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ABSTRACT

Orthogonal weight matrices are used in many areas of deep learning. Much previ-
ous work attempt to alleviate the additional computational resources it requires to
constrain weight matrices to be orthogonal. One popular approach utilizes many
Householder reflections. The only practical drawback is that many reflections
cause low GPU utilization. We mitigate this final drawback by proving that one
reflection is sufficient, if the reflection is computed by an auxiliary neural network.

1 INTRODUCTION

Orthogonal matrices have shown several benefits in deep learning, with successful applications in
Recurrent Neural Networks, Convolutional Neural Networks and Normalizing Flows. One popular
approach can represent any d × d orthogonal matrix using d Householder reflections (Mhammedi
et al., 2017). The only practical drawback is low GPU utilization, which happens because the d re-
flections needs to be evaluated sequentially (Mathiasen et al., 2020). Previous work often increases
GPU utilization by using k � d reflections (Tomczak & Welling, 2016; Mhammedi et al., 2017;
Zhang et al., 2018; Berg et al., 2018). Using fewer reflections limits the orthogonal transformations
the reflections can represent, yielding a trade-off between representational power and computation
time. This raises an intriguing question: can we circumvent the trade-off and attain full representa-
tional power without sacrificing computation time?

We answer this question with a surprising “yes.” The key idea is to use an auxiliary neural network
to compute a different reflection for each input. In theory, we prove that one such “auxiliary reflec-
tion” can represent any number of normal reflections. In practice, we demonstrate that one auxiliary
reflection attains similar validation error to models with d normal reflections, when training Fully
Connected Neural Networks (Figure 1 left), Recurrent Neural Networks (Figure 1 center) and con-
volutions in Normalizing Flows (Figure 1 right). Notably, auxiliary reflections train between 2 and 6
times faster for Fully Connected Neural Networks with orthogonal weight matrices (see Section 3).
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Figure 1: Models with one auxiliary reflection attains similar validation error to models with many
reflections. Lower error means better performance. See Section 3 for details.
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1.1 OUR RESULTS

The Householder reflection of x ∈ Rd around v ∈ Rd can be represented by a matrixH(v) ∈ Rd×d.

H(v)x =

(
I − 2

vvT

||v||2

)
x.

An auxiliary reflection uses a Householder matrix H(v) with v = n(x) for a neural network n.

f(x) = H(n(x))x =

(
I − 2

n(x)n(x)T

||n(x)||2

)
x.

One auxiliary reflection can represent any composition of Householder reflections. We prove this
claim even when we restrict the neural network n(x) to have a single linear layer n(x) = Wx for
W ∈ Rd×d such that f(x) = H(Wx)x.

Theorem 1. For any k Householder reflections U = H(v1) · · ·H(vk) there exists a neural network
n(x) = Wx with W ∈ Rd×d such that f(x) = H(Wx)x = Ux for all x ∈ Rd\{0}.

Previous work (Mhammedi et al., 2017; Zhang et al., 2018) often employ k � d reflections and com-
pute Ux as k sequential Householder reflectionsH(v1) · · ·H(vk)·xwith weights V = (v1 · · · vk).
It is the evaluation of these sequential Householder reflection that cause low GPU utilization (Mathi-
asen et al., 2020), so lower values of k increase GPU utilization but decrease representational power.
Theorem 1 states that it is sufficient to evaluate a single auxiliary reflection H(Wx)x instead of k
reflections H(v1) · · ·H(vk) · x, thereby gaining high GPU utilization while retaining the full repre-
sentational power of any number of reflections.

In practice, we demonstrate that d reflections can be substituted with a single auxiliary reflection
without decreasing validation error, when training Fully Connected Neural Networks (Section 3.1),
Recurrent Neural Networks (Section 3.2) and Normalizing Flows (Section 3.3). While the use of
auxiliary reflections is straightforward for Fully Connected Neural Networks and Recurrent Neural
Networks, we needed additional ideas to support auxiliary reflections in Normalizing Flows. In
particular, we developed further theory concerning the inverse and Jacobian of f(x) = H(Wx)x.
Note that f is invertible if there exists a unique x given y = H(Wx)x and W .

Theorem 2. Let f(x) = H(Wx)x with f(0) := 0, then f is invertible on Rd with d ≥ 2 if
W = WT and has eigenvalues which satisfy 3/2 · λmin(W ) > λmax(W ).

Finally, we present a matrix formula for the Jacobian of the auxiliary reflection f(x) = H(Wx)x.
This matrix formula is used in our proof of Theorem 2, but it also allows us simplify the Jacobian
determinant (Lemma 1) which is needed when training Normalizing Flows.

Theorem 3. The Jacobian of f(x) = H(Wx)x is:

J = H(Wx)A− 2
WxxTW

||Wx||2
where A = I − 2

xTWTx

||Wx||2
W.

We prove Theorem 1 in Appendix A.1.1 while Theorems 2 and 3 are proved in Section 2.

2 NORMALIZING FLOWS

2.1 BACKGROUND

Let z ∼ N(0, 1)d and f be an invertible neural network. Then f−1(z) ∼ Pmodel defines a model
distribution for which we can compute likelihood of x ∼ Pdata (Dinh et al., 2015).

log pmodel(x) = log pz(f(x)) + log

∣∣∣∣det

(
∂f(x)

∂x

)∣∣∣∣ (1)

This allows us to train invertible neural network as generative models by maximum likelihood.
Previous work demonstrate how to construct invertible neural networks and efficiently compute the
log jacobian determinant (Dinh et al., 2017; Kingma & Dhariwal, 2018; Ho et al., 2019).
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2.2 INVERTIBILITY AND JACOBIAN DETERMINANT (PROOF SKETCH)

To use auxiliary reflections in Normalizing Flows we need invertibility. That is, for every y ∈ Rd
there must exist a unique x ∈ Rd so f(x) = H(Wx)x = y.1 We find that f is invertible if its
Jacobian determinant is non-zero for all x in Sd−1 = {x ∈ Rd | ‖x‖ = 1}.
Theorem 4. Let f(x) = H(Wx)x with f(0) := 0, then f is invertible on Rd with d ≥ 2 if the
Jacobian determinant of f is non-zero for all x ∈ Sd−1 and W is invertible.

The Jacobian determinant of H(Wx)x takes the following form.
Lemma 1. The Jacobian determinant of f(x) = H(Wx)x is:

−det(A)

(
1 + 2

vTA−1u

||u||2

)
where vT = xTW,u = Wx and A = I − 2

xTWTx

||Wx||2
W.

It is then sufficient that det(A) 6= 0 and 1 + 2vTA−1u/||u||2 6= 0. We prove that this happens if
W = WT with eigenvalues 3/2 ·λmin(W ) > λmax(W ). This can be achieved with W = I+V V T

if we guarantee σmax(V V T ) < 1/2 by spectral normalization (Miyato et al., 2018). Combining
these results yields Theorem 2.
Theorem 2. Let f(x) = H(Wx)x with f(0) := 0, then f is invertible on Rd with d ≥ 2 if
W = WT and has eigenvalues which satisfy 3/2 · λmin(W ) > λmax(W ).

Computing the Inverse. In practice, we use Newtons method to compute x so H(Wx)x = y.
Figure 2 show reconstructions n−1(n(x)) = x for an invertible neural network n with auxiliary
reflections using Newtons method, see Appendix A.2.1 for details.

x
n

1 (
n(

x)
)

Figure 2: CIFAR10 (Krizhevsky et al., 2009) images x and reconstructions n−1(n(x)) for an in-
vertible neural network n called Glow (Kingma & Dhariwal, 2018). The network uses auxiliary
reflections and we compute their inverse using Newtons method, see Appendix A.2.1 for details.

2.3 PROOFS

The goal of this section is to prove that f(x) = H(Wx)x is invertible. Our proof strategy has two
parts. Section 2.3.1 first shows f is invertible if it has non-zero Jacobian determinant. Section 2.3.2
then present an expression for the Jacobian determinant, Lemma 1, and prove the expression is
non-zero if W = WT and 3/2 · λmin(W ) > λmin(W ).

2.3.1 NON-ZERO JACOBIAN DETERMINANT IMPLIES INVERTIBILITY

In this section, we prove that f(x) = H(Wx)x is invertible on Rd if f has non-zero Jacobian
determinant. To simplify matters, we first prove that invertibility on Sd−1 implies invertibility on Rd.
Informally, invertibility on Sd−1 is sufficient because H(Wx) is scale invariant, i.e., H(c ·Wx) =
H(Wx) for all c 6= 0. This is formalized by Lemma 2.
Lemma 2. If f(x) = H(Wx)x is invertible on Sd−1 it is also invertible on Rd\{0}.

Proof. Assume that f(x) is invertible on Sd−1. Pick any y′ ∈ Rd such that ||y′|| = c for any c > 0.
Our goal is to compute x′ such that H(Wx′)x′ = y′. By normalizing, we see y′/‖y′‖ ∈ Sd−1. We
can then use the inverse f−1 on y′/‖y′‖ to find x such that H(Wx)x = y′/‖y‖. The result is then
x′ = x‖y‖ since H(Wx′)x′ = H(Wx)x||y|| = y due to scale invariance of H(Wx).

1Note that we do not know H(Wx) so we cannot trivially compute x = H(Wx)−1y = H(Wx)y.
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The main theorem we use to prove invertibiliy on Sd−1 is a variant of Hadamards global function
inverse theorem from (Krantz & Parks, 2012). On a high-level, Hadamard’s theorem says that a
function is invertible if it has non-zero Jacobian determinant and satisfies a few additional conditions.
It turns out that these additional conditions are meet by any continuously differentiable function f(x)
when (in the notation of Theorem 5) M1 = M2 = Sd−1.
Theorem 5. (Krantz & Parks, 2012, 6.2.8) Let M1 and M2 be smooth, connected N -dimensional
manifolds and let f : M1 → M2 be continuously differentiable. If (1) f is proper, (2) the Jacobian
of f is non-zero, and (3) M2 is simple connected, then f is invertible.

For M1 = M2 = Sd−1 the additional conditions are met if f is continuously differentiable.
Corollary 1. Let f : Sd−1 → Sd−1 with d ≥ 2 be continuously differentiable with non-zero
Jacobian determinant, then f is invertible.

Proof. Note that Sd−1 is smooth and simply connected if d ≥ 2 (Lee, 2013). Continuously functions
on Sd−1 are proper. We conclude f is invertible on Sd−1 by Theorem 5.

We now show that f(x) = H(Wx)x is continuously differentiable on Sd−1.
Lemma 3. The function f(x) = H(Wx)x is continuously differentiable on Sd−1 ifW is invertible.

Proof. Compositions of continuously differentiable functions are continuously differentiable by the
chain rule. All the functions used to construct H(Wx)x are continuously differentiable, except the
division. However, the only case where division is not continously differentiable is when ||Wx|| =
0. Since W is invertible, ||Wx|| = 0 iff x = 0. But 0 /∈ Sd−1 and we conclude f is continuously
differentiable on Sd−1.

Theorem 4. Let f(x) = H(Wx)x with f(0) := 0, then f is invertible on Rd with d ≥ 2 if the
Jacobian determinant of f is non-zero for all x ∈ Sd−1 and W is invertible.

Proof. By Lemma 3, we see f is continuously differentiable since W is invertible, which by Corol-
lary 1 means f is invertible on Sd−1 if f has non-zero Jacobian determinant on Sd−1. By Lemma 2,
we get that f is invertible on Rd if it has non-zero Jacobian on Sd−1.

2.3.2 ENFORCING NON-ZERO JACOBIAN DETERMINANT

The goal of this section is to present conditions on W that ensures the Jacobian determinant of f(x)
is non-zero for all x ∈ Sd−1. We first present a matrix formula for the Jacobian of f in Theorem 3.
By using the matrix determinant lemma, we get a formula for the Jacobian determinant in Lemma 1.
By investigating when this expression can be zero, we finally arive at Lemma 4 which states that the
Jacobian determinant is non-zero (and f thus invertible) if W = WT and 3/2 · λmin > λmax.
Theorem 3. The Jacobian of f(x) = H(Wx)x is:

J = H(Wx)A− 2
WxxTW

||Wx||2
where A = I − 2

xTWTx

||Wx||2
W.

See Appendix A.2.2 for PyTorch implementation of J and a test case against PyTorch autograd.

Proof. The (i, j)’th entry of the Jacobian determinant is, by definition,

∂(x− 2 · WxxTWT x
||Wx||2 )i

∂xj
= 1i=j − 2 ·

∂(Wx)i · x
TWT x
||Wx||2

∂xj
.

Then, by the product rule, we get

∂(Wx)i · x
TWT x
||Wx||2

∂xj
=
∂(Wx)i
∂xj

· x
TWTx

||Wx||2
+ (Wx)i ·

∂ x
TWT x
||Wx||2

∂xj

= Wij ·
xTWTx

||Wx||2
+ (Wx)i ·

∂xTWTx · 1
||Wx||2

∂xj
.
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The remaining derivative can be found using the product rule.

∂xTWTx · 1
||Wx||2

∂xj
=
∂xTWTx

∂xj
· 1

||Wx||2
+ xTWTx ·

∂ 1
||Wx||2

∂xj
.

First, (Petersen & Pedersen, 2012) equation (81) gives ∂xTWT x
∂xj

= ((WT + W )x)j . Second
||Wx||−2 can be found using the chain rule:

∂(||Wx||2)−1

∂xj
=
∂(||Wx||2)−1

∂||Wx||2
∂||Wx||2

∂xj

= − 1

||Wx||4

(
∂xTWTWx

∂x

)
j

= − 1

||Wx||4
((WTW + (WTW )T )x)j (Petersen & Pedersen, 2012, equ. 81)

= − 1

||Wx||4
2(WTWx)j .

Combining everything we get

Jij = 1i=j−2

[
xTWTx

||Wx||2
·Wij + (Wx)i

(
1

||Wx||2
· ((WT +W )x)j −

2xTWTx

||Wx||4
· (WTWx)j

)]
.

In matrix notation, this translates into the following, if we let A = I − 2 · x
TWT x
||Wx||2 W .

J = I − 2

[
xTWTx

||Wx||2
·W +Wx

(
1

||Wx||2
· xT (W +WT )− 2xTWTx

||Wx||4
· xTWTW

)]
= I − 2 · x

TWTx

||Wx||2
·W − 2 · WxxTW

||Wx||2
− 2 · WxxTWT

||Wx||2

(
I − 2 · x

TWTx

||Wx||2
W

)
= A− 2 · WxxTW

||Wx||2
− 2 · WxxTWT

||Wx||2
A

=

(
I − 2 · WxxTWT

||Wx||2

)
A− 2 · WxxTW

||Wx||2
= H(Wx)A− 2 · WxxTW

||Wx||2
.

This concludes the proof.

Theorem 3 allows us to write J as a rank one update M + abT for a, b ∈ Rd, which can be used to
simplify det(J) as stated in the following lemma.
Lemma 1. The Jacobian determinant of f(x) = H(Wx)x is:

− det(A)

(
1 + 2

vTA−1u

||u||2

)
where vT = xTW,u = Wx and A = I − 2

xTWTx

||Wx||2
W.

Proof. The matrix determinant lemma allows us to write det(M + abT ) = det(M)(1 + bTM−1a).
Let M = H(Wx)A and bT = −2 · xTW/||Wx||2 and a = Wx. The Jacobian J from Theorem 3
is then J = M + abT . The determinant of J is then:

det(J) = det(M)(1 + bTM−1a)

= det(H(Wx) ·A)

(
1− 2

xTW (H(Wx) ·A)−1Wx

||Wx||2

)
= −det(A)

(
1 + 2

xTWA−1Wx

||Wx||2

)
.

This is true because H(Wx)−1 = H(Wx), H(Wx) ·Wx = −Wx and det(H(Wx)) = −1.

We can now use Lemma 1 to investigate when the Jacobian determinant is non-zero. In particular,
the Jacobian determinant must be non-zero if both det(A) 6= 0 and 1 + 2vTA−1u/||u||2 6= 0. In the
following lemma, we prove that both are non-zero if W = WT and 3/2 · λmin > λmax.
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Lemma 4. Let W = WT and 3/2 · λmin > λmax then λi(A−1) < −1/2 for A from Lemma 1.
These conditions imply that det(A) 6= 0 and 1 + 2vTA−1u/||u||2 6= 0 with vT , u from Lemma 1

Proof. We first show that the inequality 3/2 · λmin(W ) > λmax(W ) implies λi(A−1) < −1/2.

λi(A
−1) =

1

λi(A)
=

1

1− 2x
TWT x
||Wx||2 λi(W )

If γi := xTWT x
||Wx||2 ·λi(W ) ∈ (1/2, 3/2) we get that 1/(1−2γi) ∈ (−∞,−1/2) so λi(A−1) < −1/2.

If we let y := Wx we get x
TWT x
||Wx||2 = yTW−1y

||y||2 . This is the Rayleigh quotient of W−1 at y, which
for W = WT is within [λmin(W−1), λmax(W−1)]. Therefore γi ∈ [ 1

λmax(W ) ,
1

λmin(W ) ] · λi(W ).
Note first that γmin ≤ 1 and γmax ≥ 1. It is left to show that γmin ≥ λmin/λmax > 1/2 and
γmax ≤ λmax/λmin < 3/2. Both conditions on eigenvalues are met if 3/2 · λmin > λmax.

We now want to show that det(A) 6= 0 and 1 + 2vTA−1u/||u||2 6= 0. First, notice that det(A) =∏d
i=1 λi(A) 6= 0 since λi(A) < −1/2. Second, note that W = WT implies that the vT from

Lemma 1 can be written as vT = xTW = xTWT = uT . This means we only need to ensure
uTA−1u/||u||2, the Rayleigh quotient of A−1 at u, is different to −1/2. But W = WT implies
A = AT because A = I − 2xTWTx/||Wx||2 ·W . The Rayleigh quotient is therefore bounded by
[λmin(A−1), λmax(A−1)], which means it is less than −1/2 since λi(A−1) < −1/2. We can then
conclude that also 1 + 2vTA−1u/||u||2 = 1 + 2uTA−1u/||u||2 < 1 + 2 · −1/2 = 0.

So det(J) 6= 0 by Lemma 4 and Lemma 1, which by Theorem 4 implies invertibility (Theorem 2).

Remark. Note that the constraints W = WT and 3/2 · λmin > λmax were introduced only
to guarantee det(A) 6= 0 and 1 + 2vTA−1u/||u||2 6= 0. Any argument or constraints on W that
ensures det(A) · (1 + vTA−1u/||u||2) 6= 0 are thus sufficient to conclude f(x) is invertible.

3 EXPERIMENTS

We compare a single auxiliary reflections against d normal reflections when training Fully Con-
nected Neural Networks (d = 784), Recurrent Neural Networks (d = 170) and Normalizing Flows
(d = 48). The experiments demonstrate that neural networks with a single auxiliary reflections
attain similar performance to neural networks with many normal reflections. All plots show means
and standard deviations over 3 runs. See Appendix B for experimental details.

3.1 FULLY CONNECTED NEURAL NETWORKS

We trained four different Fully Connected Neural Networks (FCNNs) for classification on MNIST.
We compared a FCNN with 6 auxiliary reflections against a FCNN with 6 orthogonal matrices each
represented by 784 normal reflections. For completeness, we also trained two FCNNs where the 6
orthogonal matrices where attained by the matrix exponential and Cayley map, respectively, as done
in (Casado, 2019; Lezcano-Casado & Martı́nez-Rubio, 2019). The FCNN with auxiliary reflections
attained slightly better validation error, see (Figure 3 left). Furthermore, we found the auxiliary
reflections were 2 to 6 times faster than competing methods, see (Figure 3 right). This was true even
though we used (Mathiasen et al., 2020) to speed up the sequential Householder reflections. See
Appendix B.1 for further details.

3.2 RECURRENT NEURAL NETWORKS

We trained three Recurrent Neural Networks (RNNs) for classification on MNIST as done in
(Mhammedi et al., 2017). The RNNs had a transition matrix represented by one auxiliary reflec-
tion, one normal reflection and 170 auxiliary reflections. See (Figure 4 left) for a validation error
during training, including the model from (Mhammedi et al., 2017). As indicated by the red curve,
using only one normal reflection severely limits the transition matrix. In the right plot, we magnify
the first 20 epochs to improve readability. The RNNs with 1 auxiliary reflection attains similar mean
validation accuracy to the RNNs with 170 normal reflections. See Appendix B.2 for further details.
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Figure 3: MNIST validation classification error in % over epochs (left) and over time (right). Lower
error mean better performance.

0 10 20 30 40 50 60 70
Epochs

0

20

40

60

80

Va
lid

at
io

n 
Er

ro
r

Recurrent Neural Network

0 5 10 15 20
Epochs

5

10

15

20

25

30

35
Va

lid
at

io
n 

Er
ro

r

Recurrent Neural Network (zoom)
Many Reflections
One Auxillary Reflection
One Reflection
(Mhammedi et al., 2017)

Figure 4: MNIST validation classification error for RNNs performing classification as done in
(Mhammedi et al., 2017). To improve readability, the right plot magnifies the first 20 epochs of
the left. Lower error means better performance.

3.3 NORMALIZING FLOWS AND CONVOLUTIONS

We initially trained two Normalizing Flows (NFs) on CIFAR10. Inspired by (Hoogeboom et al.,
2019), we used reflections to parameterize the 1x1 convolutions of an NF called Glow (Kingma
& Dhariwal, 2018), see Appendix B.3 for details. We trained an NF with many reflections and an
NF with a single auxiliary reflection constrained to ensure invertible (see Section 2.2). The single
auxiliary reflection attained worse validation NLL compared to the model with 48 normal reflections.

We suspected the decrease in performance was caused by the restrictions put on the weight matri-
ces Wi of the auxiliary reflections to enforce invertibility, i.e., Wi = WT

i and 3/2 · λmin(Wi) >
λmax(Wi). To investigate this suspicion, we trained a model with no constraints on W . This im-
proved performance to the point were one auxiliary reflections tied with many normal reflections
(see Figure 5 left).

Even though the resulting auxiliary reflections are not provably invertible, we found that Newtons
method consistently computed the correct inverse. Based on this observation, we conjecture that
the training dynamics caused the auxiliary reflections to remain invertible. By this we mean that
the auxiliary reflections were initialized with non-zero Jacobian determinants (see Appendix B.3)
and the loss function (Equation (1)) encourages the auxiliary reflections to increase their Jacobian
determinants during training. Since Newtons method consistently computed the correct inverse, we
were able to generate samples from all models, see (Figure 5 right).
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Figure 5: (Left) Validation negative log-likelihood (NLL) of three Normalizing Flows on CIFAR10.
NLL is reported in bits per dimension, lower values mean better performance. (Right) Samples
generated by different models, this required computing the inverse of auxiliary reflections.

4 RELATED WORK

Orthogonal Weight Matrices. Orthogonal weight matrices have seen widespread use in deep
learning. For example, they have been used in Normalizing Flows (Hoogeboom et al., 2019), Varia-
tional Auto Encoders (Berg et al., 2018), Recurrent Neural Networks (Mhammedi et al., 2017) and
Convolutional Neural Networks (Bansal et al., 2018).

Different Approaches. There are several ways of constraining weight matrices to remain or-
thogonal. For example, previous work have used Householder reflections (Mhammedi et al., 2017),
the Cayley map (Lezcano-Casado & Martı́nez-Rubio, 2019) and the matrix exponential (Casado,
2019). These approaches are sometimes referred to as hard orthogonality constraints, as opposed
to soft orthogonality constraints, which instead provide approximate orthogonality by using, e.g.,
regularizers like ||WWT − I||F (see (Bansal et al., 2018) for a comprehensive review).

Reflection Based Approaches. The reflection based approaches introduce sequential computa-
tions, which is, perhaps, their main limitation. Authors often address this by reducing the number of
reflections, as done in, e.g., (Tomczak & Welling, 2016; Mhammedi et al., 2017; Berg et al., 2018).
This is sometimes undesirable, as it limits the expressiveness of the orthogonal matrix. This moti-
vated previous work to construct algorithms that increase parallelization of Householder products,
see, e.g., (Mathiasen et al., 2020; Likhosherstov et al., 2020).

Similar Ideas. Normalizing Flows have been used for variational inference, see, e.g., (Tomczak
& Welling, 2016; Berg et al., 2018). Their use of reflections is very similar to auxiliary reflections,
however, there is a very subtle difference which has fundamental consequences. For a full apprecia-
tion of this difference, the reader might want to consult the schematic in (Tomczak & Welling, 2016,
Figure 1), however, we hope that the text below clarifies the high-level difference.

Recall that auxiliary reflections compute H(Wx)x so H(Wx) can depend on x. In contrast, the
previous work on variational inference instead compute H(v)z where v and z both depend on x.
This limits H(v) in that it can not explicitly depend on z. While this difference is subtle, it means
our proof of Theorem 1 does not hold for reflections as used in (Tomczak & Welling, 2016).

5 CONCLUSION

In theory, we proved that a single auxiliary reflection is as expressive as any number of normal reflec-
tions. In practice, we demonstrated that a single auxiliary reflection can attain similar performance
to many normal reflections when training Fully Connected Neural Networks, Recurrent Neural Net-
works and Normalizing Flows. For Fully Connected Neural Networks, we reduced training time by
a factor between 2 and 6 by using auxiliary reflections instead of previous approaches to orthogonal
matrices (Mhammedi et al., 2017; Lezcano-Casado & Martı́nez-Rubio, 2019; Casado, 2019).
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A APPENDIX

A.1 PROOFS

A.1.1 THEOREM 1

Our proof of Theorem 1 is an follows Lemma 5 which we state below.
Theorem 1. For any k Householder reflections U = H(v1) · · ·H(vk) there exists a neural network
n(x) = Wx with W ∈ Rd×d such that f(x) = H(Wx)x = Ux for all x ∈ Rd\{0}.

Proof. LetW = I−U thenH(Wx)x = H(x−Ux)x = Ux for all x ∈ Rd since ||Ux|| = ||x||.

Lemma 5. Let ||x|| = ||y|| then H(x− y)x = y.

Proof. The result is elementary, see, e.g., (Wang, 2015). For completeness, we derive it below.

H(x− y)x = x− 2
(x− y)(x− y)T

||x− y||2
x

= x− 2
xxT + yyT − xyT − yxT

xTx+ yT y − 2xT y
x

= x− 2
xxTx+ yyTx− xyTx− yxTx

xTx+ yT y − 2xT y

= x− 2
x||x||+ yyTx− xyTx− y||x||

2||x||2 − 2xT y

= x− (x− y)||x||2 + (y − x)(yTx)

||x||2 − xT y

= x− (x− y)||x||2 + (y − x)(yTx)

||x||2 − xT y

= x− (x− y)(||x||2 − xT y)

||x||2 − xT y
= x− (x− y) = y

11



Under review as a conference paper at ICLR 2020

A.2 PYTORCH EXAMPLES AND TEST CASES

To ease the workload on reviewers, we opted to use small code snippets that can be copied into
www.colab.research.google.com and run in a few seconds without installing any dependencies.
Some PDF viewers do not copy line breaks, we found viewing the PDF in Google Chrome works.

A.2.1 TEST CASE: INVERSE USING NEWTONS METHOD

Given y we compute x such that H(Wx)x = y using Newtons method. To be concrete, the code
below contains a toy example where x ∈ R4 andW = I+V V T /(2·σmax(V V T )) ∈ R4×4. The par-
ticular choice ofW makesH(Wx)x invertible, because λi(W ) = 1+λi(V V

T ) = 1+σi(V V
T ) ∈

[1, 3/2) because V V T is positive definite. Any possible way of choosing the eigenvalues in the
range [1, 3/2) guarantees that 3/2 · λmin > λmax which implies invertibility by Theorem 2.

import torch
print("torch version: ", torch.__version__)
torch.manual_seed(42)
d = 4
# Create random test-case.
I = torch.eye(d)
V = torch.zeros((d, d)).uniform_()
x = torch.zeros((d, 1)).uniform_()
W = I + V @ V.T / torch.svd(V @ V.T)[1].max()
# Define the function f(x)=H(Wx)x.
def H(v): return torch.eye(d) - 2 * v @ v.T / (v.T @ v)
def f(x): return H(W @ x ) @ x
# Print input and output
print("x\t\t", x.data.view(-1).numpy())
print("f(x)\t", f(x).data.view(-1).numpy())
print("")

# Use Newtons Method to compute inverse.
y = f(x)
xi = y
for i in range(10):

print("[%.2i/%.2i]"%(i+1, 10), xi.data.view(-1).numpy())
# Compute Jacobian using Theorem 3.
A = torch.eye(d) - 2* (xi.T @ W.T @ xi) / torch.norm(W @ xi)**2 * W
J = -2*W @ xi @ xi.T @ W/torch.norm(W@xi)**2 + H(W @ xi) @ A
xi = xi - torch.inverse(J) @ (f(xi)- y)

assert torch.allclose(xi, x, atol=10**(-7))
print("The two vectors are torch.allclose")

torch version: 1.6.0+cu101
x [0.8854429 0.57390445 0.26658005 0.62744915]
f(x) [-0.77197534 -0.49936318 -0.5985155 -0.6120473 ]

[01/10] [-0.77197534 -0.49936318 -0.5985155 -0.6120473 ]
[02/10] [ 0.72816867 0.78074205 -0.02241153 1.0435152 ]
[03/10] [0.7348436 0.6478982 0.14960966 0.8003925 ]
[04/10] [0.8262452 0.6155189 0.2279686 0.6997254]
[05/10] [0.8765415 0.5831212 0.2592551 0.640691 ]
[06/10] [0.8852093 0.5742159 0.26631045 0.6278922 ]
[07/10] [0.88543946 0.5739097 0.26658094 0.62744874]
[08/10] [0.88544315 0.57390547 0.2665805 0.6274475 ]
[09/10] [0.885443 0.57390594 0.26658088 0.6274466 ]
[10/10] [0.8854408 0.57390743 0.2665809 0.6274484 ]
The two vectors are torch.allclose
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Figure 2. Figure 2 contains reconstructions n−1(n(x)) of the variant of Glow (Kingma &
Dhariwal, 2018) used in Section 3.3. The Glow variant has 1x1 convolutions with auxiliary re-
flections, i.e., for an input x ∈ Rc×h×w where (c, h, w) are (channels, heigh, width) it computes
z:,i,j = H(Wx:,i,j)x:,i,j ∈ Rc where i = 1, ..., h and j = 1, ..., w. Computing the inverse required
computing the inverse of the auxiliary 1x1 convolutions, i.e., compute x:,i,j givenW and z:,i,j ∀i, j.
The weights were initialized as done in the above toy example.

A.2.2 TEST CASE: JACOBIAN AND AUTOGRAD

import torch
print("torch version: ", torch.__version__)
torch.manual_seed(42)

# Create random test-case.
d = 4
W = torch.zeros((d, d)).uniform_(-1, 1)
x = torch.zeros((d, 1)).uniform_(-1, 1)
I = torch.eye(d)

# Compute Jacobian using autograd.
def H(v): return I - 2 * v @ v.T / (v.T @ v)
def f(x): return H(W @ x ) @ x
J = torch.autograd.functional.jacobian(f, x)[:, 0, :, 0]
print(J)

# Compute Jacobian using Lemma 4.
A = I - 2* (x.T @ W.T @ x) / torch.norm(W @ x)**2 * W
J_ = H(W @ x) @ A -2*W @ x @ x.T @ W/torch.norm(W@x)**2
print(J_)

# Test the two matrices are close.
assert torch.allclose(J, J_, atol=10**(-5))
print("The two matrices are torch.allclose")

torch version: 1.6.0+cu101
tensor([[ 0.2011, -1.4628, 0.7696, -0.5376],

[ 0.3125, 0.6518, 0.7197, -0.5997],
[-1.0764, 0.8388, 0.0020, -0.1107],
[-0.8789, -0.3006, -0.4591, 1.3701]])

tensor([[ 0.2011, -1.4628, 0.7696, -0.5376],
[ 0.3125, 0.6518, 0.7197, -0.5997],
[-1.0764, 0.8388, 0.0020, -0.1107],
[-0.8789, -0.3006, -0.4591, 1.3701]])

The two matrices are torch.allclose
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B EXPERIMENTAL DETAILS

In this section, we specify the details of the three experiments presented in the Section 3. The
experiments were run on a single NVIDIA RTX 2080 Ti GPU and Intel Xeon Silver 4214 CPU @
2.20GHz.

B.1 FULLY CONNECTED NEURAL NETWORKS

For the experiment in Section 3.1 we trained four Fully Connected Neural Networks (FCNNs) as
MNIST classifiers. All FCNNs had the same structure which we now explain. Inspired by (Zhang
et al., 2018) the layers of the FCNNs were parametrized in their Singular Value Decomposition
(SVD). This just means each layer consisted of two orthogonal matrices U, V ∈ R784×784 and a
diagonal matrix Σ ∈ R784×784, so the forward pass computes y = UΣV Tx. The FCNNs had
three such fully connected layers with relu non-linearity in between, and a final linear layer of shape
W ∈ R784×10. We used the Adam optimizer (Kingma & Ba, 2015) with default parameters2 to
minimize cross entropy. To speed up the network with 784 normal reflections, we used the FastH
algorithm from (Mathiasen et al., 2020). For the network with auxiliary reflections, we had U, V be
auxiliary reflections instead of orthogonal matrices. In all experiments, we initialized the singular
values Σij ∼ U(0.99, 1.01).

We used orthogonal matrices with reflections, the Cayley transform and the matrix exponential as
done in (Mhammedi et al., 2017; Casado, 2019; Lezcano-Casado & Martı́nez-Rubio, 2019), respec-
tively. The orthogonal matrices are constructed using a weight matrix W . In all cases, we initialized
Wij ∼ U(− 1√

d
, 1√

d
). It is possible one could initialize Wij in a smarter way, which could change

the validation error reported in Figure 3. That said, we did try to initialize W using the Cayley
initialization suggested by (Casado, 2019). However, we did not find it improved performance.

B.2 RECURRENT NEURAL NETWORKS

For the experiment in Section 3.2, we trained three Recurrent Neural Networks as MNIST classifiers
as done in (Arjovsky et al., 2016; Mhammedi et al., 2017; Zhang et al., 2018; Casado, 2019). We
used the open-source implementation from (Casado, 2019).3 They use a clever type of “Cayley
initialization” to initialize the transition matrix U . We found it worked very well, so we choose to
initialize both the normal and auxiliary reflections so they initially represented the same transition
matrix U . For normal reflections, this can be done by computing v1, ..., vd so H1 · · ·Hd = U by
using the QR decomposition. For the auxiliary reflection, this can be done using W = I − U so
H(Wx)x = Ux (see Theorem 4).

In (Casado, 2019), they use h0 = 0 as initial state and report “We choose as the initial vector h0 = 0
for simplicity, as we did not observe any empirical improvement when using the initialization given
in (Arjovsky et al., 2016).” We sometimes encountered division by zero with auxiliary reflections
when h0 = 0, so we used the initialization suggested by (Arjovsky et al., 2016) in all experiments.

The open-source implementation (Casado, 2019) use RMSProp (Hinton et al., 2012) with different
learning rates for the transition matrix and the remaining weights. This was implemented in PyTorch
by using two RMSProp optimizers. We found training auxiliary reflectons to be more stable with
Adam (Kingma & Ba, 2015). We believe this happens because the “averaged gradients” v become
very small due to the normalization term ||Wx||2 in H(Wx)x = x − 2WxxTWTx/||Wx||2.
When v becomes small the scaling 1/(

√
v + ε) of RMSProp becomes very large. We suspect the

1/(
√
v/(1− βT2 )+ε) scaling used by Adam fixed the issue, which caused more stable training with

Adam. This caused us to use Adam optimizer for the transition matrix instead of RMSProp for all
the RNNs we trained.

2Default parameters of the Adam implementation in PyTorch 1.6 (Paszke et al., 2017).
3https://github.com/Lezcano/expRNN/
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B.3 NORMALIZING FLOW

For the experiment in Section 3.3, we trained three Normalizing Flows as generative models on
CIFAR10 as done in (Dinh et al., 2015; 2017; Kingma & Dhariwal, 2018; Ho et al., 2019). We
used an open-source PyTorch implementation of Glow (Kingma & Dhariwal, 2018)4 with default
parameters, except for the number of channels “-C” and the number of steps “-K.” In particular, to
decrease training time, we reduced “-C” from 512 to 64 and “-K” from 32 to 8. This caused an
increase in validation NLL (worse performance) from 3.49 to 3.66 after 80 epochs.

Auxiliary Reflections for 1x1 Convolutions. (Kingma & Dhariwal, 2018) suggested using in-
vertible 1× 1 convolutions for Normalizing Flows. That is, given an input x ∈ Rc×h×w and kernel
W ∈ Rc×c they compute z:,i,j = Wx:,i,j for all i, j. The resulting function is invertible ifW is, and
it has Jacobian determinant hw det(W ). It was suggested by (Hoogeboom et al., 2019) to represent
W in its QR decomposition so det(W ) = det(QR) = det(Q) det(R) = det(R) =

∏
iRii. To

this end, they represent the orthogonal matrix Q as a product of reflections, in particular, they use
c = 12, 24, 48 reflections at different places in the network. The main goal of this experiment, was
to compare c = 12, 24, 48 normal reflections against a single auxiliary reflection, which computes
z:,i,j = H(Wx:,i,j)x:,i,j instead of z:,i,j = Wx:,i,j . To isolate the difference in performance due to
reflections, we further removed the rectangular matrix.

Provably Invertible. One of the Normalizing Flows with auxiliary reflections had the weights of
its auxiliary reflections constrained to ensure invertibility. In particular, we let each weight matrix be
W = I + V V T and used spectral normalization V V T /(2σmax(V V T )) to ensure σi(V V T ) < 1/2.
The largest singular value can be computed efficiently using power iteration (Miyato et al., 2018).
For ease of implementation, we circumvented using power iteration due to a known open issue in the
official PyTorch implementation. We instead used TORCH.SYMEIG to compute the largest singular
value by computing the largest eigenvalue λmax(V V T ) = σmax(V V T ), which holds because V V T
is positive definite for V ∈ Rc×c. This was only possible because the matrices where at most
48× 48, for larger problems one would be forced to use the power iteration.

Initialization. The open-source implementation of Glow initializes W = Q with Q from
TORCH.QR(TORCH.RANDN((C,C)))[0]. For the case with normal reflections, we computed
v1, ..., vc such that H(v1) · · ·H(vc) = Q (Wang, 2015). For the auxiliary reflection without con-
straints we let W = I −Q such that H(Wx)x = H(x−Qx) = Qx by Lemma 5.

However, for the experiment with constraints onW , we could not initiallizeW = I−Q and instead
used W = I + V V T where (initially) Vij ∼ U(− 1√

c
, 1√

c
). This increased error at initialization

from 6.5 to 8. We suspect this happens because the previous initialization of W has complex eigen-
values which W = I + V V T does not (because it is symmetric). In practice, we mitigate the poor
initialization by using an additional fixed matrix Q = QT which does not change during training.
This is essentially the same as using a fixed permutation as done in (Dinh et al., 2017), but, instead
of using a fixed permutation, we use a fixed orthogonal matrix. While using the fixed Q, we found
simply initializing V = I worked sufficiently well.

4https://github.com/chrischute/glow
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