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Abstract

In this paper, we consider the problem of non-linear dimensionality reduction under uncer-
tainty, both from theoretical and algorithmic perspectives. Since real-world data usually
contain measurements with uncertainties and artifacts, the input space in the proposed
framework consists of probability distributions to model the uncertainties associated with
each sample. We propose a new dimensionality reduction framework, called Non-linear
Graph Embedding with Data Uncertainty (NGEU), which leverages uncertainty informa-
tion and extends the Graph Embedding (GE) framework. It can be used to extend several
traditional approaches, such as KPCA, and MDA/KMFA, encapsulated in the GE frame-
work to take as inputs the probability distributions instead of the original data. We show
that the proposed NGEU formulation exhibits a global closed-form solution, and we analyze,
based on the Rademacher complexity, how the underlying uncertainties theoretically affect
the generalization ability of the framework. Empirical results on different datasets show the
effectiveness of the proposed framework.

1 Introduction

Uncertainty refers to situations including imperfect or unknown data (Li et al., 2012; Ovadia et al., 2019).
Data are usually obtained through sensors, e.g., camera, accelerometer, or microphone, and, thus, can be
exposed to measurement inaccuracies and noise. Although total elimination of uncertainty is impractical,
modeling and attenuating the effect of noise and uncertainty is critical for trust-worthy applications, such as
decision-making systems. In particular, a robust machine learning method needs to take into consideration
this type of partly inaccurate data and exhibit some degree of robustness with respect to such errors.

Recently, modeling of uncertainty has gained attention in machine learning community in general (Kirsch
et al., 2019; Zhang et al., 2019; Bhadra et al., 2010) and in dimensionality reduction (DR) in particular (Gao
et al., 2018; Saeidi et al., 2015; Gajamannage et al., 2019; Laakom et al., 2022). Various DR techniques have
been proposed which consider data uncertainty and inaccuracies (Wang et al., 2015a; Li et al., 2020; Gerber
et al., 2007; Lourenço et al., 2017). We note two main approaches for dealing with uncertainty in DR. In
the first one, called sample-wise uncertainty, the unreliability is assumed to occur at the sample level. The
key hypothesis of these approaches is: ’Some available samples are out-of-distribution and are more likely to
be outliers’. Thus, they need to be discarded and not used to learn the low-dimensional embedding (Pham,
2018). Various DR methods have been extended based on this assumption, for examples the approaches in
(Kong & Ding, 2014; Luo et al., 2011; Chumachenko et al., 2021) for Linear Discriminant Analysis (LDA)
(Schalkoff, 2007) and the approaches in (Nie et al., 2014; Zhang et al., 2015; Wang et al., 2015b; Park &
Choi, 2009) for Principal Component Analysis (PCA) (Wold et al., 1987).

In the second type of exploiting uncertainty, called feature-wise uncertainty, the unreliability is assumed
on the feature level. The main hypothesis of this paradigm is that certain data features are corrupted by
noise (Saeidi et al., 2015). In (Laakom et al., 2022), several traditional linear DR techniques, e.g., LDA and
Marginal Fisher Analysis (MFA), were extended to consider uncertainty. However, the main drawback of
that approach is that uncertainty modeling is restricted to the Gaussian case, which is impractical for many
applications. Moreover, it is unable to model nonlinear patterns in the input data and considers only linear
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Figure 1: 2-D Illustrative comparison of the input space for (a) conventional dimensionality reduction meth-
ods and (b) our framework in the presence of the uncertainty information. Blue circles denote the conven-
tional samples. Blue curves model the input data in our framework, i.e., normal distributions in this case.

data projections, whereas in the case of non-linearly distributed data, a meaningful embedding cannot be
achieved by a linear projection.

We propose NGEU, a novel framework for non-linear dimensionality reduction. It is designed as an extension
of GE and leverages the available input data uncertainty information. As illustrated in Figure 1, we view
our samples as probability distributions modeling the inaccuracies and uncertainties of the data, i.e., each
data point has a corresponding distribution modeling the uncertainty of its features. Furthermore, unlike
(Laakom et al., 2022), NGEU is not restricted to Gaussian noise and is suitable to learn from a wide range of
distributions1. This allows for a more flexible modeling of the uncertainty in the input space. The proposed
framework can be used to derive robust extensions of DR methods formulated with the kernelization of the
original GE framework (Yan et al., 2007), including Kernel Principal Component Analysis (KPCA), Kernel
Discriminant Analysis (KDA), and Kernel Marginal Fisher Analysis (KMFA). While it has been shown
empirically that leveraging the uncertainty information via distributional data in dimensionality reduction
setup improves the robustness of the model (Laakom et al., 2022), no theoretical guarantees have been
provided yet. To bridge this gap, in this paper, we theoretically analyze how incorporating the uncertainty
information affects the generalization ability of the methods, based on the Rademacher complexity. We
show that considering uncertainty indeed yields more robust performance compared to the original GE-
based methods.

The main contributions of the paper can be summarized as follows:

• We propose a novel non-linear dimensionality reduction (DR) framework that considers uncertainties
in the input data.

• We reconstruct the Graph Embedding (GE) framework and provide a solution for leveraging data
uncertainties in several DR approaches framed under the kernel GE framework.

• We prove that our framework has one global optimum closed-form solution.

• Based on Rademacher complexity, we provide theoretical learning guarantees for our framework and
analyze the effect of uncertainty on the generalization ability of the DR methods.

2 A Review of Graph Embedding Framework for Dimensionality Reduction

Here, we describe the GE framework (Yan et al., 2007; Iosifidis et al., 2016) that exploits geometric data
relationships to learn a low-dimensional mapping of the samples. Different dimensionality reduction tech-
niques, including PCA, LDA, and MFA, can be formulated in this framework by using a specific setting of

1Our framework is able to incorporate any type distribution, for which equation 8 can be computed.
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two graphs, called intrinsic and penalty graphs, modeling the pairwise connection between the samples (Yan
et al., 2007; Miao et al., 2022; Gou et al., 2020; Örnek & Vural, 2019; Pan et al., 2009; Örnek & Vural, 2019).

Formally, let us consider the supervised DR problem and denote by {xi, ci}N
i=1 a set of D-dimensional vectors

xi ∈ RD and their corresponding class labels. We wish to learn a mapping that transforms each xi into
yi ∈ Rd, such that d < D. GE assumes that the training data form the vertex set V = {vi}N

i=1, where each
vertex vi corresponds to a sample xi. Pair-wise connections between the vertices are modeled by the edges
of two undirected graphs defined on V, i.e., the intrinsic graph G(V, E) modeling pair-wise data relationships
to be highlighted in the edge set E = {eij} and the penalty graph Gp(V, EP ) modeling pair-wise data
relationships to be suppressed in the edge set Ep = {ep

ij}. The strengths of the pair-wise vertex connections
in G and Gp are expressed by the graph weight matrices W ∈ RN×N and Wp ∈ RN×N , respectively. Using
W and Wp, the graph degree matrices D = diag(W1) and Dp = diag(Wp1) and the graph Laplacian
matrices L = D − W and Lp = Dp − Wp are defined, where 1 = [1, . . . , 1]T ∈ RN .

The 1-D mappings of {xi}N
i=1 are obtained through the graph preserving criterion expressed as follows:

y∗ = arg min
y

∑
i ̸=j

(yi − yj)2Wij ,

s.t. yT By = m, (1)

where B can model a graph constraint, e.g., B = I, or the graph Laplacian of the penalty graph, i.e., B = Lp,
m is a constant, yi is the 1-D mapping of xi, and y ∈ RN is a vector containing the mappings for all xi.

Linear case

The 1-dimensional mappings of the vertices can be obtained using a linear projection, i.e., y = XT p∗. The
objective function in (1) can be rewritten using the projection vector p∗ as follows:

p∗ = arg min
p

pT XLXT p,

s.t. pT XBXT p = m. (2)

The minimization problem in (2) is equivalent to the generalized eigenvalue decomposition problem(
XLXT

)
p = ρ

(
XBXT

)
p. (3)

The solution vector p∗ corresponds to the eigenvector with the minimal positive eigenvalue ρ. In the case
where d > 1, the solution P ∈ RD×d is constructed using the d eigenvectors with the smallest positive
eigenvalues.

Non-linear case

In the case of non-linearly distributed data, a meaningful embedding cannot be achieved by a linear pro-
jection. The kernel trick (Schölkopf, 2001; Hofmann, 2006) was employed to extend GE to nonlinear cases.
Let us denote by ϕ : x ↪→ F a mapping transforming x to a higher-dimensional Hilbert space F and by
Φ = [ϕ(x1), . . . , ϕ(xN )] the matrix containing the representations of the entire data set in F . Subsequently,
the data in F is linearly mapped to the final 1-D representation as y = ΦT p∗. Using the Representer
theorem (Dinuzzo & Schölkopf, 2012), the solution p∗ is expressed as a linear sum of the samples in F ,
i.e., p∗ =

∑
j αjϕ(xj) = Φα∗, where α∗ = [α1, . . . , αN ]T . The final representation can be now given as

y = ΦT p∗ = ΦT Φα∗ = KT α∗, where K is the so-called kernel matrix, whose element Kij computes the
inner product of a data pair Kij = ϕ(xi)T ϕ(xj). The kernel trick allows formulating many methods using
the kernel matrix K without the need of computing the possibly infinite-dimensional representations in Φ.
The main objective function in (1) can be now formulated as follows:

α∗ = arg min
α

αT KLKT α,

s.t. αT KLpKT α = m or αT Kα = m, (4)
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which is equivalent to (
KLKT

)
α = ρ

(
KBKT

)
α, (5)

where B is equal to KLpKT or K. As in the linear case, the projection vector α∗ corresponds to the
eigenvector with the minimal positive eigenvalue ρ and for d > 1, the solution A ∈ RN×d is constructed
using the d eigenvectors with the smallest positive eigenvalues.

3 Kernel Mean Embedding

In this section, we introduce Kernel Mean Embedding (KME) (Muandet et al., 2017; Hsu et al., 2018),
because it will be used within our method. KME extends the classical kernel approach to probability
distributions. Specifically, choosing a kernel implies an implicit feature map ϕ that represents a probability
distribution P as a mean function. Let H denote the reproducing kernel Hilbert space (RKHS) of real-valued
functions f : χ ↪→ R with the reproducing kernel k : χ × χ ↪→ R. The kernel mean map µ : Bχ ↪→ H is
defined as

µ(P) : P ↪→
∫

χ

k(x, ·) dP(x) =
∫

χ

ϕ(x) dP(x). (6)

For any P ∈ Bχ, the following reproducing property holds

EP[f ] =< µ(P), f >H=
∫

f(x)dP(x), (7)

where f is a function in H and < ·, · >H denotes the inner product in H. Thus, we can see µ(P) as the
feature map associated with the kernel K : Bχ × Bχ ↪→ R, which can be defined as follows:

K(P,Q) =< µ(P), µ(Q) >H=
∫ ∫

k(x, z)dP(x)dQ(z). (8)

k(·, ·) is usually referred to as first level kernel and K(·, ·) as second level kernel. Equation (8) implies that
the explicit expression of µ(·) is not needed but only the inner products. This property resembles the kernel
trick in the original GE.

KME has been applied successfully in two-sample testing (Gretton et al., 2012; 2009), graphical models (Song
et al., 2011), and probabilistic inference (Muandet et al., 2016; Hsu & Ramos, 2019). Recently, learning
from distributions in general and KME in particular has drawn a lot of attention in the machine learning
community. In (Muandet et al., 2012), KME was used to extend Support Vector Machine (SVM) by making
it suitable for learning from distributions. In (Kim & Park, 2018), it was used to develop a kernelization
of the classical imitation algorithm proposed in (Abbeel & Ng, 2004). In (Muandet & Schölkopf, 2013),
an anomaly detection technique based on Support Measure Machine, which uses KME, was proposed. In
(Muandet et al., 2013), a kernel-based domain generalization method was proposed. In general, KME can
be seen as a kernelization technique defined on a distribution space. In the next section, we propose using
KME for learning non-linear data embeddings under uncertainty.

4 Non-linear Graph Embedding with Data Uncertainty

In this section, we present our proposed Non-linear Graph Embedding with Data Uncertainty (NGEU),
a framework for non-linear DR designed as an extension of GE to find low-dimensional manifolds in the
presence of data uncertainties. In the NGEU learning paradigm, we assume that the uncertainty of each
data point is modeled with a probability distribution. Formally, let {Pi}N

i=1 be our input data. Inspired by
the GE formulation, we assume that the training data form a vertex set V = {vi}N

i=1, where each vertex vi

corresponds to a sample Pi. Based on the pair-wise connections between the vertices, we can now define
both the intrinsic and the penalty graphs, as illustrated in Figure 2. The main goal of the non-linear DR
approaches is to obtain the mappings of the vertices V that best ’conserve’ the relationships between the
vertex pairs. However, as our input space consists of probability distributions, using the kernel trick to learn
the non-linear projections directly is not possible. To overcome this limitation, we propose to rely on the
KME, which extends the kernel mapping to the distribution space.
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Figure 2: An illustration of the adjacency (or penalty) graph of a dataset composed of six distribution
samples Pi. Each distribution (data point) represents a vertex in the graph and is connected to the other
vertices via the edges of the adjacency (or penalty) graph.

4.1 Formulation of NGEU Objective

Using KME, we can formulate the general objective of NGEU. With each input data distribution Pi, we
also associate its class label ci and its feature mean representation µ(Pi) in the RKHS space H calculated
using (6). The graph preserving criterion equation 1 now becomes equivalent to

f∗ =arg min
f

∑
i ̸=j

(EPi [f ] − EPj [f ])2Wij

=arg min
f

∑
i ̸=j

(< µ(Pi), f >H − < µ(Pj), f >H)2Wij ,

s.t. U = m, (9)

where U = EP[f ]T BEP[f ], EP[f ] = [EP1 [f ], . . . ,EPN
[f ]]T , and B expresses a constraint or a penalty graph as

in equation 1.

Theorem 1. (Muandet et al., 2012) Given training examples (Pk, ck) ∈ Bχ × R, k = 1, .., N, any function
f minimizing the function defined in equation 9 admits a representation of the form f =

∑
k αkµ(Pk) for

some αk ∈ R, k = 1, .., N .

Theorem 1 corresponds to the Representer theorem for our graph preserving criterion. It indicates how each
input uncertainty, i.e., Pi, contributes to the global solution of equation 9. Furthermore, it guarantees that
there is always a solution in the linear span of the data points and simplifies the problem search space to
a finite dimensional subspace of the original function space which is often infinite dimensional. Thus, our
criterion becomes computationally tractable.

Theorem 2. The graph preserving criterion of NGEU is equivalent to

α∗ = arg min
α

αT KLKT α,

s.t. αT KLpKT α = m or αT Kα = m, (10)

where K, L, Lp are the kernel matrix, the Laplacian of the intrinsic graph, and the Laplacian of the penalty
graph, respectively.

Proof. Using Theorem 1, the mapping f can be obtained as a linear combination of data in H, i.e., f =∑
i αiµ(Pi). By defining α = [α1, .., αN ]T , K as the kernel matrix associated with µ(Pi), i.e. Kij =
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K(Pi,Pj) = < µ(Pi), µ(Pj) >H, and Ki its ith column, the feature representation EPi
[f ] can be rewritten as

EPi
[f ] =< µ(Pi), f >H=< µ(Pi),

∑
k

αkµ(Pk) >H

=
∑

k

αk < µ(Pi), µ(Pk) >H=
∑

k

αkK(Pi,Pk) = αT Ki. (11)

Since the optimization problem of the proposed framework takes the form in (10), it has one global optimal
solution. In fact, the solution of the optimization problem (10) can be obtained by solving the corresponding
generalized eigenvalue decomposition problem (5). However, it should be noted here that the solution to
kernel GE is different than the solution of NGEU, because the elements of the kernel matrix K are computed
based on the probability distributions, whereas in GE they are obtained based on the discrete input data.
Interestingly, the feature map µ(P) is linear in P, whereas in the standard kernel variant GE, ϕ(x) is usually
non-linear in x.

It should also be noted that the NGEU framework relies on KME and, as a result, each input distribution
P is mapped to a point, µ(P) ∈ H, whereas in (Laakom et al., 2022) each input distribution is mapped
to a Gaussian distribution. This yields a different embedding even for NGEU with a linear kernel. In
fact, using equation 8, the elements of the linear kernel matrix K can be computed as Kij = K(Pi,Pj) =
µT

i µj + δij Tr(Var(Pi)) for any arbitrary distributions Pi and Pj , where δij is the Kronecker delta function
equal to one if i is equal to j and zero otherwise. Compared to GE, we note that by incorporating uncertainty
the graph preserving criterion of NGEU with the linear kernel yields a diagonal regularisation of the kernel
matrix of GE. In the extreme case, i.e., using a Dirac distributions for each sample, NGEU becomes
equivalent to the original GE.
Theorem 3. Given training samples (Pi, ci) ∈ Bχ×R, i = 1, .., N , where Pi can be any arbitrary distribution
other than Dirac distribution, modeling the uncertainty of the ith sample, the matrices involved in the objective
function equation 10 with the linear kernel, i.e., matrices KLKT and KLpKT , have equal or higher rank
than those of the GE (Equation (4)).

The proof is available in the Appendix. The minimization in (4) of GE is an ill-posed problem in the case
of the linear kernel matrix, as it is only positive semi-definite and not positive definite. Theorem 3 implies
that for NGEU, the data uncertainty acts as a regularizer and increases the rank of the matrices. Thus, the
use of uncertainty under the proposed framework provides a data-driven mechanism to regularize the scatter
matrices of the graphs and increase their ranks. This yields more relevant projection dimensions compared
to the original DR methods.

The proposed NGEU framework can also be interpreted as a kernelization of (Laakom et al., 2022) using
the kernel mean embedding. This makes NGEU suitable to capture meaningful manifolds of non-linearly
distributed data in the presence of uncertainty. As explained above, one key limitation of (Laakom et al.,
2022) is the assumption that the input data uncertainty is modeled by a Gaussian distribution. If this
constraint is violated, the graph preserving criterion cannot be expressed in terms of the original input data.
In NGEU, this constraint is removed and the graph preserving criterion can be characterized for any type of
distribution P as long as K(Pi,Pj) can be computed. As a result, NGEU provides more flexible modeling of
the input uncertainty compared to (Laakom et al., 2022) for the different problems raised in the literature.

Note that in this paper, we do not advocate for any particular DR approach. In fact, the proposed framework
NGEU, as an extension of general GE, can be used to extend several traditional non-linear DR methods,
such as KPCA and KMFA, to incorporate data uncertainty.

4.2 Learning Guarantees for NGEU

In this section, we analyze how the uncertainty information theoretically affects the generalization ability of
the methods and study the generalization performance of the proposed framework NGEU. Several techniques
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have been proposed to study the generalization of different approaches (Mohri et al., 2015; Cortes et al.,
2013; Mosci et al., 2007). In this work, we rely on the Rademacher complexity, which is defined as follows:
Definition 1. (Bartlett & Mendelson, 2002) Let S be a dataset formed by N samples {xi}N

i=1 from a dis-
tribution Q. Let F be the hypothesis class, i.e., F : X → R. Then, the empirical Rademacher complexity
RS(F) of F is defined as follows

RS(F) = Eσ

[
sup
g∈F

1
N

N∑
i=1

σig(xi)
]
,

where σ = {σ1, · · · , σN } are independent uniform random variables in {−1, 1}.

The Rademacher complexity is a data-dependent learning theoretic notion that is used to measure the
richness of a hypothesis class. It is used as a proxy of generalization (Mohri et al., 2015; Gottlieb et al., 2016;
Von Luxburg & Schölkopf, 2011), i.e., it quantifies the difference between the train and test error. In this
work, we want to to understand the effect of uncertainty on the generalization ability of the models. To this
end, we start by comparing the Rademacher complexity of the solutions of NGEU and GE in the presence
of noise in the dataset:
Theorem 4. Given training samples S = {(Pk, ck) ∈ Bχ × R, k = 1, .., N}, the associated hypothesis set of
the solution of NGEU, i.e., equation 10, has the form FNGEU = {P →< w, µ(P) >}. The corresponding
Rademacher complexity of NGEU is upper-bounded as follows:

RS(FNGEU ) ≤ ES∼S
[
RS(FGE)

]
, (12)

where S ∼ S refers to S = (x1, · · · , xN ) ∼ (P1, · · · ,PN ), FGE = {x →< w, ϕ(x) >} is the associated
hypothesis set of the solution of GE, i.e., (4), and RS(FGE) is the Rademacher complexity of FGE.

The proof is available in the Appendix. Theorem 4 states that in the presence of noise the Rademacher
complexity of NGEU is less than the expectation over the sample distributions of the Rademacher of the
hypothesis class of corresponding GE. So if the noise is accurately estimated, taking it into account in the
solution as in NGEU reduces the Rademacher complexity of the hypothesis class of the methods. Moreover,
as lower Rademacher complexity is associated with lower generalization error (Gottlieb et al., 2016; Mohri
et al., 2015), Theorem 4 shows that incorporating the uncertainty information yields better generalization
performance compared to GE. We note also that in the extreme case, when the sample distributions are
Dirac distributions around the original measurements, i.e., Pi = Dirac(xi) for every i ∈ 1..N , both terms of
the inequality in Theorem 4 become equal and our framework becomes equivalent to GE.

The Rademacher complexities of classical kernel-based hypotheses defined over a discrete input space are
typically upper-bounded using the trace of the associated kernel and the norm of the projection vector
(Cortes et al., 2013; Gottlieb et al., 2016). Theorem 5 extends this classic bound to the distribution space
and shows that the bound remains valid for the distribution input space of NGEU. We show that the empirical
Rademacher complexity of NGEU with bounded norm, i.e., with the form F = {P →< w, µ(P) >, ||w|| < A}
can be bounded using the trace of the kernel matrix.
Theorem 5. Given training samples S = {(Pk, ck) ∈ Bχ × R, k = 1, .., N} and a kernel K : P × P ↪→ R
associated with the feature map µ(P), the Rademacher complexity of the bounded hypothesis set of NGEU,
i.e., F = {P →< w, µ(P) >, ||w|| < A}, can be upper-bounded as follows:

RS(F) ≤ A

√
Tr(K)
N

, (13)

where Tr(·) is the trace operator and K is the kernel matrix in equation 10.

The proof is available in the Appendix. Theorem 5 bounds the the Rademacher complexity of the hypothesis
set of NGEU using the probabilities of self-similarities, i.e., Tr(K) =

∑
i K(µ(Pi), µ(Pi)). Moreover, it shows

that, under practical assumptions, providing more training data, larger N , yields lower complexity and,
hence, better generalization performance for NGEU. We also note that the upper-bound is fully data-
dependent and can be computed directly using the trace of the kernel matrix.
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Figure 3: Projection directions obtained by GE (red) and our NGEU (blue) using the graphs of LDA with
linear kernel (left) and the graphs of MFA (right) on a randomly generated synthetic 2-D data from two
classes (circle and triangle). The data contains three samples per class generated with respective uncertainty
shown as ellipses around each data point.

To better understand the effect of incorporating the uncertainty information, we derive the upper-bound in
Theorem 5 for the special case of NGEU with the linear kernel in Theorem 6.
Theorem 6. Let S = {(xk, ck) ∈ RD × R, k = 1, .., N} be a training dataset and let S = {(Pk, ck) ∈
Bχ × R, k = 1, .., N} be the dataset modeling the uncertainty of S so that each sample xk is modeled with a
distribution Pk with a mean E[Pk] = xk and a finite variance Σk modelling the uncertainty of the sample.
The Rademacher complexity of NGEU with linear kernel is bounded as follows:

RS(FNGEU ) ≤ A

N

√
Tr(KGE) + A

N

√∑
i

Tr(Σi) = RS(FGE) + A

N

√∑
i

Tr(Σi) (14)

where RS(FGE) is the Rademacher complexity of the original GE with training samples S.

Proof. By using equation 8, we have K(Pi,Pj) = µT
i µj + δij Tr(Σi) and the result is straightforward from

Theorem 5.

The upper-bound found in Theorem 6 is composed of two terms. The first term is the typical bound of the
kernel-based hypothesis and it does not depend on the uncertainty information, whereas the second term
depends on the samples’ variance. The more certain we are about the data, the smaller the second term is
and, thus, the bound is tighter. Intuitively, in the case of highly uncertain data, due to measurement errors
for example, it becomes harder to learn robust and meaningful projections and, thus, to generalize well. On
the other hand, in the extreme case where each sample is expressed by a Dirac distribution, i.e., there is no
uncertainty, the second term becomes zero and the bound is tighter.

5 Experiments and Analysis

5.1 Toy Example

We start our empirical analysis with a 2-D synthetic data binary problem to provide insights regarding how
the proposed framework works. We experiment with the variants of LDA and MFA for the standard GE
and their counterparts derived using our framework, i.e., NGEU, using the linear kernel. For illustration
purposes, we generate random Gaussian uncertainty for each sample. The input data, the uncertainty and
the methods’ outputs are presented in Figure 3.

As illustrated in the figure, incorporating uncertainty indeed shifts the projection directions and the outputs
generated by GE is different than those of our framework for both MFA and LDA. The standard GE does
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not consider the input noise information and, thus, it risks generating non-robust embedding of the data.
NGEU, on the other hand, leverages the additional information on the uncertainty, presented in the form of
distribution, to generate a more robust embedding of the data.

5.2 Image Classification

In this section, we evaluate the performance of the proposed framework on several image classification
tasks. We consider the three different DR approaches LDA, PCA, and MFA using the original Graph
Embedding (GE) (Yan et al., 2007), Graph Embedding with Data Uncertainty (GEU) (Laakom et al.,
2022), and our proposed framework Non-linear Graph Embedding with Data Uncertainty (NGEU). We
denote by LDA-GE, LDA-GEU, and LDA-NGEU the LDA variants formulated using GE, GEU, and our
framework, respectively. We denote the variants of PCA and MFA in a similar manner. For the uncertainty
estimation, we use the approach proposed in (Laakom et al., 2022), i.e., each input sample is modeled using
a normal distribution with a mean equal to the original data point and a variance based on its distance to
the nearest other data point. After the DR step, we apply a K-Nearest Neighbor classifier (k-NN) (Cover &
Hart, 1967) with k = 5. For comparative purposes, we also add the performance of a Neural Network with 1
intermediate layer of size 128 with ReLU activation (NN-1), Neural Network with 2 intermediate layer of size
128 with Relu activation (NN-2),SVM (Cortes & Vapnik, 1995), Decision Tree classifier (Myles et al., 2004),
Nearest Neighbor on the original data, and K-Nearest Neighbor applied after DR using Trimmed Robust
Principal Component Analysis (TRPCA) (Podosinnikova et al., 2014), Robust Sparse Linear Discriminant
Analysis (RSLDA) (Wen et al., 2018), and Fast Subclass Discriminant Analysis (fastSDA) (Chumachenko
et al., 2020; Chumachenko et al., 2021). For the neural network models, we train for 100 epoch using SGD
and weight decay of 1e−4.

To evaluate the performance of these methods, we use four standard classification datasets: COIL20, MNIST,
USPS, and ORL. COIL20 dataset is an image dataset containing images of 20 objects2. For each object,
there are 72 images in total and the size of each image is 32×32 pixels, each represented by 8 bits. Thus, each
image is represented by a 1024-dimensional vector. In our experiments, we train all the methods on the first
55 images of each object (1100 training images in total), validate on the next 5 samples of each object (100
in total), and the rest is used for testing (240 in total). The MNIST dataset is a handwritten digit dataset
composed of 10 classes. MNIST images are 28 × 28 pixels, which results in 784-dimensional vectors. We use
a subset of this dataset composed of 2000 training images and 2000 test images (500 for validation and 1500
for testing). The USPS handwritten digit dataset is described in (Hull, 1994). A popular subset3 contains
9298 16 × 16 images in total. It is split into 7291 training images and 2007 test images (Cai et al., 2011;
2010). In our experiments, we train all the methods on the first 6000 images of the training set, validate on
the last 1000 samples of the training set, and test on the 2007 test images. The ORL dataset (Samaria &
Harter, 1994) contains images from of 40 distinct classes taken under different conditions. For each class, we
have only 10 samples, which makes it a challenging dataset. In our experiment, we use 5 samples per class
for training, 2 per class for validation, and 3 samples per class for testing.

In our experiments, we select the best hyper-parameter values on the validation set for each approach and
use these values in the testing phase. For PCA and MFA variants, the dimension d of the subspace is selected
from {1, 2, 4, 8, 16, 32} for the four datasets. For LDA, the maximum projection directions for LDA-GE is
constrained by the total number of classes. Thus, for a fair comparisons of LDA variants, d is selected
from {1, 2, 4, 8, 16} for COIL20 and ORL and from {1, 2, 4, 6, 8} for USPS and MNIST. For the uncertainty
estimation, in both our framework NGEU and GEU, there is one hyper-parameter λ characterizing the
width of the distribution. This value is selected from {0.001, 0.1, 0.2, 0.4, 0.8, 1, 2}. For the kernel based
approaches, we experiment with three kernels, linear, RBF, and second degree polynomial, and we select
the one with the highest validation accuracy. For the RBF kernel, the hyper-parameter σ is selected from
{0.1, 1, 4, 16, 32, 64, 100}.

In Table 1, we report the results of different approaches on the four datasets. For supervised DR case, i.e.,
LDA and MFA, we note that in general frameworks incorporating uncertainty in the learning process, i.e.,

2cs.columbia.edu/CAVE/software/softlib/coil-20.php
3csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html
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GEU and our framework NGEU, consistently outperform the counterpart standard variants of GE. For
the unsupervised method, i.e., PCA, GE achieves the best performance over the four datasets. We also
note that our proposed framework consistently achieves higher accuracy than GEU with the exception of
PCA on COIL20 and MNIST. In fact, for the MFA and the LDA variants, NGEU achieves > 4% accuracy
boost compared to GEU across all datasets. While also GEU leverages the uncertainty information, it
is able to capture only the linear projections as opposed to our framework, which can capture non-linear
transformations of the data.

Table 1: Accuracy of the different approaches on the datasets

COIL20 MNIST USPS ORL
NN-1 93.75% 84.73% 91.28% 81.67%
NN-2 91.25% 84.46% 91.45% 78.33%
SVM 93.75% 87.87% 94.17% 58.33%
Decision Tree 72.08% 68.27% 83.47% 41.67%
k-NN 88.75% 87.27% 94.57% 70.00%
TRPCA+k-NN 94.58 % 89.13% 94.37% 71.66%
RSLDA+k-NN 80.00% 83.87% 93.68% 80.00%
fastSDA+k-NN 95.42% 83.67% 91.09% 68.33%
KMFA-GE+k-NN 84.17% 79.27% 89.99% 78.33%
MFA-GEU+k-NN 84.16% 84.73% 86.25% 71.67%
KMFA-NGEU+k-NN 92.92% 89.00% 90.04% 78.33%
KDA-GE+k-NN 88.33% 81.60% 88.40% 76.67%
LDA-GEU+k-NN 95.42% 84.73% 90.34% 76.67%
KDA-NGEU+k-NN 98.75% 91.07% 94.42% 81.67%
KPCA-GE+k-NN 92.50% 90.40% 94.17% 70.00%
PCA-GEU+k-NN 92.50% 89.13% 89.54% 65.00%
KPCA-NGEU+k-NN 92.08% 88.53% 91.43% 68.33%

We note that by incorporating uncertainty in the GE framework, we obtain a significant boost in performance
for KDA and KMFA across all the datasets: > 9% boost in accuracy for KDA and KMFA on the MNIST
dataset and > 8% on the COIL20 dataset. However, KPCA fails to gain improvement over the baseline,
i.e., GE. This might be because KPCA does not encode the discriminative information. Moreover, we note
that using a Gaussian modeling of the uncertainty might not be optimal for the image classification task.
Nonetheless, it yields more robust variants of the classical DR methods, KDA and KMFA. Using a more
descriptive distribution for image uncertainty should lead to further improvement.

5.3 Noisy Data

In this section, we test our framework on noisy data. To this end, we use AWGN-MNIST (Basu et al., 2017):
a noisy variant of MNIST. The dataset is publicly available4 and has the same structure as the original
MNIST. It is created using additive white Gaussian noise with signal-to-noise ratio of 9.5. In this paper, we
use the subset formed by the first 2000 training samples of this dataset. We use this subset to evaluate our
methods using a three-fold cross validation. We report the mean and the standard deviation of the accuracy
on the three folds. In addition to the uncertainty estimation protocol of (Laakom et al., 2022), here we
also experiment with a basic uncertainty schema: Every sample x is modeled by a Gaussian uncertainty
PG = N (µ, Σ) with a mean µ = x and a constant variance along all the feature directions: Σ = αI, where
α is a constant and I is the identity matrix. For the hyper-parameter selection, we use the same protocol as
the previous section with the standard MNIST. The hyper-parameter α of the basic uncertainty is selected
from {0.001, 0.005, 0.01}. We denote the NGEU approaches using this noise estimate as X-NGEU-N+k-NN.

In Table 2, we report the mean and the standard deviation of the accuracy achieved by the different methods
on the AWGN-MNIST dataset. For KLDA and KMFA, we note that by leveraging the uncertainty infor-

4https://csc.lsu.edu/∼saikat/n-mnist/
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Table 2: Mean and standard deviation of the accuracy of the different approaches on AWGN-MNIST

AWGN-MNIST
SVM 82.75 ± 1.29 %
Decision Tree 39.70 ± 1.88 %
k-NN 84.15 ± 1.34 %
TRPCA + k-NN 88.05 ± 0.39 %
RSLDA + k-NN 52.85 ± 2.01 %
fastSDA + k-NN 84.80 ± 1.18 %
KMFA-GE+k-NN 65.55 ± 5.10 %
MFA-GEU+k-NN 48.40 ± 7.40 %
KMFA-NGEU+k-NN 75.20 ± 1.52 %
KMFA-NGEU-N+k-NN 79.40 ± 0.70 %
KDA-GE+k-NN 64.95 ± 1.04 %
LDA-GEU+k-NN 81.75 ± 3.17 %
KDA-NGEU +k-NN 81.45 ± 1.22 %
KDA-NGEU-N+k-NN 82.55 ± 1.66 %
KPCA-GE+k-NN 88.25 ± 1.01 %
PCA-GEU+k-NN 88.25 ± 0.89 %
KPCA-NGEU+k-NN 87.45 ± 0.88 %
KPCA-NGEU-N+k-NN 87.75 ± 0.43 %

Figure 4: Final accuracy as a function of projection dimension for GE, GEU, and NGEU variants of KMFA,
KLDA, and KPCA on AWGN-MNIST dataset.

mation our framework boosts the results of the GE. In fact, NGEU yields more than 10% mean accuracy
boost for MFA and more than 15% for LDA. GEU is able to learn only linear projections and, thus, it fails
if non-linearity is required as in the case of MFA-GEU. We note that, similar to the results with the non-
noisy datasets, including uncertainty does not improve the results for unsupervised DR, i.e., KPCA. This
can be explained by the absence of discriminant information in KPCA. Using better uncertainty modeling
techniques can improve the results in this case. It is also worth mentioning that our framework achieves
more robust and consistent performance. This can be seen by the low standard deviation, i.e., lower than
1.7%, for all the variant compared to 5.1% standard deviation for MFA with GE. We also note that here the
constant Gaussian noise estimate PG yields better results than the protocol adopted from (Laakom et al.,
2022). This can be explained by the fact that AWGN-MNIST is constructed using Gaussian noise.

To understand how the projection dimension d affects the performance of the different DR frameworks, i.e.,
GE, GEU, and NGEU, we report the accuracy of the methods for different dimensions. The results are
presented in Figure 4. As it can be seen, the results are consistent with our findings in Table 2, i.e., our
approach consistently boosts the performance of the DR methods, especially KMFA.
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6 Conclusion

In this paper, we introduced a novel nonlinear dimensionality reduction framework that can leverage the
available input data uncertainty information presented in the form of probability distributions. The proposed
framework, called Nonlinear Graph Embedding with Data Uncertainty (NGEU), has one global solution
and can find nonlinear low-dimensional manifolds in the presence of data uncertainties and artifacts. Our
framework can incorporate a multitude of distributions, enabling a flexible modeling of the uncertainty.
Moreover, we provide learning guarantees for our framework based on the Rademacher complexity of its
hypothesis class and we show how uncertainty affects the generalization of the approaches. Experimental
results demonstrate the effectiveness of the proposed framework and show that incorporating uncertainty
yields > 6% accuracy boost for LDA and MFA across multiple datasets.
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