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ABSTRACT

Object-centric representations using slots have shown the advances towards ef-
ficient, flexible and interpretable abstraction from low-level perceptual features
in a compositional scene. Current approaches randomize the initial state of slots
followed by an iterative refinement. As we show in this paper, the random slot ini-
tialization significantly affects the accuracy of the final slot prediction. Moreover,
current approaches require a predetermined number of slots from prior knowl-
edge of the data, which limits the applicability in the real world. In our work,
we initialize the slot representations with clustering algorithms conditioned on the
perceptual input features. This requires an additional layer in the architecture to
initialize the slots given the identified clusters. We design permutation invariant
and permutation equivariant versions of this layer to enable the exchangeable slot
representations after clustering. Additionally, we employ mean-shift clustering
to automatically identify the number of slots for a given scene. We evaluate our
method on object discovery and novel view synthesis tasks with various datasets.
The results show that our method outperforms prior works consistently, especially
for complex scenes1.

1 INTRODUCTION

Object-centric representations using slots have shown good performance in object detection (Li
et al., 2021a; Locatello et al., 2020), segmentation (Kabra et al., 2021; Greff et al., 2019) and tracking
(Wu et al., 2021; Kipf et al., 2022; Li et al., 2020) tasks. Slots are a set of latent variables. The
common approach is to frame disentangled and structured slot representations of the compositional
scene with some iterative refinement mechanisms in a self-supervised manner, e.g., using softmax-
based attention (Locatello et al., 2020) or variational inference (Greff et al., 2019). The idea is to
improve the sample efficiency and generalization of capturing the structured environment to unseen
compositions or objects. However, most slot-based approaches have difficulties in representing
complex scenes. Moreover, the number of slots needs to be specified beforehand on each dataset,
which limits the generalization across datasets. In addition, a random slot initialization from a
common distribution is widely used in prior works, which lacks consideration between the slots
and the perceptual input. Consequently, the quality of the following iterative slot refinement is also
affected by the sub-optimal initialization.

To overcome these challenges, instead of random sampling, it is intuitive to sample the initial slot
representations conditioned on the perceptual input (see Figure 1). Hence, we employ the k-means
clustering algorithm on the convolutional features of the input image. A set of cluster centers are
specified based on the features. Afterwards, a set of slots are initialized given the cluster centers as
input. Since the order of cluster centers changes randomly, we extend this idea with a permutation-
invariant mechanism, where the initial slot representations remain invariant w.r.t. the order of clus-
ters. To further evaluate the effect of permutation symmetry for slot representations, we employ
another permutation equivariant model with mean-shift clustering algorithm, where the slot repre-
sentations change accordingly with respect to the permutation of the clusters. Mean-shift identifies
the number of clusters automatically based on each perceptual input, followed by an injective map-

1Code, data and evaluation results are available at https://github.com/
slot-initialization/linosic for the review purpose.
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Figure 1: The network architecture. Instead randomizing slot initialization from a common distribu-
tion widely used in prior work, we initialize slot representations conditioned on the input features.
A clustering algorithm and a mapping layer are adopted.

ping where each slot is considered as an output of each cluster individually. Thus, it does not require
a fixed number of slots based on the whole dataset as prior works.

Our proposed method can be easily placed on top of existing slot-based approaches and trained
in an end-to-end manner. In this work, we consider object discovery and novel view synthesis as
downstream tasks. To evaluate the improvement and versatility of our method, we choose Slot
Attention (Locatello et al., 2020) and IODINE (Greff et al., 2019) as baselines for object discovery
task, and uORF (Yu et al., 2022) for novel view synthesis. The experiments are conducted on various
datasets.

Our main contributions are as follows: i) We propose the conditional slot initialization using cluster-
ing algorithms instead of random initialization. ii) We analyze the effect of permutation symmetry
including invariance and equivariance on the object-centric slot representations using different ar-
chitectures and models. iii) We apply mean-shift clustering on the perceptual features which allows
to generate flexible number of slots. iv) We demonstrate that, our proposed idea achieves signifi-
cant improvement over all baselines, while the permutation equivariant mean-shift model presents
notable advances especially for complex scenes.

2 GUIDING SLOT INITIALIZATION USING CLUSTERING

In this section, we will introduce i) the conditional slot initialization with k-means clustering (KM)
in Section 2.1, ii) the permutation invariant version named Pseudoweights (PW) in Section 2.2, iii)
and the permutation equivariant version with variable slot generation using the mean-shift clustering
(MS) in Section 2.3. More details about implementations and architectures are shown in appendix
A.1.

2.1 IMAGE-DEPENDENT SLOT INITIALIZATION

Most slot-based methods typically sample from a standard Gaussian as the random initialization for
the slot latent variables (see Figure 1). Although the slots are updated by the refinement mecha-
nism incorporating the features from the perceptual input, it is inefficient to start from a random
initialization and also limits the final accuracy. Since the perceptual input includes a strong in-
ductive bias about the represented scene, it is straightforward to incorporate the perceptual input
directly from the beginning. We first implement a non-permutation symmetric model using k-means
clustering. K-means is applied on the pixel-wise convolutional perceptual feature x ∈ RN×D to
get the feature-based cluster centers: c = K-means(x) ∈ RM×D where N is number of pixels
from the feature input, M is the number of clusters and D is the feature dimension. Afterwards,
the cluster centers are flattened and mapped to the K slots using multi-layer perceptrons (MLPs):
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zslots = MLP(c.flat()).reshape(K,D). Therefore, the number of slots is fixed beforehand like in
prior works, as well as the amount of cluster centers.

2.2 PERMUTATION-INVARIANT SLOT INITIALIZATION

A good slot representation respects the permutation symmetry (Locatello et al., 2020). In our case,
the order of the predicted slots should either remain the same (permutation invariance) w.r.t. the
permutation of the cluster centers or change correspondingly in the same order as the cluster centers
(permutation equivariance). Such symmetric behavior enables good generalization of slot represen-
tations to unseen world and objects. However, a simple mapping between M cluster centers and K
slots as shown in Section 2.1 breaks the permutation symmetry and cannot generalize to more slots
during evaluation for the scenes with more objects. To address this issue, we propose a permutation
invariant model named Pseudoweights. To identify different slots, we use a sine-cosine positional
encoding pk for the k-th slot as follows:

pk =
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where D′ = D
2 and D denotes the embedding length. Afterwards, the cluster centers are broadcasted

along the slot dimension c ∈ RK×M×D and are concatenated with the broadcast of the positional
encoding p ∈ RK×M×D to predict the weights w = MLPs([c,p]) ∈ RK×M×D, which allocate the
importance of the cluster centers to the different slots. We use a soft-max layer such that the weights
allocated for each slot are normalized as follows:

M∑
m=1

wk,m,d = 1, wk,m,d ∈ [0, 1], k = 1, ...,K, m = 1, ...,M, d = 1, ..., D. (2)

The slots are then initialized as the weighted sum over the cluster centers by w:

zk =

M∑
m=1

wk,m · ck,m. (3)

Thus, the Pseudoweights mapping applies a permutation invariant assignment of cluster centers into
the slots. Moreover, since the slots are identified by the positional encoding, it enables generalization
on increasing objects during test by changing the defined number of slots K without increasing the
model parameters. A detailed visualization of the architecture is depicted in appendix A.1.

2.3 AUTOMATIC TUNING OF THE NUMBER OF SLOTS USING MEAN-SHIFT

Both models introduced in Section 2.1 and Section 2.2 still require a fixed number of slots be-
forehand. Therefore, it is essential to apply an unsupervised clustering mechanism to determine
the number of slots conditioned on the input features while keeping the permutation symmetry.
Consequently, we perform the mean-shift clustering algorithm (Carreira-Perpiñán, 2015) over the
feature space to determine the cluster centers. Mean-shift is an iterative procedure to approximate
different modes of a distribution using kernel density estimation. Each mode is represented as a
cluster which does not need to be determined beforehand. In our model, we use a Gaussian kernel
k(x, y) = exp(− 1

σ2 ||x − y||2) for the density estimation. σ is a hyperparameter which affects the
granularity of the modes. A shared mapping layer is utilized to initialize the slots based on each
cluster respectively zi = MLPshared(ci) where i ∈ {1, ...,K}. Thus, it holds the permutation equiv-
ariance but requires to have the same number of slots as the number of the predicted cluster centers
K = M . Since the Gaussian kernel is predefined by a hyperparameter, an expressive learned convo-
lutional feature space is crucial to output distinctive modes. This is achieved by a fully differentiable
pipeline including the fully differentiable implementations of the mean-shift algorithm.

3 RELATED WORK

Object-centric slot representations. Slot representations have been widely used in static scenes
(Locatello et al., 2020; Greff et al., 2019; Carion et al., 2020; Burgess et al., 2019; Engelcke et al.,
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2020) and videos (Li et al., 2021b; Yang et al., 2021; Kipf et al., 2022; Veerapaneni et al., 2020;
Weis et al., 2021). Each slot represents a corresponding object in the scene. This can be achieved
either by accumulating the evidence over time to maintain the consistent object slot (Weis et al.,
2021) if a variational auto-encoder (Kingma & Welling, 2014) is employed, or using softmax-based
attention mechanism (Locatello et al., 2020; Bao et al., 2022). However, all of these approaches
require a fixed set of slot variables. The set size needs to be strictly equal or larger than the number
of objects in the scene, which limits the generalization on real-world applications since the number
of objects is changing dynamically over time and cannot be determined in advance.

Scene decomposition. Most works formulate scene decomposition as compositional generative
model (Greff et al., 2019; Eslami et al., 2016; von Kügelgen et al., 2020) or a mixture of components
(Locatello et al., 2020; Burgess et al., 2019; Engelcke et al., 2020). Recently, some works (Stelzner
et al., 2021; Yu et al., 2022; Bing et al., 2022) extend 2D scene decomposition to 3D with the
advances of Neural Radiance Field (NeRF) (Mildenhall et al., 2020). Chen et al. (2020) and Li et al.
(2020) infer 3D scenes from multiple reference images and textureless background. In contrast,
uORF (Yu et al., 2022) infer from a single image and test on complex objects with diverse textured
background.

Object discovery. Object discovery requires to differentiate the objects and background in an un-
supervised way. These methods typically model objects as a set of latent embeddings (Carion et al.,
2020) and adopt topic modelling (Russell et al., 2006), group image patches (Tuytelaars et al., 2009;
Grauman & Darrell, 2006) or clustering-based deep learning algorithms (Li et al., 2019; Vo et al.,
2020). Some methods (Zhao & Wu, 2019; Vo et al., 2021) also apply saliency detection and region
proposals on the entire image to group and localize the objects.

Novel view synthesis. Novel view synthesis aims to generate novel views of the given scene from a
single (Greff et al., 2019; Eslami et al., 2018; Yu et al., 2022) or multiple (Li et al., 2020; Mildenhall
et al., 2020) source views. Liu et al. (2021) employ a token-transformation module to synthesize
the novel views from a single image without requiring the pose information. Chen et al. (2021)
extend GQN (Eslami et al., 2018) with a Spatial Transformation Routing (STR) mechanism without
requiring explicit camera intrinsic information. Lochmann et al. (2016) enable the real-time novel
view inference with the advantage of volume rendering. Recently, Cao et al. (2022) replace the
expensive computation of volumetric sampling in NeRF-like methods by pixel-wise depth prediction
and a differentiable point cloud renderer.

Deep clustering. Clustering helps analyze unstructured and high-dimensional data into meaningful
and low-dimensional representations, which has been improved with deep learning techniques in
recent years (Xie et al., 2016). Guo et al. (2017) propose an iterative optimization of learning low-
dimensional representations from an auto-encoder by minimizing the Kullback-Leibler divergence
between the pixel-wise features to each cluster center. Ghasedi Dizaji et al. (2017) extend it with a
classifier on top which predicts the probability over the k classes where k is the number of cluster
centers. Yang et al. (2017) employ the objective of k-means as clustering loss in the feature space
of deep neural networks while Fard et al. (2020) relax the cluster assignment problem by using a
soft-assignment which can fully benefit from the efficiency of stochastic gradient decent (SGD).
Genevay et al. (2019) propose a fully differentiable version with the cluster parameters while Cai
et al. (2022) reduce the computational time by introducing a subspace-based clustering and improve
the scalability of deep clustering.

4 EXPERIMENTS

To evaluate our method, we choose two object-centric tasks: object discovery in Section 4.1 and
novel view synthesis in Section 4.2. We employ our idea on top of three state-of-the-art methods:
Slot Attention (Locatello et al., 2020), IODINE (Greff et al., 2019) and uORF (Yu et al., 2022). We
show more details about implementations in appendix A.1 and qualitative results in appendix A.2.

Baselines. In the object discovery task, we use Slot Attention and IODINE as baselines and build our
method on top of them. Both baselines use slot representations but with different procedures to refine
the slots: Slot Attention uses simple but effective softmax-based attention mechanism while IODINE
considers slots as probabilistic latent variables and employs variational inference to accumulate the
evidence during iterations. For the novel view synthesis task, we choose uORF as baseline which
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Table 1: Quantitative results on the object discovery task.

MDS CLEVR6 Chairs
Model ARI ↑ LPIPSA↓ LPIPSV ↓ PSNR ↑ SSIM ↑ ARI ↑ LPIPSA↓ LPIPSV ↓ PSNR ↑ SSIM ↑ ARI ↑ LPIPSA↓ LPIPSV ↓ PSNR ↑ SSIM ↑
SL 0.9671 0.0693 0.1351 27.43 0.9237 0.9815 0.0748 0.1486 32.11 0.8908 0.9982 0.3144 0.4362 24.49 0.6035
SL + kmeans (direct) 0.9223 0.1074 0.1606 26.13 0.9095 0.9963 0.0381 0.1097 34.22 0.9161 0.9963 0.2971 0.4273 24.17 0.6024
SL + kmeans 0.9837 0.0519 0.1149 28.88 0.9417 0.9970 0.0313 0.1032 34.98 0.9255 0.6271 0.2948 0.4274 24.31 0.6034
SL + kmeans (shared MLPs) 0.9043 0.1174 0.1672 25.84 0.9019 0.9989 0.0320 0.1041 34.82 0.9255 0.9974 0.3173 0.4297 25.01 0.6199
SL + PW 0.9605 0.0834 0.1526 26.25 0.9104 0.9937 0.0371 0.1056 34.04 0.9251 0.9523 0.3052 0.4363 24.82 0.6104
SL + MS (direct) 0.9893 0.0448 0.1059 31.39 0.9559 0.6114 0.1098 0.1957 29.43 0.8555 0.9999 0.2757 0.3997 26.02 0.6341
SL + MS 0.9944 0.0393 0.0919 32.17 0.9613 1.0000 0.0306 0.1022 35.32 0.9301 1.0000 0.2693 0.3774 26.03 0.6444
ID 0.9362 0.0504 0.0888 30.91 0.9591 0.8990 0.0224 0.0500 37.5 0.9661 0.2185 0.2757 0.3843 24.27 0.6299
ID + kmeans (direct) 0.9910 0.0193 0.0492 36.03 0.9833 0.8791 0.0254 0.0559 36.86 0.9619 0.6881 0.2666 0.3842 24.25 0.6322
ID + kmeans 0.9962 0.0166 0.0415 37.06 0.9861 0.8325 0.0198 0.0479 37.725 0.9667 0.7281 0.2559 0.3744 24.31 0.6314
ID + PW 0.9930 0.0207 0.0440 36.42 0.9834 0.9818 0.0190 0.0483 37.725 0.9667 0.8792 0.2192 0.3712 29.025 0.6362
ID + MS 0.9970 0.0143 0.0401 38.12 0.9921 0.9909 0.0141 0.0361 38.90 0.9753 0.9991 0.1645 0.3219 31.07 0.6995

uses softmax-based attention module to update slots and generate slot-based compositional scenes
with Neural Radiance Field (NeRF). Note that all these models use random slot initialization. In
addition, we also design two ablated models where the slot initialization is conditioned on the input
features. First, we employ the k-means initialization directly as slot representations without any
mapping layers in between (direct model). Second, we design a simple and permutation equivariant
model using shared MLPs to map the k-means cluster centers of the input features to the slots (shared
MLPs model).

Datasets. We use three datasets for the object discovery task: Multi-dSprites (MDS), CLEVR and
Chairs datasets. Each dataset contains multiple objects in the scene. Similar as Slot Attention, we
extract the CLEVR dataset to have maximum 4, 6, and 10 objects respectively and denote them
as CLEVR4, CLEVR6 and CLEVR10. The Chairs dataset originates from uORF(Yu et al., 2022),
which includes 4 chairs in each scene. The dataset includes 1200 different shapes of chairs sampled
from ShapeNet (Chang et al., 2015) and 50 different floor textures as background. To train the Slot
Atttention related models, we use 5k images for CLEVR4 and 10k for MDS, CLEVR6 and Chairs.
To train the IODINE related models, we use the same datasets except 13.9k images for MDS. Each
dataset contains another 500 images for evaluation. For the novel view synthesis task: We only use
the Chairs dataset but it includes 5k scenes for training and 500 scenes for testing, where each scene
includes 4 images with different camera viewpoints. Therefore, there are in total 20k images for
training and 2k images for testing.

Metrics. As prior works (Greff et al., 2019; Locatello et al., 2020; Burgess et al., 2019), for the
object discovery task, we adapt the Adjusted Rand Index (ARI) score to be evaluated only on the
pixels of the foreground objects and evaluate the predicted segmentation with the groundtruth mask.
For the novel view synthesis, we follow uORF and adopt ARI on the fully reconstructed image,
the foreground regions (Fg-ARI) and the synthesized novel view images (NV-ARI). Furthermore,
we use LPIPS (Zhang et al., 2018), SSIM (Wang et al., 2004) and PSNR (Horé & Ziou, 2010) as
perceptual metrics for both tasks.

4.1 OBJECT DISCOVERY

Training. We follow the same training setup of Slot Attention and IODINE. We use Adam optimizer
(Kingma & Ba, 2015) with a learning rate of 4×10−4 for Slot Attention based models and 3×10−4

for IODINE related models. We train the Slot Attention related models with 2 NVIDIA Tesla V100-
32GB GPUs and a batch size of 32 on each GPU. For IODINE related models, we use 4 GPUs since
IODINE requires more computation and gpu memory. We train each model for 1000 epochs with
a warm-up training strategy (Goyal et al., 2017) and an exponential learning rate decay. We use
K = 5 for MDS, CLEVR4 and Chairs datasets since there are maximum 4 objects in each scene,
and K = 7 for CLEVR6. The cluster number is set to M = 2K except for the mean-shift, direct
and shared MLPs versions which require M = K.

Results. Quantitative results are shown in Table 1 and qualitative results in Figure 2. In general,
learning inductive slot initialization from input features improve the performance on both base-
lines, where mean-shift models achieve the best performance consistently over all datasets. Well-
recovered details: Surprisingly, all our IODINE-based variants achieve higher resolution even than
the groundtruth image for MDS dataset, while the original IODINE is struggled with the data prior
and cannot reconstruct the shape of objects. Furthermore, in Figure 2, we observe that only the
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Figure 2: Qualitative results on the object discovery task. We provide the groundtruth image (GT)
and the reconstructed scenes using different methods. Notably, our models especially the mean-shift
(MS) versions can recover detailed appearance over all datasets with even better quality than original
input for IODINE-based models in MDS dataset.

Figure 3: Qualitative results of slot-wise reconstructed scenes (left) and masks (right). Mean-shift
models disentangle the objects better than others and recover more details.

mean-shift models can capture the details of objects for Slot Attention based models. For exam-
ple, it captures the “heart” objects in MDS while others struggle with the data prior. In particular,
our models (especially for mean-shift models) can reconstruct the appearance in very good details,
e.g., the small blue sphere in CLEVR6 and the legs and rims of various chairs in Chairs dataset.
Slots disentanglement: We also visualize the slot-wise reconstructed scenes and masks in Figure
3. From the masks, we observe that only the mean-shift models can fully disentangle the objects
and background where the highlighted area indicates large attention. In contrast, original Slot At-
tention mixes the background and a chair in slot #1 while IODINE cannot even work with textured
background. Pseudoweights and k-means models also entangle the chairs into one slot even though
the overall reconstructed performance is still better than the baselines (Table 1 and Figure 2). The
slot-wise reconstructed scenes also reveal our conclusion that mean-shift models contain more ap-
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Figure 4: Qualitative results on increasing objects. The models are trained with CLEVR6 but evalu-
ated on CLEVR10 with larger number of objects. We demonstrate three examples in the first 3 rows
follwed by the slot-wise reconstructed scenes and masks of the first example.

pearance details with fully disentangled slots. Mapping between clusters and slots: Furthermore,
our ablation studies demonstrate that the k-means models using non-linear mapping layers between
the clusters and slots gain additional benefits compared to the direct models (in Table 1). Addition-
ally, the permutation equivariant model (shared MLPs) performs better than the non-permutation
symmetric model (k-means) on CLEVR6 and Chairs datasets, indicating the benefits of permutation
symmetry on complex scenes, though it is not as good as the mean-shift models especially on MDS
dataset. Generalization on increasing objects: In addition, we evaluate the generalization on more
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Figure 5: Failure cases on Chairs dataset where k-means and Psuedoweights (PW) cannot disentan-
gle the objects and use each individual slot for specific areas.

Table 2: Evaluation with different number of iterations (5 iterations are used for training). In partic-
ular, our models achieve significant improvement already at the first iteration.

Iter 1 Iter 3 Iter 7
Model LPIPSA↓ LPIPSV ↓ PSNR ↑ SSIM ↑ LPIPSA↓ LPIPSV ↓ PSNR ↑ SSIM ↑ LPIPSA↓ LPIPSV ↓ PSNR ↑ SSIM ↑
ID 0.4415 0.6071 12.72 0.3820 0.4477 0.5804 16.33 0.4908 0.4363 0.5646 19.53 0.5001
ID + kmeans 0.2108 0.3768 27.05 0.6202 0.1956 0.3607 28.75 0.6533 0.1884 0.3545 29.33 0.6656
ID + PW 0.2269 0.3734 27.57 0.6297 0.1973 0.3531 29.33 0.6642 0.1885 0.3461 29.92 0.6768
ID + MS 0.1798 0.3545 28.39 0.6467 0.1602 0.3343 30.16 0.6828 0.1528 0.3273 30.68 0.6951

objects and slots (CLEVR10) while the models are trained on CLEVR6. The qualitative results
are shown in Figure 4. We observe that the original baselines struggle with closed or overlapped
objects by missing, mixing or predicting wrong color of objects, while our models (especially the
mean-shift models) can detect the overlapped objects perfectly without missing any object even for
extremely difficult scenes. For example, i) the mean-shift Slot Attention model (SL + MS) can detect
the brown cylinder behind the purple sphere in the first example even though it is hardly visible, ii)
both mean-shift models (SL + MS and ID + MS) and k-means IODINE (ID + KM) can detect the
red small cylinder in front of the red cube in the second example, though the objects are overlapped
and with the same color, and iii) both mean-shift models and Pseudoweights IODINE (ID + PW)
can reconstruct the yellow cylinder in the third example. We believe the benefits come from the in-
ductive slot initialization conditioning on the perceptual input features, which gives expressive slot
representations used in the following slot refinement. Note that k-means models can merely detect 6
objects from the scene since the slot number is by design not scalable. Generalization on increas-
ing iterations: Furthermore, Table 2 shows the evaluation with increasing number of iterations up
to 7 while the models are trained with 5 iterations. All models are capable of generalizing on more
iterations with performance gains. In particular, using inductive slot initialization enables notable
improvement at the first iteration, which indicates the efficiency of the learned inductive slot initial-
ization. Failure cases: We further investigate the cases when k-means and Pseudoweights are failed
to disentangle objects in Chairs dataset. Examples are shown in Figure 5. Interestingly, we find they
learned structured slot representations not always based on the objects. The slot representations of
k-means model are not generalize due to the non-permutation symmetry. Thus, it always uses the
same slot to represent specific area, e.g., the first slot to represent the objects in the top right area, the
second and third slots for walls. On the other hand, Pseudoweights outputs the same slot representa-
tions while changing the object positions due to the permutation invariance. As a result, it neglects
the object-centric spatial features in the scene. Thus, the model tends to reconstruct the scenes by
assigning fixed spatial area to each individual slot. Such undesirable behaviors occur especially on
Chairs dataset where each scene includes 4 images with changing viewpoints. In contrast, a good
permutation equivariant model such as mean-shift can alleviate this issue and decouple the objects
(as shown in Figure 3).

4.2 NOVEL VIEW SYNTHESIS

Setup. The Chairs dataset contains 4 images from different viewpoints of each scene. During
training, we randomly pick one image from each scene as input and reconstruct the images for the
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Figure 6: Qualitative results on novel view synthesis. Our models can represent the chairs with more
details than the original uORF.

Table 3: Results of novel view synthesis on Chairs-diverse.

Model ARI ↑ Fg-ARI ↑ NV-ARI ↑ LPIPS ↓ SSIM ↑ PSNR ↑
uORF 0.4974 0.5347 0.4291 0.2417 0.6862 24.9712
uORF + kmeans 0.651 0.7346 0.5304 0.1894 0.7176 26.1833
uORF + PW 0.5784 0.6943 0.4773 0.221 0.703 25.6277

other 3 viewpoints. We use the same training loss functions and strategies as uORF (Yu et al.,
2022). uORF is a memory-extensive model which only works with a batch size of 1 on NVIDIA
Tesla V100-32GB. Meanwhile, mean-shift also consumes large memory for the intermediate tensors
due to its iterative optimizations. Therefore, we cannot build a mean-shift algorithm on top of uORF
with our available hardware. We consider this as a limitation of our mean-shift model.

Results. We show quantitative results in Table 3 and qualitative results in Figure 6 (more results in
appendix A.2). Overall, our models outperform the original uORF consistently over all metrics. In
particular, our models can better reconstruct the chairs pointed to the right direction while original
uORF cannot build a clear shape for most chairs.

5 CONCLUSION

We propose to learn an inductive slot initialization from the input instead of using a random ini-
tialization which is widely used in the prior works for the slot-based methods. To evaluate the
importance of permutation symmetry over slots, we design various models with non-permutation
symmetry, permutation invariance and permutation equivariance into consideration. In particular,
our proposed permutation equivariant mean-shift model enables additional flexibility without requir-
ing a fixed number of slots in advance, while it achieves notable improvements on the reconstructed
perception details.
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REPRODUCIBILITY STATEMENT

We have provided the code repository for training and evaluation with the links to download the
required datasets and pre-trained models. We have also provided the details of network architectures
and implementations in Appendix. The researchers can use the provided repository to reproduce the
results or evaluate on their own datasets.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We show the implementation details and the architectures of different variants here. Slot Attention:
This section provides a detailed explanation of all the methods presented in chapter 2. The Slot At-
tention architecture in Figure 7 is extended by a clusterization algorithm, that can be either k-means
or mean shift, and by a mapping algorithm, being one of Direct, Small MLP, Large MLP or Pseu-
doweights. The encoder can be a U-Net or a size preserving convolution network. The extension
initializes slots conditioned on the perceptual input and not like the original Slot Attention architec-
ture from random gaussian distributions. During the iterative slot attention process, the initialized
slots are updated to attend to certain feature pixels, while ignoring others. This is described by the
bright yellow markings in the attention masks in Figure 7. The Slot attention uses three iterations
to update the slots. Each slot is decoded into a rgb-image and an α-mask. The renderer calculates,
with a weighted sum, the output according to the slotwise rgb-image and the α-mask.

Slot Attention + Extension

Feature Encoding
Features

Clusterization

Cluster Centers

Features

Mapping Algorithm

Slots

Iterative Slot Attention

Slot DecodingFeatures
Input

Features
Output

Figure 7: The framework architecture for slot initialization for slto attention. The top row is the
original architecture.

IODINE: The extension for IODINE resemble the same structure as in the slot attention architec-
ture in Figure 8. The only difference is that the mapping algorithm has to map between the cluster
centers of dimension D to two parameters µ, σ of the Gaussian distribution. That is why Direct
mapping is impossible for IODINE. Slot initializations are now drawn out of the perceptual condi-
tioned gaussian distribution and have dimension D. A decoder calculates, in the same fashion as for
slot attention, for each slot a rgb-image and an α-mask. The render outputs the reconstructed image,
that will be compared to the groundtruth image to produce a loss. The loss is used in a refinement
network, with auxiliary inputs, to update the gaussian parameters µ, σ. This process is repeated five
times.

Direct mapping: This simple permutation equivariant approach depicted in Figure 9 directly injects
the cluster centers determined by the clusterization algorithms into the slots. Since there is no
mapping network involved, this approach can not be used for IODINE, because the cluster centers
have to be mapped to two gaussian parameters µ, σ.

Small MLPs: This mapping extends Direct-mapping with a non linear network between the cluster
centers and the slots, that is shared between all slots, as depicted in Figure 10. The Direct- and Small
MLPs-mapping are used for their simplicity and the permutation equivariance. But they can only
translate between the same number of cluster centers and slots.

Large MLPs: This network maps between a different number of cluster centers and slots, as pro-
vided in Figure 11. The reason for this is to increase the sampling amount of cluster centers from the

13



Under review as a conference paper at ICLR 2023

Iodine + Extension

Reconstructed 
Image

Features Cluster Centers

Clusterization
Algorithm
 

Mapping
Algorithm
 

Sampling in 
Gaussian Space

Decoder +
Renderer

Groundtruth 
Image

Refinement

Loss +
Auxiliary Inputs

Update Gaussian
Parameters

Iteration 1 Iteration 2

Reconstructed 
Image

Sampling in 
Gaussian Space

Decoder +
Renderer

Groundtruth 
Image

Refinement

Loss +
Auxiliary Inputs

Update Gaussian
Parameters

...

Figure 8: The framework architecture for IODINE based extensions. The original starts directly at
iteration 1 with slots drawn out of the standard gaussian distribution with (µ, σ) = (0, 1).

Direct Mapping

Cluster Centers Slots

Figure 9: The Direct mapping approach. Slots are identical to the cluster centers chosen by the
clusterization algorithm.

Small MLP Mapping

Cluster Centers Slots

Linear + ReLU
Linear 

Figure 10: The Small MLPs mapping approach. It extends the direct mapping approach by a non-
linear network between cluster centers and slots.

perceptual input without increasing the model size noticeably, which scales linear with the amount
of slots. It is not shared between the slots and thus it is not permutation symmetric. The cluster
centers are flattened into one large vector and then mapped to a flattened representation of the slots.
These slots are then reshaped to M ×D. A drawback of this design is, that it can not generalize to
more slots, like all other mapping networks, because of the fixed large MLPs.

Pseudoweights: This algorithm incorporates several concepts into one mapping approach. It can
map between a different amount of cluster centers and slots, while being able to generalize to more
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Cluster Centers

Flatten

Cluster Centers

Linear + ReLU
Linear 

Slots Slots

Flatten

FlattenReshape

Large MLP Mapping

Figure 11: The Large MLPs approach.

Pseudoweights Mapping

Position Encoding Position Encoding

Broadcast

Layer 
Normalization

Cluster Centers

Broadcast

Cluster Centers + Position Encoding

Pseudoweights

Broadcast

Raw Slots

Cluster Centers

Slots

Linear + ReLU
Linear 

Position Encoding

Linear + ReLU
Linear + Sigmoid

Cluster Centers

Sum
Dimension 1

Figure 12: The permutation invariant Pseudoweights mapping.

slots and keeping permutation invariance. It has to be permutation invariant, because it is ambiguous
to define permutation equivariance between two not equally large sets. This mapping sorts cluster
centers into slots. It is aware in which slot it is, because of the position encoding of the K slots.
Thus the segregation network before the pseudoweights tensor can decide, if a cluster center should
be sorted into a particular slot, then the weights in the pseudoweights tensor will be high, other wise
the weights will be low. This segregation network does the decision conditioned only on one cluster
center and one position code for all possible M × K pairs. The last step calculates the weighted
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Broadcast + Multiply Raw Slots       Slots
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Permutation invariance of Pseudoweights

Figure 13: The permutation invariant mapping between 6 cluster centers and 3 slots. For this exam-
ple all slots and cluster centers are of dimension D=1, to keep it simple. The pseudoweights tensor
has high values in black squares and low values in white squares. If the blue and yellow slot change
their position, the slots want change their initialization.

sum with the pseudoweights tensor and returns the initialized slots. An explanation of this process
and a visual proof of permutation invariance is provided in Figure 13.

Clusterization Algorithms: The k-means algorithm used in the presented methods uses the k-
means++ initialization, where the first center is randomly chosen and all other centers are initialized
iteratively at the data point being the farthest away from all current initialized centers. If k-means is
used with the Large MLP, it requires a cluster dying prevention, because sometimes a cluster center
will vanish, if all data points are closer to other cluster centers. In that case, a new cluster center
is initialized with the k-means++ initialization. A pseudo code is provided in A.1. The amount
of cluster centers used in k-means is always initialized with the double amount of the maximum
objects count in the dataset. So for CLEVR6, where there are up to six foreground objects and one
background object, we initialize always 14 cluster centers at the start of k-means. The mean shift
algorithm is initialized with 20 cluster centers for all datasets, because after mean shift converges
an algorithm called connected-components is used to merge clusters centers, that are very close to
each other in to one vector. This ability lets mean shift to determine the amount of slotsflexible. The
hyper parameter ϵ is used to determine the radius in the connected-components, where all cluster
centers within the ϵ-sphere are merged to one vector. Another hyper parameter used in mean-shift is
σ and is used to determine the bandwidth of the gaussian kernel. A detailed pseudo code is provided
in A.1. We determine the hyperparameters dependent on the weight initialization of the network,
so that from the beginning of the training, the output amount of slots fluctuates between 1 and 20,
but will never be always 20 or always 1. This happens if σ or ϵ are too small, then mean shift will
converge into every little mode, or if the hyperparameters are too large, then all cluster centers can
merge into the same spot.
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Algorithm 1 K-means algorithm with cluster dying prevention, that reinitializes a new cluster center
as soon as one vanishes.

1: ci ← k-means++ initialization; i ≤ N
2: repeat
3: for each ci do
4: Ci = {xj : d(xj , ci) ≤ d(xj , ck);∀xj ∧ ∀k ̸= i}
5: end for
6: for each Ci do
7: if Ci = ∅ then
8: cinew ← k-means++ reinitialization
9: else

10: cinew =
∑

ci∈Ci

ci
|Ci|

11: end if
12: end for
13: if d(ci, cinew) ≤ tolerance ∀i then
14: Return cinew
15: end if
16: until max iterations
17: Return cinew

Algorithm 2 Mean shift algorithm, with the hyperparameters ϵ used in the connected-components
algorithm and σ used in the gaussian kernel function.

1: for n ∈ 1, ..., N do
2: x← xn

3: repeat
4: ∀n : p(n|x)← exp(−0.5|| x−xn

σ ||2)∑N
n′=1

exp(−0.5|| x−xn
σ ||2 )

5: x←
∑N

n′=1 p(n|x) · xn

6: until stop
7: zn ← x
8: end for
9: connected-components({zn}Nn=1, ϵ)

A.2 VISUALIZATIONS ON OBJECT DISCOVERY TASK

We show some qualitative evaluation examples here for the object discovery task. We put more
results in our repository https://github.com/slot-initialization/linosic.
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Figure 14: Qualitative results on MDS dataset.

Figure 15: The slot-wise predicted masks and reconstructed scenes on MDS dataset.
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Figure 16: The original Slot Attention model struggles with overlapped objects.

Figure 17: The slot-wise predicted masks and reconstructed scenes on CLEVR6 dataset.
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Figure 18: Qualitative results on Chairs dataset.

Figure 19: The slot-wise predicted masks and reconstructed scenes on Chairs dataset.
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Figure 20: Qualitative comparison of generalization on CLEVR10 while the models are trained with
CLEVR6.
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Figure 21: Another qualitative comparison of generalization on CLEVR10.
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