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Abstract

Analysing the generalisation capabilities of re-001
lation extraction (RE) models is crucial for002
assessing whether they learn robust relational003
patterns or rely on spurious correlations. Our004
cross-dataset experiments find that RE models005
struggle with unseen data, even within similar006
domains. Notably, higher intra-dataset perfor-007
mance does not indicate better transferability,008
instead often signaling overfitting to dataset-009
specific artefacts. Our results also show that010
data quality, rather than lexical similarity, is011
key to robust transfer, and the choice of opti-012
mal adaptation strategy depends on the qual-013
ity of data available: while fine-tuning yields014
the best cross-dataset performance with high-015
quality data, few-shot in-context learning (ICL)016
is more effective with noisier data. However,017
even in these cases, zero-shot baselines occa-018
sionally outperform all cross-dataset results.019
Structural issues in RE benchmarks, such as020
single-relation per sample constraints and non-021
standardised negative class definitions, further022
hinder model transferability.1023

1 Introduction024

Relation extraction (RE) is the core information025

extraction task of identifying the semantic rela-026

tionship between entities in text. Traditional RE027

evaluations rely predominantly on in-distribution028

testing, but this approach often overestimates true029

model performance by implicitly assuming that in-030

dividual datasets wholly represent the underlying031

task (Linzen, 2020; Kovatchev and Lease, 2024).032

While model generalisation has gained increasing033

attention in NLP, RE remains relatively unexplored034

in this context (§ 2).035

However, understanding RE generalisation to036

out-of-distribution (OOD) data is crucial both for037

the task itself as well as for the robust application038

of RE systems in downstream tasks like question039

1We will release the code upon publication.

answering and knowledge-base population (Bassig- 040

nana and Plank, 2022a). Given the popularity of 041

representing internal language model (LM) knowl- 042

edge as relational triples (Geva et al., 2023; Her- 043

nandez et al., 2024), building robust RE systems 044

beyond the mere memorisation of dataset-specific 045

patterns may also be key to more interpretable and 046

trustworthy models. 047

This paper systematically analyses how well RE 048

systems generalise across datasets. Due to the lim- 049

ited relation overlap in popular RE datasets, we 050

focus our experiments on biographical relations, 051

which are pervasive in RE settings; this also al- 052

lows us to include a domain-specific dataset for 053

grounded analysis (§ 3). While prior work explored 054

various robustness tests, including domain shift and 055

adversarial attacks (Chen et al., 2023; Meng et al., 056

2024), to the best of our knowledge, this work 057

provides the first thorough analysis of cross-dataset 058

generalisation capabilities across sentence-level RE 059

benchmarks. 060

Through our cross-dataset experiments, this pa- 061

per makes the following contributions: 062

• We document key challenges in analysing RE 063

generalisation, including inconsistent relation 064

schemas and highly imbalanced class distri- 065

butions (§ 3), as well as propose methods for 066

overcoming these issues. 067

• We find that strong in-distribution RE perfor- 068

mance often masks fundamental generalisa- 069

tion failures, with models that excel on intra- 070

dataset evaluations frequently failing to trans- 071

fer effectively (§ 5). 072

• Our cross-dataset analysis shows that data 073

quality dictates the best RE adaptation 074

method: while fine-tuning achieves superior 075

cross-dataset performance on clean data, few- 076

shot in-context learning (ICL) better handles 077
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noisy data. However, zero-shot prompting out-078

performs all cross-dataset methods in some079

settings (§ 5.2).080

• We identify structural issues in current RE081

benchmarks that lead to observed generali-082

sation errors, including single-relation con-083

straints, reliance on external knowledge, and084

coverage biases (§ 6).085

These findings reveal that while current RE086

systems achieve high in-distribution results, their087

cross-dataset performance shows critical gaps in088

genuine relation understanding, limiting their ap-089

plicability in real-world situations.090

2 Related Work091

2.1 Approaches for RE092

RE is traditionally framed as a classification task,093

tackled via either a pipeline approach—where sub-094

tasks like named entity recognition (NER), coref-095

erence resolution, and relation classification (RC)096

are performed sequentially—or a joint model that097

processes them simultaneously (Taillé et al., 2020;098

Bassignana and Plank, 2022b; Saini et al., 2023).099

It is further categorised into sentence- (Alt et al.,100

2020; Plum et al., 2022) and document-level RE101

(Yao et al., 2019; Meng et al., 2024).102

Since the introduction of BERT (Devlin et al.,103

2019), encoder-based models have dominated RE104

due to their bidirectional attention mechanism,105

which effectively captures context for classification106

tasks (Alt et al., 2020; Plum et al., 2022). How-107

ever, the rise of autoregressive models has led to108

increasing adoption of decoder-based architectures109

to RE (Wang et al., 2022; Sun et al., 2023; Xu et al.,110

2023; Liu et al., 2024; Efeoglu and Paschke, 2024a).111

While encoder-decoder models have been explored112

(Huguet Cabot and Navigli, 2021; Li et al., 2023b),113

our experiments focus on the dominant encoder-114

only and decoder-only architectures for RE.115

2.2 Generalisation Capabilities of RE Models116

Recent work advocates for transparent evaluation117

(Neubig et al., 2019; Liu et al., 2021) and OOD118

testing (Linzen, 2020; Allen-Zhu and Li, 2024; Qi119

et al., 2023) to assess model robustness. Com-120

mon strategies include cross-dataset (Antypas and121

Camacho-Collados, 2023; Jang and Frassinelli,122

2024) and cross-domain (Fu et al., 2017; Liu et al.,123

2020; Bassignana and Plank, 2022a; Calderon et al.,124

2024) experiments, as well as testing on perturbed125

and adversarially modified sets (Wu et al., 2019; 126

Gardner et al., 2020; Goel et al., 2021; Rusert et al., 127

2022). 128

Recent studies have explored various ways to im- 129

prove RE model robustness. Bassignana and Plank 130

(2022a) introduce a cross-domain RE dataset with 131

broad relation types, while Meng et al. (2024) and 132

Chen et al. (2023) evaluate state-of-the-art (SOTA) 133

document-level RE models on perturbed test sets. 134

Chen et al. (2023) further reveal that even when 135

models predict correctly, they often rely on spuri- 136

ous correlations, highlighting their vulnerability to 137

minor evaluation shifts. To reduce dependence on 138

mere pattern matching, Allen-Zhu and Li (2024) 139

propose augmenting training data with synthetic 140

samples reformulated by an auxiliary model. 141

3 Methodology 142

We assess the robustness of RE systems by eval- 143

uating their performance on OOD data. Standard 144

evaluations on in-distribution test sets likely overes- 145

timate RE performance (Linzen, 2020), as models 146

can exploit spurious cues rather than learning gen- 147

uine relational patterns (Chen et al., 2023; Meng 148

et al., 2024; Arzt and Hanbury, 2024). 149

To systematically evaluate generalisation capa- 150

bilities of RE models, we conduct both intra- and 151

cross-dataset experiments. The intra-dataset ex- 152

periments act as a control, evaluating RE mod- 153

els on data drawn from the distribution used for 154

model adaptation, while the cross-dataset experi- 155

ments measure model robustness with OOD test 156

sets derived from a different RE dataset. 157

For our experiments, we consider three sentence- 158

level RE datasets: TACRED-RE (Alt et al., 2020), 159

NYT (Riedel et al., 2010), and Biographical (Plum 160

et al., 2022). While TACRED-RE and NYT are 161

general-purpose RE datasets, we focus exclusively 162

on biographical relations, or relations that describe 163

aspects of an individual’s life (e.g., place_of_birth, 164

studied_at, or children). Our focus on biographical 165

RE is motivated by two key factors. First, the rela- 166

tion type overlap between TACRED-RE and NYT 167

is limited to two non-biographical relations (com- 168

pared to the six overlapping biographical relations). 169

In addition, focusing on biographical relations al- 170

lows for additional cross-dataset evaluations with 171

the Biographical dataset, which only contains bi- 172

ographical relations. This setup thus allows us to 173

directly compare the generalisation of two popular 174

RE datasets in a third, held-out evaluation setting. 175
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3.1 Data176

We now briefly describe three RE datasets used.177

TACRED-RE (Alt et al., 2020) is a general-178

purpose RE dataset with 41 relation types and a179

‘no_relation’ class.2 It contains over 106k instances180

but is highly imbalanced, with ∼80% labeled as181

‘no_relation’. Built from English newswire and182

web text, it is a revisited version of TACRED183

(Zhang et al., 2017), where challenging samples184

were re-annotated by professional annotators to185

reduce noise from crowdsourced labels. Experi-186

mental results demonstrate improved performance187

on TACRED-RE compared to TACRED (see Ta-188

bles 11 and 12 in the Appendix), leading to its use189

in our cross-dataset experiments. Figure 1 shows190

a TACRED-RE example. We focus on 26 bio-191

graphical relations from TACRED-RE, including192

the ‘no_relation’ class (Table 4, Appendix).193

Figure 1: Example from TACRED-RE dataset. This
annotation example is from Zhang et al. (2017).

NYT (Riedel et al., 2010) is a general-purpose194

RE dataset comprising 24 relations and a ‘None’195

class. The dataset contains over 266k sentences,196

with 64% of the instances labeled as ‘None’ and197

half of positive instances containing a single dom-198

inant relation, ‘/location/location/contains’.3 The199

NYT dataset was constructed via distant supervi-200

sion, by applying Freebase (Bollacker et al., 2008)201

as external supervision on the text of New York202

Times articles (Sandhaus, 2008). Figure 2 shows203

an NYT example. We focus on a subset of the NYT204

dataset with 7 biographical relations, including a205

‘None’ class (Table 5, Appendix).206

Figure 2: Example from the NYT dataset

Biographical is an RE dataset for the biographi-207

cal text domain, with 10 relation types (Plum et al.,208

2TACRED, and therefore TACRED-RE, are licensed by
the Linguistic Data Consortium (LDC).

3The dataset is publicly available and accessible at https:
//github.com/INK-USC/ReQuest.

2022). Built from Wikipedia articles on promi- 209

nent individuals and containing 346,257 instances, 210

Biographical was created using a semi-supervised 211

approach.4 Named entities were automatically ex- 212

tracted from text using spaCy (Honnibal et al., 213

2020) and Stanford CoreNLP (Manning et al., 214

2014). Subsequently, Wikipedia sentences con- 215

taining the extracted named entities were matched 216

with Pantheon and Wikidata to automatically in- 217

fer relations between the entities. Figure 3 shows 218

an example5 from Biographical. The statistics for 219

Biographical, downsampled to match the size of 220

the TACRED-RE and NYT subsets, are presented 221

in Table 5 in the Appendix. 222

Figure 3: Example from the Biographical dataset

3.2 Cross-Dataset Comparison: Challenges 223

Single Relation per Sample: Both TACRED-RE 224

and Biographical restrict each sample to at most 225

two named entities and one relation, even when 226

multiple relations exist within a sentence. For in- 227

stance, the TACRED-RE example in Figure 1 is 228

labeled with ‘per:city_of_birth’ but also contains 229

relations like ‘per:stateorprovinces_of_residence’, 230

‘per:employee_of’, and ‘per:spouse’, all within 231

TACRED-RE’s relation set. This constraint may 232

potentially confuse a model trained on such data, as 233

it enforces a single-label assignment per sentence. 234

While NYT better reflects real-world scenarios 235

by allowing multiple relations per sentence, we 236

filtered it to two-entity, single-relation samples for 237

fair cross-dataset comparison, retaining only those 238

like the example in Figure 2. 239

Unclear ‘Negative’ Class: Clear negative sam- 240

ples—instances with entities but no meaningful 241

relation—are crucial for RE systems. While 242

TACRED-RE has an explicit ‘no_relation’ class, 243

NYT’s ‘None’ class lacks clear definition (Riedel 244

et al., 2010), potentially confusing models about 245

whether it indicates absence of predefined rela- 246

tions or any relation. Similarly, the Biographi- 247

4It has multiple versions. We use the version without
coreference resolution or first Wikipedia sentence skipping
(referred to as m2_normal_final1 in Plum et al. (2022)).

5Sample ID ‘mS7/1269356’ in Biographical

3

https://github.com/INK-USC/ReQuest
https://github.com/INK-USC/ReQuest


cal dataset lacks an explicit negative class, using248

instead an ‘Other’ class for unspecified relations249

(Plum et al., 2022), as shown in Figure 3. This in-250

consistency between choosing a ‘no_relation’ ver-251

sus a ‘none_of_the_above’ class in RE benchmarks252

highlights the general challenge of consistently253

defining the boundaries between presence and ab-254

sence of semantic relations in text (Bassignana and255

Plank, 2022b).256

Expected Factual Knowledge: The design of257

RE datasets influences whether models genuinely258

learn RE or rely on dataset-specific cues. NYT’s259

distant supervision approach incorporates Freebase-260

derived relations not stated in text requiring exter-261

nal world knowledge rather than textual evidence,262

as shown in Figure 2 where the text lacks explicit263

information about Enrique Krause’s nationality—264

such annotations extend beyond RE’s scope and265

corrupt models trained on such data. Similarly,266

although manually curated, TACRED-RE encom-267

passes relations like ‘per:city_of_birth’, which re-268

quire factual knowledge from a model, limiting269

generalisation to instances seen during adaptation.270

3.3 Cross-Dataset Label Overlap271

To enable cross-dataset evaluation, a manual la-272

bel mapping was conducted across TACRED-RE,273

NYT, and Biographical. Table 7 shows six over-274

lapping biographical relations between NYT and275

TACRED-RE, with twelve fine-grained TACRED-276

RE relations mapping to six broader NYT labels277

(e.g., NYT’s ‘place_of_birth’ encompasses three278

TACRED-RE location-specific birth relations).279

Treating Biographical’s ‘Other’ class as nega-280

tive—supported by manual analysis of 30 random281

instances revealing typically negative and not un-282

specified relations—we find four overlapping rela-283

tions across all three datasets (Table 9, Appendix).284

The NYT-Biographical overlap includes these same285

four relations (Table 6, Appendix), while TACRED-286

RE and Biographical share nine relations (Table 8,287

Appendix).288

4 Experiments289

4.1 Data Format and Standardisation290

To facilitate cross-dataset evaluations and focus our291

experiments on relation classification, we standard-292

ise our data into a unified format providing the en-293

tity spans in each input. Thus, each example’s enti-294

ties are marked with the tags <e1>head entity</e1>295

and <e2>tail entity</e2>, respectively.296

To address class imbalance, negative instances 297

were randomly downsampled across all three 298

datasets to balance the number of positive and 299

negative instances, and Biographical (∼350,000 300

instances) was downsampled to match the size of 301

other biographical subsets for computational effi- 302

ciency (Appendix Tables 3, 4, 5). Given TACRED- 303

RE’s fine-grained relations, we mapped them to 304

broader NYT labels during cross-dataset evalua- 305

tion (see Appendix C for details). 306

4.2 Model Selection, Training, and Evaluation 307

We consider two types of models: an encoder-only 308

model (DeBERTa-v3-large 304M; He et al. (2021)) 309

and a decoder-only model (an instruction-tuned 310

LLaMA 3.1 8B model; Grattafiori et al. (2024)). 311

We do not include SOTA systems for each dataset; 312

SOTA approaches for the three datasets in question 313

differ–with most SOTA systems for one dataset 314

not evaluated on the others (Orlando et al., 2024; 315

Efeoglu and Paschke, 2024b; Sainz et al., 2024)– 316

and we focus our experiments on the biographical 317

subset of relations from TACRED-RE and NYT. 318

Thus, our results are not directly comparable to 319

prior work on these datasets. 320

We employ two commonly used model adapta- 321

tion strategies for RE: fine-tuning and in-context 322

learning (ICL). Specifically, we consider direct fine- 323

tuning with DeBERTa, fine-tuning LLaMA using 324

low-rank adaptation (LoRA; Hu et al., 2022), and 325

zero-shot and five-shot ICL (Brown et al., 2020) 326

with LLaMA. For few-shot ICL, we perform five 327

runs with different demonstration sets to account 328

for demonstration sensitivity (Zhang et al., 2022; 329

Webson and Pavlick, 2022; Lu et al., 2022). How- 330

ever, due to computational constraints, fine-tuning 331

experiments are limited to a single run. For NYT 332

and TACRED-RE, we conduct experiments in two 333

adaptation settings: adaptation on all biographical 334

relations in each dataset (Appendix Tables 4 and 5) 335

and adaptation on only overlapping relations (Ap- 336

pendix Table 7). This applies to both fine-tuning 337

and ICL, where zero-shot prompts and few-shot 338

demonstrations are selected accordingly. 339

We then perform two types of evaluations: intra- 340

dataset, where models are evaluated on the same 341

dataset they were adapted to; and cross-dataset, 342

where the adapted models were tested on OOD data 343

to assess their generalisation capabilities. Further 344

implementation details, including hyperparameter 345

settings, full label sets, and prompting details, are 346

provided in Appendix D. 347
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5 Results348

Overview of Reported Results: Table 1 re-349

ports intra- and cross-dataset results for NYT and350

TACRED-RE on six overlapping relations, using351

models adapted on all biographical relations. For352

TACRED-RE, which maps its 12 fine-grained la-353

bels to NYT’s shared label space, we report both354

dataset-specific and shared label results.355

Table 2 shows model generalisation to Biograph-356

ical across three overlapping relation sets: (1) four357

relations shared across all datasets, (2) same four358

relations shared between NYT and Biographical,359

and (3) nine relations shared between TACRED-360

RE and Biographical. Models were adapted on361

each dataset’s full biographical relations, with Bi-362

ographical’s intra-dataset results for comparison.363

We focus on results with models adapted on the364

full overlap, as they show similar performance to365

those adapted only on overlap (Table 14, Appendix)366

while better reflecting real-world scenarios.367

While we primarily focus on macro F1 to address368

class imbalance, additional experimental results,369

including per-class performance breakdowns, are370

provided in Appendix F.371

5.1 Intra-Dataset Results372

We evaluate our RE models on their training data373

distribution for comparison of cross-dataset gener-374

alisation. Unsurprisingly, we find that fine-tuning375

performs best for intra-dataset evaluations: fine-376

tuned LLaMA outperforms DeBERTa on TACRED-377

RE and NYT (Table 1), while the two models per-378

form nearly identically on the full label overlap379

when fine-tuned on Biographical (Table 2).6380

Our ICL experiments similarly show expected381

results, with the five-shot prompting moderately382

outperforming zero-shot prompting but underper-383

forming full model fine-tuning. In the case of Bi-384

ographical, this few-shot ICL gain over zero-shot385

is significant, increasing from 0.24 to 0.53± 0.05386

with five demonstrations (Table 2).387

We also note different performance trends within388

intra-dataset evaluations of TACRED-RE and NYT.389

Specifically, we find while fine-tuning yields390

higher intra-dataset performance on NYT than391

on TACRED-RE, this performance trend flips for392

the zero- and few-shot ICL settings, with prompt-393

ing on NYT performing significantly worse than394

6This may indicate a performance ceiling due to data noise
limiting further improvement (Alt et al., 2020; Arzt and Han-
bury, 2024).

TACRED-RE despite TACRED-RE’s finer-grained 395

relation schema. This difference likely stems from 396

differing data quality between datasets: the noisy 397

labeling during NYT creation (Yaghoobzadeh et al., 398

2017) likely leads to over-fitting during fine-tuning 399

(Tänzer et al., 2022) (rather than learning robust 400

relational patterns), but harms model generalisation 401

to NYT when not fine-tuned for that data distribu- 402

tion. 403

Comparison with SOTA: As our generalisation 404

analysis focuses on biographical relations across 405

datasets (and prior works rarely report per-class 406

results), we cannot directly compare against SOTA 407

models on the full datasets. However, our best intra- 408

dataset results on biographical subsets (with fine- 409

tuned LLaMA) remain close to the overall SOTA 410

performance, trailing the reported scores by 1-2 F1 411

points on all three datasets (Han et al., 2022; Plum 412

et al., 2022; Orlando et al., 2024). 413

5.2 Cross-Dataset Results 414

We now turn to examining the cross-dataset gen- 415

eralisation of our RE systems. Unsurprisingly, 416

we find that performance almost always declines 417

with cross-dataset evaluations. However, models 418

adapted on TACRED-RE exhibit relatively strong 419

generalisation capabilities—the few exceptions of 420

better cross-dataset performance stemming from 421

TACRED-RE models applied to the Biographical 422

dataset–while those adapted on NYT struggle to 423

transfer effectively, likely due to dataset noise. 424

RE Models Struggle to Generalise across 425

Datasets Cross-dataset evaluations (almost) al- 426

ways perform worse than the comparable intra- 427

dataset experiment: NYT and TACRED-RE show 428

substantial drops of 25-27 points, while Biograph- 429

ical exhibits smaller decreases of 4-10 points de- 430

pending on the relation setting (Tables 1 and 2). 431

We also observe somewhat different performance 432

trends across model and adaptation approaches 433

from the intra-dataset experiments; while fine- 434

tuning LLaMA with TACRED-RE achieves the 435

best cross-dataset performance on NYT, the best 436

TACRED-RE cross-dataset results are obtained us- 437

ing few-shot ICL with NYT demonstrations (rather 438

than fine-tuning). However, these results remain 439

below the zero-shot TACRED-RE baseline. 440

The cross-dataset experiments on Biographi- 441

cal similarly perform worse than the correspond- 442

ing intra-dataset experiments in most settings (Ta- 443

ble 2); one notable exception is LLaMA prompted 444

5



Model Setting Dataset Intra-Dataset Cross-Dataset
Shared Labels Dataset Labels NYT TACRED-RE

DeBERTa-v3
large 304M Fine-tuned on NYT 0.67 0.67 – 0.27

TACRED-RE 0.66 0.64 0.50 –
LLaMA 3.1 8B Fine-tuned on NYT 0.87 0.87 – 0.45

TACRED-RE 0.79 0.76 0.62 –
LLaMA 3.1 8B Zero-Shot NYT 0.31 0.31 – –

TACRED-RE 0.58 0.37 – –
LLaMA 3.1 8B 5-Shot NYT 0.45 ± 0.07 0.45 ± 0.07 – 0.52 ± 0.06

TACRED-RE 0.63 ± 0.06 0.43 ± 0.07 0.39 ± 0.02 –

Table 1: Macro F1-scores for intra- and cross-dataset predictions on six overlapping relations. Results show both
shared and dataset-specific labels, with models adapted on all biographical relations through fine-tuning or ICL.

Model Setting Dataset Full Overlap Overlap w. NYT Overlap w. TACRED-RE
DeBERTa-v3-large 304M Fine-tuned on NYT 0.47 0.47 –

TACRED-RE 0.60 – 0.68
Biographical 0.79 0.79 0.71

LLaMA 3.1 8B Fine-tuned on NYT 0.30 0.30 –
TACRED-RE 0.69 – 0.70
Biographical 0.79 0.79 0.74

LLaMA 3.1 8B Zero-Shot Biographical 0.24 0.24 0.35
LLaMA 3.1 8B 5-Shot NYT 0.48 ± 0.04 0.48 ± 0.04 –

TACRED-RE 0.51 ± 0.04 – 0.58 ± 0.02
Biographical 0.53 ± 0.05 0.53 ± 0.05 0.54 ± 0.03

Table 2: Evaluation on Biographical Dataset (macro F1-scores). Models adapted on all biographical relations
through fine-tuning or ICL.

with five TACRED-RE examples, which outper-445

forms the intra-dataset few-shot experiments on446

the TACRED-RE/Biographical label overlap. The447

best Biographical cross-dataset results are achieved448

with fine-tuning LLaMA on TACRED-RE, though449

this still underperforms intra-dataset fine-tuning.450

NYT Models Generalise Worse than TACRED-451

RE Models NYT-adapted models exhibit signifi-452

cantly poorer generalisation capabilities than those453

adapted on TACRED-RE (Tables 1 and 2). For454

example, fine-tuning LLaMA with TACRED-RE455

surpasses zero- and cross-dataset ICL on NYT (by456

∼30 and ∼20 points, respectively), whereas all457

cross-dataset experiments transferring from NYT458

to TACRED-RE underperform zero-shot evalua-459

tions with no cross-dataset signal. This is also clear460

from the evaluations on the held-out Biographical461

dataset, where transferring from TACRED-RE al-462

ways performs better than NYT (and occasionally463

outperforms the intra-dataset performance).464

This performance gap is unlikely due to domain465

differences, as both datasets contain newspaper466

articles (with TACRED-RE including some NYT467

newspaper content without instance overlap), while468

Biographical covers Wikipedia articles. Rather, we469

attribute it to NYT’s distant supervision annota-470

tions, which introduce noise and limit model ro-471

bustness. This is likely why LLaMA fine-tuned on 472

NYT and evaluated on Biographical data (0.30) un- 473

derperforms DeBERTa (0.47; Table 2)—the over- 474

parametrised LLaMA exhibits stronger overfitting 475

to NYT noise and generalises poorly to unseen data, 476

a phenomenon also highlighted by Liu et al. (2022) 477

with corrupted training data. 478

Effect of Adaptation Strategy on Generalisa- 479

tion While prior work suggests that ICL often 480

generalises more effectively to OOD data than fine- 481

tuning (Awadalla et al., 2022; Song et al., 2023; 482

Si et al., 2023), our results indicate this advan- 483

tage depends heavily on data quality. With high- 484

quality data like TACRED-RE, fine-tuning consis- 485

tently achieves the best cross-dataset performance, 486

surpassing few-shot ICL on both NYT and Bio- 487

graphical evaluations. In fact, TACRED-RE adapta- 488

tions can even perform comparably to intra-dataset 489

ones: DeBERTa (0.68) and LLaMA (0.70) fine- 490

tuned on TACRED-RE achieve similar results to 491

their Biographical intra-dataset performance (0.71 492

and 0.74) on the TACRED-RE/Biographical label 493

overlap (Table 2). 494

However, when adaptation data are noisy, as with 495

NYT, few-shot ICL becomes a more effective strat- 496

egy: few-shot ICL via NYT consistently performs 497

better than fine-tuning on NYT for both TACRED- 498
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RE and Biographical evaluations (Tables 1, 2). This499

is likely because ICL limits the signal from noisy500

training data, which in turn reduces the overfitting501

to dataset-specific artefacts and catastrophic for-502

getting compared to fine-tuning (Tran et al., 2024;503

Anonymous, 2024; Kotha et al., 2024).504

6 Analysing RE Generalisation Failure505

Cases506

Given RE benchmarks’ numerous relations and507

class imbalance, we analyse the strongest perform-508

ing model, fine-tuned LLaMA, beyond aggregated509

metrics. We examine per-relation performance510

(Figure 4) and qualitatively analyse 30 random511

misclassifications from four evaluation settings to512

identify their likely underlying causes.7 Through513

these analyses, we find the following causes of RE514

generalisation mistakes:515

Effect of Noisy Supervision on Generalisation516

Confusion matrices in Figure 4 reveal that NYT-517

adapted models systematically overpredict the518

‘None’ class on both TACRED-RE and Biographi-519

cal, with manual analysis showing these misclassi-520

fications stem primarily from NYT’s distant super-521

vision (Table 21, Appendix) rather than vocabulary522

differences (Figure 5) or domain shift. This is-523

sue is particularly evident in NYT’s location-based524

7More misclassification patterns in Appendix Table 21.

relations, where reliance on external knowledge 525

leads to conflicting annotations that hinder pattern 526

learning—for instance, “Henryk Tomaszewski 527

[...] died on Sunday at his home in Warsaw”8 528

is labeled as birthplace despite clear evidence of 529

death location. Similar issues arise with Bio- 530

graphical’s semi-supervised data, where models 531

adapted on cleaner datasets like TACRED-RE fail 532

to replicate ground truth labels that lack textual ev- 533

idence. Notably, despite higher lexical overlap be- 534

tween Biographical and NYT (Figure 6, Appendix), 535

TACRED-RE-adapted models perform better on Bi- 536

ographical, indicating that adaptation data quality 537

matters more than lexical similarity. 538

Single Relation Constraint & Negative Class 539

The issue extends beyond noisy supervision to fun- 540

damental constraints in RE task design. Models 541

adapted on biographical relations often detect valid 542

but unlabeled relations (marked as ‘new_relation’ 543

in Figure 4), highlighting limitations of enforcing 544

single-relation per sample. This manifests in cases 545

like “Gross, who is himself Jewish [...] was sent to 546

Cuba”9, where only ‘place_lived’ is labeled while 547

‘religion’ is omitted due to TACRED-RE’s con- 548

straint. Also, unclear or missing negative class af- 549

fects cross-dataset evaluation: while Biographical’s 550

‘Other’ class is intended to cover undefined rela- 551

tions, our analysis reveals it contains both instances 552

without meaningful relations and those with valid 553

but undefined relations. This explains the high fre- 554

quency of ‘new_relation’ predictions for Biograph- 555

ical when using LLaMA fine-tuned on TACRED- 556

RE with their finer-grained relation schema (Fig- 557

ure 4) and also highlights the fundamental diffi- 558

culty in defining boundaries between presence and 559

absence of semantic relations. Despite this ambi- 560

guity, the class achieves strong cross-dataset per- 561

formance when mapped to ‘None’ (0.78 and 0.72 562

for LLaMA fine-tuned on TACRED-RE and NYT), 563

further underscoring the importance of distinguish- 564

ing between ‘no_relation’ and ‘none_of_the_above’ 565

cases in RE (Bassignana and Plank, 2022b). 566

Reliance on External Knowledge even in Man- 567

ually Curated Datasets Even with high-quality 568

manual annotations, RE often requires external 569

knowledge and complex reasoning capabilities. 570

Our analysis reveals this challenge manifests in 571

two key ways: through implicit relations requiring 572

8NYT instance ID: ‘/m/vinci8/data1/riedel/projects/relation
/kb/nyt1/docstore/nyt-2005-2006.backup/1701917.xml.pb’

9TACRED-RE instance ID: ‘098f6f318be29eddb182’
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Figure 5: Vocabulary Overlap (%) per overlapping rela-
tion between NYT and TACRED-RE

inference, and through necessary world knowledge573

for entity interpretation. For example, in “Gross574

[...] was sent to Cuba as a spy”9, the NYT-adapted575

model predicts ‘None’ instead of ‘place_lived’, fail-576

ing to infer that being sent somewhere as a spy im-577

plies residence. While detecting implicit relations578

is crucial (Geva et al., 2021), ensuring consistent579

and objective interpretation remains challenging.580

Beyond implicit relations, models must also rely581

on world knowledge for basic entity understanding-582

as in cases like ‘Idaho businesswoman’10, where583

identifying entity types requires knowing Idaho584

as a location. TACRED-RE fine-grained relation585

schema further demonstrates this issue, where even586

with world knowledge, distinguishing between re-587

lations like city of birth and state/province of birth588

can be ambiguous (e.g., whether New York refers to589

the city or state). As Chen et al. (2023) note, even590

human annotators tend to rely on such prior knowl-591

edge despite the lack of rationales, motivating the592

need for finer-grained word evidence annotation.593

Dataset Composition and Coverage Biases594

Analysis of the most shared words across NYT and595

TACRED-RE demonstrates a strong US-centric596

coverage bias, likely limiting generalisation to non-597

US contexts (Appendix Table 22). NYT also ex-598

hibits topical skews in specific relations, such as599

religion being predominantly associated with Islam,600

potentially leading models to learn narrow, biased601

representations of relations.602

Analysing part-of-speech distributions also re-603

veals distinct patterns across all three datasets (Ap-604

pendix Table 20). While proper nouns dominate605

head and tail entities in all datasets (reaching nearly606

100% in NYT), TACRED-RE shows more linguis-607

10TACRED-RE instance ID: ‘098f6bd9fa786293e49d’

tic diversity with 17% of head entities as pronouns 608

and 17% of tail entities as common nouns. Bio- 609

graphical, sourced from Wikipedia, contains a high 610

proportion (26%) of numerical tail entities, primar- 611

ily dates. These compositional differences, along 612

with TACRED-RE’s longer, compound sentences 613

and higher average entity distance (∼12 tokens 614

vs NYT’s ∼8 tokens), most likely impact cross- 615

dataset performance; NYT-adapted models strug- 616

gle with these more complex patterns, which are ab- 617

sent from their training data (Appendix Table 21). 618

7 Conclusion 619

This work examines cross-dataset generalisation in 620

language model-based RE systems in biographical 621

settings. We find RE models struggle to gener- 622

alise even within similar domains, with high intra- 623

dataset performance often masking spurious over- 624

fitting rather than genuine learning of relational 625

patterns. Furthermore, data quality is crucial for ro- 626

bust transfer (with the optimal adaptation strategy 627

depending on data quality); fine-tuning yields the 628

best cross-dataset performance when high-quality 629

data is available, but few-shot ICL performs better 630

in settings with noisy data. However, in some cases, 631

a zero-shot baseline surpasses all cross-dataset re- 632

sults, further underscoring the limitations of current 633

RE systems. 634

Our analysis also reveals several structural issues 635

in all current RE benchmarks: (1) single-relation 636

constraints that ignore other valid relations between 637

entities in text, (2) the lack of a well-defined nega- 638

tive class with challenging samples (e.g., sentences 639

containing commonly used tokens for relations like 640

‘born’ or ‘died’) to enforce deeper semantic un- 641

derstanding beyond pattern matching, and (3) lim- 642

ited diversity in data sources. These issues, com- 643

pounded by inconsistent relation definitions and 644

limited overlap across datasets, hinder meaningful 645

evaluations of RE generalisation. 646

These findings thus highlight the need for more 647

transparent evaluation beyond in-distribution test- 648

ing and aggregated metrics, as limiting evaluation 649

to these may not reflect genuine improvements in 650

capturing relational patterns or account for class 651

imbalance and the large number of relations in RE 652

benchmarks. We see many promising directions 653

for future work, including testing RE robustness on 654

perturbed evaluation sets and applying interpretabil- 655

ity methods to better understand how models infer 656

relational knowledge. 657
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Limitations658

Our cross-dataset analysis is limited to a particular659

set of biographical relations but reflects a broader660

challenge in RE evaluation where datasets, even661

covering the same domain, typically share a small662

relation overlap. We also constrain our analysis663

to single-relation examples: while, real-world sce-664

narios often involve multiple relations per instance665

(and NYT allows multiple relations), we focused666

on single-relation setting for fair-cross dataset com-667

parison, as TACRED-RE and Biographical are an-668

notated with single relations. Similarly, we exclu-669

sively evaluate relation classification (RC) due to670

dataset constraints: TACRED-RE and Biographical671

assume a single relation triple per sentence, unlike672

real-world text where multiple relations can coexist.673

By focusing on RC with entity tags as guidance, we674

aim to minimise the prediction of other potential675

relations present in a sentence, but not between the676

specified entities.677

The adaptation sets we used contain a large class678

imbalance due to the underlying distributions of679

the datasets, even after we perform data rebalanc-680

ing. While this could be viewed as a limitation, it681

reflects real-world scenarios where models must682

adapt with limited training data (Bassignana and683

Plank, 2022a). Finally, we note that our intra-684

dataset results cannot be directly compared with685

reported SOTA performance, as most papers lack686

detailed relation-based metrics, reporting only ag-687

gregated results.688
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A Dataset Statistics: Class Distribution1130

Table 3: Balanced Biographical Dataset

Relation # of Samples

Other 10,000
birthdate 2914
bplace_name 2845
dplace_name 1138
occupation 1105
deathdate 1011
parent 394
educatedAt 339
child 136
sibling 118

Positive Samples 10,000
Negative Samples 10,000
All 20,000

Table 4: Balanced TACRED-RE Subset with Biographi-
cal Relations (26 relations)

Relation # of Samples

no_relation 14,192
per:title 3805
per:employee_of 2104
per:age 818
per:countries_of_residence 695
per:cities_of_residence 596
per:origin 652
per:stateorprovinces_of_residence 444
per:spouse 463
per:date_of_death 343
per:children 347
per:cause_of_death 318
per:parents 282
per:charges 270
per:other_family 241
per:siblings 238
per:schools_attended 219
per:city_of_death 204
per:religion 145
per:alternate_names 132
per:city_of_birth 107
per:stateorprovince_of_death 100
per:date_of_birth 99
per:stateorprovince_of_birth 77
per:country_of_death 57
per:country_of_birth 45

Positive Samples 12,801
Negative Samples 14,192
All 26,993

Table 5: Balanced NYT Subset with Biographical Rela-
tions after removal of instances with multiple labels (7
relations)

Relation # of Samples

None 5068
/people/person/nationality 2160
/people/person/place_lived 2016
/people/person/place_of_birth 437
/people/deceased_person/place_of_death 284
/people/person/children 147
/people/person/religion 24

Positive Samples 5068
Negative Samples 5068
All 10,136

B Relation Type Overlap1131

Table 6: NYT/Biographical Relation Overlap

NYT Biographical

/people/person/children child
/people/person/place_of_birth bplace_name
/people/deceased_person/place_of_death dplace_name
None Other

Table 7: NYT/TACRED-RE Relation Overlap

NYT TACRED-RE

None no_relation

/people/person/children per:children

/people/person/religion per:religion

/people/person/place_lived per:stateorprovinces_of_residence
per:countries_of_residence
per:cities_of_residence

/people/person/place_of_birth per:stateorprovince_of_birth
per:country_of_birth
per:city_of_birth

/people/deceased_person/place_of_death per:stateorprovince_of_death
per:country_of_death
per:city_of_death

Table 8: Biographical/TACRED-RE Relation Overlap

Biographical TACRED-RE

bplace_name
per:stateorprovince_of_birth
per:country_of_birth
per:city_of_birth

birthdate per:date_of_birth

deathdate per:date_of_death

parent per:parents

educatedAt per:schools_attended

dplace_name
per:stateorprovince_of_death
per:country_of_death
per:city_of_death

sibling per:siblings

child per:children

Other no_relation

Table 9: Biographical/TACRED-RE/NYT Overlap

Biographical TACRED-RE NYT

child per:children /people/person/children

bplace_name
per:stateorprovince_of_birth

/people/person/place_of_birthper:country_of_birth
per:city_of_birth

dplace_name
per:stateorprovince_of_death /people/deceased_person/

place_of_death
per:country_of_death
per:city_of_death

Other no_relation None
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C Data Formatting Details1132

TACRED-RE’s fine-grained relations (e.g.,1133

"per:city_of_birth" and "per:country_of_birth")1134

were mapped to broader categories (e.g.,1135

"place_of_birth") used in NYT and Biographical1136

datasets, as shown in Tables 7 and 8. Cross-dataset1137

results are reported using NYT label names1138

(Table 15).1139

D Implementation Details1140

Listing 1: System prompt for LLaMA 3.1 8B zero-shot,
few-shot, and fine-tuning experiments, shown here with
NYT relation inventory

1141
system_message = {1142

"role": "system",1143
"content ": (1144

"You are an intelligent assistant1145
specializing in identifying1146
relations between entities in a1147
sentence. "1148

"Question: What is the relation between1149
two tagged entities <e1>entity1 </e11150
> and <e2>entity2 </e2> in the1151
following sentence? "1152

"Choose one relation from the list: "1153
"['/ people/person/children ', '/people/1154

person/nationality ', '/people/1155
person/place_lived ',"1156

"'/people/person/place_of_birth ', '/1157
people/deceased_person/1158
place_of_death ', '/people/person/1159
religion ',"1160

"'None ']. "1161
"Rules: Select exactly one relation from1162

the list. If none of the listed1163
relations apply , select 'None '. "1164

"Output must strictly follow this1165
format: <relation_type >. Provide1166
no additional text or explanation1167
."1168

)1169
}11701171

We fine-tuned DeBERTa-v3-large11 for 10 epochs1172

employing early stopping. Following prior work1173

in RE (Teru, 2023; Wang et al., 2023), we ex-1174

tended the deberta-v3-large tokeniser with en-1175

tity marker tokens, namely, <e1> and </e1> for1176

the head entity, and <e2> and </e2> for the tail en-1177

tity. For LLAMA-3.112, we used LoRA fine-tuning1178

(r = 8) over three epochs, applying it to atten-1179

tion and feedforward modules. Both models were1180

fine-tuned using HuggingFace’s Trainer class. For1181

evaluation of LLaMA 3.1, predictions were con-1182

sidered correct only if they matched ground-truth1183

labels exactly (Hendrycks et al., 2021).1184

For prompting, we used vanilla prompting1185

vanilla (Li et al., 2023a; Vatsal and Dubey,1186

11https://huggingface.co/microsoft/
deberta-v3-large

12https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct
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Figure 6: Vocabulary Overlap (%) Between Bio-
graphical and TACRED-RE/NYT Relations following
lemmatisation and stop word removal using spaCy’s
en_core_web_trf

2024)and tested several RE-specific prompt de- 1187

signs (Leidinger et al., 2023; Li et al., 2023a; 1188

Efeoglu and Paschke, 2024a), given LLaMA’s sen- 1189

sitivity to prompt formulation (Leidinger et al., 1190

2023). The prompt 1 performed best and was used 1191

across all datasets with adapted label sets. Further 1192

prompt optimisation techniques were not consid- 1193

ered, as they were beyond the scope of this paper. 1194

Hyperparameter settings for all experiments are 1195

detailed in Table 19. 1196

Due to Biographical’s ambiguous ‘Other’ class 1197

(Section 3), we use it only for evaluation, excluding 1198

these relations during adaptation. 1199

All experiments with Deberta-v3-large were run 1200

on a single NVIDIA® TITAN RTX 24GB GPU; 1201

all experiments with Llama-3.1-8B-Instruct were 1202

run on a single NVIDIA® A100 80GB GPU. All 1203

experiments were performed with a fixed random 1204

seed for reproducibility. 1205

E Vocabulary Overlap with Biographical 1206

Figure 6 depicts vocabulary overlap between Bio- 1207

graphical and TACRED-RE as well as Biographical 1208

and NYT per overlapping relation. 1209
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F Results

F.1 Intra-Dataset Results

Model Deberta-v3-large 304M Llama-3.1 8B zero-shot Llama-3.1 8B 5-shot Llama-3.1 8B fine-tuned

P R F1 P R F1 P R F1 P R F1

/people/deceased_person/place_of_death 0.81 0.76 0.78 0.93 0.82 0.87 0.75 0.09 0.16 0.93 0.82 0.87
/people/person/children 0.80 0.86 0.83 0.87 0.93 0.90 0.77 0.71 0.74 0.87 0.93 0.90
/people/person/nationality 0.95 1.00 0.97 0.99 0.99 0.99 0.96 0.10 0.18 0.99 0.99 0.99
/people/person/place_lived 0.88 0.91 0.90 0.84 0.95 0.89 0.36 0.58 0.44 0.84 0.95 0.89
/people/person/place_of_birth 0.54 0.56 0.55 0.88 0.46 0.60 0.07 0.06 0.07 0.88 0.46 0.60
/people/person/religion 0.00 0.00 0.00 1.00 1.00 1.00 0.83 1.00 0.91 1.00 1.00 1.00
None 0.98 0.95 0.96 0.97 0.97 0.97 0.62 0.76 0.68 0.97 0.97 0.97

macro avg 0.71 0.72 0.71 0.92 0.87 0.89 0.62 0.47 0.45 0.92 0.87 0.89
micro avg 0.92 0.92 0.92 0.30 0.22 0.25 0.52 0.52 0.52 0.94 0.94 0.94
weighted avg 0.92 0.92 0.92 0.94 0.94 0.94 0.63 0.52 0.47 0.94 0.94 0.94

Table 10: NYT Results

Model Deberta-v3-large 304M Llama-3.1 8B zero-shot Llama-3.1 8B 5-shot Llama-3.1 8B fine-tuned

P R F1 P R F1 P R F1 P R F1

macro avg 0.67 0.64 0.64 0.49 0.38 0.34 0.37 0.30 0.29 0.76 0.71 0.73
micro avg 0.83 0.83 0.83 0.31 0.29 0.30 0.51 0.51 0.51 0.87 0.87 0.87
weighted avg 0.83 0.83 0.83 0.68 0.29 0.32 0.59 0.51 0.49 0.87 0.87 0.87

Table 11: TACRED Results

Model DeBERTa-v3-large 304M Llama-3.1 8B zero-shot Llama-3.1 8B 5-shot Llama-3.1 8B fine-tuned

P R F1 P R F1 P R F1 P R F1

no_relation 0.96 0.79 0.87 0.81 0.01 0.02 0.80 0.61 0.69 0.97 0.87 0.92
per:age 0.91 0.99 0.95 0.97 0.32 0.48 0.93 0.65 0.77 0.95 1.00 0.97
per:cause_of_death 0.74 0.74 0.74 0.46 0.26 0.33 0.53 0.24 0.33 0.65 0.95 0.77
per:charges 0.79 0.95 0.86 0.76 0.30 0.43 0.67 0.43 0.52 0.87 0.99 0.93
per:children 0.54 0.73 0.62 0.23 0.14 0.17 0.19 0.38 0.25 0.96 0.73 0.83
per:cities_of_residence 0.51 0.95 0.66 0.38 0.55 0.45 0.51 0.34 0.41 0.61 0.92 0.73
per:city_of_birth 0.75 0.50 0.60 0.50 0.67 0.57 0.43 0.50 0.46 1.00 0.50 0.67
per:city_of_death 0.78 0.44 0.56 0.33 0.31 0.32 0.28 0.56 0.38 0.43 0.56 0.49
per:countries_of_residence 0.44 0.81 0.57 0.33 0.45 0.38 0.34 0.31 0.32 0.59 0.91 0.71
per:country_of_death 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.56 0.53 0.50 0.44 0.47
per:date_of_birth 0.70 1.00 0.82 0.26 0.86 0.40 0.71 0.71 0.71 0.86 0.86 0.86
per:date_of_death 0.76 0.80 0.78 0.53 0.42 0.47 0.62 0.12 0.21 0.74 0.93 0.82
per:employee_of 0.76 0.90 0.82 0.10 0.97 0.19 0.17 0.73 0.27 0.86 0.89 0.88
per:origin 0.70 0.83 0.76 0.65 0.12 0.21 0.45 0.13 0.20 0.82 0.79 0.80
per:other_family 0.39 0.49 0.43 0.00 0.00 0.00 0.11 0.59 0.19 0.61 0.97 0.75
per:parents 0.79 0.94 0.86 0.33 0.05 0.09 0.41 0.39 0.40 0.87 0.87 0.87
per:religion 0.65 0.75 0.70 0.67 0.35 0.46 0.65 0.75 0.70 0.71 0.93 0.80
per:schools_attended 0.95 0.70 0.81 1.00 0.04 0.07 0.86 0.22 0.35 1.00 0.81 0.90
per:siblings 0.69 0.85 0.77 0.40 0.60 0.48 0.45 0.69 0.54 0.98 0.94 0.96
per:spouse 0.77 0.97 0.86 0.26 0.69 0.38 0.20 0.58 0.30 0.89 0.81 0.85
per:stateorprovince_of_birth 1.00 0.67 0.80 0.00 0.00 0.00 0.50 0.33 0.40 0.50 0.67 0.57
per:stateorprovince_of_death 0.50 0.20 0.29 0.00 0.00 0.00 1.00 0.10 0.18 0.44 0.70 0.54
per:stateorprovinces_of_residence 0.53 0.84 0.65 0.40 0.03 0.06 0.43 0.52 0.47 0.63 0.84 0.72
per:title 0.90 0.97 0.93 0.88 0.01 0.03 0.97 0.08 0.14 0.94 0.97 0.96

macro avg 0.69 0.74 0.70 0.43 0.30 0.25 0.53 0.44 0.41 0.77 0.83 0.78
micro avg 0.83 0.83 0.83 0.20 0.14 0.17 0.53 0.51 0.52 0.89 0.89 0.89
weighted avg 0.87 0.83 0.84 0.70 0.14 0.11 0.72 0.51 0.54 0.91 0.89 0.89

Table 12: TACRED-RE Results

Model DeBERTa-v3-large 304M Llama-3.1 8B zero-shot Llama-3.1 8B 5-shot Llama-3.1 8B fine-tuned

P R F1 P R F1 P R F1 P R F1

Other 0.96 0.89 0.92 0.78 0.29 0.42 0.94 0.54 0.69 0.92 0.93 0.93
birthdate 0.99 1.00 0.99 0.53 0.91 0.67 0.83 0.91 0.87 1.00 1.00 1.00
bplace_name 0.82 0.92 0.87 0.82 0.08 0.14 0.69 0.82 0.75 0.87 0.85 0.86
child 0.44 0.44 0.44 0.02 0.56 0.05 0.00 0.00 0.00 0.57 0.44 0.50
deathdate 0.95 0.96 0.96 0.73 0.82 0.77 0.65 0.85 0.74 0.96 0.99 0.98
dplace_name 0.64 0.71 0.67 0.39 0.25 0.31 0.50 0.55 0.52 0.56 0.81 0.66
educatedAt 0.72 0.90 0.80 0.06 1.00 0.12 0.19 1.00 0.32 0.00 0.00 0.00
occupation 1.00 0.99 1.00 0.83 0.41 0.55 0.77 0.94 0.85 1.00 0.98 0.99
parent 0.58 0.91 0.71 0.38 0.59 0.46 0.26 0.84 0.39 1.00 0.68 0.81
sibling 0.00 0.00 0.00 0.10 0.13 0.11 0.42 0.33 0.37 1.00 0.67 0.80

macro avg 0.71 0.77 0.74 0.46 0.50 0.36 0.53 0.68 0.55 0.79 0.74 0.75
micro avg 0.90 0.90 0.90 0.41 0.40 0.41 0.69 0.69 0.69 0.91 0.91 0.91
weighted avg 0.91 0.90 0.90 0.70 0.40 0.43 0.80 0.69 0.71 0.90 0.91 0.90

Table 13: Biographical Results
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F.2 Cross-Dataset Results

Model Setting Dataset Intra-Dataset Cross-Dataset
Shared Labels Dataset Labels NYT TACRED-RE

DeBERTa-v3-large 304M Fine-tuned on NYT 0.62 0.62 – 0.27
TACRED-RE 0.71 0.67 0.49 –

LLaMA 3.1 8B Fine-tuned on NYT 0.83 0.83 – 0.45
TACRED-RE 0.79 0.76 0.58 –

Shot Setting
LLaMA 3.1 8B Zero-Shot NYT 0.35 0.35 – –

TACRED-RE 0.64 0.54 – –
LLaMA 3.1 8B 5-Shot NYT 0.46 ± 0.04 0.46 ± 0.04 - 0.50 ± 0.06

TACRED-RE 0.59 ± 0.03 0.45 ± 0.05 0.44 ± 0.04 -

Table 14: Macro F1-scores for intra- and cross-dataset predictions for the overlap of six relations. Results are
reported for shared and dataset-specific labels in both fine-tuned and shot settings. For fine-tuning, models are
fine-tuned the overlap of six relations; for shot setting, also only the overlap of six relations is used for prompt or
random shot samples.

F.3 Cross-Dataset Per-Class Results

Model DeBERTa-v3-large 304M LLaMA-3.1 8B 5-shot LLaMA-3.1 8B fine-tuned

P R F1 P R F1 P R F1

/people/deceased_person/place_of_death 0.75 0.36 0.49 0.54 ± 0.07 0.39 ± 0.11 0.45 ± 0.08 0.71 0.45 0.56
/people/person/children 0.50 0.43 0.46 0.47 ± 0.05 0.29 ± 0.10 0.34 ± 0.08 0.69 0.64 0.67
/people/person/place_lived 0.62 0.93 0.75 0.27 ± 0.06 0.22 ± 0.15 0.23 ± 0.11 0.63 0.86 0.73
/people/person/place_of_birth 0.33 0.06 0.11 0.12 ± 0.05 0.07 ± 0.04 0.09 ± 0.04 0.17 0.02 0.04
/people/person/religion 1.00 0.20 0.33 0.64 ± 0.03 0.72 ± 0.23 0.66 ± 0.11 1.00 0.80 0.89
None 0.94 0.78 0.85 0.84 ± 0.03 0.46 ± 0.07 0.59 ± 0.06 0.90 0.82 0.86

macro avg 0.69 0.46 0.50 0.48 ± 0.03 0.36 ± 0.04 0.39 ± 0.02 0.68 0.60 0.62
weighted avg 0.80 0.75 0.75 0.62 ± 0.04 0.37 ± 0.03 0.45 ± 0.03 0.78 0.76 0.76

Table 15: Adapted on TACRED-RE with all biographical relations present in TACRED-RE. Evaluations on NYT.
The labels, although borrowed from NYT dataset, reflect the shared labels between NYT and TACRED-RE. More
fine-grained TACRED-RE were mapped to broader shared labels to enable cross-dataset evaluation comparison.

Model DeBERTa-v3-large 304M LLaMA-3.1 8B 5-shot LLaMA-3.1 8B fine-tuned

P R F1 P R F1 P R F1

/people/deceased_person/place_of_death 0.47 0.20 0.28 0.66 ± 0.11 0.33 ± 0.20 0.40 ± 0.17 0.62 0.23 0.33
/people/person/children 0.50 0.14 0.21 0.49 ± 0.15 0.48 ± 0.20 0.47 ± 0.17 1.00 0.14 0.24
/people/person/place_lived 0.69 0.17 0.27 0.65 ± 0.09 0.38 ± 0.06 0.48 ± 0.05 0.71 0.31 0.43
/people/person/place_of_birth 0.01 0.08 0.02 0.18 ± 0.10 0.88 ± 0.26 0.28 ± 0.11 0.38 0.25 0.30
/people/person/religion 0.00 0.00 0.00 0.86 ± 0.04 0.64 ± 0.17 0.72 ± 0.11 0.94 0.40 0.56
None 0.81 0.90 0.85 0.85 ± 0.04 0.78 ± 0.12 0.81 ± 0.05 0.79 0.95 0.86

macro avg 0.41 0.25 0.27 0.62 ± 0.05 0.58 ± 0.06 0.52 ± 0.06 0.74 0.38 0.45
weighted avg 0.73 0.66 0.66 0.79 ± 0.01 0.66 ± 0.09 0.71 ± 0.05 0.77 0.74 0.72

Table 16: Adapted on NYT with all biographical relations present in NYT. Evaluations on TACRED-RE. The labels,
although borrowed from NYT dataset, reflect the shared labels between NYT and TACRED-RE. More fine-grained
TACRED-RE were mapped to broader shared labels to enable cross-dataset evaluation comparison.

Model DeBERTa-v3-large 304M LLaMA-3.1 8B 5-shot LLaMA-3.1 8B fine-tuned

P R F1 P R F1 P R F1

None 0.92 0.63 0.75 0.87 ± 0.10 0.49 ± 0.09 0.62 ± 0.04 0.90 0.68 0.78
/people/person/place_of_birth 0.90 0.73 0.80 0.84 ± 0.02 0.70 ± 0.08 0.76 ± 0.05 0.90 0.75 0.82
/people/person/children 0.57 0.44 0.50 0.14 ± 0.14 0.13 ± 0.14 0.14 ± 0.14 0.71 0.56 0.63
/people/deceased_person/place_of_death 0.92 0.23 0.36 0.87 ± 0.05 0.36 ± 0.05 0.51 ± 0.05 0.95 0.38 0.54

macro avg 0.83 0.51 0.60 0.68 ± 0.06 0.42 ± 0.04 0.51 ± 0.04 0.87 0.59 0.69
weighted avg 0.91 0.61 0.72 0.85 ± 0.06 0.55 ± 0.01 0.65 ± 0.01 0.90 0.67 0.76

Table 17: Adapted on TACRED-RE with all biographical relations present in TACRED-RE. Evaluations on
Biographical with four biographical relations (full overlap between three datasets). The labels, although borrowed
from NYT dataset, reflect the shared labels between NYT, TACRED-RE, and Biographical.
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Model DeBERTa-v3-large 304M LLaMA-3.1 8B 5-shot LLaMA-3.1 8B fine-tuned

P R F1 P R F1 P R F1

/people/person/place_of_birth 0.76 0.39 0.51 0.82 ± 0.02 0.71 ± 0.14 0.75 ± 0.09 0.92 0.14 0.25
/people/person/children 0.27 0.44 0.33 0.19 ± 0.06 0.51 ± 0.06 0.27 ± 0.07 0.00 0.00 0.00
/people/deceased_person/place_of_death 0.62 0.22 0.32 0.76 ± 0.09 0.11 ± 0.08 0.19 ± 0.12 0.74 0.13 0.22
None 0.65 0.83 0.73 0.85 ± 0.09 0.62 ± 0.09 0.71 ± 0.06 0.57 0.96 0.72

macro avg 0.57 0.47 0.47 0.65 ± 0.02 0.49 ± 0.04 0.48 ± 0.04 0.56 0.31 0.30
weighted avg 0.68 0.59 0.59 0.82 ± 0.04 0.59 ± 0.05 0.66 ± 0.04 0.71 0.55 0.48

Table 18: Adapted on NYT with all biographical relations present in NYT. Evaluations on Biographical with four
biographical relations (full overlap between three datasets). The labels, although borrowed from NYT dataset,
reflect the shared labels between NYT, TACRED-RE, and Biographical.

Setting Parameter DeBERTa-v3-
large Fine-tuned

LLaMA 3.1 8B
Zero-Shot

LLaMA 3.1 8B
Five-Shot

LLaMA 3.1 8B
Fine-tuned

Common

# of Epochs 10 – – 3
seed 42 42 42 42
Loss Cross-Entropy Loss – – Cross-Entropy Loss
Optimiser AdamW – – AdamW
Batch Size 8 – – 4
Gradient Accumulation 4 – – –
Early Stopping Patience 2 – – 2
Temperature – 0.1 0.1 –
Nucleus Sampling – 0.9 0.9 –
Lora Settings† – – – 8/32/0.1

TACRED-RE
Learning Rate 5 × 10−6 /

5 × 10−5 – – 5 × 10−5

Max Length – – – 800/384
Max New Tokens – 40 256 –
Cross-Validation –/5-fold – – –

NYT
Learning Rate 5 × 10−6 – – 1 × 10−4

Max Length – – – 384
Max New Tokens – 256 256 –
Cross-Validation –/5-fold – – –

Biographical
Learning Rate 5 × 10−6 – – 1 × 10−4

Max Length – – – 384
Max New Tokens – 40 256 –

Table 19: Hyperparameter settings across datasets. Two values (x/y) indicate All/Overlap relation experiment
settings respectively (if these differ), where All indicates experiments with the whole set of biographical relations in
each dataset and Overlap uses only the intersection. Biographical experiments are performed only with the whole
set of biographical relations. †Lora Settings: Rank/Alpha/Dropout.

TACRED-RE NYT Biographical

POS Head Entity Tail Entity Head Entity Tail Entity Head Entity Tail Entity

PROPN 77.4 55.6 98.4 98.8 87.7 60.5
PRON 16.8 6.2 – – 0.1 0.2
NOUN 2.4 16.8 0.2 0.4 1.7 5.4
ADJ 1.2 4.5 0.2 – 0.7 0.9
ADP 0.7 1.6 0.2 0.3 0.3 1.1
NUM 0.0 8.5 – – 6.4 25.5
DET 0.3 1.0 0.2 0.1 0.8 2.3
VERB 0.4 0.7 – – 0.1 0.1

Table 20: (Top 8) POS Distribution Across TACRED-RE, NYT, and Biographical Test Sets with all Biographical
Relations (%). POS tags are obtained with spaCy’s transformer-based en_core_web_trf model.
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G Misclassification Analysis

Issue Description Representative Example Misclassifications
on

Models Affected

Overpredicting
‘None’

Overpredicting
‘None’ and strug-
gling with even
clear relations with
cues like ‘born’
or‘died’

“My name is
<e1>Ruben</e1> and I
am from <e2>Holland</e2>”
(GT: place_lived, Pred: None;
TACRED-RE sample ID:
‘098f6f318bc468878bbb’)

TACRED-RE and
Biographical

NYT-adapted
models

Failure to Cap-
ture Implicit Re-
lations

Models struggling
to detect implicit
relations requiring
reasoning

“<e1>Gross</e1> [...] was
sent to <e2>Cuba</e2> as a
spy” (GT: place_lived, Pred:
None; TACRED-RE sample
ID: ‘098f6f318be29eddb182’)

TACRED-RE NYT-adapted
models

Expected world
knowledge

For NYT and Bio-
graphical this issue
is also frequently
paired with detat-
able ground truth la-
bels

“<e1>Augustus</e1> also
amassed an impressive art
collection and built lavish
baroque palaces in Dresden
and <e2>Warsaw</e2>” (GT:
dplace_name, Pred: None;
Biographical sample ID:
‘mS2/247724’)

NYT, TACRED-
RE, Biographical

models adapted
on all 3 datasets
affected

Relation Present
in Sentence but
Not Between
Specified Entities

This issue raises
concerns about the
framing of the RE
task itself

“Jan Malte, [...] resident of
<e1>Bridgehampton</e1>,
died [...] in <e2>San Fran-
cisco</e2>” (GT: None,
Pred: place_of_death;
NYT article ID:
‘/m/vinci8/data1/riedel/projects
/relation/kb/nyt1/docstore/nyt-
2005-2006.backup
/1777142.xml.pb’)

NYT, TACRED-
RE, Biographical

models adapted
on all 3 datasets
affected

Debatable ground
truth (GT) labels

Caused by distantly
or semi-supervised
manner in which
NYT and Biograph-
ical were created

“<e1>Ida Freund</e1> was
born in <e2>Austria</e2>”
(GT: Other, Pred:
place_of_birth; Biographical
sample ID: ‘mS10/37387826’)

TACRED-RE, Bi-
ographical

NYT-adapted
models

Single-Label An-
notation Limita-
tion

Sentences labeled
with a single re-
lation may contain
additional relations
that remain unla-
beled

“<e1>Gross</e1>, who is
himself Jewish [...] was sent
to <e2>Cuba</e2>” (GT:
place_lived, Pred: None;
TACRED-RE sample ID:
‘098f6f318b69f98c850c’)

NYT, TACRED-
RE, Biographical

models adapted
on all 3 datasets
affected

Relation missing
in annotation
schema

Lack of granularity
needed to fully cap-
ture an individual’s
biography

“Wen was detained in August
and accused of protecting the
gang operations masterminded
by his sister-in-law, <e1>Xie
Caiping</e1>, 46, known
as the “godmother” of the
<e2>Chinese</e2> under-
world (GT: place_lived,
Pred: nationality;
TACRED-RE sample ID:
‘098f637935e6e6d1d093’)

NYT, TACRED-
RE, Biographical

—

Failure to Cap-
ture Relations in
Long, Compound
Sentences

Models struggling
with long-term rela-
tional dependencies

“Ecoffey told jurors that he
and another federal agent met
with <e1>Graham</e1> in
April 1994 in Yellowknife,
the city in northwest
<e2>Canada</e2> where
Graham lived at the time”
(GT: place_lived, Pred: None;
TACRED-RE sample ID:
‘098f6f318b3ea9531448’)

TACRED-RE NYT-adapted
models

Table 21: Common Misclassification Patterns Across TACRED-RE, NYT, and Biographical
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Relation NYT TACRED-RE Biographical
None year, york, united, mr,

like, states, president,
company, work, city

year, national, president,
group, include, state,
percent, million, amer-
ican, china

release, contract, an-
nounce, song, star,
award, series, role, sign,
championship

children father, son, higgins,
clark, favre, richard,
mary, daughter, carol,
daley

son, daughter, grand-
child, survive, wife,
year, child, include,
gude, jr

daughter, son, child, li,
father, mother, wife,
give, marry, actor

religion islam, muhammad,
prophet, religion, con-
vert, leader, school, al,
church, close

jewish, al, islam, shiite,
christian, group, mus-
lim, sunni, mohammed,
tantawi

–

place_lived senator, republican,
state, year, representa-
tive, gov, democrat, city,
john, mr

year, state, die, home,
york, city, president,
live, iran, old

–

place_of_birth city, year, orleans,
chicago, bear, bill,
attorney, general, mr,
california

bear, grow, family, child,
york, year, native, july,
old, son

bear, raise, née, grow,
family, youth, york, cal-
ifornia, city, mother

place_of_death die, year, home, city,
london, los, angeles, mr,
yesterday, paris

die, home, hospital, can-
cer, paris, wednesday,
sunday, find, early, dead

die, home, paris, age,
california, near, october,
london, live, move

Table 22: Top 10 tokens per overlapping relation in NYT, TACRED-RE, and Biographical datasets, following
lemmatisation and stop word removal using spaCy’s transformer-based en_core_web_trf model.
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