
Uncertainty-Aware Contour Proposal Networks for
Cell Segmentation in Multi-Modality High-Resolution

Microscopy Images

Eric Upschulte1,2, Stefan Harmeling3, Katrin Amunts1,4, Timo Dickscheid1,2,5

1 Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
2 Helmholtz AI, Research Centre Jülich, Germany

3 Department of Computer Science, Technical University Dortmund, Germany
4 Cécile & Oskar Vogt Institute of Brain Research, University Hospital Düsseldorf, Germany

5 Department of Computer Science, Heinrich Heine University Düsseldorf, Germany

Abstract

We present a simple framework for cell segmentation, based on uncertainty-aware
Contour Proposal Networks (CPNs). It is designed to provide high segmen-
tation accuracy while remaining computationally efficient, which makes it an
ideal solution for high throughput microscopy applications. Each predicted cell
is provided with four uncertainty estimations that give information about the lo-
calization accuracy of the detected cell boundaries. Such additional insights are
valuable for downstream single-cell analysis in microscopy image-based biology
and biomedical research. In the context of the NeurIPS 22 Cell Segmentation
Challenge, the proposed solution is shown to generalize well in a multi-modality
setting, while respecting domain-specific requirements such as focusing on specific
cell types. Without an ensemble or test-time augmentation the method achieves
an F1 score of 0.8986 on the challenge’s validation set. Code is available at
https://github.com/FZJ-INM1-BDA/neurips22-cell-seg.

1 Introduction

Object detection and segmentation in images is fundamental in many research areas. Solutions need
to be both reliable and efficient, as downstream tasks can be sensitive to segmentation and detection
quality and often involve large quantities of data that need to be processed. This work is based on the
Contour Proposal Network (CPN) [1], which models instance segmentation as a sparse detection
problem by performing regression of object contours anchored at pixel locations. This way, the model
is capable of assigning multiple objects to the same pixel and thus recover partially superimposed
objects with their actual shape, which is highly favorable for shape-sensitive downstream tasks
like morphological cell analysis. The CPN uses a backbone network to extract multi-scale feature
maps from the input image, from which regression heads generate candidate contour representations
at each pixel, while a classification head determines whether an object is present or not at these
locations. Based on the classifications, a proposal sampling stage then extracts a sparse list of contour
representations, which are explicitly projected to the pixel domain using the differentiable Fourier
transformation and thus learn to encode contour representations in the frequency domain. Precision
of contours is further optimized by applying a displacement field in the pixel domain which is the
output of an additional regression head. As an extension to the original CPN, we add dedicated
supervision of boundaries and propose an additional branch which estimates localization uncertainty
for boundaries. The latter is a technique originally intended for anchor-free object detection with
bounding boxes [2]. The complete framework is trained end-to-end, and complemented by a final
uncertainty-aware non-maximum suppression (NMS) [2] to remove redundant detections.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/FZJ-INM1-BDA/neurips22-cell-seg

Classification

Contour Regression

Refinement Regression

Uncertainty Estimation

Re
sN

eX
t-1

01
 U

-N
et

Lo
ca

l R
efi

ne
m

en
t

Pr
op

os
al

Sa
m

pl
in

g

N
on

-M
ax

im
um

 S
up

pr
es

sio
n

Figure 1: Overview of the uncertainty-aware Contour Proposal Network. The CPN [1] uses a U-Net
[3] architecture with a ResNeXt-101 [4] encoder to compute multi-scale features based on the input
image. Using these features, a classification head determines if an object of interest is present in
the input image at a given pixel location. The contour regression head encodes complete and closed
object contours sparsely. A list of contour proposals can be extracted using the classification results.
A local refinement step [1] is applied to improve pixel precision of the contours. The uncertainty head
estimates four localization uncertainties for proposed object boundaries. This information can be
used in downstream tasks and is combined with the classification score for the final uncertainty-aware
NMS.

2 Methods

2.1 Preprocessing

All image data is first converted to 8-bit unsigned integer (uint8) arrays. For this we explore two
components: (a) A percentile-based min-max normalization, and (b) a mean-intensity based gamma
correction. The latter is intended to improve contrast especially in dark images, by applying stronger
corrections for smaller mean-intensities. Different conversion strategies are applied during training,
as a form of data augmentation. Some datasets contain fractured annotations. As the proposed
method assumes closed object contours, all objects that are annotated with more than one connected
component are flagged and ignored during training. Also, large objects are automatically removed
from the Cellpose dataset [5], to prevent negative influence of irregular shapes.

2.2 Contour Proposal Networks

For the detection and segmentation of cells we use CPNs [1]. The original CPN uses a backbone
network to produce features based on the input image for multiple prediction heads: A classification
head that decides whether a pixel represents an object, a contour regression head that predicts object
contour coordinates in vector format, a location regression head that estimates the offset between
a pixel position and actual object location, and a refinement head that fine-tunes pixel accuracy of
the contours from a learned 2D deformation field. In this work, we make a specific design choice
for the backbone network, and propose an additional uncertainty estimation head that predicts the
uncertainty with respect to localization accuracy of object boundaries.

2.2.1 Classification

The classification head classifies each pixel into K + 1 categories, namely background and K
foreground object classes. Note that this is technically over-parameterized and can be reduced to
a K-class classification problem [6]. In this work we focus on just one object class, hence the
classification head is a binary classifier. As the CPN relies on sparse classification, only a centric
fraction of an object’s area is marked with a respective foreground label. As a loss function the
weighted Binary Cross Entropy (BCE) is used:

Lobject = −wfgo log ô− wbg(1− o) log(1− ô) (1)

with o and ô denoting the targeted and predicted class score, respectively. For legibility we specify all
losses per pixel, and imply averaging. To compensate for the class imbalance between object and
background pixels, losses of each set of class pixels are reduced separately.

2

2.2.2 Contour prediction

Much like bounding boxes, contours can be represented in a vector format [1]. The contour regression
head predicts entire object contours as a vector embedding at each pixel location. During inference,
the classification head decides if a contour vector represents an object in the input image. In [1] the
authors follow [7] and define contours as a series of 2d coordinates ((x1, y1), . . . , (xS , yS)) using
the Fourier sine and cosine transformation

xs = a0 +

N∑
n=1

(
an sin

(
2nπts
T

)
+ bn cos

(
2nπts
T

))

ys = c0 +

N∑
n=1

(
cn sin

(
2nπts
T

)
+ dn cos

(
2nπts
T

)) (2)

with N denoting the order hyperparameter, an, bn, cn and dn denoting contour coefficients that are
predicted by the network, and the location parameter ti ∈ [0, 1] with interval length T = 1 that
defines the location on the contour for which coordinates are to be calculated. An entire contour
can be sampled by examining Eq. 2 at t1, . . . , tS with ti < ti+1. The vector size 4N + 2 of the
embedding is controlled by the order N . By definition of Eq. 2, it also regulates how precise the
approximation of a contour is. Larger settings of N yield larger embeddings and allow for more
details to be preserved, while smaller settings focus on basic shape characteristics. As in [1], the
contour regression loss is defined as the average absolute difference between predicted and targeted
contour coordinates:

Lcontour =
1

2S

S∑
s=1

(|xs − x̂s|+ |ys − ŷs|). (3)

2.2.3 Boundary supervision

As a further incentive for correct localization, object boundaries are supervised using the gen-
eralized IoU (GIoU) loss [8] denoted by Lboundary. For this purpose, boundaries are derived
from contours in the form of bounding boxes. As in [1], a bounding box is defined as
(mins xs,mins ys,maxs xs,maxs ys).

2.2.4 Local refinement

In [1] local refinement was proposed to maximize the pixel precision of the predicted contours.
Effectively, local refinement allows the network to self-correct by leveraging local features that
describe parts of an object, to improve a contour that describes the outlines of a whole object.
Assuming that local refinement improves contour precision, this step also provides self-supervision
potential for the contour regression, relevant for semi-supervised scenarios. As in [1], the refinement
loss Lrefine is the absolute L1 distance between refined and target contours.

2.2.5 Localization uncertainty estimation

An additional branch is added to the CPN architecture to estimate the uncertainty of object boundaries.
Following [2, 9], four uncertainties (top, right, bottom, left) are predicted per object. The uncertainty
branch is trained using the negative power log-likelihood loss (NPLL) [2]

Luncertainty = η

(∑
i

(
(υi − υ̂i)

2

2δi
2 +

1

2
log δi

2

)
+ 2 log 2π

)
(4)

with i denoting the four boundaries (top, right, bottom, left), υi and υ̂i denoting the true and predicted
boundaries, δi denoting the estimated uncertainty and η the IoU score between predicted and ground-
truth box. In practice, δi is sigmoid activated and scaled by a constant. During inference the scaling
is omitted, such that the estimated uncertainty lies within the interval [0, 1].

2.2.6 Training objective

The complete per-pixel objective minimized during training is given by

L = Lobject(o, ô) + o(λ0Luncertainty + λ1Lcontour + λ2Lrefine + λ3Lrepr + λ4Lboundary) (5)

3

Encoder Block Decoder Block Classification Head

Refinement Head

Encoder Block Decoder Block

Encoder Block Decoder Block

Figure 2: Lateral skip connection between encoder blocks, decoder blocks and classification and
regression heads, respectively.

with o and ô denoting targeted and predicted binary classification scores, λi loss-specific weights and
Lrepr denoting an additional regularization that minimizes the distance between targeted and predicted
contour embeddings in the frequency domain [1].

2.2.7 Uncertainty-aware non-maximum suppression

The CPN applies NMS to remove redundant contour proposals. Vanilla NMS specifically keeps
proposals with a high classification score and suppresses proposals with lower scores and Intersection
over Unions (IoUs) larger than a given threshold. However, there is no guarantee that the classification
score alone is an appropriate indicator for the quality of a proposal. We adopt the strategy proposed in
[2] and use the product of score and certainty ô(1− 1/4(

∑
i δi)) to include uncertainty estimations

into the selection process of NMS instead of choosing proposals based on the classification score ô.

2.2.8 Backbone

The backbone architecture of the CPN is a U-Net [3] with a ResNeXt-101 [4] encoder. The final
encoder features are passed to a pyramid pooling module (PPM) [10] that drastically increases field-
of-view and provides global context. The decoder consists of residual blocks [11] with projection
shortcuts [11], group normalization [12] and Leaky-ReLU activation [13]. To mitigate the develop-
ment of artifacts stemming from other heads and to leverage shallow features, we add an additional
lateral skip-connection between encoder and the refinement and classification head, respectively.
Figure 2 illustrates the setup. Especially for the classification and refinement tasks, we view shallow
features as vital, as these tasks often depend on local edge and color information. The architecture is
initialized randomly and trained from scratch.

2.2.9 Semi-supervised boundaries with Listen2Student

To include unlabeled examples in the training, we use the uncertainty-aware Listen2Student (L2S)
mechanism [9]. A teacher model produces bounding boxes as pseudo-labels, which are used to
supervise the student model. In Listen2Student, the student only learns from the teacher if δsi > σs

and δti ≤ δsi − σm, with i denoting the boundary index as in Eq. 4, δsi and δti denote the uncertainties
of student and teacher, and σs, σm denote the uncertainty threshold and margin hyperparameters,
respectively. If this condition is met, the absolute difference between student and teacher boundary is
minimized.

2.3 Efficiency

To improve model inference speed and reduce resource consumption the solution utilizes automatic
mixed precision (AMP) via PyTorch’s autocast feature. It automatically selects operation-specific
data types to improve performance while aiming to maintain accuracy1. Additionally, we leverage that
contours can be defined on an arbitrary resolution without losing precision and apply the CPN heads
with features of lower resolutions. This decreases computational costs and thus further improves
inferences speed.

1https://pytorch.org/docs/1.12/amp.html

4

https://pytorch.org/docs/1.12/amp.html

2.4 Post-processing

The detected object contours are converted to label images using rasterization and region filling.
Since contours may overlap and the applied datasets do not allow overlap, only unambiguous regions
are filled initially. We chose to fill overlapping regions using region growing [14] seeded by the initial
labels.

3 Experiments

3.1 Datasets

The following datasets were used for training : BBBC039 [15], BBBC038 [16], Omnipose [17],
Cellpose [5], Sartorius Cell Instance Segmentation (SCIS) 2, Livecell [18], NeurIPS 22 - Cell
Segmentation in Multi-modality Microscopy Images 3.

3.2 Implementation details

3.2.1 Environment settings

The development and validation environments are presented in Table 1. Note that the development
environment lists specifications of a single node of the JURECA HPC system [19]. Multiple nodes
were used during development. Validation is performed using a dockerized inference script. Following
the challenge guidelines4, the Docker environment is limited to 28 GB of RAM and Docker’s default
shared memory size of 64 MB5. As minimum requirement for inference, we recommend single image
processing with a patch size of 512×512, which yields peak GPU memory consumption of 2.25GiB6

(3.51GiB on process level) and 20.23 FPS with AMP enabled in the validation environment.

Table 1: Development and validation environment.
Development Validation

System Rocky Linux 8 Ubuntu 20.04
CPU 2× AMD EPYC 7742 Intel® Core™ i7-7800X

2 × 64 cores, 2.25 GHz 12 × 3.50 GHz
RAM 16× 32 GB, 3200 MHz 8× 16 GB
GPU (number and type) 4× NVIDIA A100 1× NVIDIA RTX 2080 Ti

4× 40 GB HBM2e
CUDA version 11.3 11.3
Programming language Python 3.8.12 Python 3.8.12
Deep learning framework PyTorch 1.12 PyTorch 1.12
Specific dependencies celldetection 7 Docker 8

3.2.2 Training protocols

Training schedule Inspired by evolutionary optimization strategies and stochastic gradient descent
with warm restarts (SGDR) [20], we train multiple models with different hyperparameters, select the
best performing models and restart training with changed hyperparameters. This process is repeated
until validation scores no longer improve. Changed hyperparameters specifically regard learning
rate, augmentation policy, the use of random data subsampling, as well as the size of the centric
fraction of an object area that is trained to represent the object. In the progression of restarts, the latter
is increased, learning rate decreased and subsampling disabled. Hyperparameters that regard the
architecture are not altered during this process. The used architectures are initialized randomly and

2https://www.kaggle.com/competitions/sartorius-cell-instance-segmentation/data
3https://neurips22-cellseg.grand-challenge.org
4https://neurips22-cellseg.grand-challenge.org/metrics/
5https://docs.docker.com/engine/reference/run
6https://pytorch.org/docs/stable/generated/torch.cuda.max_memory_allocated.html
7https://celldetection.org
8https://docker.com

5

https://www.kaggle.com/competitions/sartorius-cell-instance-segmentation/data
https://neurips22-cellseg.grand-challenge.org
https://neurips22-cellseg.grand-challenge.org/metrics/
https://docs.docker.com/engine/reference/run
https://pytorch.org/docs/stable/generated/torch.cuda.max_memory_allocated.html
https://celldetection.org
https://docker.com

trained from scratch. All listed datasets were used jointly during training. Data from the NeurIPS 22 -
Cell Segmentation challenge (NeurIPS22 CellSeg Challenge) was naively oversampled by duplicating
each example five times to increase the frequency with which it occurs in training batches. As a
naive form of randomized data pruning, we applied random subsampling of the joint dataset during
the first two training generations. Consequently, random examples can be over- or undersampled.
During training, the data is retrieved in random order. Training protocol details are listed in Table 2.
Following [21], we scale the learning rate by

√
bs/64, with bs denoting the total batch size. Except

the contour loss weight λ1 = 1.5, all factors λi are set to 1.

Data augmentation Data augmentation is performed online, according to a predefined policy.
Grayscale and RGB images have specific augmentation pipelines, respectively. Augmentations
include rotation, rescaling, flipping, blurring, gamma transformation, noise, HSV shifting, color
mapping and channel shuffling. For the rescaling augmentation, an instance-aware, dynamic approach
was used. Annotated object sizes are examined on-the-fly to define rescale bounds for the otherwise
predominantly drastic rescale operation. All images are randomly cropped to 512 × 512 after all
augmentations were performed.

3.2.3 Inference protocols

For inference, a single model is selected. It is applied with AMP via PyTorch’s autocast feature,
which automatically selects operation-specific data types to improve performance. Large images
are processed using a sliding window approach with a window size of 768 × 768 and a stride of
384× 384. Redundant detections, stemming from the overlap of the sliding windows, are removed
using uncertainty-aware NMS (see Section 2.2.7), just as it is done inside the model. To remain
efficient, the overlap is the only explicitly performed redundant prediction. Hence, no further test-time
augmentation (TTA) is applied.

Table 2: Training protocols.

Network initialization "he" normal
Batch size (bs) 10/GPU
Patch size 512×512×3
Total epochs 225
Optimizer Adam (β1 = 0.9, β2 = 0.999, λ = 0.00002)
Initial learning rate (lr) lr ∼ N (0.0008, 0.0001)
Lr decay schedule MultiStepLR (1000 warmup steps, γ = 0.666)
Training time 17.08 hours
Loss function BCE, L1, NPLL, GIoU
Number of model parameters 228.24 M
Number of flops 443.60 GF9

3.3 Quantitative evaluation of segmentation accuracy

To quantitatively evaluate the detection and segmentation performance of the proposed method, the
harmonic mean of precision and recall F1τ = TPτ/(TPτ + 1/2(FPτ + FNτ)) is used. TP, FP, FN
denote true positives, false positives and false negatives, respectively. The IoU threshold τ ∈ [0, 1]
determines if a detected object is counted as a match when compared to an object from the ground
truth annotation. Results are reported for the validation set, of which unlabeled images are publicly
available, as well as the non-public test dataset of the NeurIPS22 CellSeg Challenge.

3.4 Quantitative evaluation of efficiency

To quantitatively evaluate the efficiency of the proposed solution, the running time of a dockerized
inference script is examined10. The inference time measures the entire run time of a docker run
command that applies the proposed solution to a single image. Notably, this includes a relatively
large overhead for environment setup.

9Measured with specified patch size using fvcore (https://github.com/facebookresearch/fvcore)
10https://neurips22-cellseg.grand-challenge.org/metrics

6

https://github.com/facebookresearch/fvcore
https://neurips22-cellseg.grand-challenge.org/metrics

Table 3: Quantitative results on validation set. The detection and segmentation quality is reported
in terms of F1τ=0.5, with τ denoting the IoU threshold. The results were obtained from the evalu-
ation server of the NeurIPS22 CellSeg Challenge. UA and L2S abbreviate uncertainty-aware and
Listen2Student, respectively. Results were achieved with automatic mixed precision (AMP) and local
refinement enabled.

Model Backbone Epochs UA GIoU F1τ=0.5

CPN ResNeXt-101 U-Net 345 ✓ × 0.8815

CPN ResNeXt-101 U-Net 315 × ✓ 0.8848

CPNL2S ResNeXt-101 U-Net 300 ✓ ✓ 0.8961

CPN ResNeXt-101 U-Net 225 ✓ ✓ 0.8981

2 CPNs ResNeXt-101 U-Net 225, 195 ✓ ✓ 0.9004

Table 4: Quantitative results for multiple UA-CPNs on validation set. The detection and segmentation
quality is reported for different configurations of uncertainty-aware CPNs in terms of F1τ=0.5, with τ
denoting the IoU threshold. The results were obtained from the evaluation server of the NeurIPS22
CellSeg Challenge. UA, AMP and Refine abbreviate uncertainty-aware, automatic mixed-precision
and local refinement, respectively. GIoU loss was used in all configurations.

Model Backbone Epochs UA-NMS AMP Refine F1τ=0.5

CPN ResNeXt-101 U-Net 160 × ✓ ✓ 0.8447

CPN ResNeXt-101 U-Net 160 ✓ ✓ ✓ 0.8457

CPN ResNeXt-101 U-Net 225 ✓ ✓ × 0.8809

CPN ResNeXt-101 U-Net 225 ✓ ✓ ✓ 0.8981

CPN ResNeXt-101 U-Net 225 ✓ × ✓ 0.8983

CPN ResNeXt-101 U-Net 225 × ✓ ✓ 0.8986

4 Results and discussion

4.1 Quantitative results on validation set

Quantitative results examining the influence of uncertainty estimation, GIoU loss, the Listen2Student
mechanism and an ensembles are reported for the validation set of the NeurIPS22 CellSeg Challenge
in Table 3. Different configurations of uncertainty-aware CPNs are evaluated in Table 4. The
largest improvement in the reported results is achieved by increasing the number of epochs used for
training, as can be seen in Table 4. Increasing epochs from 160 to 255 improves the F1τ=0.5 score
by 0.0524, with UA, AMP and Refine enabled. The use of AMP, in the reported case, decreases the
F1τ=0.5 score by 0.0002. Uncertainty-aware NMS slightly improves the score for a lower epoch
count by 0.001. However, for a higher epoch count it decreases the score by 0.0005. Enabling local
refinement improves the score by 0.0172. A simple ensemble of two CPNs achieves the highest
score of 0.9004. In the conducted experiments the semi-supervised Listen2Student approach could
not surpass fully-supervised training. Since neither Listen2Student, nor uncertainty-aware NMS
are able to significantly improve the F1τ=0.5 score, we hypothesize that boundary localization is
not the primary cause of errors for this setting of the IoU threshold τ . Influences on scores with
larger thresholds, as reported in [9], are not reflected in the evaluation of this challenge. The ablation
of GIoU loss and uncertainty prediction shows that the joint use of both components increases F1
scores in this experiment. The results suggest that boundary localization uncertainty estimation and
GIoU based boundary supervision are especially effective when used in a complementary manner.
Overall, the results underline that longer training and local refinement [1] significantly improve
F1τ=0.5 scores. Notably, local refinement is primarily intended to improve pixel accuracy, which
predominantly improves F1τ scores with greater IoU threshold τ [1].

7

In
pu

t i
m

ag
e

G
ro

un
d

tru
th

C
PN

 p
re

di
ct

io
n

(a) (b) (c) (d) (e)

Figure 3: Segmentation examples. (best viewed digitally) Top row shows examples from a validation
split of the NeurIPS22 CellSeg Challenge training set. Second row shows ground truth annotations
and bottom row example segmentations from a CPN. Colors are chosen randomly per instance.

(a) (b) (c) (d)

Figure 4: Examples with estimated localization uncertainties. (best viewed digitally) The examples
above show crops of the image depicted in 3b. (b)-(d) add superimposed contours, bounding boxes and
uncertainties predicted by a CPN. (c) and (d) show magnified examples for low and high localization
uncertainties, respectively.

4.2 Qualitative results on validation set

To get a first impression of the performance, we considered a large sample of good and bad results
qualitatively, such as the examples from the NeurIPS22 CellSeg Challenge validation set in Figure 5.
Overall, the CPN seems to detect the correct objects with high accuracy across all domains of the
validation set under various contrast and lighting conditions. The model is apparently able to capture
domain-specific objectives during the training process. While some domains are more permissive
and require the network to detect almost all object-like patterns (e.g. Figure 5d), others include
a mixture of foreground and background objects, requiring the model to focus only on objects of
interest and accept structures with high "objectness" in the background class (e.g. Figure 5b). Most
of the erroneous predictions fall into one of three categories: (i) False positive; (ii) False negative;
(iii) High boundary uncertainty. False positives typically occur if "object-like" patterns are present in
the data. Figure 5c gives an example. High boundary uncertainty can cause contours to be partially
imprecise. In extreme cases, this can cause overlap with adjacent objects, which in turn can produce
false negatives during NMS. Notably, many of these error modes do not seem to be systematic, hence
different instantiations of the same architecture do not necessarily struggle in the same situations.
This indicates the potential for improvement using ensemble-like strategies.

8

In
pu

t i
m

ag
e

C
PN

 p
re

di
ct

io
n

(a) (b) (c) (d) (e)

Figure 5: Segmentation examples from validation set. (best viewed digitally) Top row shows examples
from the NeurIPS22 CellSeg Challenge validation set. Bottom row shows example segmentations
from a CPN. Colors are chosen randomly per instance.

4.3 Segmentation efficiency results on validation set

To evaluate the efficiency of the proposed method we measure inference time using the protocol
described by the NeurIPS22 CellSeg Challenge11. Details regarding the inference protocol and
environment are given in Sections 3.2.3 and 3.2.1, respectively. Results for the validation set of the
challenge are reported in Figure 6. All measured timings are below the time limits provided as part of
the challenge. On average, the inference time is approximately 64% of the given time limit. For the
largest example with an equivalent size of 9398px it is only 19% of the time limit. This underlines
that the proposed solution is capable of handling high-throughput scenarios.

514 633 778 958 1179 1451 1786 2198 2705 3329 4097 5042 6205 7636 9398
image size (px)

7
12
21
36
62

105
179
305
519
883

inf
ere

nc
e t

im
e (

sec
)

inference time (amp)
inference time (w/o amp)
time limit

Figure 6: Inference times of the proposed solution with Docker. (log scale) Inference times in
seconds are reported with equivalent image size s :=

√
hw in pixels, with h, w denoting actual image

dimensions. We contrast measures with AMP enabled solid line and disabled dashed line. The dotted
line shows the time limit of the challenge. Note that inference times include Docker overhead.

4.4 Results on final testing set

The quantitative performance of a submitted model was evaluated by the organizers of the NeurIPS22
CellSeg Challenge on an undisclosed testing set that includes differential interference contrast (DIC),
bright-field (BF), fluorescence (Fluo) and phase contrast (PC) imaging examples. The submitted
model is a single uncertainty-aware CPN using uncertainty-aware NMS, AMP, local refinement and
GIoU loss. The organizers provided results in the form of mean and median F1τ=0.5 scores, which
are reported in Table 5. With a median F1 score of 0.8031, the DIC imaging achieves the lowest

11https://neurips22-cellseg.grand-challenge.org/metrics/

9

https://neurips22-cellseg.grand-challenge.org/metrics/

Table 5: Quantitative results on undisclosed testing set. The detection and segmentation quality is
reported in terms of F1τ=0.5, with τ denoting the IoU threshold. The results were provided by the
challenge organizers. Modalities include differential interference contrast (DIC), bright-field (BF),
fluorescence (Fluo) and phase contrast (PC) imaging.

Reduction F1-All F1-BF F1-DIC F1-Fluo F1-PC
Median 0.8448 0.8372 0.8031 0.8136 0.9029
Mean 0.8181 0.8253 0.7732 0.7922 0.8594

scores among the reported categories. Highest scores are achieved in the phase contrast imaging
category with a median of 0.9029.

4.5 Limitation and future work

Based on the results and experiences during development, we infer several potential strategies
for further improvement of segmentation performance. While we found during development that
too extreme augmentation may harm the performance of the classification head of the proposed
architecture, we hypothesize that it can benefit the contour proposal task. In particular, strong
augmentations, such as the extensive use of color mapping, caused the network to occasionally
struggle with excluding non-relevant objects, showing a tendency to provide contours for "object-
like" background patterns for which it was not trained. While this is often a desired property to
achieve good generalization, such behavior is inappropriate in some specific domains. Hence, we
note as future work to examine whether the use of strongly augmented examples for the contour
regression and mildly augmented examples for the entire model during training can improve contour
regression generalization, while allowing the network to capture domain-specific behavior. On the
production side, it may be relevant to apply trained models to similar but different domains. If it
comes to generalizing to other domains, a fundamental question is which domain from the training
set a new domain is the closest to, as the model may generalize learned domain-specific behavior,
which may or may not be desired for new domains.

5 Conclusion

We proposed an uncertainty-aware Contour Proposal Network that detects and segments objects
by proposing contours, equipped with boundary-specific uncertainty estimations. The proposed
method can leverage the benefits of a model with relatively high parameter count, while remaining
computationally efficient. The inference running times remain significantly below the time limits
provided by the NeurIPS22 CellSeg Challenge, especially when applied to whole-slide images.
Detection and segmentation performance is shown to be competitive, as our submission represents
the second-best team according to the preliminary, public validation set leaderboard and the third
best team according to the final testing set.

Acknowledgement

This project received funding from the European Union’s Horizon 2020 Research and Innovation
Programme, grant agreement 945539 (HBP SGA3), and Priority Program 2041 (SPP 2041) "Com-
putational Connectomics" of the German Research Foundation (DFG). This work was also funded
by Helmholtz Association’s Initiative and Networking Fund through the Helmholtz International
BigBrain Analytics and Learning Laboratory (HIBALL) under the Helmholtz International Lab grant
agreement InterLabs-0015. The authors gratefully acknowledge the computing time granted through
JARA on the supercomputer JURECA [19] at Forschungszentrum Jülich.

The authors of this paper declare that the segmentation method they implemented for participation in
the NeurIPS 2022 Cell Segmentation challenge has not used any private datasets other than those
provided by the organizers and the official external datasets and pretrained models. The proposed
solution is fully automatic without any manual intervention.

10

References
[1] Eric Upschulte, Stefan Harmeling, Katrin Amunts, and Timo Dickscheid. Contour proposal

networks for biomedical instance segmentation. Medical Image Analysis, 77:102371, 2022.

[2] Youngwan Lee, Joong-won Hwang, Hyungil Kim, Kimin Yun, and Jongyoul Park. Localization
uncertainty estimation for anchor-free object detection. CoRR, abs/2006.15607, 2020.

[3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and
Alejandro F. Frangi, editors, Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2015, pages 234–241, Cham, 2015. Springer International Publishing.

[4] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5987–5995, 2017.

[5] Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius Pachitariu. Cellpose: a generalist
algorithm for cellular segmentation. Nature Methods, 18(1):100–106, 2021.

[6] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, and
Xi Chen. Improved techniques for training gans. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.

[7] Frank P Kuhl and Charles R Giardina. Elliptic fourier features of a closed contour. Computer
Graphics and Image Processing, 18(3):236–258, 1982.

[8] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio
Savarese. Generalized intersection over union: A metric and a loss for bounding box regression.
In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
658–666, 2019.

[9] Yen-Cheng Liu, Chih-Yao Ma, and Zsolt Kira. Unbiased teacher v2: Semi-supervised object
detection for anchor-free and anchor-based detectors. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 9809–9818, 2022.

[10] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene
parsing network. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6230–6239, 2017.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[12] Yuxin Wu and Kaiming He. Group normalization. International Journal of Computer Vision,
128(3):742–755, Mar 2020.

[13] Andrew L. Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural
network acoustic models. volume 30, pages 3–3, 2013.

[14] R. Adams and L. Bischof. Seeded region growing. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(6):641–647, 1994.

[15] Vebjorn Ljosa, Katherine L. Sokolnicki, and Anne E. Carpenter. Annotated high-throughput
microscopy image sets for validation. Nature Methods, 9(7):637–637, Jul 2012.

[16] Juan C. Caicedo, Allen Goodman, Kyle W. Karhohs, Beth A. Cimini, Jeanelle Ackerman,
Marzieh Haghighi, CherKeng Heng, Tim Becker, Minh Doan, Claire McQuin, Mohammad
Rohban, Shantanu Singh, and Anne E. Carpenter. Nucleus segmentation across imaging
experiments: the 2018 data science bowl. Nature Methods, 16(12):1247–1253, Dec 2019.

[17] Kevin J. Cutler, Carsen Stringer, Teresa W. Lo, Luca Rappez, Nicholas Stroustrup, S. Brook Pe-
terson, Paul A. Wiggins, and Joseph D. Mougous. Omnipose: a high-precision morphology-
independent solution for bacterial cell segmentation. Nature Methods, Oct 2022.

11

[18] Christoffer Edlund, Timothy R. Jackson, Nabeel Khalid, Nicola Bevan, Timothy Dale, Andreas
Dengel, Sheraz Ahmed, Johan Trygg, and Rickard Sjögren. Livecell—a large-scale dataset for
label-free live cell segmentation. Nature Methods, 18(9):1038–1045, Sep 2021.

[19] Jülich Supercomputing Centre. JURECA: Data Centric and Booster Modules implementing the
Modular Supercomputing Architecture at Jülich Supercomputing Centre. Journal of large-scale
research facilities, 7(A182), 2021.

[20] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017.

[21] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. ArXiv,
abs/1404.5997, 2014.

12

	Introduction
	Methods
	Preprocessing
	Contour Proposal Networks
	Classification
	Contour prediction
	Boundary supervision
	Local refinement
	Localization uncertainty estimation
	Training objective
	Uncertainty-aware non-maximum suppression
	Backbone
	Semi-supervised boundaries with Listen2Student

	Efficiency
	Post-processing

	Experiments
	Datasets
	Implementation details
	Environment settings
	Training protocols
	Inference protocols

	Quantitative evaluation of segmentation accuracy
	Quantitative evaluation of efficiency

	Results and discussion
	Quantitative results on validation set
	Qualitative results on validation set
	Segmentation efficiency results on validation set
	Results on final testing set
	Limitation and future work

	Conclusion

