents as the concept (e.g., nationalities,394

professions) due to concerns of social biases.395

5.2 Annotations396

All annotations are done using Amazon Mechan-397

ical Turk (paid at $15/hour) and processed using398

MACE (Hovy et al., 2013) to filter annotators and399

determine the most likely label.400

For generic type (§3.2), we conduct two anno-401

tation passes to partition the generics into three402

groups (the three groups in Table 1). Crowdworkers403

annotate all 653 generics with a moderate Fleiss’ κ404

of 0.41 and 0.58 for the two passes. Our cate-405

gorization results in 296 quasi-definitional, 125406

principled, and 232 characterizing generics.407

For the truthfulness filter (§4.3), we annotate408

a set of 7665 system generations from 150 gener-409

ics with three annotators for each example. The410

Fleiss’ κ (Fleiss, 1971) using the binned labels is411

0.53 (for un-binned it is 0.45) indicating moderate412

inter-annotator agreement on this task.413

To obtain EXEMPLARS gold labels (§4.4), an-414

notators are whether a system-generated EXEM-415

PLAR contradicts (e.g., for an EXCEPTION) an in-416

terpretation of the generic (see Appendix C for full417

details). The inter-annotator agreement, Fleiss’ κ418

is 0.40 for the INSTANTIATION task and 0.45 for419

# Gens G3-Sub CN-Sub All
Original 42272 10496 52768

+True 22865 5452 28317
TOTAL Valid 17204 2996 20200

EXCEPTION 6221 2208 8429
INSTANTIATION 10983 788 11771

Table 4: Statistics of the generated dataset, with GPT-3
(G3) and ConcepNet (CN) subtypes (sub) used.

the EXCEPTION task. Thus, while these tasks are 420

more challenging than determining truthfulness, 421

annotators achieve reasonable agreement. 422

5.3 Discriminators 423

For all discriminators, we fine-tune RoBERTa (Liu 424

et al., 2019). All labeled data is split 80/10/10 425

into train/dev/test such that all generations for a 426

particular generic are in the same data partition. 427

For our truth discriminator (§4.3), the accuracy 428

on the test set is 75.2. For each of our two validity 429

discriminators (§4.4) (i.e., to determine whether 430

an INSTANTIATION or exception is valid), our data 431

consists∼1k randomly sampled generations across 432

∼300 generics. The accuracies of the trained valid- 433

ity discriminators on the test are 77.4 for INSTAN- 434

TIATIONS and 75.0 for EXCEPTIONS. 435

5.4 Few-Shot Baseline 436

As a baseline for generation, we use GPT-3 (Brown 437

et al., 2020) with few-shot prompting. Specifically, 438

for each template (Table 3) we construct a few- 439

shot prompt (Appendix E) that consists of three 440

examples. Each example is two sentences: first 441

the generic, second a connective (e.g., “But also”) 442

followed by an EXEMPLAR that adheres to the de- 443

sired template. A fourth generic and connective is 444

appended to the prompt and the model should then 445

generate a completion that follows the illustrated 446

template. Note that this setup is very similar to 447

the prompts used in our method except our method 448

is not provided examples and the baseline is not 449

provided with subtypes (when appropriate). Note 450

that our goal is not to produce the best possible gen- 451

erations from GPT-3 but rather to show that con- 452

strained generation from GPT-2 (i.e., NeuroLogic?) 453

outperforms (and is cheaper and more computation- 454

ally feasible) than a natural use of GPT-3. 455

6 Evaluation 456

Using our computational framework, we generate 457

20200 EXEMPLARS for 653 generics (Table 4). See 458

Table 2 for example outputs. While close to half the 459
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EXCEPTIONS INSTANTIATIONS

P@1 P@5 P@1 P@5

Few-shot 0.515 0.557 0.762 0.686
Ours 0.615 0.595 0.909 0.876

Table 5: Precision at k (P@k).

output generations are untrue or not salient, the ma-460

jority of salient generations are valid EXEMPLARS.461

To evaluate our approach, we conduct a human462

evaluation (§6.1), as well as an ablation study (§6.2)463

and analysis of the relationship to NLI (§6.3). Our464

results show that our approach produces a large set465

of high quality generations for this difficult task.466

They also highlight current limitations in machine467

reasoning and potential directions for future work.468

6.1 Human Evaluation469

To evaluate our model, we compute precision at k470

(for k = 1 and k = 5) using our human annotations471

(§4.4,5.2) as the gold labels (Table 5).472

Our model outperforms the few-shot baseline473

in all cases, and by a large gap (average 12.5474

points). This is especially significant for EXCEP-475

TIONS, which are more challenging to generate476

than INSTANTIATIONS, and where the baseline per-477

formance is close to random. Since generics are478

defaults, it follows that INSTANTIATIONS should be479

easier to produce than EXCEPTIONS. The fact that480

more generated INSTANTIATIONS are true (71%481

versus 40%) and more true INSTANTIATIONS are482

accepted by the discriminator (73% versus 36%),483

compared to the EXCEPTIONS, supports this intu-484

ition. Hence, the large improvements by our model485

over the baseline are significant towards generating486

these difficult EXCEPTIONS.487

Additionally, we examine our model perfor-488

mance across templates (§3.5). Specifically, we489

compute the fraction of generations for a template490

that annotators label as valid, using the same num-491

ber7 of generations for both models for a specific492

template (Table 6). We see that not only does our493

model outperform the baseline for the majority of494

templates, these templates constitute the majority495

of the generations (‘#Gens’ in Table 6).496

Note that the performance comparison by tem-497

plate does not account for generations that are ac-498

cepted because they do not adhere to the desired499

template. Therefore, we conduct a manual analysis500

7The models produce similar numbers of generations, ex-
cept for template (5), where we obtain significantly more
generations from GPT3.

(1) (2) (3) (4) (5) (6) (7)
#Gens 429 970 36 203 1159 58 890
Few-Shot 0.64 0.52 0.56 0.52 0.78 0.71 0.50
Ours 0.69 0.52 0.42 0.59 0.86 0.62 0.86

Table 6: Precision by template. #Gens: per template, is
minimum of the models.

of the best 40 baseline generations per template, 501

ranked by perplexity. For EXCEPTIONS, the base- 502

line produces on average only 2.5/40 generations 503

that fit the desired templates (2)-(4). Additionally, 504

for the one EXCEPTION template, (1), where most 505

baseline generations fit the template (37/40), our 506

model still outperforms the baseline. For INSTAN- 507

TIATIONS, the baseline performs slightly better (av- 508

erage 10/40 fitting generations) but still poorly. 509

From this we observe that not only is the baseline 510

not controllable, our model outperforms the base- 511

line where it does adhere to output requirements. 512

6.2 System Analysis 513

We first ablate the decoding algorithm by remov- 514

ing the constraints (i.e., using beam search) (Ta- 515

ble 7a). Although both systems condition their 516

outputs on the same prompts, NeuroLogic?, with 517

linguistic-theory-guided constraints, produces over 518

seven times as many unique generations as uncon- 519

strained decoding (i.e., beam search). Additionally, 520

the proportion of valid generations (i.e., accepted 521

by our discriminator) is nearly twice as many for 522

NeuroLogic?. This illustrates the importance of 523

incorporating linguistic-theory-based control into 524

decoding in order to generate a large set of unique, 525

and valid, EXEMPLARS. 526

Next, we vary the source of subtypes in the 527

template-based prompts and constraints for our sys- 528

tem, comparing GPT-3 and ConceptNet (CN) (used 529

in our method) to Masked Language Model (De- 530

vlin et al., 2018; Taylor, 1953) (MLM) infilling 531

(Table 7b), which has been used to study proto- 532

typicality in LMs (e.g., Boratko et al. (2020)) and 533

thus should produce valid examples of a concept. 534

Using GPT-3 for subtypes produces the most gener- 535

ations, likely by increasing the number of distinct 536

and meaningful generation prompts. While using 537

MLM for subtypes produces fewer generations than 538

using GPT-3, the proportion of valid generations 539

is comparable and hence MLM could be used as 540

a substitute if using GPT-3 is not feasible. Addi- 541

tionally, CN produces the fewest generations, with 542

the lowest proportions valid. This highlights the 543

7



Beam NeuroLogic?
#Gens %Val #Gens %Val

Excep. 5119 9.7 30060 14.4
Inst. 2185 38.0 22708 51.8
ALL 7304 18.2 52768 30.5

(a) Decoding method ablation: beam search vs. NeuroLogic?.

MLM CN GPT-3
#Gens %Val #Gens %Val #Gens %Val

Excep. 10350 18.7 7619 12.6 22441 15.0
Inst. 4459 59.7 2877 27.4 19831 55.4
ALL 14809 31.0 10496 16.7 42272 33.9

(b) Subtype ablation: MLM, ConceptNet (CN), and GPT-3.

Table 7: Ablation results. #Gens: generations after
ranking and filtering. %Val: percent accepted by the
corresponding validity discriminator.

Excep. Inst.
P@1 P@5 P@1 P@5

Ours 0.615 0.595 0.909 0.876
+ NLI-neu 0.524 0.532 0.906 0.889
+ NLI-sim 0.808 0.775 0.862 0.860
+ NLI-neu-sim 0.620 0.532 0.910 0.888

Table 8: Precision at k with NLI label filtering.

insufficiency of the KB as the only source of sub-544

types. However, CN does provide subtypes that545

are suitable for template (5), which both GPT-3546

and MLM are unable to do. These results show547

the importance of the knowledge source(s) used to548

control the generation of EXEMPLARS.549

6.3 Generics EXEMPLARS and NLI550

Generics and their EXEMPLARS are closely related551

to default inheritance reasoning and we observe552

that for EXCEPTIONS we can improve precision553

(by 19.3 points) by limiting generations to only554

those that contradict the generic (premise) (Table 8).555

For INSTANTIATIONS, the precision only increases556

slightly when we apply analogous filtering (with557

NLI entailment and neutral). However, as men-558

tioned previously, this seemly clear cut relationship559

between NLI labels and EXEMPLARS (i.e., EXCEP-560

TIONS contradict, INSTANTIATIONS are entailed)561

actually indicates systematic NLI model errors and562

the inability of the NLI schema to capture the nu-563

ances of default inheritance reasoning.564

Consider the EXEMPLARS in Figure 3, relating565

to the generic “Birds can fly”. Here we see that566

while some EXCEPTIONS contradict the generic as567

premise, these are actually false statements. True568

EXCEPTIONS should be labeled neutral by NLI569

“Birds can fly”

Migratory birds 
can fly

Seagulls can fly

Birds cannot fly

Adult birds cannot fly

Penguins cannot fly

Ostriches cannot fly
Birds can fly long distances

ENTAILMENT CONTRADICTION

INSTANTIATIONS

1

This bird cannot fly

EXCEPTIONS

This bird can fly

NEUTRAL

Figure 3: Example generic with EXEMPLARS and cor-
rect NLI labels.

with respect to the generic, since they are not 570

“unlikely to be true given the information in the 571

premise” (Dagan et al., 2013) (i.e., NLI contra- 572

dictions). Note that this relies the lack of explicit 573

quantification in generics. With INSTANTIATIONS, 574

we observe that the NLI relationship may be either 575

neutral or entailment. These highlight the compli- 576

cated relationship between NLI and EXEMPLARS 577

and the systematic errors made by NLI models 578

when presented with such pairs involving default 579

inheritance reasoning. 580

Additionally, The examples in Figure 3 also 581

highlight that the NLI neutral label does not distin- 582

guish between statements that are true but not en- 583

tailed/contradictory (e.g., Ostriches cannot fly) and 584

statements that may not even be true (e.g., “This 585

bird can/cannot fly”). Our generics EXEMPLARS 586

emphasize the importance of developing a more 587

fine-grained notion of NLI to model this default 588

inheritance reasoning. 589

7 Conclusion 590

In this work, we draw on insights from linguis- 591

tics to propose a novel computational framework 592

to automatically generate valid EXEMPLARS for 593

generics, as a step towards capturing the nuances 594

of human reasoning for generics. Our system gen- 595

erates∼20k EXEMPLARS for 653 generics and out- 596

performs our few-shot baseline at generating viable 597

examples, while remaining more controllable. We 598

also demonstrate the importance of carefully con- 599

straining the decoding and underline the inability of 600

current NLI models to reason about and represent 601

the relationship between generics and EXEMPLARS. 602

In the future, we plan to further investigate the role 603

of generics EXEMPLARS in reasoning and NLI and 604

to additionally study generics involving people and 605

actions. 606
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A Limitations and Risks842

The generics we source (see §5.1) is exclusively in843

English. Therefore, our approach may not be suited844

to all possible generics in all languages. In partic-845

ular, our system does not handle generics where846

valid INSTANTIATIONS include negating (§3.3) the847

concept. This is due to the restriction that most En-848

glish generation is left-to-right and it is not possible849

to define a closed set of possible concept negations850

for the prompt.851

In this work, we do not generate EXEMPLARS852

for generics involving human referents (e.g., pro-853

fessions, nationalities). We exclude generics in-854

volving human referents to mitigate the risk of855

generating socially biased EXEMPLARS or harmful856

stereotypes (e.g., “Black folks go to jail for crimes”857

for the generic “People go to jail for crimes”). Ad-858

ditionally, handling of human stereotypes require859

methods that are beyond the scope of this paper.860

For example, a socially-aware EXCEPTIONS to a861

generic like “Girls wear dresses” would be “Boys862

wear dresses, too”. This would require the under-863

standing of the possible subtext of such a statement864

(e.g. “Only girls wear dresses”), which is beyond865

the current capabilities of this study and worthy of866

future exploration.867

Finally, we note that while it is not the intended868

purpose of our system, a malicious user could869

still use our system to generate EXEMPLARS for870

a generic involving a person and propagate poten-871

tially harmful social biases.872

B Generics Definitions873

We condense the five generic types proposed by874

Leslie (2007, 2008) into our three categories (§3.2).875

The five types are:876

• Quasi-definitional: generics concerning877

properties that are assumed to be universal878

among a concept. This is the same as our879

quasi-definitional category, see (a) Table 1.880

The property is considered a defining charac-881

teristic of the concept.882

• L-Principled: generics concerning properties883

that are prevalent among a concept and are884

viewed as inherent, or connected in a prin-885

cipled way (Prasada and Dillingham, 2006,886

2009; Haward et al., 2018). These generics are887

called principled in Leslie (2007, 2008). Note,888

these generics make up only one half of our889

“principled” category (§3.2). See first example890

for category (b) in Table 1; the second exam- 891

ple there does not fit Leslie (2007, 2008)’s 892

definition of principled (i.e., L-principled). 893

• Striking: generics describing properties that 894

are uncommon and often dangerous, and mem- 895

bers of the concept are disposed to possess 896

them if given the chance (Leslie, 2017). For 897

example, the striking generic “Sharks attack 898

swimmers” assumes all sharks are capable of 899

attacking swimmers. These generics consti- 900

tute the second half of our “principled” cate- 901

gory. See second example (not first) for cate- 902

gory (b) in Table 1. 903

• Majority characteristic: generics concern- 904

ing properties that are neither deeply con- 905

nected to the concept nor striking but occur 906

in the majority of members of the concept. 907

These constitute one half of our “characteriz- 908

ing category”. See example for (c) in Table 1. 909

• Minority characteristic: generics concern- 910

ing properties that are neither deeply con- 911

nected to the concept nor striking but occur 912

in the minority of members of the concept. 913

For example, “Lions have manes”, since only 914

adult male lions (the minority of the lion pop- 915

ulation) have manes. These constitute the sec- 916

ond half of our “characterizing category”. 917

Both L-principled and striking generics are true 918

in-virtue-of a secondary factor and therefore we 919

group these into one category (i.e., “principled”; 920

see §3.2). For L-principled generics, this may be a 921

factor that causes the property to occur in the con- 922

cept (e.g., Birds can fly because they have wings). 923

For striking generics, it is the assumed predisposi- 924

tion of the kind to possess the property if given the 925

chance. 926

For quasi-definitional generics, because the prop- 927

erty is considered defining to concept, there is no 928

implied secondary factor in-virtue-of which the 929

generic is true. Therefore, these generics are de- 930

scriptive and we put them in a separate category 931

from striking and L-principled generics. 932

Finally, majority and minority characteristic 933

generics are ambiguous in their interpretation. For 934

example, “Lions have manes” can be interpreted 935

as being true in-virtue-of some secondary factor 936

(e.g., as a signal of fitness) or as being a merely 937

accidental relationship. If the interpretation is the 938

former, then lions without manes are valid EXCEP- 939

TIONS (e.g., lion cubs, female lions), while if the 940
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interpretation is the latter then then other attributes941

of lions are valid EXCEPTIONS (e.g., claws, fur).942

Additionally, we note that a generic can focus943

on the presence of the property within the con-944

cept (e.g., “Birds can fly” is concerned with which945

birds can fly) or can focus on the presence of the946

concept within holders of the property (e.g., “Trian-947

gles have three sides” is more concerned with what948

concepts have three sides). We will say that the949

former kind of generic is concept-oriented and the950

latter is property-oriented. A generic can be both951

concept and property oriented if it is ambiguous952

between the two readings (e.g., “Aspirin relieves953

headaches”).954

In this work, we have discussed and used defi-955

nitions only for concept-oriented generics. How-956

ever, similar definitions and logical forms can be957

derived for property-oriented generics. Note that958

only the logical forms for quasi-definitional gener-959

ics and their EXCEPTIONS change if the generic is960

property-oriented. In particular, the K and P in961

both logicals form for (a) in Table 1) can swapped962

to obtain the property-oriented versions. In this963

work, we do not deal with property-oriented gener-964

ics and their EXEMPLARS due to the limitations of965

English generation, as mentioned in Appendix A.966

C Annotation967

For all annotation tasks, three annotators are used968

per HIT. When filtering annotators using MACE,969

we remove annotators with competence below 0.5970

(or the median, if lower).971

Generic Type Instructions for annotating972

generic types (§3.2) are shown Figure 4 (for the973

first pass) and Figure 5 (for the second pass). The974

first pass categorizes generics as either characteriz-975

ing or not (either quasi-definitional or principled).976

The second pass categorizing non-characterizing977

generics as either quasi-definitional or principled.978

Truthfulness Task Instructions for annotating979

output generations for truthfulness (§4.3) are980

shown in Figure 6.981

EXEMPLARS Gold Labels For the INSTANTIA-982

TION template generations, annotators are asked983

whether the generation contradicts the original984

generic. Instructions are shown in Figure 8. How-985

ever, for the exception template generations, an986

EXCEPTION is not a contradiction of the generic it-987

self but of an associated logical form. For example,988

“Penguins cannot fly” does not actually contradict989

Figure 4: Task instructions for first part of the generic
type categorization annotation (§5.2).

Figure 5: Task instructions for second part of the
generic type categorization annotation (§5.2).

the generic itself (“Birds can fly”) but a modified 990

form of the generic involving quantification (i.e., 991

“All birds can fly”). Therefore, we ask annotators 992

whether the generation contradicts two modified 993

forms of the generic. Instructions are shown in 994

Figure 7. 995

We obtain modified forms of the generic by first 996

converting the logical forms in Table 1 into a natu- 997

ral language templates by adding a universal quan- 998

tifier. Then we apply the template to the generic 999

itself. Specifically, from K(x) ∧ r(x, y) =⇒ 1000

P (y) (e.g., for quasi-definitional generics) we de- 1001

rive “[K] [REL] ONLY [P]”. For example, 1002

“mosquitoes drink only blood”, which is contra- 1003

dicted by mosquitoes that drink something other 1004

than blood. Notice, that exceptions from templates 1005

1 and 2 will contradict these statements. Similarly, 1006

for K(x) ∧ P (y) =⇒ r(x, y) we derive “ALL 1007

[K] [REL] [P]”. For example, “All birds can 1008

fly”, which is contradicted by birds that cannot fly. 1009

Exceptions from templates 3 and 4 will contradict 1010

these statements. 1011
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Figure 6: Task instructions for annotating truthfulness
(§5.2).

Figure 7: Task instructions for annotating validity of
EXCEPTIONS (§5.2).

D Implementation Details1012

D.1 Data1013

We use the in-submission GenGen data (Anony-1014

mous, 2022). The dataset contains English gener-1015

ics, automatically generated via NeuroLogic? (Lu1016

et al., 2021) with GPT2-XL. For this study, we1017

source from the subset of GenGen’s test set found1018

to be valid by the discriminator with probability1019

at least 0.5 (768 generics). Of these, we exclude1020

all mentions of human referents (e.g., kinship la-1021

bels, nationalities, titles, professions) and actions1022

(e.g., studying for a test) to arrive at a dataset of1023

653 generics. We remove human referents using a1024

seed set of human referent terms compiled based on1025

WordNet (Miller, 1995) and will be provided with1026

the system code. We remove mentions of actions1027

by excluding generics beginning with “In order to”.1028

The GenGen dataset is licensed under CC-BY and1029

our usage aligns with the intended use of the data.1030

Preprocessing We remove adverbs of quantifi-1031

cation (i.e., usually, typically, generally) from the1032

generics and exclude generics with verbs of con-1033

sideration (i.e., consider, posit, suppose, suspect,1034

think). We also convert hedging statements to more1035

explicit forms (e.g., “may have to be” to “must1036

be”).1037

Partitions The data splits for training the truth1038

discriminator and validity discriminators are shown1039

in Table 9 and Table 10 respectively.1040

Figure 8: Task instructions for annotating validity of
insts (§5.2).

Train Dev Test All
True 2831 412 433 3676
False/Non-salient 3180 367 442 3989
Total 6011 779 875 7665

Table 9: Data split statistics for truthfulness discrimina-
tor (§4.3).

D.2 Tools 1041

For extracting components of the generic data we 1042

use spacy8 for dependency parsing. We use inflect9 1043

to obtain plural and singular word forms and ml- 1044

conjug310 to conjugate verbs. We use nltk11 for 1045

additional synonyms. 1046

D.3 Hyperparameters 1047

To obtain subtypes from GPT-3 we use the davinci 1048

model and top-p sampling with p = 0.9, tem- 1049

perature 0.8 and maximum length 100 tokens. 1050

We use the top 5 sequences to obtain subtypes. 1051

For NLI scores, we use RoBERTa fine-tuned on 1052

MNLI (Williams et al., 2018) available from Al- 1053

lenNLP12. For the GPT-3 baseline we use the 1054

davinci model and top-p sampling 1.0, tempera- 1055

ture 0.8, maximum length 50 tokens and top 5 1056

sequences. Prompts for GPT-3 are given in Ap- 1057

pendix E. GPT2-XL has 1.5 billion parameters, 1058

GPT-3 has 175 billion parameters. Our experi- 1059

ments are done using Quadro RTX 8000 GPUs. 1060

For generation with NeuroLogic?, we use GPT2- 1061

XL (Radford et al., 2019) with a maximum length 1062

of 50 tokens and a beam size of 10 with tempera- 1063

ture 10000000. We set the constraint satisfaction 1064

tolerance to 3. This means that at each step, only 1065

candidates whose number of satisfied constraints 1066

8https://spacy.io/
9https://pypi.org/project/inflect/

10https://pypi.org/project/mlconjug3/
11https://www.nltk.org/
12https://demo.allennlp.org/

textual-entailment/roberta-mnli
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Train Dev Test All

EXCEPTION

Valid 342 35 35 412
Invalid 462 72 53 587
Total 804 107 88 999

INSTANTIATION

Valid 374 38 29 441
Invalid 466 38 33 537
Total 840 76 62 978

Table 10: Data split statistics for validity discriminators
(§4.4).

is within three of the maximum so far are kept.1067

The ‘look ahead’ is also set to 3; look ahead three1068

generation steps during decoding to estimate future1069

constraint satisfaction. During prompt construc-1070

tion, take the top kp = 10 prompts. If the generic1071

produced less than 10 prompts total, we take half1072

so that low quality prompts are not used even if1073

few are produced. After ranking the output, we1074

keep the top kr = 10 generations for a template,1075

keeping at most 2 per prompt.1076

For the truth discriminator, we fine-tune the1077

model for 5 epochs using a batch size of 16 and1078

learning rate 1e − 5 and random seed 29725, se-1079

lected by manual grid search.1080

For the validity discriminators, we fine-tune the1081

truth discriminator for 3 epochs with a batch size1082

of 16 and learning rate 3e − 5. The instantiation1083

discriminator uses a random seed of 4427 and the1084

exception discriminator 4457. Hyperparameters1085

are again selected by manual grid search.1086

E GPT-3 Prompts1087

E.1 Subtyping1088

To obtain subtypes from GPT-3, we first categorize1089

the kinds into six categories: person, animal, other1090

living (e.g., plants), location, temporal (e.g., Thurs-1091

day), and other (e.g., candle, soup) (Table 11). For1092

each category, we construct a separate prompt for1093

GPT-3 containing one type and five example sub-1094

types. Then, for each kind we use the prompt from1095

its assigned category to obtain subtypes. Note that1096

we exclude all generics where the kind is “person”.1097

This is to avoid producing or repeating stereotypes.1098

To determine the category, we use seed lists, for1099

person, animal, other living, and locative, or the1100

presence of prepositional beginnings (“On”, “In”,1101

“At”, “During”), for locative and temporal. The1102

“other” category encompasses all kinds that do not1103

fit into another category.1104

E.2 Few-shot Baseline 1105

The prompts for our few-shot baseline are shown 1106

in Table 12. The three examples in the table are 1107

provided each on a separate line. Appended to the 1108

prompt is a fourth generic and the necessary con- 1109

nective. The same connective is used across all 1110

exception (instantiation) templates and is chosen 1111

through manual experimentation. We use “But also” 1112

for EXCEPTIONS and “For example” for INSTAN- 1113

TIATIONS. 1114
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Category Prompt Concept Prompt Subtypes
Animal birds sparrow, canary, large bird,bird of prey, sea bird
Other living apple tree small apple tree, flowering apple tree,apple tree with ripe apples,

granny smith apple tree, young apple tree
Locative hotels beach hotel, boutique hotel, resort, bed and breakfast, five star hotel
Temporal day morning, hot day, short day, afternoon, evening

Other
candles scented candle, advent candle, tealight, candle made from beeswax,

candle that smells floral
can of soup can of tomato soup, can of mushroom bisque, expired can of soup,

unopened can of soup, organic can of soup

Table 11: Prompts for generating subtypes with GPT-3.

Template Prompt Examples
(1) [KIND + REL]p [NEG-PROP]C Elephants are found in zoos. But also elephants are found in the wild in Africa.

Viruses are spread through body fluids. But also viruses are spread in the air.
A hair dryer is used to dry hair. But a hair dryer can also be used to dry clothes.

(2) [KINDsub + REL]p [NEG-PROP]C Elephants are found in zoos. But also African elephants are found in the wild
in Africa.
Viruses are spread through body fluids. But also coronaviruses are spread
in the air.
A hair dryer is used to dry hair. But also an electric hair dryer can be used
to dry clothes.

(3) [KIND + NEG-REL]p [PROPsub]
C Dogs protect buildings from intruders. But also dogs do not protect

apartment buildings from intruders.
Cowsheds are found on farms. But also cowsheds are not found in orchards.
The sun produces radiation. But also the sun does not produce x-rays.

(4) [KINDsub + NEG-REL]p [PROP]C Birds can fly. But also penguins cannot fly.
Ducks lay eggs. But also male ducks do not lay eggs.
Dogs protect buildings from intruders. But also very small dogs do not protect
buildings from intruders.

(5) [KINDsub + REL]p [PROP]C Birds can fly. For example, seagulls can fly.
Dogs protect buildings from intruders. For example, pitbulls protect buildings
from intruders.
Ducks lay eggs. For example, female ducks lay eggs.

(6) [KIND + REL]p [PROPsub]
C Viruses are spread through body fluids. For example, viruses are spread

through saliva.
Dogs protect buildings from intruders. For example, dogs protect some
private homes from intruders.
Cowsheds are found on farms. For example, cowsheds are found on dairy farms.

(7) [KINDsub + REL]p [PROPsub]
C Birds can fly. For example, Canadian geese fly long distances to migrate.

Ostriches lay eggs. For example, female ostriches lay large spotted eggs.
Elephants are found in zoos. For example, African elephants are found in
most large zoos.

Table 12: Prompts for GPT-3 as Few-shot Baseline.
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