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Abstract

Generic statements (e.g.,Birds can fly) express
generalizations about the world. However,
generics are not universally true — while spar-
rows and penguins are both birds, penguins
can’t fly. Understanding cases when a generic
statement is true or false is crucial for ma-
chine reasoning. In this work, we present a
novel framework to generate pragmatically rel-
evant true and false instances of a generic. We
use pre-trained language models, constrain-
ing the generation based on our computational
framework, and produce ~20k EXEMPLARS
for ~650 generics. Our system outperforms
few-shot generation from GPT-3 (by 12.5 pre-
cision points) and our analysis highlights the
importance of constrained decoding for this
task and the implications of generics EXEM-
PLARS for non-monotonic reasoning and NLI.

1 Introduction

Generics are statements that express generaliza-
tions about the world (see Figure 1). These state-
ments are accepted as true even if real-word preva-
lence of the asserted phenomenon is unspecified
(e.g., baby birds can’t fly). They have been ex-
tensively studied in semantics, philosophy, and
psychology for their puzzling properties such as
generalizing about an uncommon property (e.g.,
“Mosquitoes carry malaria.'” Krifka 1987; Cohen
1996), and for their connections to non-monotonic
reasoning (Elio and Pelletier, 1996). Understand-
ing generics and generating instances when they
do and do not hold is crucial for replicating the nu-
ances of human reasoning, particularly the efficient
use of generalizations (Mercier and Sperber, 2017).

A generic asserts a relationship between a con-
cept (“Birds”) and a property (“fly”) without a
quantifier that signals prevalence of the property
with respect to the concept (Figure 1). Since this is

' Approximately 7-9% of the females of the species

Anopheles (one among 3500 species) transmit malaria (CDC).
2We specifically focus on statements without quantifica-

| [coremeny |
Sparrows can fly ‘ Penguins can’t fly

GENERIC: p
“Birds can fly” 3 TIONS

concept relation property

Birds fly to migrate i I g Baby birds can’t fly

Figure 1: We study understanding and reasoning with
generics by generating valid applications (i.e., INSTAN-
TIATIONS) of and EXCEPTIONS to the generic, exelad-
ing pragmatically irrelevant instances.

INSTANTIATIONS

a generalization without quantification, it allows for
INSTANTIATIONS—cases where specified relation-
ship holds (e.g., “Sparrows can fly”’) and EXCEP-
TIONS—cases where it does not hold (e.g., “Pen-
guins cannot fly”’). Identifying EXCEPTIONS is
particularly challenging because an EXCEPTION
must both violate the relationship asserted by the
generic and be pragmatically relevant (“Cats can’t
fly” is not a valid EXCEPTION in Figure 1).

In this work, we present a novel computational
framework for constructing and generating EXEM-
PLARS (INSTANTIATIONS and EXCEPTIONS) for
a generic that incorporates various theories from
semantics. Bringing together categories of gener-
ics (Leslie, 2007, 2008) and exceptions (Greenberg,
2007) (see categorization in Table 1), we use gener-
ics from (Anonymous, 2022) and automatically
generate 8429 EXCEPTIONS and 11771 INSTAN-
TIATIONS. We analyze our output using human
evaluation and ablation studies.

Recent advances in language modeling have
been extremely successful at generating text for
a range of tasks in a few-shot manner (Brown et al.,
2020). However, such generation is both expensive
and does not provide the degree of control neces-
sary for this task (i.e., the output must have a spe-
cific semantic relationship to the input). Therefore,
in this work we present a novel constrained gen-

tion. Statements with explicit quantification (e.g., “Most birds
can fly” or “Birds can usually fly”’) do not allow exceptions
and are excluded from this study.



Category Generic (G)

INSTANTIATION

EXCEPTION

(a) quasi-def
K(z) Ar(z,y) = P(y)

“Quakes produce seismic waves” “Quakes produce pressure waves”

“Quakes produce shaky ground”

K(z) Ar(z,y) A P(y)

K(z) Ar(x,y)A ~ P(y)

“Birds can fly”

(b) principled “Sharks attack swimmers”

K(x) NPly) = r(z,y)

“Owls can fly”

“Penguins can’t fly”
“Sharks don’t attack swimmers
in the shallows”

“Threatened sharks attack swimmers”

K(x) Aor(z,y) A P(y)

(c) characterizing “Cars have radios”

L¢ is ambiguous

K(z) Ar(z,y) A P(y)

“Cars have CD Players”

K(z)Ar(z,y)A~Ply)
“Newer cars don’t have radios”

K(z) A =r(z,y) A P(y)

Table 1: Generic types with their EXEMPLARS. The logical forms for the generic (L) and its INSTANTIATION
and EXCEPTION are also below the examples. K is the concept, P the property, ~ P the semantic negation (§3.3).

eration approach using the NeuroLogic Decoding
algorithm (Lu et al., 2021) with output constraints
derived from semantic theories. Our system both
outperforms (by 12.5 precision points on average)
and is more controllable than few-shot generation.

We note that although generics admit EXCEP-
TIONS, increasing research in psychology and phi-
losophy has shown that humans, from children to
adults, often accept generics as the default for a
concept (Khemlani et al., 2009, 2012; Leslie et al.,
2011) even when the inference is not deductively
valid. Such default inheritance reasoning (Lifs-
chitz, 1989) is a specific form of non-monotonic
reasoning (i.e., adding new premises can cause the
withdrawal of previous conclusions without alter-
ing existing premises) that underpins human gut-
reactions (i.e., generalizations) to new information
and situations. Such generalization ability is funda-
mental to human reasoning (Mercier and Sperber,
2017). Thus, recognizing and automatically pro-
ducing the cases when and when not to generalize
is critical for flexible machine reasoning and deci-
sion making (Reiter, 1978; Ginsberg, 1987a).

Our contributions are as follows : (1) we present
a novel framework grounded in linguistic theory
for representing generics and EXEMPLARS, (2) we
present the first, to the best of our knowledge,
method to automatically generate generic EXEM-
PLARS and show it outperforms few-shot genera-
tion, and (3) we present analysis showing the im-
portance of controllability for this task and we
use our generated data to highlight the insuffi-
ciency of current NLI methods for representing
default inheritance reasoning. Our system and data
will be made publicly available.

2 Related Work

Generics have been studied extensively in seman-
tics, philosophy, and psychology to develop a sin-

gle logical form for all generics (Lewis and Keenan,
1975; Carlson, 1977, 1989; Krifka, 1987) or a
probabilistic definition (Cohen, 1996, 1999, 2004;
Kochari et al., 2020), categorize generics (Leslie,
2007, 2008), and analyze specific types (Prasada
and Dillingham, 2006, 2009; Haward et al., 2018;
Mari et al., 2012; Krifka et al., 2012). Mecha-
nisms to tolerate EXCEPTIONS have also been pro-
posed (Kadmon and Landman, 1993; Greenberg,
2007; Lazaridou-Chatzigoga and Stockall, 2013)
but these are primarily theoretical and use carefully
chosen examples. In contrast, our work combines
existing EXCEPTION tolerance mechanisms with
generic categorization and proposes a novel, large-
scale, computational framework for EXEMPLARS.

While large-scale KBs capture a range of com-
monsense knowledge (Speer et al., 2017; Sap et al.,
2019; Forbes et al., 2020; Hwang et al., 2021) these
resources do not distinguish between generic (e.g.,
“Birds can fly”’) and non-generic facts (e.g., “Birds
usually fear cats”). Although GenericsKB (Bhak-
thavatsalam et al., 2020) does explicitly contain
generics, no attempt is made to provide EXEM-
PLARS for the generics and many of the statements
are specific scientific facts, rather than generaliza-
tions. In contrast, in our work we categorize a large
set of machine-generated generics from (Anony-
mous, 2022) using crowdsourcing and automati-
cally generate EXEMPLARS for these generics.

The application of generics to specific individ-
uals is influenced by prototypicality (Rips, 1975;
Osherson et al., 1990), with small sets of prototypi-
cal norms collected in cognitive science for a range
of kinds (Devereux et al., 2014; McRae et al., 2005;
Overschelde et al., 2004). However, recent work
has shown that neural models have only moderate
success at mimicking human prototypicality (Misra
etal., 2021; Boratko et al., 2020) or producing com-
monsense facts without guidance (Petroni et al.,



Generic

INSTANTIATION

EXCEPTION

“A chest pain has a physical cause.”

“an angina pectoris has an
underlying cause” (5)

“a chest pain has an emotional or
psychological origin” (1)

“Aloe is used to treat dry skin.”

“aloe vera can be used to relieve
the symptoms of eczema” (6)

“aloe vera plant is used to relieve
pain and inflammation” (1)

“A gun are used for hunting.”
game” (7)

“a shotgun is used for small

“semiautomatics can be used for
target practice” (2)

Table 2: Examples of generated INSTANTIATIONS and EXCEPTIONS. The template used in the prompt for genera-

tion is indicated in parentheses (see Table 3).

2019) and additionally exceptions are often not pro-
totypical. Hence, we combine neural models with
a KB of concepts, using linguistic-theory-guided
decoding, to generate generics EXEMPLARS.
Reasoning with generics is closely related to non-
monotonic reasoning (Ginsberg, 1987b,a); specifi-
cally default inheritance reasoning (Brewka, 1987;
Hanks and McDermott, 1986; Horty and Thoma-
son, 1988; Imielinski, 1985; Poole, 1988; Reiter,
1978, 1980). Contrary to the proposed solutions
for linguistic tests on default inheritance reasoning
(Lifschitz, 1989) (e.g., can a conclusion about in-
heritance be inferred based on provided evidence?),
later works showed that the presence of generics
EXEMPLARS in the evidence impacts what humans
perceive as the correct answer (Elio and Pelletier,
1996; Pelletier and Elio, 2005; Pelletier, 2009).
These results highlight the importance of identify-
ing generics and analyzing how to accurately model
their relationships in machine reasoning. While
natural language inference (NLI), a form of deduc-
tive reasoning that has been well studied in NLP
(e.g., Dagan et al. (2013); Bowman et al. (2015);
Rudinger et al. (2020)), captures notions of infer-
ence, studies on non-monotonic reasoning and NLI
are limited (Wang et al., 2019) and do not include
default inheritance reasoning. Therefore, in this
work we analyze the interactions between generics
EXEMPLARS and NLI and highlight the importance
of modeling this relationship in machine reasoning.

3 Framework for EXEMPLARS

We will discuss how theories on generic types and
interpretations (§3.1) are combined (§3.2) to derive
logical forms for generics (§3.3) and for EXEM-
PLARS (§3.4). From our logical forms we derive
templates that are suitable for generation (§3.5).

3.1 Generics Background

Generic statements express generalizations about
the world without explicit quantification. A generic

statement describes a relationship (relation) be-
tween a concept and a property (see Figure 1). A
concept is typically a type or kind (e.g., cat) while
a property is typically an ability (e.g., purr) or
quality (e.g., furry). As proposed by Greenberg
(2007), the relationship in a generic may either
be true in-virtue-of a second unspecified but nor-
mative property of the concept (e.g., birds can fly
in-virtue-of having wings) or may be merely de-
scriptive of a non-accidental relationship between
concept and property.

3.2 Generic Type Definitions

To categorize a given generic, we unify the theo-
ries from Greenberg (2007) with five generic types
proposed by Leslie (2007, 2008) (see Appendix B
for detailed discussion) and formulate three cat-
egories of generics, for which we collect human
annotations on a set of generics. Our three generic
categories are (see examples Table 1):

(a) Quasi-definitional: concern properties that
are assumed to be universal among a concept.
They are descriptive, since the property is con-
sidered defining for the concept.

(b) Principled: concern properties that are preva-
lent among or connected to a concept in a prin-
cipled way (Prasada and Dillingham, 2006,
2009; Haward et al., 2018) and generics that
concern properties that are uncommon and
often dangerous (Leslie, 2017).

(c) Characterizing: concern properties that are
not deeply connected with a concept.

3.3 Logical Forms for Generics

We assert that each generic category corresponds
to a specific logical form Lg (Table 1). For quasi-
definitional generics, since the property is defining
we assert that the property logically follows from
the combination of concept and relationship. In
contrast, for principled generics the focus is on



principled relationship and so we assert that con-
cept and property together then logically imply the
relationship. Finally, for characterizing generics,
the logical form depends on the interpretation of
the generic as either principled or descriptive. Log-
ical forms are shown in Table 1.

Given a logical form, we define the following
satisfaction criteria. For a concept T' (e.g., cat) or
property (e.g., sleep): we will say that T'(¢) is true if
7 is a subtype of T’ (e.g., i=Tabby cat or 7=Garfield,
for T'=cat), or T itself. Additionally, we say that
~ T'(4) is true if T"(4) is true for some contextually
relevant second type 1", where T” is not T" nor any
of its subtypes (e.g., T'=dog for T'=cat). We say a
relation r(x, y) is satisfied if r holds between the
individuals x and y.

3.4 EXEMPLARS Logical Forms

INSTANTIATIONS An INSTANTIATION for a
generic is a contextually relevant individual of the
concept that possesses the desired property. Specifi-
cally, an INSTANTIATION is member of the concept
for which L is satisfied. The same logical form
applies to all cases of INSTANTIATIONS regardless
of the category (see Table 1).

EXCEPTIONS Greenberg (2007) notes that EX-
CEPTIONS can be established by specifying a mem-
bers of the concept without the generic property
(e.g.,“Owls can fly” for “Birds can fly”’) or by posit-
ing alternative properties when the concept cannot
do without the property (e.g., “Quakes produce seis-
mic waves” for “Quakes produce shaky ground”).
Therefore, an EXCEPTION is not only an instance
where L is not satisfied but where =L is also sat-
isfied®. The logical form of the exception depends
on the type of the generic (see Table 1).

3.5 Logical Forms to Templates

Based on our proposed formulae (Table 1) for EX-
EMPLARS and their satisfaction criteria (§3.3), we
define seven templates for generation (Table 3).
Each template represents an instance that satisfies
the logical form of an EXEMPLAR, potentially with
subtypes. Each template consists of two sets of
content requirements: for the input and for the
completion (i.e., the decoder output).

For INSTANTIATIONS, we define three templates
with subtypes of the concept, property, or both.
However, for EXCEPTIONS we subtype only the

3In L, for the concept/property T, =T =~ T

Output For Template

EXCEPTIONS: [K + REL] "% [NEG-P]"P )

quasi-def & [Kewp + REL]™™P"* [NEG-P]®™ (2)

characterizing

EXCEPTIONS: [K + NEG-REL]™P¥ [P_,]1%™ (3)

" principled & [Kewp + NEG-REL]Put [p]comP  (4)

characterizing

INSTANTIATIONS:  [Kgup + REL]7P% [P]°P 3)

all categories [K + REL]™PY [Pgp]°™P ©)
[(Keup + REL]input [Psub]comp (7)

Table 3: Templates for generating EXEMPLARS, de-
rived from their logical forms (§3.4). sub indicates a
subtype, K the concept, P the property and its negation
NEG-P (§3.3). comp is the completion of the input.

concept or property. This is because when the ex-
ception has two subtypes, the individual described
is now no longer exceptional (i.e., they do not lack
property entirely) nor contextually irrelevant (i.e.,
they are still a member of the concept).

4 Methodology

Our system takes as input a generic (7, along with
its type and associated templates (§3.5) and outputs
a set of generated EXEMPLARS (Figure 2). The sys-
tem populates the templates according to the input
generic (§4.1). Filled templates are converted into
a set of prompts and constraints that control the de-
coding process (§4.2). The final output is filtered to
remove false (§4.3) or invalid EXEMPLARS (§4.4).

4.1 Template Assembly

To populate our templates, we use a dependency
parser* to identify text spans for the concept, re-
lation, and property in a generic. Then, we ex-
tract subtypes for the concept and property and use
these to populate the input template, via genera-
tion prompts, and the completion template, through
lexical constraints.

Subtype Extraction We first extract subtypes
from ConceptNet (Speer et al., 2017)°. However,
many natural and valid subtypes may be missing
from ConceptNet (e.g., modifier phrases attached
to a concept: “young Arctic fox”). Therefore, to
increase the coverage and diversity of our subtypes
we also use GPT-3° (Brown et al., 2020) by cate-
gorizing the concepts and using category-specific
prompt to obtain subtypes (see Appendix E).

*https://spacy.io/

SRelations: IsA, InstanceOf, Synonym

®We only use GPT-3 for subtypes of the concept, since
by increasing the diversity in the prompt we may encourage
diversity in the generated properties.
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Figure 2: Overview of our method for an input generic.

Input Template Assembly We populate the in-
put template by constructing generation prompts.
Following the template, each prompt consists of
either the concept (or a subtype) and the relation-
ship (or its negation) (see Table 3). To each prompt,
we additionally prepend the generic itself and a
connective (e.g., “however”). We rank the prompts
by perplexity and take the top k;, prompts across
subtypes to use for generation.

Completion Template Assembly Following the
templates, we want to constrain the generation out-
put to describe the property (or a subtype) or its
negation (see Table 3). We construct a set of com-
pletion constraints (e.g., “include ’fly’ in the out-
put”) to specify that the output should include the
property and exclude the concept itself. We use
lexical items including subtypes, synonyms, and
morphological derivations to define constraints.

4.2 Generation

In order to generate output that follows specific se-
mantic requirements with respect to the input with-
out requiring training, we use the NeuroLogic* (Lu
et al., 2021) decoding algorithm. NeuroLogic* is
an unsupervised decoding algorithm that takes as

input a prompt x,, and set of lexical constraints C
and produces a completion of the prompt ¢ which
has high likelihood given the prompt and high satis-
faction of the constraints (estimated throughout the
decoding). A lexical constraint consists of a set of
n-grams w = (w}, ..., w!™) and is satisfied when
at least one w; € w is in g (inclusion constraints)
or is not in ¢ (exclusion constraints).

By using the input prompts (as x,) and comple-
tion constraints (as C) derived from our templates
(§4.1), we can control the output content, syntactic
form, and pragmatic relevance. Additionally, since
we cannot define the set of relevant potential can-
didates for a property’s negation (§3.3), decoding
constraints must be used to generate EXCEPTIONS.

QOutput Ranking We rank the outputs from
NeuroLogic* per template and prompt and we take
the top k, outputs as potential EXEMPLARS. We
rank the outputs by perplexity (for fluency) and
by the probability of a specific NLI label (for rele-
vance) and average the two ranks. For NLI labels
we use contradiction for EXCEPTIONS and entail-
ment for INSTANTIATIONS. We hypothesize that a
good EXCEPTION aligns with NLI’s contradiction,
as does a good INSTANTIATION with entailment
(see Figure 2). While this alignment is useful for
ranking, the relationship between the EXEMPLARS
and NLI labels is not straightforward as we will
discuss (§6.3). Note that ranking only by perplex-
ity could limit the diversity of the output set, since
small variations (e.g., word order changes) may re-
sult in multiple similar outputs ranked highly, and
could also result in non-salient outputs (e.g., out-
put “Hats can be made of many materials” for the
generic “Hats are made of wool”) ranked highly.

4.3 Filtering For Truthfulness

Since pre-trained language models have a tendency
to hallucinate facts (Rohrbach et al., 2018), we ap-
ply a truth filtering step to the ranked outputs from
our generation. To do this, we train a discriminator
to predict whether an output is true and viable or
not viable (e.g., false or too vague) using human
annotated examples (see Appendix C for details).
The generations predicted not viable by the trained
discriminator are removed from the dataset.

4.4 Output Selection

After removing the non-viable generations, our fi-
nal task is to select the examples that are valid
EXEMPLARS. To do this, we collect gold labels



from humans for whether an EXEMPLARS is valid.
We use separate annotation tasks for the genera-
tions from the INSTANTIATION and EXCEPTION
templates. We use our human annotations to train
two validity discriminators: one for EXCEPTIONS,
one for INSTANTIATIONS. The trained validity dis-
criminators are used to rank and select the best
generations for each generic as our output.

5 Experiment Details

Full hyperparameters are given in Appendix D.

5.1 Data Source

We use a subset of the GenGen dataset (Anony-
mous, 2022), a set of 30K generics built upon com-
mon everyday concepts (e.g., “hammers”) and re-
lations (e.g., “used for”) sourced from resources
such as GenericsKB (Bhakthavatsalam et al., 2020)
and ConceptNet (Speer et al., 2017). The dataset
includes a diverse variety of concepts, e.g., general
knowledge (“Dogs bark™), locative generics (“In a
hotel, you will find a bed”), and comparative gener-
ics (“Cars are faster than people”). For this study,
we use 653 generics from GenGen, excluding hu-
man referents as the concept (e.g., nationalities,
professions) due to concerns of social biases.

5.2 Annotations

All annotations are done using Amazon Mechan-
ical Turk (paid at $15/hour) and processed using
MACE (Hovy et al., 2013) to filter annotators and
determine the most likely label.

For generic type (§3.2), we conduct two anno-
tation passes to partition the generics into three
groups (the three groups in Table 1). Crowdworkers
annotate all 653 generics with a moderate Fleiss’ x
of 0.41 and 0.58 for the two passes. Our cate-
gorization results in 296 quasi-definitional, 125
principled, and 232 characterizing generics.

For the truthfulness filter (§4.3), we annotate
a set of 7665 system generations from 150 gener-
ics with three annotators for each example. The
Fleiss’ s (Fleiss, 1971) using the binned labels is
0.53 (for un-binned it is 0.45) indicating moderate
inter-annotator agreement on this task.

To obtain EXEMPLARS gold labels (§4.4), an-
notators are whether a system-generated EXEM-
PLAR contradicts (e.g., for an EXCEPTION) an in-
terpretation of the generic (see Appendix C for full
details). The inter-annotator agreement, Fleiss’ s
is 0.40 for the INSTANTIATION task and 0.45 for

# Gens G3-Sub CN-Sub || All

Original 42272 10496 52768
+True 22865 5452 28317

TOTAL Valid 17204 2996 20200
EXCEPTION 6221 2208 8429
INSTANTIATION | 10983 788 11771

Table 4: Statistics of the generated dataset, with GPT-3
(G3) and ConcepNet (CN) subtypes (sub) used.

the EXCEPTION task. Thus, while these tasks are
more challenging than determining truthfulness,
annotators achieve reasonable agreement.

5.3 Discriminators

For all discriminators, we fine-tune RoBERTa (Liu
et al., 2019). All labeled data is split 80/10/10
into train/dev/test such that all generations for a
particular generic are in the same data partition.

For our truth discriminator (§4.3), the accuracy
on the test set is 75.2. For each of our two validity
discriminators (§4.4) (i.e., to determine whether
an INSTANTIATION or exception is valid), our data
consists ~1k randomly sampled generations across
~300 generics. The accuracies of the trained valid-
ity discriminators on the test are 77.4 for INSTAN-
TIATIONS and 75.0 for EXCEPTIONS.

5.4 Few-Shot Baseline

As a baseline for generation, we use GPT-3 (Brown
et al., 2020) with few-shot prompting. Specifically,
for each template (Table 3) we construct a few-
shot prompt (Appendix E) that consists of three
examples. Each example is two sentences: first
the generic, second a connective (e.g., “But also™)
followed by an EXEMPLAR that adheres to the de-
sired template. A fourth generic and connective is
appended to the prompt and the model should then
generate a completion that follows the illustrated
template. Note that this setup is very similar to
the prompts used in our method except our method
is not provided examples and the baseline is not
provided with subtypes (when appropriate). Note
that our goal is not to produce the best possible gen-
erations from GPT-3 but rather to show that con-
strained generation from GPT-2 (i.e., NeuroLogic*)
outperforms (and is cheaper and more computation-
ally feasible) than a natural use of GPT-3.

6 Evaluation

Using our computational framework, we generate
20200 EXEMPLARS for 653 generics (Table 4). See
Table 2 for example outputs. While close to half the



EXCEPTIONS | INSTANTIATIONS
pPa@l1 pP@5 | PaQl PQ@5s
Few-shot | 0.515 0.557 | 0.762 0.686
Ours 0.615  0.595 | 0.909 0.876

Table 5: Precision at k (PQk).

output generations are untrue or not salient, the ma-
jority of salient generations are valid EXEMPLARS.

To evaluate our approach, we conduct a human
evaluation (§6.1), as well as an ablation study (§6.2)
and analysis of the relationship to NLI (§6.3). Our
results show that our approach produces a large set
of high quality generations for this difficult task.
They also highlight current limitations in machine
reasoning and potential directions for future work.

6.1 Human Evaluation

To evaluate our model, we compute precision at k
(for K = 1 and k = 5) using our human annotations
(§4.4,5.2) as the gold labels (Table 5).

Our model outperforms the few-shot baseline
in all cases, and by a large gap (average 12.5
points). This is especially significant for EXCEP-
TIONS, which are more challenging to generate
than INSTANTIATIONS, and where the baseline per-
formance is close to random. Since generics are
defaults, it follows that INSTANTIATIONS should be
easier to produce than EXCEPTIONS. The fact that
more generated INSTANTIATIONS are true (71%
versus 40%) and more true INSTANTIATIONS are
accepted by the discriminator (73% versus 36%),
compared to the EXCEPTIONS, supports this intu-
ition. Hence, the large improvements by our model
over the baseline are significant towards generating
these difficult EXCEPTIONS.

Additionally, we examine our model perfor-
mance across templates (§3.5). Specifically, we
compute the fraction of generations for a template
that annotators label as valid, using the same num-
ber’ of generations for both models for a specific
template (Table 6). We see that not only does our
model outperform the baseline for the majority of
templates, these templates constitute the majority
of the generations (‘#Gens’ in Table 6).

Note that the performance comparison by tem-
plate does not account for generations that are ac-
cepted because they do not adhere to the desired
template. Therefore, we conduct a manual analysis

"The models produce similar numbers of generations, ex-
cept for template (5), where we obtain significantly more
generations from GPT3.

Table 6: Precision by template. #Gens: per template, is
minimum of the models.

of the best 40 baseline generations per template,
ranked by perplexity. For EXCEPTIONS, the base-
line produces on average only 2.5/40 generations
that fit the desired templates (2)-(4). Additionally,
for the one EXCEPTION template, (1), where most
baseline generations fit the template (37/40), our
model still outperforms the baseline. For INSTAN-
TIATIONS, the baseline performs slightly better (av-
erage 10/40 fitting generations) but still poorly.
From this we observe that not only is the baseline
not controllable, our model outperforms the base-
line where it does adhere to output requirements.

6.2 System Analysis

We first ablate the decoding algorithm by remov-
ing the constraints (i.e., using beam search) (Ta-
ble 7a). Although both systems condition their
outputs on the same prompts, NeuroLogic*, with
linguistic-theory-guided constraints, produces over
seven times as many unique generations as uncon-
strained decoding (i.e., beam search). Additionally,
the proportion of valid generations (i.e., accepted
by our discriminator) is nearly twice as many for
NeuroLogic*. This illustrates the importance of
incorporating linguistic-theory-based control into
decoding in order to generate a large set of unique,
and valid, EXEMPLARS.

Next, we vary the source of subtypes in the
template-based prompts and constraints for our sys-
tem, comparing GPT-3 and ConceptNet (CN) (used
in our method) to Masked Language Model (De-
vlin et al., 2018; Taylor, 1953) (MLM) infilling
(Table 7b), which has been used to study proto-
typicality in LMs (e.g., Boratko et al. (2020)) and
thus should produce valid examples of a concept.
Using GPT-3 for subtypes produces the most gener-
ations, likely by increasing the number of distinct
and meaningful generation prompts. While using
MLM for subtypes produces fewer generations than
using GPT-3, the proportion of valid generations
is comparable and hence MLM could be used as
a substitute if using GPT-3 is not feasible. Addi-
tionally, CN produces the fewest generations, with
the lowest proportions valid. This highlights the



Beam NeuroLogic*

#Gens %Val | #Gens % Val

Excep. | 5119 9.7 30060 14.4
Inst. 2185  38.0 | 22708 51.8
ALL 7304 182 | 52768 30.5

(a) Decoding method ablation: beam search vs. NeuroLogic*.

MLM CN GPT-3
#Gens %Val | #Gens %Val | #Gens % Val
Excep. | 10350 18.7 | 7619 12.6 | 22441 15.0
Inst. 4459  59.7 | 2877 274 | 19831 554
ALL 14809 31.0 | 10496 16.7 | 42272 339

(b) Subtype ablation: MLM, ConceptNet (CN), and GPT-3.

Table 7: Ablation results. #Gens: generations after
ranking and filtering. %Val: percent accepted by the
corresponding validity discriminator.

Excep. Inst.
prPa@l PpP@5 | PQ1 PQ5
Ours 0.615 0.595 | 0.909 0.876
“+NLIneu [ 0.524 0.532 ] 0.906 0.889
+ NLI-sim 0.808 0.775 | 0.862 0.860
+ NLI-neu-sim | 0.620 0.532 | 0.910 0.888

Table 8: Precision at k£ with NLI label filtering.

insufficiency of the KB as the only source of sub-
types. However, CN does provide subtypes that
are suitable for template (5), which both GPT-3
and MLM are unable to do. These results show
the importance of the knowledge source(s) used to
control the generation of EXEMPLARS.

6.3 Generics EXEMPLARS and NLI

Generics and their EXEMPLARS are closely related
to default inheritance reasoning and we observe
that for EXCEPTIONS we can improve precision
(by 19.3 points) by limiting generations to only
those that contradict the generic (premise) (Table 8).
For INSTANTIATIONS, the precision only increases
slightly when we apply analogous filtering (with
NLI entailment and neutral). However, as men-
tioned previously, this seemly clear cut relationship
between NLI labels and EXEMPLARS (i.e., EXCEP-
TIONS contradict, INSTANTIATIONS are entailed)
actually indicates systematic NLI model errors and
the inability of the NLI schema to capture the nu-
ances of default inheritance reasoning.

Consider the EXEMPLARS in Figure 3, relating
to the generic “Birds can fly”. Here we see that
while some EXCEPTIONS contradict the generic as
premise, these are actually false statements. True
EXCEPTIONS should be labeled neutral by NLI

CONTRADICTION

Birds cannot fly
Adult birds cannot fly

This bird cannot fly

ENTAILMENT

“Birds can fly” -

Migratory birds
can fly

Seagulls can fly

Birds can fly long distances

NEUTRAL

Ostriches cannot fly

Penguins cannot fl
This bird can fly ‘enguins cannot fly

INSTANTIATIONS EXCEPTIONS

Figure 3: Example generic with EXEMPLARS and cor-
rect NLI labels.

with respect to the generic, since they are not
“unlikely to be true given the information in the
premise” (Dagan et al., 2013) (i.e., NLI contra-
dictions). Note that this relies the lack of explicit
quantification in generics. With INSTANTIATIONS,
we observe that the NLI relationship may be either
neutral or entailment. These highlight the compli-
cated relationship between NLI and EXEMPLARS
and the systematic errors made by NLI models
when presented with such pairs involving default
inheritance reasoning.

Additionally, The examples in Figure 3 also
highlight that the NLI neutral label does not distin-
guish between statements that are true but not en-
tailed/contradictory (e.g., Ostriches cannot fly) and
statements that may not even be true (e.g., “This
bird can/cannot fly””). Our generics EXEMPLARS
emphasize the importance of developing a more
fine-grained notion of NLI to model this default
inheritance reasoning.

7 Conclusion

In this work, we draw on insights from linguis-
tics to propose a novel computational framework
to automatically generate valid EXEMPLARS for
generics, as a step towards capturing the nuances
of human reasoning for generics. Our system gen-
erates ~20k EXEMPLARS for 653 generics and out-
performs our few-shot baseline at generating viable
examples, while remaining more controllable. We
also demonstrate the importance of carefully con-
straining the decoding and underline the inability of
current NLI models to reason about and represent
the relationship between generics and EXEMPLARS.
In the future, we plan to further investigate the role
of generics EXEMPLARS in reasoning and NLI and
to additionally study generics involving people and
actions.
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A Limitations and Risks

The generics we source (see §5.1) is exclusively in
English. Therefore, our approach may not be suited
to all possible generics in all languages. In partic-
ular, our system does not handle generics where
valid INSTANTIATIONS include negating (§3.3) the
concept. This is due to the restriction that most En-
glish generation is left-to-right and it is not possible
to define a closed set of possible concept negations
for the prompt.

In this work, we do not generate EXEMPLARS
for generics involving human referents (e.g., pro-
fessions, nationalities). We exclude generics in-
volving human referents to mitigate the risk of
generating socially biased EXEMPLARS or harmful
stereotypes (e.g., “Black folks go to jail for crimes’
for the generic “People go to jail for crimes”). Ad-
ditionally, handling of human stereotypes require
methods that are beyond the scope of this paper.
For example, a socially-aware EXCEPTIONS to a
generic like “Girls wear dresses” would be “Boys
wear dresses, too”. This would require the under-
standing of the possible subtext of such a statement
(e.g. “Only girls wear dresses”), which is beyond
the current capabilities of this study and worthy of
future exploration.

Finally, we note that while it is not the intended
purpose of our system, a malicious user could
still use our system to generate EXEMPLARS for
a generic involving a person and propagate poten-
tially harmful social biases.

bl

B Generics Definitions

We condense the five generic types proposed by
Leslie (2007, 2008) into our three categories (§3.2).
The five types are:

* Quasi-definitional:  generics concerning
properties that are assumed to be universal
among a concept. This is the same as our
quasi-definitional category, see (a) Table 1.
The property is considered a defining charac-
teristic of the concept.

L-Principled: generics concerning properties
that are prevalent among a concept and are
viewed as inherent, or connected in a prin-
cipled way (Prasada and Dillingham, 2006,
2009; Haward et al., 2018). These generics are
called principled in Leslie (2007, 2008). Note,
these generics make up only one half of our
“principled” category (§3.2). See first example
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for category (b) in Table 1; the second exam-
ple there does not fit Leslie (2007, 2008)’s
definition of principled (i.e., L-principled).

* Striking: generics describing properties that
are uncommon and often dangerous, and mem-
bers of the concept are disposed to possess
them if given the chance (Leslie, 2017). For
example, the striking generic “Sharks attack
swimmers” assumes all sharks are capable of
attacking swimmers. These generics consti-
tute the second half of our “principled” cate-
gory. See second example (not first) for cate-
gory (b) in Table 1.

* Majority characteristic: generics concern-
ing properties that are neither deeply con-
nected to the concept nor striking but occur
in the majority of members of the concept.
These constitute one half of our “characteriz-
ing category”. See example for (c) in Table 1.

* Minority characteristic: generics concern-
ing properties that are neither deeply con-
nected to the concept nor striking but occur
in the minority of members of the concept.
For example, “Lions have manes”, since only
adult male lions (the minority of the lion pop-
ulation) have manes. These constitute the sec-
ond half of our “characterizing category”.

Both L-principled and striking generics are true
in-virtue-of a secondary factor and therefore we
group these into one category (i.e., “principled”;
see §3.2). For L-principled generics, this may be a
factor that causes the property to occur in the con-
cept (e.g., Birds can fly because they have wings).
For striking generics, it is the assumed predisposi-
tion of the kind to possess the property if given the
chance.

For quasi-definitional generics, because the prop-
erty is considered defining to concept, there is no
implied secondary factor in-virtue-of which the
generic is true. Therefore, these generics are de-
scriptive and we put them in a separate category
from striking and L-principled generics.

Finally, majority and minority characteristic
generics are ambiguous in their interpretation. For
example, “Lions have manes” can be interpreted
as being true in-virtue-of some secondary factor
(e.g., as a signal of fitness) or as being a merely
accidental relationship. If the interpretation is the
former, then lions without manes are valid EXCEP-
TIONS (e.g., lion cubs, female lions), while if the



interpretation is the latter then then other attributes
of lions are valid EXCEPTIONS (e.g., claws, fur).

Additionally, we note that a generic can focus
on the presence of the property within the con-
cept (e.g., “Birds can fly” is concerned with which
birds can fly) or can focus on the presence of the
concept within holders of the property (e.g., “Trian-
gles have three sides” is more concerned with what
concepts have three sides). We will say that the
former kind of generic is concept-oriented and the
latter is property-oriented. A generic can be both
concept and property oriented if it is ambiguous
between the two readings (e.g., “Aspirin relieves
headaches™).

In this work, we have discussed and used defi-
nitions only for concept-oriented generics. How-
ever, similar definitions and logical forms can be
derived for property-oriented generics. Note that
only the logical forms for quasi-definitional gener-
ics and their EXCEPTIONS change if the generic is
property-oriented. In particular, the K and P in
both logicals form for (a) in Table 1) can swapped
to obtain the property-oriented versions. In this
work, we do not deal with property-oriented gener-
ics and their EXEMPLARS due to the limitations of
English generation, as mentioned in Appendix A.

C Annotation

For all annotation tasks, three annotators are used
per HIT. When filtering annotators using MACE,
we remove annotators with competence below 0.5
(or the median, if lower).

Generic Type Instructions for annotating
generic types (§3.2) are shown Figure 4 (for the
first pass) and Figure 5 (for the second pass). The
first pass categorizes generics as either characteriz-
ing or not (either quasi-definitional or principled).
The second pass categorizing non-characterizing
generics as either quasi-definitional or principled.

Truthfulness Task Instructions for annotating
output generations for truthfulness (§4.3) are
shown in Figure 6.

EXEMPLARS Gold Labels For the INSTANTIA-
TION template generations, annotators are asked
whether the generation contradicts the original
generic. Instructions are shown in Figure 8. How-
ever, for the exception template generations, an
EXCEPTION is not a contradiction of the generic it-
self but of an associated logical form. For example,
“Penguins cannot fly” does not actually contradict

13

Thanks for participating in this HIT! You will be given 2 sentences. For each sentence, you will answer a question about the property it describes,

The Task:

« Inthis task you will be given a Statement, which is a sentence t
the property is fundamental to or associated with the concept.

canfly for the concept birds

hat describes a property and concepr. You will then be asked whether

« Aproperty is fundamental to OR associated with a concept IF:
o itis an essenti
- sq

rty of the concept

= Dogs have four legs.
. ential elen

o OR, we have a strong association between the concept and the property, even

= Dogs bark

= Sharks attack people.

= Mosqui

« The statement does not need to be always tru

« Ifthe statement is unintelligable or always false, please mark

Figure 4: Task instructions for first part of the generic
type categorization annotation (§5.2).

Thanks for participating in this HIT! You will be given 3 sentences. For each sentence, you will answer a question about the property it describes.

The Task:

« Inthis task you will be given a Statement, which is a sentence that describes a property and conce
the property is defining for or essential to the concept.

pt. You will then be asked whether

can fly for the concept birds

« Aproperty is defining for or essential to a concept IF

o the concept cannot exist without it, it is part of the definition of the concept

« The statement must be always true, exceptions are not allowed.

« Ifthe statement is unintelligable or never true, please mark

Figure 5: Task instructions for second part of the
generic type categorization annotation (§5.2).

the generic itself (“Birds can fly”) but a modified
form of the generic involving quantification (i.e.,
“All birds can fly”’). Therefore, we ask annotators
whether the generation contradicts two modified
forms of the generic. Instructions are shown in
Figure 7.

We obtain modified forms of the generic by first
converting the logical forms in Table 1 into a natu-
ral language templates by adding a universal quan-
tifier. Then we apply the template to the generic
itself. Specifically, from K(x) A r(z,y) =
P(y) (e.g., for quasi-definitional generics) we de-
rive “[K] [REL] ONLY [P]”. For example,
“mosquitoes drink only blood”, which is contra-
dicted by mosquitoes that drink something other
than blood. Notice, that exceptions from templates
1 and 2 will contradict these statements. Similarly,
for K(z) A P(y) = r(=z,y) we derive “ALL

[K] [REL] [P]”.Forexample, “All birds can
fly”, which is contradicted by birds that cannot fly.
Exceptions from templates 3 and 4 will contradict
these statements.



True or False?
The Task:

« You will be given 5 sentences.

« For each sentence, determine whether the sentence is true or false (or indicate that you cannot determine this) by selecting one of 4

options.
« If a statement only has minor grammtical mistakes, please try to avoid labeling it as Huh?12.
« Statements should be self-contained: additional information should not be required to determine if their are true.
o "Afew wildflowers have been seen."
Label:

al
Reason: not self-contained, seen where? seen by whom? cannot determine the truth without answers to these questions.

Figure 6: Task instructions for annotating truthfulness

(§5.2).

in this HIT! You

s can fly" makes an

2 Hypoth s
h of the premises and

o at mal assertion
presented with three premises (statements). We want you see if the

Figure 7: Task instructions for annotating validity of
EXCEPTIONS (§5.2).

D Implementation Details

D.1 Data

We use the in-submission GenGen data (Anony-
mous, 2022). The dataset contains English gener-
ics, automatically generated via NeuroLogic* (Lu
et al., 2021) with GPT2-XL. For this study, we
source from the subset of GenGen'’s test set found
to be valid by the discriminator with probability
at least 0.5 (768 generics). Of these, we exclude
all mentions of human referents (e.g., kinship la-
bels, nationalities, titles, professions) and actions
(e.g., studying for a test) to arrive at a dataset of
653 generics. We remove human referents using a
seed set of human referent terms compiled based on
WordNet (Miller, 1995) and will be provided with
the system code. We remove mentions of actions
by excluding generics beginning with “In order to”.
The GenGen dataset is licensed under CC-BY and
our usage aligns with the intended use of the data.

Preprocessing We remove adverbs of quantifi-
cation (i.e., usually, typically, generally) from the
generics and exclude generics with verbs of con-
sideration (i.e., consider, posit, suppose, suspect,
think). We also convert hedging statements to more
explicit forms (e.g., “may have to be” to “must
be”).

Partitions The data splits for training the truth
discriminator and validity discriminators are shown
in Table 9 and Table 10 respectively.
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ks for participating in this HIT! You will read a sentence

Figure 8: Task instructions for annotating validity of
insts (§5.2).

Train Dev Test All
True 2831 412 433 | 3676
False/Non-salient | 3180 367 442 | 3989
Total 6011 779 875 | 7665

Table 9: Data split statistics for truthfulness discrimina-
tor (§4.3).

D.2 Tools

For extracting components of the generic data we
use spacy® for dependency parsing. We use inflect’
to obtain plural and singular word forms and m!-
conjug3'? to conjugate verbs. We use nltk'! for
additional synonyms.

D.3

To obtain subtypes from GPT-3 we use the davinci
model and top-p sampling with p = 0.9, tem-
perature 0.8 and maximum length 100 tokens.
We use the top 5 sequences to obtain subtypes.
For NLI scores, we use RoBERTa fine-tuned on
MNLI (Williams et al., 2018) available from Al-
lenNLP'?2. For the GPT-3 baseline we use the
davinci model and top-p sampling 1.0, tempera-
ture 0.8, maximum length 50 tokens and top 5
sequences. Prompts for GPT-3 are given in Ap-
pendix E. GPT2-XL has 1.5 billion parameters,
GPT-3 has 175 billion parameters. Our experi-
ments are done using Quadro RTX 8000 GPUs.
For generation with NeuroLogic*, we use GPT2-
XL (Radford et al., 2019) with a maximum length
of 50 tokens and a beam size of 10 with tempera-
ture 10000000. We set the constraint satisfaction
tolerance to 3. This means that at each step, only
candidates whose number of satisfied constraints

Hyperparameters

dhttps:
9https:
10https:

//spacy.io/
//pypi.org/project/inflect/
//pypi.org/project/mlconjug3/
Unttps://www.nltk.org/
“https://demo.allennlp.org/
textual-entailment/roberta-mnli


https://spacy.io/
https://pypi.org/project/inflect/
https://pypi.org/project/mlconjug3/
https://www.nltk.org/
https://demo.allennlp.org/textual-entailment/roberta-mnli
https://demo.allennlp.org/textual-entailment/roberta-mnli

Train Dev Test | All

Valid 342 35 35 | 412

EXCEPTION Invalid 462 72 53 | 587
Total 804 107 88 | 999

Valid 374 38 29 | 441

INSTANTIATION  Invalid 466 38 33 | 537
Total 840 76 62 | 978

Table 10: Data split statistics for validity discriminators

(§4.4).

is within three of the maximum so far are kept.
The ‘look ahead’ is also set to 3; look ahead three
generation steps during decoding to estimate future
constraint satisfaction. During prompt construc-
tion, take the top k, = 10 prompts. If the generic
produced less than 10 prompts total, we take half
so that low quality prompts are not used even if
few are produced. After ranking the output, we
keep the top k, = 10 generations for a template,
keeping at most 2 per prompt.

For the truth discriminator, we fine-tune the
model for 5 epochs using a batch size of 16 and
learning rate 1le — 5 and random seed 29725, se-
lected by manual grid search.

For the validity discriminators, we fine-tune the
truth discriminator for 3 epochs with a batch size
of 16 and learning rate 3e — 5. The instantiation
discriminator uses a random seed of 4427 and the
exception discriminator 4457. Hyperparameters
are again selected by manual grid search.

E GPT-3 Prompts

E.1 Subtyping

To obtain subtypes from GPT-3, we first categorize
the kinds into six categories: person, animal, other
living (e.g., plants), location, temporal (e.g., Thurs-
day), and other (e.g., candle, soup) (Table 11). For
each category, we construct a separate prompt for
GPT-3 containing one type and five example sub-
types. Then, for each kind we use the prompt from
its assigned category to obtain subtypes. Note that
we exclude all generics where the kind is “person”.
This is to avoid producing or repeating stereotypes.

To determine the category, we use seed lists, for
person, animal, other living, and locative, or the
presence of prepositional beginnings (“On”, “In”,
“At”, “During”), for locative and temporal. The
“other” category encompasses all kinds that do not
fit into another category.
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E.2 Few-shot Baseline

The prompts for our few-shot baseline are shown
in Table 12. The three examples in the table are
provided each on a separate line. Appended to the
prompt is a fourth generic and the necessary con-
nective. The same connective is used across all
exception (instantiation) templates and is chosen
through manual experimentation. We use “But also”
for EXCEPTIONS and “For example” for INSTAN-
TIATIONS.



Category Prompt Concept | Prompt Subtypes

Animal birds sparrow, canary, large bird,bird of prey, sea bird

Other living | apple tree small apple tree, flowering apple tree,apple tree with ripe apples,
granny smith apple tree, young apple tree

Locative hotels beach hotel, boutique hotel, resort, bed and breakfast, five star hotel

Temporal day morning, hot day, short day, afternoon, evening

candles scented candle, advent candle, tealight, candle made from beeswax,

Other

candle that smells floral
| canof soup | can of tomato soup, can of mushroom bisque, expired can of soup,

unopened can of soup, organic can of soup

Table 11: Prompts for generating subtypes with GPT-3.

Template

Prompt Examples

(1) [KIND + REL]P [NEG-PROP]C

Elephants are found in zoos. But also elephants are found in the wild in Africa.
Viruses are spread through body fluids. But also viruses are spread in the air.
A hair dryer is used to dry hair. But a hair dryer can also be used to dry clothes.

(2) [KINDgy + REL]P [NEG-PROP]C

Elephants are found in zoos. But also African elephants are found in the wild
in Africa.

Viruses are spread through body fluids. But also coronaviruses are spread

in the air.

A hair dryer is used to dry hair. But also an electric hair dryer can be used

to dry clothes.

(3) [KIND + NEG-REL]? [PROP.]C

Dogs protect buildings from intruders. But also dogs do not protect
apartment buildings from intruders.

Cowsheds are found on farms. But also cowsheds are not found in orchards.
The sun produces radiation. But also the sun does not produce x-rays.

(4) [KINDg + NEG-REL]? [PROP]C

Birds can fly. But also penguins cannot fly.

Ducks lay eggs. But also male ducks do not lay eggs.

Dogs protect buildings from intruders. But also very small dogs do not protect
buildings from intruders.

(5) [KINDgy + REL]P [PROP]C

Birds can fly. For example, seagulls can fly.

Dogs protect buildings from intruders. For example, pitbulls protect buildings
from intruders.

Ducks lay eggs. For example, female ducks lay eggs.

(6) [KIND + REL]P [PROPgu]°

Viruses are spread through body fluids. For example, viruses are spread

through saliva.

Dogs protect buildings from intruders. For example, dogs protect some

private homes from intruders.

Cowsheds are found on farms. For example, cowsheds are found on dairy farms.

(7)  [KINDgu + REL]P [PROPgu]°

Birds can fly. For example, Canadian geese fly long distances to migrate.
Ostriches lay eggs. For example, female ostriches lay large spotted eggs.
Elephants are found in zoos. For example, African elephants are found in
most large zoos.

Table 12: Prompts for GPT-3 as Few-shot Baseline.
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