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ABSTRACT

Fine-tuning language models (LMs) with first-order optimizers often demands
excessive memory, limiting accessibility, while zeroth-order optimizers use less
memory, but suffer from slow convergence depending on model size. We in-
troduce a novel method named Addax that integrates the recently introduced
Memory-Efficient Zeroth-order Optimizer of Malladi et al. (2023) with Stochastic
Gradient Descent (SGD). Addax obtains zeroth-order and first-order gradient esti-
mates and optimally combines them as the descent direction in each step. The first-
order updates are performed “in-place” to further save memory. Theoretically, we
establish the convergence of Addax under mild assumptions, demonstrating less
restrictive hyper-parameters and independence from model size. Our extensive ex-
periments with diverse LMs and tasks show that Addax consistently outperforms
zero-shot and MeZO in terms of accuracy. Moreover, Addax surpasses the per-
formance of standard fine-tuning approaches, such as SGD and Adam, in specific
scenarios with significantly less memory requirement.

1 INTRODUCTION

Fine-tuning pre-trained language models (LMs) is crucial for diverse natural language processing
tasks, including text classification and sentiment analysis (Devlin et al., 2019), as well as their use
in different domains (Gururangan et al., 2020). However, standard fine-tuning with Adam opti-
mizer demands excessive memory usage due to gradient and/or optimizer state storage, presenting
a challenge as LMs grow in scale (Brown et al., 2020; OpenAI, 2023). For instance, fine-tuning
a 13-billion-parameter model like OPT (Zhang et al., 2022) in mixed precision requires over 316
GB of memory, hindering accessibility for researchers and practitioners with limited resources and
specialized hardware. This memory burden restricts innovation and experimentation.

Recently, various memory-efficient methods for fine-tuning Large Language Models (LLMs) have
been proposed. In-context learning (ICL) utilizes a single inference pass, incorporating label exam-
ples in its context for prediction (Brown et al., 2020). Despite its limited success, ICL’s performance
is constrained by the model’s context size and is shown to be less effective than traditional Adam
fine-tuning for medium-sized LMs (Brown et al., 2020). Parameter-Efficient Fine-Tuning (PEFT)
selectively tunes a fraction of the network while freezing the rest of the parameters, and significantly
reduces the parameters needed for fine-tuning (Hu et al., 2022; Li & Liang, 2021; Lester et al.,
2021). Despite its efficiency, fine-tuning LMs with PEFT still requires more memory than model
inference. For example, fine-tuning OPT-13B with Adam with a batch size of 8 requires 4×A100
GPUs (316GB total), whereas utilizing PEFT decreases this to 2×A100 GPUs (158GB total) with a
batch size of 16 (Brown et al., 2020). Nonetheless, this memory requirement is still 6× greater than
what is needed for model inference, which is around 25GB.

Memory-Efficient Zeroth-order Optimizer (MeZO) proposed by Malladi et al. (2023) generates gra-
dient estimators solely through forward passes with minimal memory overhead. Unlike classical
zeroth-order optimization method ZO-SGD (Spall, 1992), MeZO allows in-place perturbation of
model parameters to avoid storing the perturbation vector. Despite having a memory footprint
equivalent to the inference phase, MeZO exhibits slower convergence compared to widely used
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Figure 1: Left: Fine-tuning OPT-13B using SGD with in-place (IP) gradient updates and small batch sizes
(BS) can outperform MeZO and Adam, while maintaining similar memory consumption to MeZO. Right: Fine-
tuning OPT-13B using Addax with different first-order batch size K1 outperforms zero-shot, MeZO and SGD.
The figure reports the memory consumption and accuracy on three different datasets with zeroth-order batch
size K0 fixed at 12 for Addax.

first-order fine-tuning methods like Adam and AdamW (Kingma & Ba, 2015; Loshchilov & Hutter,
2019), both in theory and practice. Furthermore, the final performance of models fine-tuned with
MeZO fails to match the ones fine-tuned with first-order methods.

Although Adam and AdamW have achieved great success in training deep learning models, the re-
quirement to store optimizer states significantly burdens memory consumption. In contrast, SGD is
simpler and more memory-efficient, and our experimental results demonstrate that fine-tuning OPT-
13B using SGD with 16-bit floating-point calculations can outperform configurations that utilize
Adam with 32-bit floating-point calculations (See Figure 1). The success of using SGD in fine-
tuning LLMs may be attributed to the smoothness of the parameter space in LLMs and the favorable
conditions already established by the loss function (Hao et al., 2019). While SGD significantly
reduces memory consumption compared with Adam by eliminating the use of optimizer states, it
is still non-comparable to the memory usage of MeZO. This is because the straightforward imple-
mentation of SGD necessitates additional storage for activations used for calculating the first-order
gradient in backward propagation, as well as the gradients themselves.

To further reduce the memory footprint for SGD, several studies have explored the utilization of
in-place (IP) gradient update during backward propagation (Zhao et al., 2024; Lv et al., 2023).
Instead of separating the backward propagation and weight update steps, which requires storing the
gradients for all layers, they combine the two steps by updating the weights in each layer as soon
as the gradients are calculated. IP update does not require storage of the gradients of all layers and,
thus, significantly reduces the memory requirement, making it comparable to MeZO for certain tasks.
Our experiments, as illustrated in Figure 1, demonstrate that fine-tuning LLMs with SGD employing
in-place gradient updates and small batch sizes can attain memory consumption levels comparable
to those achieved when fine-tuning with MeZO. Therefore, in certain low-memory settings where
MeZO can be applied, first-order gradient updates can also be feasible for small batch sizes. Given
the availability of both first- and zeroth-order updates, we can ask the following natural question:

Question: Can we develop an optimizer for fine-tuning language models (LMs) that requires
significantly less memory than standard first-order methods but still enjoys relatively fast con-
vergence and produces high-quality fine-tuned models?

In this work, we answer this question by proposing Addax (ADDition of grAdient estimates through
memory-efficient eXecution), a method that has the benefits of both worlds: i) being memory efficient
algorithm, ii) having fast convergence speed and iii) achieving the best performance across different
fine-tuning methods. Specifically, our contributions are:

1. Addax integrates MeZO with SGD to enhance MeZO’s convergence rate and the resulting final
model performance, while still keeping its memory consumption significantly smaller than that
of standard first-order optimizers.
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Figure 2: Accuracy/F-1 score resulted from fine-tuning OPT-13B model with zero-shot, MeZO, SGD, Addax,
and Adam. Addax consistently outperforms other methods with GPU memory consumption comparable to that
of MeZO (See Figure 3). The exact numbers are provided in Table 1.
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Figure 3: GPU memory requirement of fine-tuning OPT-13B with different methods on various tasks. The
exact numbers are provided in Table 1.

2. We establish convergence of Addax under a set of mild assumptions. We show that Addax
achievesO(1/

√
T ) convergence rate for non-convex smooth problems and the hyper-parameters

for Addax are less restrictive than the Zeroth-order algorithms. Moreover, Addax’s convergence
rate is independent of the model size.

3. Our experiments include a broad range of model architectures (e.g. masked LM and autoregres-
sive LM), scales (ranging from 350M to 13B parameter models), and tasks (e.g., classification,
multiple-choice questions, and content generation). In experiments with RoBERTa-large, Addax
consistently outperforms the performance of both zero-shot and MeZO across all tasks, and even
outperforms the standard fine-tuning methods in several tasks (See Figure 4). With OPT-13B,
Addax outperforms competing methods in 10 distinct tasks, while consuming up to 11× less
memory than standard fine-tuning and requiring only 1.04 to 2.1× more memory than MeZO
(See Figure 2 and Figure 3).

4. Further investigation reveals that Addax offers a versatile trade-off between resource availabil-
ity and performance. In scenarios where memory is severely constrained, Addax is capable of
being as memory efficient as MeZO by using small first-order batch sizes and using the rest
for zeroth-order gradient estimates, thereby conserving memory of activations. Our experiments
have shown that, under the same memory constraint as running SGD, Addax can outperform
SGD with similar memory consumption in specific scenarios. (See Figure 1).

Notations. We are interested in the optimization of a smooth (possibly non-convex) loss function
L with parameter θ ∈ Rd. In other words, we are interested in solving

min
θ∈Rd

L(θ) := Ex∈D[ℓ(θ;x)], (1)

where D denotes the data distribution and x ∈ D denotes the samples. Throughout the paper, we
mark the values related to zeroth- and first-order gradient with (·)0, (·)1, respectively, and denote the
iteration and coordinate indices as (·)t, (·)i, where t ∈ {0, . . . , T}, i ∈ {1, . . . , d}, respectively.

2 ADDAX: ALGORITHM DESIGN

Addax uses both first- and zeroth-order update rules for fine-tuning. It is known that first-order
update rules lead to faster algorithms (than zeroth-order ones), but they require more memory. To
exploit and balance the benefits of both algorithms, Addax first draws a random batch B0 (with
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Algorithm 1 Addax: ADDition of grAdient estimates through memory-efficient eXecution
1: Input: θ, T,L,K0,K1, learning rates {ηt}, perturbation scale ϵ, weight parameter α ∈ [0, 1]
2: for t ∈ {0, 1, · · · , T − 1} do
3: Randomly draw mini-batches B0,B1 uniformly from D with K0,K1 samples.
4: (g0, s)← ZerothGrad(θ,L,B0, ϵ) (Algorithm 2) # Estimate zeroth-order gradient
5: g1 ← 1

K1

∑
x∈B1 ∇L(θ, x) # Estimate first-order gradient

6: Reset random number generator with seed s
7: for i ∈ {1, . . . , d} do
8: z ∼ N (0, 1)
9: θi ← θi − ηt

(
αzg0 + (1− α)g1i

)
# Update model parameters

10: Output: θ

|B0| = K0) of data and a random search direction z ∈ Rd. Then, it uses the drawn samples to
obtain a stochastic zeroth-order estimate of the directional derivative of the objective function in the
direction z at the point θ based on (Spall, 1992; Malladi et al., 2023):

g0 =
1

K0

∑
x∈B0

ℓ(θ + ϵz;x)− ℓ(θ − ϵz;x)

2ϵ
,

where ϵ is some small constant. Then, it draws a random batch B1 (with |B1| = K1) of data and
computes g1 = 1

K1

∑
x∈B1 ∇ℓ(θ;x). Finally, it updates the parameters of the model by:

θ ← θ − η
(
αzg0 + (1− α)g1

)
,

where η is the step-size and α ∈ [0, 1] is a mixing constant for combining the two gradient estimates.
We present the key steps of Addax in Algorithm 1, and leave the detailed discussions to Appendix A.

The choice of mini-batch sizes K0,K1 controls the memory usage of Addax. In the presence of
devices with larger available memory, we can choose larger values of K1, and when having less
memory, we can reduce K1 (and possibly increase K0). The parameter α controls the balance
between the zeroth- and first-order methods. When α is close to 1, the algorithm behaves more
similar to ZO-SGD. However, when α is close to 0, Addax behaves similar to SGD. Specifically,
SGD is an extreme case of Addax when α = 0, and MeZO is another extreme case when α = 1.

3 ADDAX: THEORETICAL ANALYSIS

This section presents our theoretical analysis for Algorithm 1. We present the informal statement of
the convergence result here and relegate the formal statement and the proof to Appendix E.

Theorem 3.1 (Informal). Assume that the loss L is Lipschitz smooth and the stochastic gradients
are unbiased and have bounded variance, then by running Algorithm 1 with η = O(T−1/2) and
ϵ = O(d−1/2T−1/4)), the output of the algorithm satisfies

Et[∥∇L(θt)∥2] = O

(
1√
T
·
√

(1− α)2

K1
+

α2d

K0

)
.

Note that α balances the importance of the zeroth- and first-order gradient in Algorithm 1, and
we can optimize it to achieve an optimal convergence rate. It can be shown that the optimal α is
given by α⋆ = K0

K0+dK1 , leading to the convergence rate O
(√

d
T (K0+dK1)

)
. Moreover, compared

with existing ZO algorithms, the condition for Algorithm 1 is less restrictive. For example, ZO-
SGD requires smaller stepsizes ϵ = O(d−1T−1/2) and η = O(1/

√
dT ). In contrast, our stepsizes

η and ϵ can be much larger, i.e., when K0

K1 ≪ d, the convergence rate of Algorithm 1 further reduces
to O(1/

√
TK1), independent of the model size d. Our experiment verifies our reasoning (See

Appendix C.4 for hyper-parameters details).

4 EXPERIMENTS

In this section, we compare the performance of Addax with several baselines, including i) zero-shot,
ii) MeZO (Malladi et al., 2023), iii) SGD, and iv) Adam (Kingma & Ba, 2015), where zero-shot
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Table 1: Experiments on OPT-13B (with 1000 examples). Addax outperforms zero-shot, MeZO,
SGD and Adam across the board on 10 tasks. For the accuracy of MeZO and 32-bit Adam, we
report the results from Malladi et al. (2023).

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP
Metrics Task type classification multiple choice generation

Accuracy/F1 (%) Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 80.0 81.2 46.2 14.6
32-bit Adam 92.0 70.8 83.9 77.1 63.5 70.1 71.1 79.0 74.1 84.9 31.3
MeZO 91.4 66.1 67.9 67.6 63.5 61.1 60.1 88.0 81.7 84.7 30.9
16-bit SGD 94.2 83.8 92.8 80.7 63.5 67.5 76.5 85.0 79.0 89.4 30.2
16-bit Addax 95.1 85.2 92.9 83.0 64.4 70.7 77.0 91.0 81.9 89.3 34.7

Batch Size 32-bit Adam 8
MeZO 16
16-bit SGD 16 10 8 4 16 16 2 16 10 4 2

(K1,K0) 16-bit Addax (4, 12) (10, 12) (8, 12) (2, 12) (8, 12) (2, 12) (2, 6)

Memory (GB) 32-bit Adam 322.4 344.5 330.9 316.4 299.7 319.4 349.0 296.3 291.5 316.4 318.4
MeZO 28.2 37.0 42.5 48.6 29.5 28.8 72.8 28.2 37.2 49.8 75.1
16-bit SGD 55.8 72.4 80.6 70.6 60.4 62.0 76.4 53.2 79.8 79.3 69.0
16-bit Addax 29.3 45.1 53.4 71.2 37.3 37.8 72.9 28.8 46.8 51.1 158.1
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Figure 4: Experiments on RoBERTa-large: 16/32-bit Addax outperform zero-shot and MeZO across all
tasks and outperform Adam in four out of six tasks. Detailed numbers can be found in Table 6.

evaluates on the pre-trained models without any fine-tuning. We implement Addax in both 16-bit
(FP16) and 32-bit (FP32) data types.

Experiment Settings: We conduct two sets of experiments: firstly, fine-tuning the masked LM
RoBERTa-large of (Liu et al., 2019) (350M) using zero-shot, MeZO, 32-bit Adam, and 16/32-bit
Addax. Secondly, fine-tuning OPT-13B with different algorithms to assess their performance and
memory usage. We also explore the impact of hyper-parameters α and K1

K0+K1 on Addax’s perfor-
mance, detailed in Appendix D.2. Further details can be found in Appendix C.

Empirical Observation: Addax outperforms other baseline methods while using substantially
less memory than Adam. For RoBERTa-large experiments, 16/32-bit Addax outperforms zero-shot
and MeZO across six different tasks and surpasses Adam in four out of six tasks (Figure 4). In the
experiments with OPT-13B model in Figure 2, 16-bit Addax outperforms zero-shot, MeZO, 16-bit
SGD and Adam across 10 distinct tasks with moderate memory consumption. For example, Ad-
dax consumes up to 11× less memory than standard fine-tuning and requires only 1.04 to 2.1×
more memory than MeZO (Figure 3). The batch size details for different algorithms can be found
in Table 1. Notably, fine-tuning OPT-13B using Addax with a smaller first-order batch size K1

surpasses the performance of SGD with larger batch sizes. This suggests that the zeroth-order gradi-
ent estimate in Addax provides stability (and regularization of the gradient) when K1 is small and
effectively reduces memory usage. For additional experimental results, refer to Appendix D.

5 CONCLUSION

This paper introduces Addax, a memory-efficient fine-tuning method for Large Language Models
(LLMs). By leveraging both first- and zeroth-order stochastic gradient estimates, Addax demon-
strates improved memory efficiency without sacrificing convergence speed or model performance,
as validated by our extensive experiments across various models, tasks, and datasets.
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A MORE DISCUSSION ON ADDAX

Algorithm 1 outlines the detailed steps of Addax. In Step 4, the zeroth-order gradient estimator g0
and random seed s are obtained using the samples B0 with batch size K1, which are drawn uniformly
from the total dataset D. Similarly, Step 5 gets the first-order gradients g1 from samples B1 through
backward propagation.
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Algorithm 2 ZerothGrad (Malladi et al., 2023)

1: Input: parameters θ ∈ Rd, loss L : Rd → R, samples B, perturbation scale ϵ.
2: Generate random seed s.
3: θ ← PertubParameters(θ, ϵ, s)
4: ℓ+ ← L(θ;B)
5: θ ← PertubParameters(θ,−2ϵ, s)
6: ℓ− ← L(θ;B)
7: θ ← PertubParameters(θ, ϵ, s)
8: g ← (ℓ+ − ℓ−)/(2ϵ)
9: Output: g, s

Algorithm 3 PertubParameters

1: Input: parameters θ ∈ Rd, perturbation scale ϵ, random seed s.
2: Reset random number generator with seed s
3: for i ∈ {1, . . . , d} do
4: z ∼ N (0, 1)
5: θi ← θi + ϵz
6: Output: θ

A major step in Algorithm 1 is the computation of zeroth-order directional derivative g0, done in
Step 4, which is the subroutine call of Algorithm 2. Algorithm 2 is also used in MeZO. The direc-
tional derivative is obtained through the classical ZO gradient estimate SPSA (Definition A.1). To
get the zeroth-order gradient estimate, Algorithm 2 requires the evaluation of the loss function L
through two forward passes at points θ+ ϵz and θ− ϵz. The vanilla SPSA algorithm costs the twice
of the memory of inference because of the need to store the z ∈ Rd. Algorithm 2 minimizes this
overhead by generating a random seed s and resetting the random number generator each time model
parameters are perturbed (see Step 3-7 in Algorithm 2). This approach guarantees that Algorithm 3
maintains a consistent direction for the random vector z across iterations. Employing this in-place
operation results in Algorithm 2 having memory consumption comparable to that of inference.
Definition A.1 (Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall, 1992)). Given
a loss function L parameterized by θ ∈ Rd, perturbation scale ϵ, and random direction z ∈ Rd,
SPSA estimates the gradient on minibatch B as

∇̂L(θ;B) = L(θ + ϵz;B)− L(θ − ϵz;B)
2ϵ

z

Steps 7- 9 in Algorithm 1 leads to the main update rule of Addax. We use the same idea as in Malladi
et al. (2023), where the seed s is stored instead of the random vector z. The random generator is reset
before updating the components (see Step 6 in Algorithm 1). This ensures that the random vector
z maintains a consistent direction in the Algorithm 3 across each iteration. For each component θi
in θ where i ranges from 1 to d, the process begins by generating a random direction z ∼ N (0, 1)
in Step 8. Subsequently, each θi is updated using the weight combination of zeroth-order and first-
order gradients, specifically

(
αzg0 + (1− α)g1i

)
, multiplied by the learning rate ηt. When iteration

t reaches T , Addax outputs the final model parameters θ.

B ADDAX WITH IN-PLACE UPDATES

In this section, we provide the algorithm description for Addax with in-place gradient update (Algo-
rithm 4). The technique of in-place gradient updates during backward propagation, as referenced in
our approach, has been previously used in Zhao et al. (2024); Lv et al. (2023). In the modern deep
learning training frameworks, such as PyTorch (Paszke et al., 2019)1, store the gradient tensor for
computing optimizer states and update the model weights after all layers of gradients are computed.
This approach is not problematic for models with a small number of parameters; however, fine-
tuning a large model like 13 billion parameters requires significant memory because the gradient
tensor has the same size as the number of model parameters. For example, as for OPT-13B model,
each parameter needs 2 bytes or 4 bytes for gradient storage, totaling 26 GB or 52 GB of memory,

1https://pytorch.org/
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Algorithm 4 Addax: In-place Updates
1: Input: θ, T,L,K0,K1, model f(·) with L layers, learning rates {ηt}, perturbation scale ϵ,

weight parameter α ∈ [0, 1]
2: for t ∈ {0, 1, · · · , T − 1} do
3: Randomly draw mini-batches B0 uniformly from D with K0 samples.
4: (g0, s)← ZerothGrad(θ,L,B0, ϵ) (Algorithm 2) # Estimate zeroth-order gradient
5: Randomly draw mini-batches B1 = (x,y) uniformly from D with K1 samples.
6: ŷ ← f(x,θ) # Forward pass
7: ℓ← L(y, ŷ)
8: for l = L, . . . , 1 do
9: θl ← [θi for θi ∈ layer l] # Backward propagation

10: gl ← ∂ℓ
∂θl

11: θl ← θl − ηt(1− α)gl # Update model parameters
12: gl ← None # Clear gradients
13: Reset random number generator with seed s
14: for i ∈ {1, . . . , d} do
15: z ∼ N (0, 1)
16: θi ← θi − ηtαzg

0 # Update model parameters
17: Output: θ

respectively. Because Addax does not require any optimizer states, such memory overhead can be
avoided by combining the computation of first-order gradient estimates and parameter updates into
a single step. As described in Algorithm 4 lines 8-12, we sequentially iterate over the Lth layer to the
1st layer, compute the gradient gl (line 10), and perform in-place update to θl (line 11). Right after
that, we free the memory for gradient gl (line 12). The loss computation, update of zeroth-order
gradient g0 remains the same as Algorithm 4. It is important to note that Algorithm 4 and Algo-
rithm 1 differ only by the implementation, while the update rules remain unchanged. Therefore the
final outcome of each optimization step is exactly the same. Unless otherwise noted, all experiments
using Addax are implemented using in-place update as described in Algorithm 4.

C EXPERIMENT SETUP

C.1 DATASETS

Our setup mainly follows Malladi et al. (2023). We employ the same datasets utilized in Malladi
et al. (2023) and apply the same data processing procedure and settings for validation and training.

For the RoBERTa-large model, we utilize the following datasets: SST-2 (Socher et al., 2013), SST-
5 (Socher et al., 2013), SNLI (Bowman et al., 2015), MNLI (Williams et al., 2018), RTE (Da-
gan et al., 2005; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), and
TREC (Voorhees & Tice, 2000). The test set is limited to 1,000 examples for both training and
validation purposes. In our few-shot learning experiments, we set k = 16, where k represents the
number of examples per class for training and validation.

For the OPT experiments, we employ the SuperGLUE dataset (Wang et al., 2019), comprising
BoolQ (Clark et al., 2019), CB (De Marneffe et al., 2019), COPA (Roemmele et al., 2011), Mul-
tiRC (Khashabi et al., 2018), ReCoRD (Zhang et al., 2018), RTE (Dagan et al., 2005; Bar-Haim
et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), WIC (Pilehvar & Camacho-Collados,
2018), and WSC (Levesque et al., 2012). Following the approach in Malladi et al. (2023), we also
include SST-2 (Socher et al., 2013) for development purposes, along with two question answering
(QA) datasets: SQuAD (Rajpurkar et al., 2016) and DROP (Dua et al., 2019). For each dataset, we
randomly select 1, 000 examples for training, 500 examples for validation, and 1, 000 examples for
the testing.

C.2 PROMPTS

To ensure a fair comparison, we employ the same prompts as those used in Malladi et al. (2023),
which were initially adapted from Gao et al. (2020), GPT-3 (Brown et al., 2020), and Prompt-
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Source (Bach et al., 2022). Table 2 presents the prompts employed in our RoBERTa-large exper-
iments, while Table 3 details the prompts utilized for the OPT experiments.
Table 2: The prompts for each datasets we used in our RoBERTa-large experiments, identical to
those used in Malladi et al. (2023). There are three different task types: sentiment classification
(sentiment cls.), topic classification (topic cls.) and natural language inference (NLI). C is the
number of classes for each datasets. The label words can be filled in the [MASK] token of the
prompt template. <S1> and <S2> are the first and second (if any) input sentence.

Dataset C Type Prompt Label words
SST-2 2 sentiment cls. <S1> It was [MASK]. {great, terrible}
SST-5 5 sentiment cls. <S1> It was [MASK]. {great, good, okay, bad, terrible}

TREC 6 topic cls. [MASK] : <S1> {Description, Expression, Entity,
Human, Location, Number}

MNLI 3 NLI <S1> ? [MASK], <S2> {Yes, Maybe, No}
SNLI 3 NLI <S1> ? [MASK], <S2> {Yes, Maybe, No}
RTE 2 NLI <S1> ? [MASK], <S2> {Yes, No}

Table 3: The prompts for each datasets we used in our OPT-13B experiments, identical to those used
in Malladi et al. (2023). There are three types of tasks: classfication (cls.), multiple-choice (mch.),
and question answering (QA). <text> is the input from the dataset and blue text are the label words.
We follow the same practice in Malladi et al. (2023): for inference task, we incorporate different
candidates into the prompt, compute the average log-likelihood for each, and select the candidate
with the highest score. For question answering (QA) tasks, answers are produced through greedy
decoding

Dataset Type Prompt
SST-2 cls. <text> It was terrible/great
RTE cls. <premise>

Does this mean that "<hypothesis>" is true? Yes or No?
Yes/No

CB cls. Suppose <premise> Can we infer that "<hypothesis>"? Yes, No, or Maybe?
Yes/No/Maybe

BoolQ cls. <passage> <question>?
Yes/No

WSC cls. <text>
In the previous sentence, does the pronoun "<span2>" refer to <span1>? Yes or No?
Yes/No

WIC cls. Does the word "<word>" have the same meaning in these two sentences? Yes, No?
<sent1>
<sent2>
Yes/No

MultiRC cls. <paragraph>
Question: <question>
I found this answer "<answer>". Is that correct? Yes or No?
Yes/No

COPA mch. <premise> so/because <candidate>
ReCoRD mch. <passage>

<query>.replace("@placeholder", <candidate>)
SQuAD QA Title: <title>

Context: <context>
Question: <question>
Answer:

DROP QA Passage: <context>
Question: <question>
Answer:

11
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C.3 IMPLEMENTATION

For the experiments involving both RoBERTa and OPT-13B, we adhere to a consistent fine-tuning
paradigm in Malladi et al. (2023).

For the RoBERTa-large experiment, we evaluate Addax in two separate computational precision
settings: one using 16-bit floating-point calculations (FP16), referred to as 16-bit Addax, and the
other using 32-bit floating-point calculations (FP32), denoted as 32-bit Addax for clarity. For all
RoBERTa-large experiments, MeZO and Adam are loaded in FP32 setting.

For the OPT-13B experiment, Addax is evaluated solely in the FP16 setting, as it is not feasible to
operate Addax in FP32 on a single A100 (80G) GPU. Additionally, we also evaluate SGD in the
FP16 setting and Adam in the FP32 setting. We adhere to the same naming convention for SGD and
Adam, respectively referring to them as 16-bit SGD for the FP16 setting and 32-bit Adam for the
FP32 setting.

We do not employ advanced quantization techniques such as LLM.int8() (Dettmers et al., 2022)
and QLoRA (Dettmers et al., 2023), nor do we integrate Addax with with Parameter-Efficient Fine-
Tuning methods (PEFT) (Hu et al., 2022; Li & Liang, 2021; Lester et al., 2021). For model inference,
we utilize the standard PyTorch (Paszke et al., 2019) implementation of transformer. We do not use
the memory-efficient approaches such as FlashAttention (Dao et al., 2022), KDEformer (Zandieh
et al., 2023), and HyperAttention Han et al. (2023). Although the combination between Addax
and these methods remains unexplored, we posit that their combination could significantly enhance
Addax by further diminishing memory demands and augmenting performance. We leave the explo-
ration of Addax’s potential with various memory-efficient methods to future works.

C.4 HYPER-PARAMETERS

We present the hyper-parameters for all experiments conducted with RoBERTa-large in Table 4 and
those for OPT-13B in Table 5. It is important to note that for both models, the hyper-parameters grid
utilized for MeZO and Adam adheres to the specifications set forth in Malladi et al. (2023).

For RoBERTa-large experiments, both Addax and MeZO employ a constant learning rate schedule,
while Adam uses linear scheduling. For the training process, Addax and Adam are set for 1, 000
steps, while MeZO extends to 100, 000 steps. We check validation performance every 50 training
steps and save the best validation checkpoint for testing.

For OPT-13B experiments, Addax, SGD, and MeZO similarly adopt a constant learning rate sched-
ule, with Adam maintaining its linear scheduling. Here, Adam is configured for 5 epochs, whereas
Addax and SGD are set for 1, 000 steps, and MeZO for 20, 000 steps. We check validation perfor-
mance every 50 training steps and save the best validation checkpoint for testing.

Addax can achieve a larger learning rate η than MeZO, resulting in a faster convergence speed.
For the RoBERTa-large experiments, Addax uses the learning rate η of {1e − 5, 5e − 5, 1e − 4},
while MeZO uses the learning rate η of {1e− 7, 1e− 6, 1e− 5}. For the OPT-13B experiments, we
fix the learning rate η of Addax to 1e− 4, while MeZO uses significantly smaller learning rate η of
{1e− 6, 1e− 7}.
Given the sensitivity of algorithms to hyper-parameter selection and our adherence to the identical
settings detailed in Malladi et al. (2023), we report the accuracy of MeZO and Adam from their
published results, applicable to both RoBERTa-large and OPT-13B experiments.

C.5 MEMORY PROFILING

In our memory profiling, we conform to the methodologies previously established in Mal-
ladi et al. (2023). Our implementation utilizes the default configuration provided by the
transformers (Wolf et al., 2020) package. We do not turn on any advanced memory opti-
mization techique such as gradient checkpointing. For multi-GPU backpropagation, we utilize the
Fully Sharded Data Parallel (FSDP) (Fairscale, 2021) by PyTorch (Paszke et al., 2019). We use the
Nvidia’s nvidia-smi command to monitor the GPU memory usage. We report the maximum
GPU memory consumption observed throughout all experiments.
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Table 4: The hyper-parameter grids used for RoBERTa-large experiments. Addax and MeZO use a
constant learning rate schedule, and Adam uses linear scheduling. Addax and Adam use 1K steps
and MeZO use 100K steps. We check validation performance every 50 training steps and save the
best for testing.

Experiment Hyper-parameters Values

16-bit/32-bit Addax K0 +K1 64
K1

K0+K1 {0.1, 0.2, 0.3, 0.4, 0.5}
Learning Rate η {1e− 5, 5e− 5, 1e− 4}

ϵ 1e− 3
α {3e− 4, 1e− 3, 3e− 3, 4e− 3,

5e− 3, 7e− 3, 1e− 2, 1e− 1}
MeZO Batch size 64

Learning Rate η {1e− 7, 1e− 6, 1e− 5}
ϵ 1e− 3

32-bit Adam Batch size {2, 4, 8}
Learning Rate η {1e− 5, 3e− 5, 5e− 5}

Table 5: The hyper-parameter grids used for OPT-13B experiments. Addax, SGD, and MeZO use a
constant learning rate schedule, and Adam uses linear scheduling. Adam uses 5 epochs. Addax, and
SGD use 1K steps and MeZO 20K steps. We check validation performance every 50 training steps
and save the best for testing.

Experiment Hyper-parameters Values

16-bit Addax K1 {2, 4, 6, 8, 10, 12, 14, 16}
K0 12

Learning Rate η 1e− 4
ϵ 1e− 3
α {1e− 3, 3e− 3, 5e− 3, 7e− 3, 9e− 3}

MeZO Batch size 16
Learning Rate η {1e− 6, 1e− 7}

ϵ 1e− 3

16-bit SGD Batch size {2, 4, 6, 8, 10, 12, 14, 16}
Learning Rate η {5e− 3, 1e− 2, 5e− 2}

32-bit Adam Batch size 8
Learning Rate η {1e− 5, 5e− 5, 8e− 5}

D ADDITIONAL EXPERIMENT RESULTS

D.1 ROBERTA-LARGE EXPERIMENTS MAIN RESULTS

Table 6 reports the detailed numbers of the accuracy on the RoBERTa-large model across different
fine-tuning methods that is shown in Figure 4. For the accuracy of MeZO and 32-bit Adam, we
directly report the results from Malladi et al. (2023).

D.2 INVESTIGATION ON THE HYPER-PARAMETERS OF ADDAX

In this section, we explore the interplay between hyper-parameters, specifically reporting on the
accuracy of both 32-bit and 16-bit Addax across various tasks utilizing the RoBERTa-large model
in different combinations of hyper-parameters. We include the combinations of α and K1

K0+K1 for
32-bit and 16-bit Addax in Figure 5 and Figure 6. Generally, it is observed that an increase in
the ratio K1

K0+K1 correlates with improved accuracy across tasks for both 16-bit and 32-bit Addax
configurations, as evidence by the top row of the heatmaps for each task in Figure 5 and Figure 6.
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Table 6: Experiments on RoBERTa-large (350M parameters). 16-bit Addax and 32-bit Addax out-
perform zero-shot and MeZO across the board on 6 tasks, while surpass Adam in four out six tasks.
All experiements use prompts (Appendix C.2). For the accuracy of MeZO and 32-bit Adam, we
report the results from Malladi et al. (2023).

Task SST-2 SST-5 SNLI MNLI RTE TREC
Type sentiment natural language inference topic

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0

Samples per classes: k = 16

MeZO 90.5 45.5 68.5 58.7 64.0 76.9
32-bit Addax 90.6 49.1 79.3 69.9 64.6 89.6
16-bit Addax 91.4 50.4 79.3 68.2 67.2 90.8
32-bit Adam 91.9 47.5 77.5 70.0 66.4 85.0

We did not identify a consistent trend for α across different tasks for both 16-bit and 32-bit Addax,
suggesting that the optimal α could be task-specific.

D.3 OPT-13B EXPERIMENTS MAIN RESULTS

Table 1 reports the detailed numbers of the accuracy on the OPT-13B model across different fine-
tuning methods that is shown in Figure 2. Details on batch size for different algorithms are also
available in Table 1. For the accuracy of MeZO and 32-bit Adam, we report the results from Malladi
et al. (2023). We also report GPU memory consumption across tasks and different fine-tuning meth-
ods for the OPT-13B model in Figure 3, with exact number reported in Table 1. See Appendix C.5
for memory profiling details.

D.4 THE EFFECT OF DIFFERENT K1 ON THE PERFORMANCE OF 16-BIT ADDAX ON OPT-13B

This section examines the effects of adjusting first-order batch sizes, K1, on the performance of
16-bit Addax with the OPT-13B model. We vary K1 within the set {2, 4, 6, 8, 10, 12, 14, 16} while
maintaining K0 = 12. The results are summarized in Table 7. We evaluate the maximum accu-
racy 16-bit Addax can attain on different tasks using a single A100 GPU (80GB) with the OPT-13B
model. Notably, fine-tuning the OPT-13B model with Addax and a small first-order batch size K1

results in high accuracy. This indicates that the zeroth-order gradient estimate in Addax offers sta-
bility and acts as gradient regularization when K1 is small, thereby efficiently decreasing memory
consumption. In scenarios where memory constraints are not a concern, Addax can utilize a greater
number of first-order samples to improve performance. This reveals that Addax could offer a versa-
tile trade-off between resource availability and performance (See Figure 1).

D.5 THE EFFECT OF DIFFERENT BATCH SIZE ON THE PERFORMANCE OF 16-BIT SGD ON
OPT-13B

In this section, we demonstrate that, in general, larger batch sizes result in higher GPU memory
consumption as well as improved accuracy for fine-tuning the OPT-13B model with 16-bit SGD. We
evaluate the best accuracy that 16-bit SGD can achieve across different tasks under the constraints
of a single A100 GPU (80GB) on the OPT-13B model. We searched three different learning rates
η = {5e− 3, 1e− 2, 5e− 2} and evaluate the performance across different tasks using the different
batch size of {2, 4, 6, 8, 10, 12, 14, 16}. The results are presented in Table 8. It is observed that
for certain tasks, fine-tuning experiments with larger batch sizes encounter CUDA out of memory
errors.

D.6 CONVERGENCE SPEED OF DIFFERENT TUNING METHODS ON THE OPT-13B MODEL

In this section, we demonstrate that 16-bit Addax reaches a convergence speed comparable to 16-bit
SGD, despite SGD using 4×more first-order samples for backward propagation. Meanwhile, Addax

2We fix K0 = 6 and use two A100 GPUs for this dataset.
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Figure 5: The accuracy (%) of the 32-bit Addax across different tasks on the RoBERTa-large model,
with variable combinations of α and K1

K1+K0 .

requires only 1.04 to 2.1× more memory compared to MeZO. The comparison of convergence
speeds across the three methods is illustrated in Figure 7. For MeZO and SGD, the batch size is
set to 16, while for Addax, we configure (K1,K0) as (4, 12). The learning rate for Addax is set at
η = 1e − 4. For SGD, the learning rates are η = {5e − 3, 1e − 2, 5e − 2}. For MeZO, we utilize
learning rates of η = {1e− 6, 1e− 7}. We select the hyper-parameters that yield the best validation
accuracy across three methods. We utilize a single A100 GPU (80GB total) for running both Addax
and MeZO, whereas SGD requires two A100 GPUs (160GB total). MeZO requires significantly
more steps (20K steps) to converge compared to Addax and SGD (1K steps). Addax with smaller
first-order batch size K1 = 4 achieves a convergence speed similar to SGD with a batch size of 16,
despite requiring significantly less memory.

2Running 16-bit SGD in task BoolQ with batch size of 16 will encounter CUDA out of memory error. We
report the training loss of 16-bit SGD with batch size of 4 here.

15



Published as a conference paper at ICLR 2024

B
es

t
α

84.4 89.6 90.7 89.1 91.4

0.1 0.2 0.3 0.4 0.5
K1

K0+K1

0.0003

0.001

0.003

0.004

0.005

0.007

0.01

0.1

α

83.6 88.5 88.5 87.7 90.0

82.8 87.6 89.2 89.0 90.5

83.1 88.9 89.1 87.5 90.7

84.4 88.8 89.8 87.7 90.7

80.5 88.5 89.3 87.8 90.8

83.0 89.0 89.9 88.6 90.6

82.0 88.2 89.1 89.0 90.9

83.3 89.6 90.7 89.1 91.4

82.5

85.0

87.5

90.0

A
cc

u
ra

cy
(%

)

(a) Task: SST-2

B
es

t
α

41.3 41.8 50.4 48.1 48.2

0.1 0.2 0.3 0.4 0.5
K1

K0+K1

0.0003

0.001

0.003

0.004

0.005

0.007

0.01

0.1

α

38.5 37.4 50.4 46.2 46.2

32.1 41.8 39.8 48.1 44.0

32.2 33.3 43.6 34.0 46.1

29.0 41.1 47.1 33.8 46.2

41.3 39.5 46.4 47.6 48.2

31.4 27.6 44.9 42.2 47.5

36.9 27.6 41.8 47.2 45.9

36.1 33.8 43.0 45.0 44.0 30

35

40

45

50

A
cc

u
ra

cy
(%

)

(b) Task: SST-5

B
es

t
α

79.3 74.9 76.3 78.2 76.7

0.1 0.2 0.3 0.4 0.5
K1

K0+K1

0.0003

0.001

0.003

0.004

0.005

0.007

0.01

0.1

α

44.3 73.3 74.5 78.0 72.6

73.9 74.1 75.9 78.2 75.5

57.4 74.9 76.3 68.1 75.6

67.8 73.2 74.9 77.8 76.1

79.3 71.4 75.6 76.1 76.7

44.3 73.7 71.8 76.1 74.4

76.7 72.4 72.8 77.7 75.7

74.2 69.5 75.3 75.7 75.0

50

60

70
A

cc
u

ra
cy

(%
)

(c) Task: SNLI

B
es

t
α

61.7 66.9 66.1 67.7 68.2

0.1 0.2 0.3 0.4 0.5
K1

K0+K1

0.0003

0.001

0.003

0.004

0.005

0.007

0.01

0.1

α

47.7 61.8 63.5 66.9 65.8

49.8 66.0 60.5 66.3 62.1

61.7 63.8 65.9 63.9 68.2

58.3 65.6 66.1 66.7 61.8

55.8 64.9 65.4 67.4 65.8

48.4 66.1 65.7 67.7 65.1

57.6 66.9 65.8 65.0 66.2

61.0 64.3 65.5 66.9 66.6
50

55

60

65

A
cc

u
ra

cy
(%

)

(d) Task: MNLI

B
es

t
α

67.1 65.7 66.8 66.8 66.4

0.1 0.2 0.3 0.4 0.5
K1

K0+K1

0.0003

0.001

0.003

0.004

0.005

0.007

0.01

0.1

α

64.3 65.7 63.9 62.8 66.1

62.1 61.7 64.6 63.2 63.5

62.5 61.0 65.3 66.8 66.4

67.1 63.5 62.8 66.1 60.6

62.8 65.3 63.2 63.9 63.9

63.9 65.3 61.4 62.8 66.1

57.8 58.1 62.1 60.3 65.0

63.2 61.4 66.8 64.6 65.7
58

60

62

64

66

A
cc

u
ra

cy
(%

)

(e) Task: RTE

B
es

t
α

71.0 86.6 89.0 90.8 89.0

0.1 0.2 0.3 0.4 0.5
K1

K0+K1

0.0003

0.001

0.003

0.004

0.005

0.007

0.01

0.1

α

31.0 86.6 89.0 82.8 84.0

39.2 56.4 56.2 58.4 76.0

47.2 80.0 66.6 68.8 83.8

71.0 40.8 77.4 83.8 84.0

35.4 67.4 82.8 52.0 79.6

69.2 31.4 82.2 79.4 75.0

37.8 29.8 86.8 82.8 84.6

27.6 84.0 75.0 90.8 89.0

40

60

80

A
cc

u
ra

cy
(%

)

(f) Task: TREC

Figure 6: The accuracy (%) of the 16-bit Addax across different tasks on the RoBERTa-large model,
with variable combinations of α and K1

K1+K0 .

E PROOF OF THEOREM 3.1

Assumption E.1. L(θ;x) is L-Lipschitz smooth, i.e.,

∥∇L(θ;x)−∇L(θ′;x)∥ ≤ L ∥θ − θ′∥ , ∀θ,θ′ ∈ Rd, x ∈ D.
Assumption E.2. The stochastic gradient is unbiased and has bounded variance, i.e.,

Ex[∇L(θ;x)] = ∇L(θ),Ex[∥L(θ;x)− L(θ)∥2] ≤ σ2, ∀θ ∈ Rd.

Lemma E.3 (Gao et al., 2014, Lemma 4.1 (b)). Suppose Assumption E.1 holds, then the expected
gradient estimated with SPSA is a biased estimation of∇L(θ) and satisfies∥∥∥EB[∇̂L(θ;B)]−∇L(θ)

∥∥∥2 ≤ ϵ2L2d2

4
.
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Table 7: Fine-tuning results of 16-bit Addax using one A100 (80GB) with different K1 on different
tasks with the OPT-13B model. We fix K0 of 16-bit Addax at 12. * means the fine-tuning task
encounters CUDA out of memory error.

Task Metric Values

K1 2 4 6 8 10 12 14 16
SST-2 GPU Memory (MB) 28617 29341 30985 32493 34207 36175 38799 40645

Accuracy (%) 93.4 95.1 94.5 94.6 94.9 94.6 94.5 95.0

RTE GPU Memory (MB) 35285 45117 53969 63663 73481 * * *
Accuracy (%) 79.2 85.2 84.8 85.2 84.5 * * *

CB GPU Memory (MB) 37757 53407 69671 79521 * * * *
Accuracy (%) 89.3 92.9 92.9 89.3 * * * *

BoolQ GPU Memory (MB) 45937 71171 * * * * * *
Accuracy (%) 81.6 83.0 * * * * * *

WSC GPU Memory (MB) 29391 30251 32415 34919 37269 38737 41009 43085
Accuracy (%) 63.5 63.5 63.5 63.5 64.4 63.5 63.5 55.5

WIC GPU Memory (MB) 28885 30253 32493 34789 37929 40551 42739 46871
Accuracy (%) 67.4 66.5 68.7 70.7 68.3 69.0 70.5 68.0

MultiRC GPU Memory (MB) 72885 * * * * * * *
Accuracy (%) 77.0 * * * * * * *

COPA GPU Memory (MB) 28411 28615 28597 28849 28811 28835 29003 28803
Accuracy (%) 89.0 90.0 90.0 91.0 91.0 90.0 90.0 91.0

ReCoRD GPU Memory (MB) 35823 46777 57567 70199 79527 * * *
Accuracy (%) 81.1 81.9 81.7 82.1 81.5 * * *

SQuAD GPU Memory (MB) 51131 78981 * * * * * *
F1 (%) 89.3 89.0 * * * * * *

DROP2 GPU Memory (MB) 158180 * * * * * * *
F1 (%) 34.7 * * * * * * *
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Figure 7: Convergence speed of three fine-tuning methods (16-bit Addax, MeZO, and 16-bit SGD)
on two fine-tuning datasets with the OPT-13B model. We set the batch size to 16 for MeZO and SGD
and fix (K1,K0) = (4, 12) for Addax. We utilize a single A100 GPU (80GB total) for running both
Addax and MeZO, whereas SGD requires two A100 GPUs (160 GB total) to run with BS = 16.
MeZO requires significantly more steps to converge compared to Addax and SGD. Addax with 4×
less first-order samples achieves a convergence speed similar to SGD, despite requiring significantly
less memory.

Lemma E.4. Suppose Assumption E.1 holds, then the variance of the gradient estimated with SPSA
satisfies

Var(∇̂L(θ;B)) = EB

[∥∥∥EB[∇̂L(θ;B)]− ∇̂L(θ;B)
∥∥∥2] ≤ d

K
σ2.
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Table 8: Fine-tuning results of 16-bit SGD using one A100 (80GB) with different batch size on dif-
ferent tasks with the OPT-13B model. We can see that in general SGD achieves better performance
with more memory and larger batch size. * means the fine-tuning task encounters CUDA out of
memory error.

Task Metric Batch Size

Batch Size (BS) 2 4 6 8 10 12 14 16
SST-2 GPU Memory (MB) 51427 52113 52859 53115 53703 54671 54409 55771

Accuracy (%) 93.5 93.5 94.8 94.6 94.4 94.7 94.2 94.2

RTE GPU Memory (MB) 53901 62799 69189 79055 72389 * * *
Accuracy (%) 79.8 80.8 81.2 84.5 83.8 * * *

CB GPU Memory (MB) 56239 69359 77005 80595 * * * *
Accuracy (%) 91.0 89.3 92.8 92.8 * * * *

BoolQ GPU Memory (MB) 65387 70625 * * * * * *
Accuracy (%) 78.8 80.7 * * * * * *

WSC GPU Memory (MB) 52093 53391 54497 57211 58833 60719 62515 60413
Accuracy (%) 63.4 63.4 63.5 63.5 63.5 65.4 63.5 63.5

WIC GPU Memory (MB) 52297 53979 55689 58585 57185 58599 60513 61943
Accuracy (%) 60.5 64.9 67.5 63.3 66.6 68.5 68.0 67.5

MultiRC GPU Memory (MB) 79929 * * * * * * *
Accuracy (%) 76.4 * * * * * * *

COPA GPU Memory (MB) 51081 51367 51407 51885 52219 52615 52873 53157
Accuracy (%) 86.0 79.0 79.0 90.0 81.0 89.0 90.0 85.0

ReCoRD GPU Memory (MB) 55539 60063 69169 77007 79821 * * *
Accuracy (%) 80.6 81.4 79.3 78.5 79.0 * * *

SQuAD GPU Memory (MB) 60499 79275 * * * * * *
F1 (%) 87.7 89.4 * * * * * *

DROP GPU Memory (MB) 68964 * * * * * * *
F1 (%) 30.2 * * * * * * *

Theorem E.5. Under Assumptions E.1, E.2, by running Algorithm 1 for T iterations with ϵ ≤,
ηt ≤ η ≤, ∀t, the output satisfies

E[∥∇L(θt)∥2] ≤
4(L(θ0)− L⋆)

ηT (2− α)

+
α(1 + α− α2/2)ϵ2L2d2

2(2− α)
+

4ηL

(2− α)

(
(1− α)2

2K1
+

α2d

2K0

)
σ2.

(2)

Proof: By Assumption E.1:

Et[L(θt+1)] ≤ L(θt) + Et[⟨∇L(θt),θt+1 − θt⟩] +
L

2
Et[∥θt+1 − θt∥2]

(a)
= L(θt)− ηt

〈
∇L(θt), (1− α)∇L(θt) + αEB0 [∇̂L(θt;B0)]

〉
+

Lη2t
2

∥∥∥(1− α)∇L(θt) + αEB0 [∇̂L(θt;B0)]
∥∥∥2

+
Lη2t (1− α)2

2
EB1 [

∥∥∇L(θt)−∇L(θt;B1)∥∥2] + Lη2tα
2

2
Var(∇̂L(θt;B0))

(b)

≤ L(θt)− (1− α)ηt ∥∇L(θt)∥2 − αηt

〈
∇L(θt),EB0 [∇̂L(θt;B0)]

〉
+

Lη2t
2

∥∥∥(1− α)∇L(θt) + αEB0 [∇̂L(θt;B0)]
∥∥∥2

+
Lη2t (1− α)2

2K1
σ2 +

Lη2tα
2d

2K0
σ2,

(3)
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where (a) substitutes the update of θ and takes expectations to g0, g1;(b) follows from the
Lemma E.4. The third term on the Right-Hand-Side (RHS) can be further bounded as

− αηt

〈
∇L(θt),EB0 [∇̂L(θt;B0)]

〉
(a)
= −αηt

2
∥∇L(θt)∥2 −

αηt
2

∥∥∥EB0 [∇̂L(θt;B0)]
∥∥∥2 + αηt

2

∥∥∥∇L(θt)− EB0 [∇̂L(θt;B0)]
∥∥∥2

(b)

≤ −αηt
2
∥∇L(θt)∥2 −

αηt
2

∥∥∥EB0 [∇̂L(θt;B0)]
∥∥∥2 + αηtϵ

2L2d2

8
,

(4)

where (a) uses the fact that ∥u+ v∥2 = ∥u∥2 + ∥v∥2 +2 ⟨u,v⟩; (b) applies Lemma E.3 to the last
term. The fourth term on the RHS of equation 3 can be bounded as

Lη2t
2

∥∥∥(1− α)∇L(θt) + αEB0 [∇̂L(θt;B0)]
∥∥∥2

=
Lη2t
2

∥∥∥∇L(θt) + α
(
EB0 [∇̂L(θt;B0)]−∇L(θt)

)∥∥∥2
(a)

≤ Lη2t ∥∇L(θt)∥
2
+ α2Lη2t

∥∥∥(EB0 [∇̂L(θt;B0)]−∇L(θt)
)∥∥∥2

(b)

≤ Lη2t ∥∇L(θt)∥
2
+

α2η2t ϵ
2L3d2

4
,

(5)

where (a) applies Cauchy-Schwarz inequality; (b) applies Lemma E.3 to the last term. Substitute
equation 4, equation 5 back to equation 3, we have

Et[L(θt+1)] ≤ L(θt)− (1− α

2
− Lηt)ηt ∥∇L(θt)∥2 −

αηt
2

∥∥∥EB0 [∇̂L(θt;B0)]
∥∥∥2

+
αηtϵ

2L2d2(1 + 2αηtL)

8
+

Lη2t (1− α)2

2K1
σ2 +

Lη2tα
2

2
σ0.

(6)

Choose ηt ≤ 2−α
4L , we have 1− α

2 − Lηt ≥ 2−α
4 > 0, 1 + 2αηtL ≤ 1 + α− α2

2 and
(2− α)ηt

4
∥∇L(θt)∥2 +

αηt
2

∥∥∥EB0 [∇̂L(θt;B0)]
∥∥∥2 ≤ L(θt)− Et[L(θt+1)]

+
αηtϵ

2L2d2(1 + α− α2/2)

8
+

Lη2t (1− α)2

2K1
σ2 +

Lη2tα
2

2
σ0.

(7)

Sum from t = 0 to T , we have
T∑

t=0

(
(2− α)ηt

4
E[∥∇L(θt)∥2] +

αηt
2

E
[∥∥∥EB0 [∇̂L(θt;B0)]

∥∥∥2]) ≤ L(θ0)− E[L(θT+1)]

+

T∑
t=0

ηt ·
α(1 + α− α2/2)ϵ2L2d2

8
+

T∑
t=0

η2t ·
(
L(1− α)2

2K1
σ2 +

Lα2d

2K0
σ2

)
.

(8)

Choose ηt = η ≤ 2−α
4L , ∀t, and divide both side by (2−α)ηT

4 , we have

E[∥∇L(θt)∥2] +
2α

2− α
E
[∥∥∥EB0 [∇̂L(θt;B0)]

∥∥∥2] ≤ 4(L(θ0)− L⋆)

ηT (2− α)

+
α(1 + α− α2/2)ϵ2L2d2

2(2− α)
+

4ηL

(2− α)

(
(1− α)2

2K1
+

α2d

2K0

)
σ2,

(9)

which completes the proof.

Corollary E.6. By choosing η = min

{
2−α
4L ,

√
2(L(θ0)−L⋆)

TLσ2
(

(1−α)2

K1 +α2d
K0

)
}

and

ϵ ≤

(
2L(θ0)− L⋆)σ

2
(
(1− α)2/K1 + α2d/K0

)
T

)1/4

· 1

L3/4d
√

α(1 + α− α2/2)
,
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Figure 8: An illustration for the memory-convergence trade-off of Addax. The x-axis represents the
expected gradient size after a fixed number of iterations.

Algorithm 1 converges with rate

E[∥∇L(θt)∥2] ≤ 5
√
2L ·

√
(1−α)2

K1 + α2d
K0

2− α
· σ
√
L(θ0)− L⋆

T

= O

(
1√
T
·
√

(1− α)2

K1
+

α2d

K0

)

Remark 1. [Trade-off between convergence and memory] We obtain a trade-off between the conver-
gence speed and the memory cost of Algorithm 1 as follows: For a model with parameters θ ∈ Rd,
the memory cost for estimating a zeroth-order gradient on one sample with SPSA is ≈ d, and for
estimating a first-order gradient on one sample is≈ 2d. Then we have the following trade-off shown
in Figure 8
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