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ABSTRACT

Test-time Adaptation (TTA) aims to mitigate performance degradation caused by
distribution shifts during testing time. While various TTA approaches exist, such as
entropy minimization, pseudo-labeling, weight-space regularization and Bayesian
methods, a generalized optimization framework for TTA is currently absent. To ad-
dress this gap, we present a general framework for TTA. This framework provides
a conceptual basis for understanding existing methods as specific instances within
a broader optimization framework, and facilitates the development of new TTA
methods. Additionally, our proposed framework brings attention to limitations in
existing approaches by unveiling an implicit assumption that all source domain
knowledge is universally beneficial for adapting to the target domain. In reality,
only a portion of the source domain knowledge is useful due to potential large
distribution discrepancies between the source and target domains. Based on this
insight, we build upon our general framework and derive a novel method named
UnLearning-enhanced test-time adaptation (Lana). Specifically, it adaptively un-
learns irrelevant source domain knowledge and then adapts to the target test domain.
Through thorough theoretical analysis and empirical results, we showcase the ef-
fectiveness of our proposed method in enhancing TTA performance. This work
contributes not only a broader understanding of TTA through a general framework
but also a novel practical solution, Lana, derived from our general framework,
offering a foundation for further advancements in addressing distribution shifts
during testing in machine learning models.

1 INTRODUCTION

Deep neural networks demonstrate optimal performance when both the training and testing data
conform to identical distributions. Nonetheless, this assumption does not align with the reality of
real-world applications, where the distribution of test data frequently diverges from that of the training
data. This incongruity inevitably results in a noticeable decline in performance when deploying a
pre-trained model on such divergent test distributions. Consequently, the imperative arises to adapt the
pre-trained model to the test data distribution (domain) in real-world applications, thereby mitigating
the disparity between the training and test data.

To tackle this challenge, the concept of test-time adaptation (TTA) (Wang et al., [2021)) is introduced,
which involves adjusting a pre-trained model through the creation of a loss function solely based on
unlabeled test data. Various TTA approaches have emerged, encompassing: (1) Entropy-minimization-
based methods, such as Tent (Wang et al.,|2021) and SAR (Niu et al.,|2023); (2) Pseudo-labeling-
based methods, including TAST (Jang et al.l [2023) and AdaContrast (Chen et al., |2022a); (3)
Weight-regularization-based methods, like EATA (Niu et al.,|2022) and SWR (Choi et al., [2022)).
(4) Output-regularization-based methods: LAME (Boudiaf et al.l 2022)); and (5) Bayesian methods:
SSA (Lee} 2025). Despite the diverse range of available methods, designing TTA approaches often
necessitates substantial intuition. For example, EATA (Niu et al., |2022) and SWR (Chot et al.,
2022) need carefully designed regularizations. Moreover, a general framework is currently absent to
place existing methods within a shared optimization objective, as well as to offer guidance for the
development of novel TTA methods.

In an effort to bridge this gap, we propose a general and versatile optimization objective for TTA.
This framework offers several advantageous outcomes. First, many existing TTA methods can be
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Table 1: A general optimization framework for TTA. We define a generalized TTA optimization
objective as LTT4 = aDg(go(x), 2) + fDw(0,0.) + Log(Dia, 6.). Where «, 3 are constants,
ge(x) denotes the output class probabilities on a test data «, Da(gg (), 2) is output space regular-
ization represented as a Bregman divergence associated with function ®, Dy (0, 0..) is weight space
regularization represented as a Bregman divergence associated with function ¥, Lo g(D;q4, 0. ) is the
cross-entropy loss on in-distribution (ID) data. This last loss term is optional for TTA, but may be
present in some TTA methods. Various TTA methods can be recovered from this general optimization
objective by setting different ®, ¥ and the arguments of the Bregman divergence.

Category Method Recover Setting
Tent (Wang et al.|[2021) a=-1,=0,®8(p) = Y= pilogps p = ge(x)

SAR (Niu et al.||2023) a=-1,6=0,8(p)=>_|pilogp; p= o+<(6) ()
c(8) = psign(VoLy ™) Vo Ly |/[IVoLs™ |2

Entropy-minimization

Pseudo-labeling TAST (Jang etal. [2023) o =1,8=0. ®(p) = X'=) p; log p;. Da(p,q) = KL(ge(x), do(x))
AdaContrast (Chen et al.|[2022a) a=1,=0.®(p) =Y ;] pilogp;. Da(p,q) = KL(ge(x),y)

Weisht-reeularization EATA (Niu et al.|[2022) a=—1,%(0) = $67F6, F is a diagonal Fisher information matrix
shtree SWR (Choi et al.|[2022) a=—1,%(8) = 167M6, M is a diagonal sensitivity matrix
Output-regularization LAME (Boudiaf et al.|[2022) Dy (%, qi) = KL(% || @;) and Dy(2,2") = 3|z — 2|2
Bayesian-based SSA (Leel[2025) Da(p,q) = KL(go(z),v).
p=0,g=0.Dy(p,q) = (0 —0.)TA(0 - 6.)

Our method Lana ®(p) = Y_;—] pilog p;. First-order Taylor expansion to the first term.

Second-order Taylor expansion to the third term.
(We provide the derivation details in the Framework and Method Section.)

easily reinvented by our general framework with minimal effort, offering deeper insights into their
shared characteristics. Secondly, researchers and practitioners can circumvent redundant efforts and
expedite the development of new TTA methods by leveraging our general framework as a foundation.
As detailed in Table[T] our framework is designed to flexibly accommodate and recover a diverse
collection of TTA methods across different categories by setting different Bregman divergence
(Banerjee et al.,[2005)). In addition, our framework reveals that existing TTA methods only emphasize
direct adaptation of the pre-trained model to the target test data distribution. However, test data may
significantly differ from training data. Accordingly, the knowledge learned in pre-trained models may
interfere with the test data distribution. As a result, directly adapting the pre-trained model to the
target test data distribution could result in negative transfer effects (Zhang et al.| 2022b), potentially
leading to suboptimal performance for the target test data distribution.

To address this challenge, we build upon our general framework and introduce an innovative ap-
proach named unLearning-enhanced test-time adaptation (Lana) to boost the effectiveness of TTA.
Specifically, Lana is derived from our general TTA framework and it consists of a two-step process:
initially, we employ adaptive unlearning to remove irrelevant and less important information from the
pre-trained source domain weights. Subsequently, we adapt the unlearned model to the distribution of
the target test data. This approach draws inspiration from two sources. First, it is biologically-inspired
and takes cues from human learning, where the process of unlearning plays a significant role in
acquiring new skills (Gravitzl 2019; |Wang et al.| |2025)), aligning with insights from neuroscience that
highlight the importance of unlearning in cognitive processes and learning new knowledge (Davis
& Zhong,, 2017} Richards & Frankland, [2017). Second, it addresses the common issue in neural
networks where the pre-trained neural network tends to easily memorize irrelevant and unimportant
information in source domain training data (Carlini et al.,|2019), which hampers their adaptability
to new, unseen target domain data, as their model capacity becomes cluttered with irrelevant and
unimportant source domain information (Feldman & Zhang| [2020). Our proposed Lana is a new TTA
paradigm and can be integrated with existing TTA methods to further improve their performance. To
highlight the disparities between conventional TTA methods and our approach, Lana, we depict their
distinctions with Lana in Figure[]

To evaluate the effectiveness of the proposed method, we perform extensive experiments on two large-
scale and challenging TTA datasets, (1) ImageNet-C which consists of various TTA scenarios with
imbalanced data labels, mixture of different test data distributions and small batch size; (2) DomainNet
which consists of various natural data distribution shift. In particular, when integrating the proposed
adaptive unlearning with the Tent method (Wang et al.|[2021), our method substantially improves
the TTA performance from 47.3% to 61.1% with VitBase backbone and improves the performance
from 22.0% to 37.4% with ResNet50 backbone on ImageNet-C, indicating the significant benefits of
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adaptive unlearning. Furthermore, the results show that our method substantially outperforms those
state-of-the-art (SOTA) TTA methods by more than 3%.

v v 1 - ® 0 0 , @
Adapt | < X l Selective Adapt | <«
4 Unlearning
[ an 2 J | o0 o @ @ |
Pre-trained Model Target Domain Data Pre-trained Model Target Domain Data
(a) Existing TTA methods (b) Lana (Ours)

Figure 1: Comparisons between Existing TTA methods and Lana (Ours). (a) Conventional TTA
methods operate under the assumption that all source-domain knowledge is universally beneficial
for the target domain, leading them to directly adapt the pre-trained models from the source domain
to the target domain. (b) However, in practical scenarios, the substantial dissimilarity between the
source and target domains renders only a fraction of the source-domain knowledge pertinent for
effective adaptation to the new domain. Lana (Our approach) employs a more nuanced strategy: it
adaptively discards less relevant source-domain knowledge before adapting the model to the target
domain. By strategically unlearning unimportant information, Lana optimizes the adaptation process
for enhanced performance on test domains.

Our contributions can be summarized as the following:

e We introduce a general optimization framework for TTA, incorporating entropy-
minimization, pseudo-labeling, weight-regularization, output-regularization and Bayesian
methods. Additionally, the framework offers a general guideline for the development of
novel TTA methods.

* Building upon our proposed TTA framework, we develop and derive a novel biologically-
inspired unlearning-enhanced TTA method aimed at enhancing adaptability to target test
data distributions.

» Extensive theoretical analysis and experiments conducted on large-scale TTA datasets
validate the effectiveness of the proposed method.

2 RELATED WORK

2.1 TEST-TIME ADAPTATION

Test-time adaptation (TTA) (Liang et al.| 2020; [Schneider et al.l 2020; Iwa
Matsuol 2021} Mummadi et al., [2021;Zhou & Levine, [2021; [Sun et al., [2020; 12021} [Bartler]

et all 2022; |Gandelsman et al., 2022} Wang et al., 2022} o et al [2022}; [Boudiaf et alL 2022} [Gao
et al., 2022} Kim et al., 2022} Shu et al., [2022; |Goyal et Lm [Zhang et al., 2022a; [Shin et al.,

al.
2022; [Yuan et al.,2023; [Lim et al., 2023} Zhao et al., 2023} Zhou et al., 2023} Kang et al., 2023}
Prabhudesai et al.l[2023} [Peng et al., 2023} [Brahma & Rail 2023; [Yu et al., 2023}, [Lee. - 2025)) refers
to the process of adjusting or fine-tuning a pre-trained model on unseen target test data distribution
during the testing phase. The goal is to enhance the model’s performance on test data, especially
when the test data distribution differs from the training data distribution.

&
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Fully Test-Time Adaptation Fully TTA can adapt to the target test data distribution without changing
the training procedure. Fully TTA methods can be further categorized into: (1) entropy minimization-
based methods which minimize the model prediction entropy on the target test data distribution and
then make predictions on test data distribution, consisting of Tent and SAR
2023); (2) pseudo-labeling-based methods leverage a pre-trained model to predict the target
test data, generating pseudo-labels that are subsequently employed to compute the adaptation loss,
including TAST and AdaContrast (Chen et al.| 2022a); (3) weight-regularization-
based methods achieve TTA by applying regularization to the pre-trained model weights, ensuring
that different model weights undergo updates with varying learning rates, including EATA
[2022) and SWR 2022). However, there is currently a lack of a general optimization
framework to understand these different approaches and a general guideline for creating potentially
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novel TTA methods. On the other hand, existing TTA methods primarily concentrate on the direct
adaptation of source domain knowledge to the target test data distribution. But, they often neglect the
fact that not all source domain knowledge is relevant or beneficial for the target test data distribution,
which can significantly differ from the training data distribution. In contrast, our approach prioritizes
the adaptive unlearning of unimportant or irrelevant source domain knowledge from the pre-trained
model, enabling a more effective adaptation to the characteristics of the target test data distribution.

2.2 MACHINE UNLEARNING

Machine unlearning (MU), as discussed in works such as (Guo et al., 2020; |Wu et al., 2020; Bourtoule
et al., 2021} [Ullah et al.| 2021), involves the deliberate removal or erasure of previously acquired
information or knowledge from a pre-trained model. This practice is particularly relevant in the
context of adhering to privacy regulations (Ginart et al., | 2019). The existing approaches in MU can be
further categorized into: (1) Exact Unlearning: This approach achieves the same effect as retraining
from scratch with the remaining dataset. Representative works include (Wu et al., [2020; [Bourtoule
et al.,|2021}; Sekhari et al., 2021; |Ullah et al., 2021)). However, exact unlearning is computationally
and memory inefficient to achieve. (2) Approximate Unlearning: This approach aims to improve
unlearning efficiency by reducing the requirement of exact unlearning. Representative works include
(Guo et al., [2020; Nguyen et al.,2020; Mehta et al.,|2022)).

Unlike traditional MU that aim to completely erase data traces from pre-trained models, our
unlearning-enhanced TTA method is designed to dynamically eliminate less relevant information
from the pre-trained model. This adaptive unlearning approach significantly improves the model’s
adaptation ability and performance on new test domains.

3 FRAMEWORK AND METHOD

In this section, we outline the TTA problem setup. Subsequently, we introduce a general framework
for TTA. Following that, we derive a novel TTA method from our framework.

3.1 PROBLEM SETUP AND PRELIMINARY

Test-Time Adaptation We commonly assumed that the test data D;.4; will exhibit the same distri-
bution as training data. However, it is frequently observed that the distribution of test data differs
from that of the training data. To tackle this challenge, TTA entails adjusting a pre-trained model
using unlabeled testing data © ~ D, using an unsupervised adaptation loss function. Afterward,
the adapted model employs the updated parameters to make predictions on the test input .

Bregman Divergence Suppose ® : (0 — R is a continuously differentiable and strictly convex
function which is defined on a convex set ). The Bregman divergence (Banerjee et al.l 2005)
associated with @ for two points p and g can be interpreted as the difference between the ® value at
point p and the value obtained by approximating ® through a first-order Taylor expansion centered at
point g, followed by the evaluation of this approximation at point p as:

Das(p,q) = ®(p) — ®(q) — (V®(q),p — q) )

V®(q) represents the gradient of ® at point ¢, and (, } denotes the dot product between two vectors.
In the following, we will utilize Bregman divergence to establish a general framework for TTA.

3.2 A GENERAL OPTIMIZATION FRAMEWORK FOR TTA

In the following, we reformulate and recast various established TTA algorithms in terms of a more
general TTA optimization objective as the following:

LTTA = aDg(go(x), z) +8 Dw(0,0.) + Log(Dia, 0.) 2)
—_— —_—
output space weight space ID data (optional)

where 6 are the current model parameters. «, 3 are regularization constants. gg () denotes the output
class probabilities on a test data x. The term Dg (gg (), z) represents a form of regularization in the
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output space. It is expressed as the Bregman divergence associated with the function ®. The constant
vector z serves as a reference vector. On the other hand, Dg (8, 6..) represents a form of regularization
applied to the weight space or model parameter space. It is also expressed as a Bregman divergence,
this time associated with the function W. The term 6, refers to the optimal model parameters that
were learned for source domain data. This part of loss function is used to ensure that the model
doesn’t adapt too rapidly (more stable) to new test domains. Lo g (Did, 0+) = E(e,y)~p,, LB (T, Y)
is the cross-entropy loss on the in-distribution (ID) data. This loss term is optional but may be
required by some existing methods. For instance, the existing TTA method, EATA (Niu et al., 2022,
utilizes optimization on unlabeled ID samples. EATA argues that while TTA methods do not have
access to the training data, they can leverage the unlabeled ID test data. Additionally, it’s worth
noting that various existing TTA methods can be easily reinvented with this general framework.
Specifically, we cast (1) entropy-minimization methods: Tent (Wang et al.l [2021) and SAR (Niu
et al.}2023); (2) pseudo-labeling methods: TAST (Jang et al.,|2023)) and AdaContrast (Chen et al.|
2022a); (3) weight-regularization methods: EATA (Niu et al.} 2022)) and SWR (Choi et al., [2022);
(4) output-regularization methods: LAME (Boudiaf et al.,[2022); (5) Bayesian methods: SSA (Lee,
2025) as special instances of Eq. (2. Due to space constraints, we only outline the essential steps
for deriving different TTA methods. Other details, e.g., sample selection and data augmentation, are
not included since they are orthogonal to the TTA optimization, which can be integrated with them
seamlessly. Due to space limitations, we present the derivations for LAME (Boudiaf et al.,[2022),
SWR (Chot et al., [2022)), SAR (Niu et al., [2023)) and SSA (Lee}, 2025). We put other TTA methods,
including Tent (Wang et al.,2021), EATA (Niu et al.,[2022), AdaContrast (Chen et al.,[2022a)) and
TAST (Jang et al.l 2023)) in Appendix. Detailed derivations can be found in Appendix

SAR As A Special Case SAR (Niu et al., 2023) is a sharpness-aware optimization (Foret et al.,
2021)-based TTA method. In Eq. (2), we set @« = —1, 3 = 0 and take ® to be the negative entropy
function, i.e., ®(p) = > :_| p;logp;. We set p = Jo+<(0)(x), i.e., the softmax probability output
of the neural network on the test data and g = v, i.e., the uniform distribution on the class probability
distribution. D (p, q) = KIL(gg<(g)(x), v). We then recovered the SAR method.

SWR As A Special Case SWR (Choi et al.|[2022) is a weight-regularization-based method. It can be
expressed as the following objective:

LTT4 = —KL(ge(x),v) + KL(go(x),v) + 5(6 — 6.)"M(0 — 6.,) S

where M is a diagonal matrix, where M = diag(my,mq,--- ,ma,ma,--- ,myp,mr,---). The
diagonal elements in M are layer-wise penalty constants which indicates how fast those layer
parameters should be updated. In Eq. , we set « = —1 and take ¥(0) = %OTMO. Wesetp =6
andq = 0.. Dg(p,q) = (6 — 6.)TM(6 — 6.). Then, we recovered the SWR.

LAME As a Special Case LAME (Boudiaf et al|,[2022) is an output-regularization-based approach.
InEq. @), weseta =1,8=—1. Dg(Z;, q;) = KL(%; | ;) and Dy (2, 2') = 3|z — 2/|*

SSA As a Special Case SSA (Lee, [2025) is a Bayesian-based approach.

2
In Eq. (2), we seta, = 4/ ngﬁ, where o denotes a constant associated with steady-state regime, 7
k

is a constant, oy, is the standard deviation at step k. The posterior mean can be approximately solved
by the following optimization:

J0) = aEeun,[KLpo(- | @) [0)] + 210603, @

—_———
weight-space (Bayes/SSA proximal)

output-space

p = go(x), i.e., the softmax probability output of the neural network on the test data and ¢ = v,
i.e., the uniform distribution on the class, Dg(p, q) = KL(ge(x),v). We set p = 0 and q = 0.,
Dy(p.q) = (0 — 0.)"Ax(6 - 6.)

3.3 AN UNLEARNING-ENHANCED TTA METHOD

The general framework in section[3.2]reveals that existing TTA methods focus on the direct adaptation
of the pre-trained model to the target test data distribution, but overlook an important fact that the
distribution of test data often substantially diverges from that of the training data. Consequently, not
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all the knowledge stored in a pre-trained model is beneficial for handling unseen test data. In fact,
certain elements of this pre-trained model may impede the model’s ability to adapt effectively.

To address this issue, we propose a new TTA paradigm built on our general framework. We introduce
a novel unlearning-enhanced optimization principle for TTA, which for the first time formulates
adaptation as a two-sided process: (i) selectively unlearning source-specific biases that hinder
adaptation, and (ii) simultaneously adapting to new test data distribution. For illustration, we propose
the following unlearning-enhanced TTA (Lana) to reflect this dual objective by integrating with
Tent (Wang et al., 2021). It is important to note that integrating Lana with other TTA methods is
straightforward. We thus omit the details. The learning objective is shown below:

min H(go+s(0)(T)), (5)
6(0) := al“g;fnin aH(ge+s(x)) — Lor(Dia, 0 + 9) (6)

In Eq. @), we (1) maximize the loss on the source domain data, i.e., Lo (D;q, 8), to facilitate
adaptive unlearning irrelevant source domain knowledge; and (2) minimize the entropy loss on
the target test data distribution to ensure the unlearning on source domain does not degrade the
performance on the target test data distribution. Importantly, our method does not rely on raw source
data. It requires only the Fisher Information Matrix, which can be efficiently estimated. In Eq.
(3), we optimize the test data entropy loss function initialized with the unlearning-enhanced model
parameters to ensure adaptation to the test data distribution. In this regard, adaptive unlearning of
certain source domain knowledge can be advantageous in facilitating adaptation to the target test data.

Lana As a Special Case In the following, we propose an algorithm to solve Eq. (5and [6) and derive
the algorithm from our general optimization framework in Eq. (2). We set 5 = 0. We then set ® to be
the negative entropy function, i.e., ®(p) = >_'_| p; log p;. We then set p = gg(x), i.e., the softmax
probability output of the neural network on the test data and g = v, i.e., the uniform distribution on
the class probability distribution. Then, we optimize Eq. (6) and (5) alternatively by gradient descent.
In Eq. (6), we adopt first-order Taylor expansion on the first loss term as following:

H(go()) ~ H(go.(x)) + VoH (go.(x))(0 — 6.) ™
The second loss term in Eq. is the cross entropy loss on the source domain data, which are
unavailable during TTA. We adopt Taylor expansion to approximate it as the following:

1
Low(Dia,0) ~ Lop(Dia, 0.) + VoLor(Dia, 0.)(6 = 0.) + 5(0 - 0.)"F(6-86.) ()

where F' is the Fisher Information Matrix (FIM) of the loss £(D;4, @) on the source domain data.
Since Vo Lo g(D;4, 0, ) is close to zero at the stationary point, i.e., 8., we thus only need to optimize
the quadratic term in Eq. (8). In summary, the approximate loss for Eq. (6 can be expressed as:

1
Eunlearn ~ OZVQH(QQ* ((I)))(e - 0*) - 5(9 - 0*)TF(0 - 0*) (9)
We then take the gradient with respect to @ for the right hand side of the Eq. (9), we can obtain:
aVeH(ge. (x)) — F(0—0.)=0 (10)

Solving the above equation leads to the following unlearning for the source domain model:
0 =0.+aF Ve (go.(x)) (1D

where in Eq. , the precondition matrix FIM F'~! facilitates adaptive unlearning in source-domain
pre-trained data knowledge. Its role is to enable a slower update of crucial parameters associated with
the source domain to preserve important source domain knowledge, while permitting less critical
parameters to undergo more rapid unlearning of irrelevant knowledge. This is because the FIM
F~! indicates the parameter importance for source domain knowledge. FIM can be efficiently
computed once before TTA using a small subset of unlabeled in-domain test examples (Niu et al.,
2022). It’s crucial to recognize that the Hessian matrix of the KL divergence aligns with the FIM,
representing the local curvature of parameter changes. In practical terms, this relationship is denoted
as VZKL(ge(x)||g6+5(x))|5=0 = F (Lemmain Appendix. This equation identifies the steepest
direction for achieving the most rapid unlearning of the output probability distribution in the source
domain. It is clear that Lana, seeks uniform low loss within a Riemannian manifold where each point
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represents a probability distribution from the perspective of information geometry. This captures
the underlying geometry in the model parameter space. This optimization objective promotes the
neural network parameter whose entire neighborhoods in Riemannian manifold (characterized by
E.KL(gg(x)||go+s(x)) < p) have uniformly low loss value. This is in contrast to existing TTA
methods which treat all parameters in the Euclidean space in the same way, which may not be suitable
for direct adaptation of the source domain model to the target domain. (More details and analysis can
be found in Appendix [C]) In practice, this loss landscape area often shows significantly improved
generalization (Izmailov et al.|[2018). To simplify computation, we employ a diagonal approximation
of the FIM. The parameter « represents the unlearning rate. Since source domain data is not available
during TTA, we follow (Niu et al.,2022) to efficiently estimate the FIM, which is only needed to be
calculated once. The entire algorithm is shown in Algorithm[I]in Appendix. We also provide detailed
theoretical analysis and proof in Appendix.

4 EXPERIMENT

4.1 SETUP

In this section, we perform experiments to evaluate the effectiveness of the proposed TTA method,
Lana, compared to various existing methods. Specifically, we evaluate different methods with
different model architectures under different normalization layers (including Batch Normalization
(BN) (Ioffe & Szegedyl, 2015)), Group normalization (GN) (Wu & He} 2018) and Layer normalization
(LN) (Ba et al.,|2016)). We perform experiments on ImageNet-C (Deng et al.,|2009; Hendrycks &
Dietterichl |2019; [Hendrycks et al., |2020) and DomainNet (Peng et al., [2019). These datasets are
widely recognized and extensively utilized for assessing out-of-distribution generalization. ImageNet-
C comprises a diverse set of challenges, including 15 different types of corrupted images falling
into four primary categories: noise, blur, weather, and digital artifacts. DomainNet is a large-scale
multi-source domain adaptation dataset. Following (Saito et al.,2019), we use a subset of DomainNet
with 126 classes which consists of four domains (Clipart, Painting, Real and Sketch) with natural shift,
known as DomainNet-126. In our study, we conduct a comparative analysis of our proposed method
against the SOTA techniques. We conduct adaptation on ResNet-50-BN (R-50-BN), ResNet-50-GN
(R-50-GN) (He et al., [2016) and VitBase-LN (Vit-LN) (Dosovitskiy et al.,[2021). For experiments on
DomainNet-126, we follow the architecture in (Liang et al., 2021}

Baselines Following (Niu et al., 2023), we compare to the following SOTA baselines, including Tent
(Wang et al.l [2021), EATA (N1u et al.l [2022), AdaContrast (Chen et al., 2022a), SAR (Niu et al.,
2023)), DeYO [Lee et al.|(2024), TEA (Yuan et al., [2024).

TTA scenarios In alignment with the experimental setup described in (Niu et al., 2023)), our study
evaluates the performance of three distinct TTA scenarios. These scenarios encompass: (1) Online
Imbalanced Label Distribution Shifts, where the imbalance ratio r is calculated as r = %. Here,

Gmaz represents the proportion of the majority class within the dataset, while g,,in sigﬁ;ﬁes the
proportion of the minority class. As r increases, existing TTA methods exhibit a decreasing level of
performance. In accordance with (Niu et al.,[2023)), we set » = oo, resulting in test samples being
presented in class order. (2) Mixed Distribution Shifts, which involves evaluating different methods
on a combination of 15 corruption types. (3) Small Batch Size, where it is observed that existing TTA
methods’ performance deteriorates as the batch size decreases. We conduct a comparative analysis
between our method and existing ones, specifically assessing their performance when the batch size
issetto 1.

Implementation Details Following (Niu et al., 2023)), our experiments are conducted on ResNet50-
BN, ResNet50-GN and VitBase-LN (Dosovitskiy et al 2021}, obtained from torchvision or timm.
We employ SGD as the optimizer with momentum of 0.9. The batch size is set to be 64 (except
for experiments with batch size=1). The number of adaptive unlearning step is set to be 1, i.e.,
J =1, for efficiency. The learning rate is set to be 0.00025 for ResNet models and 0.001 for Vision
Transformer models. We follow a similar test-time sample selection strategy as in (Niu et al.| 2023)),
where samples with low loss values are chosen for calculating the TTA loss. For hyperparameter
search, following (Yu et al., 2023)), we use the first task of each dataset as the validation dataset
to apply grid search for selecting the best hyperparameters. For example, we apply grid search
that achieves the best TTA performance by adapting from uncorrupted ImageNet to Gaussian noise
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Table 2: Comparisons with SOTA on ImageNet-C (severity level 5) by test accuracy (%) under online
imbalanced label shifts (imbalance ratio = co0). “BN”/“GN”/“LN” denote Batch/Group/Layer normalization.

Method Noise Blur ‘Weather Digital
Gauss  Shot Impulse  Defocus Glass  Motion  Zoom Frost  Fog Bright  Comirast Elasic  Pixel  JPEG  Avg
ResNet50 (BN) 22 29 18 178 938 145 25 234 246 590 55 17.1 207 316 180
* EATA 0.3 0.3 03 0.2 0.2 0.5 09 0.9 1.8 35 0.2 0.8 1.2 0.9 0.9
o AdaContrast 0.1 0.1 0.1 09 038 13 22 04 26 3.0 8.8 09 12 038 16
* SAR 1.4 1.9 1.5 1.0 1.0 1.5 2.9 2.0 4.4 5.7 0.6 33 4.0 3.8 25
TTeTent” T T T T TIZTTTT0AT T | S VO X 2 X A g 36 50 0577726 32T K )
o Tent+Lana (Ours) 2103 18401 23503 12000 12000 18:00 32402 3lp0s 47100 59:01 07:00 35:00 4dlion 40:00 28400
ResNet50 (GN) 17.9 199 17.9 19.7 11.3 213 249 474 336 69.2 363 18.7 28.4 522 30.6
« EATA 270 283 28.1 149 17.1 244 253 320 398 66.7 336 245 419 384 316
® AdaContrast 0.1 0.1 0.1 0.5 0.7 03 0.2 0.5 0.3 0.2 0.6 0.3 0.2 0.2 0.3
o SAR 331 365 355 192 195 333 277 453 50.1 719 467 7.1 52.1 563 372
TTeTent T T T T T T26 T 7337777 27 T39I T T TS T T T T T 16s T 2197 T IR T T 057 T A2 T T 766 0 T T 4947 T T 37T T 2200 T
o Tent+lana (Ours) 353112 359:05 356110 188505 192410 335i07 239:55 o 450504 482:12 Tl6ion 45702 8516 Sl3ior 566:02 3Tdios
VitBase (LN) 9.4 6.7 8.3 29.1 234 340 270 263 474 547 439 305 445 476 299
* EATA 359 34.6 36.7 453 47.2 493 4717 55.4 622 722 217 56.2 64.7 63.7 49.9
o AdaContrast 0.1 0.1 0.1 44 50 65 8.5 23 13.4 17.1 325 38 6.4 3.1 70
* SAR 46.5 43.1 48.9 55.3 543 58.9 54.8 46.2 69.7 76.2 66.2 60.9 69.6 66.6 58.0
TTeTent T T T T T3I7 T 14T T T 346 34477523 T2 T T2 T TIT T 2 B B [ T L A X T A A
o Tent+Lana (Ours)  504s12 502415 Sldios 556100 547.00 594i02  S56.0ugs 622010 70di0s 76.6:01 662100 626:05 701i0, 674:01 6lligs
« TEA 469 437 493 55.4 544 59.1 554 535 463 70.0 768 66.8 61.1 69.8 66.8 583
o TEA+Lana (Ours)  515.15 5Llpis 519404 568100 54901 596i05 568401 637:2:1 634i20 706105 775101 66.6:01 627202 70201 676501 617502
 DeYO 535 36.0 546 576 58.7 637 462 676 66.0 732 719 66.7 69.0 735 703 623
o DeYO+Lana (Ours)  55.0:05 3574252 S6.di7 599:03 585:05 65.6400 46.64155 688:02 680.02 7T40.01 80digs 67.8:01 70.0.01 74805 Tléigs 635ii5

Table 3: Comparisons with SOTA on ImageNet-C (severity level 5) by test accuracy (%) under Batch Size = 1.
“BN”/“GN”/“LN” denote the Batch/Group/Layer normalization.

Method Noise Blur Weather Digital
Gauss  Shot Impulse  Defocus Glass ~ Motion ~ Zoom  Snow  Frost Fog Bright  Contrast Elastic  Pixel JPEG  Avg
ResNet50 (BN) 22 29 19 17.9 9.8 14.8 225 16.9 233 244 589 54 17.0 20.6 316 18.0
© EATA 0.1 0.1 0.1 0.1 0.1 0.1 02 02 0.2 0.1 02 0.1 0.1 02 0.1 0.1
o AdaContrast 0.1 0.1 0.1 04 04 05 10 03 0.2 0.8 13 12 03 05 0.3 05
© SAR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
TTeTent” T T T TOIT T T TO01T T OO T 01 T T01T T T T02T T 02T T T T T 02 T T02 o0l T TTor T T o T T [0 I\ Y B
o Tent+Lana (Ours) 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.12
ResNet50 (GN) 18.0 19.8 179 19.8 114 214 24.9 40.4 473 33.6 69.3 363 18.6 28.4 523 30.6
« EATA 248 283 257 18.1 17.3 285 29.3 445 443 416 70.9 4.6 27.0 46.8 55.7 36.5
 AdaContrast 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1
© SAR 234 26.6 239 18.4 154 28.6 304 44.9 44.7 257 723 44.5 14.8 470 56.1 34.5
TTeTent” T T T T 257777297 77725777536 0 186 T 176 0 T 153 T T 2300 T 14 T U704 7T TA22 7T 7627 T T 49277 75380 T 2050
o Tent+Lana (Ours) 330105 360406 338202 188100 192:103 3L7.05 343s04 33:02 463102 10709 725:00 469:01 99:01  5L6igs 56.8:02 359:02
VitBase (LN) 95 6.7 82 29.0 234 339 27.1 15.9 26.5 472 54.7 44.1 30.5 445 47.8 299
© EATA 29.7 25.1 346 4.7 39.2 483 2.4 375 45.9 60.0 65.9 61.2 46.4 58.2 59.6 46.6
 AdaContrast 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
© SAR 408 36.4 415 537 50.7 57.5 52.8 59.1 50.7 68.1 74.6 65.7 579 68.9 65.9 56.3
TTeTent” T T T 422 7700 T T 7433 7T 24T T T 482 T U355 777505 T T U165 T T 069 T T 664 T T 749 T T T 647 T U516 6700 T T 6437 T T 41T T T
o Tent+Lana (Ours)  49.0.0,  47.6402 496501 553101 53102 592402 554403 610i02 5lligs 703.02 767404 66.7:00 6lligs 702401 67.6400 596102
o Tea 43.1 373 434 54.5 517 59.1 54.6 59.4 51.2 70.3 752 66.2 59.3 710 67.1 57.6
o Tea+Lana 449,05 389:01 440:01 569:04 528101 60.8i05 554i05 612:04 S510s01 724i0s T55i00 660:01 603103 7T30i05 673i01  58.7:02
© DeYO 54.0 52.1 551 58.8 59.5 64.2 53.5 68.2 66.4 737 783 68.2 68.9 73.8 70.8 64.4
® DeYO+Lana 560105 546131 549:06 5900 615i02 63.9:02 555141 69.5:00 68800 Tddion  799:00 694i02 692:00 T4Ti00 724102 655106

corrupted ImageNet. For DomainNet, we apply TTA by adapting from Clipart to Painting to select
the optimal hyperparameters. During TTA, for trainable parameters of our method, we follow the
approach presented in Tent (Wang et al., |2021) by adapting the affine parameters of group/layer
normalization layers in ResNet50-GN/VitBase-LN. The method is evaluated over three runs, and
results are presented as mean and standard deviation. We perform all the experiments on a single
A6000 Nvidia GPU. Code will be released upon acceptance.

4.2 RESULTS

Online Imbalanced Label Distribution Shifts We compare with state-of-the-art TTA methods in
online imbalanced label distribution shifts in Table[2] The results show that our method can improve
by more than 3% compared to SAR on ImageNet-C under this challenging online imbalanced label
distribution shifts with VitBase-LN. This improvement is significant considering the challenging data
corruptions and large number image classes in ImageNet-C dataset. We can also observe that the
network with batch normalization (BN) does not perform well across different compared methods.
This aligns with the findings of (Niu et al.|2023)), which assert that BN poses a substantial impediment
to TTA performance in wild test scenarios.

Batch Size = 1 We evaluate the effectiveness of existing TTA methods with batch size = 1 in Table
The results show that our method can improve by more than 3% compared to SAR on ImageNet-C
under this challenging setting with test batch size = 1 with VitBase-LN.

Mixed Distribution Shifts We evaluate the effectiveness of existing TTA methods in mixed distribu-
tion shifts in Table [8|in Appendix. The results show that our method can improve by 1% compared to
SAR on ImageNet-C under the mixture of 15 data corruptions with VitBase-LN.

The performance enhancement seen with VitBase surpasses that of ResNet, primarily due to VitBase’s
propensity for overfitting to the training data (Chen et al.| 2022b)). The overfitting can lead to the
memorization of a greater amount of irrelevant information, making the process of unlearning both
more beneficial and essential. All these results highlight the advantages of our method, Lana, and
emphasize the importance of integrating unlearning in TTA.
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Results on DomainNet-126 Results on DomainNet-126 are shown in Table [6]in Appendix. We can
observe that integrating Lana with Tent/AdaContrast further improves TTA.

4.3 ABLATION STUDY

Hyperparameter Analysis, we evaluate the sensitivity of hyperparameters « and J in Table[7]in
Appendix. This shows that as the unlearning rate increases, TTA performance first increases and
then declines due to heightened unlearning effects. When a = 0.0, i.e., there is no unlearning,
the performance drops significantly. With unlearning, our method improves the TTA performance
by more than 13.8%. This indicates the necessity and beneficial effect of unlearning. Moreover,
an increase in the number of unlearning steps initially leads to a slight performance improvement,
followed by a subsequent decrease. To optimize efficiency, we choose one step of unlearning.

Efficiency Evaluation To compare the running efficiency of the proposed method with existing
methods, we evaluate their running efficiency in Table[9]in Appendix. To further improve runtime
efficiency, we apply the unlearning step once every two adaptation iterations instead of every step.
With this improvement, our method increases computational cost by less than 53% compared to Tent,
while achieving substantially higher performance and remaining significantly faster than SAR and
AdaContrast. Additional optimizations—such as sparse FIM masking and parameter freezing—can
further reduce overhead.

Impact on Forgetting of Source Domain Performance Following (Niu et al.,[2022}|Zhang et al.,
2023)), we evaluate the performance on source domain after adapting the model to target domain. We
present the results in Table[d These results demonstrate that, after adapting to the target domain, the
accuracy on the source domain remains largely unaffected, indicating minimal forgetting.

Table 4: Impact on source domain test accuracy after adaptation on each corrupted dataset on ImageNet-C (sever-
ity level 5) by test accuracy (%) under online imbalanced label shifts (imbalance ratio = co). “BN”/“GN”/“LN”
denote Batch/Group/Layer normalization, respectively.

Method Noise Blur Weather Digital
Source Model Gauss Shot  Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
o Tent 78.01 78.79  79.10 79.16 81.06 79.74  80.99 80.51 5991 30.63 80.39 80.96 80.49 7922 81.64 8181
* EATA 78.01 72.03 7434 70.54 71.33 75.08 73.07 7430 7517 7649 77.64 7701 33.63 75.13 7153 78.15
o AdaContrast 78.01 7220 7467 71.18 78.01 75.11 7342 7476 7535 76.67 77.87 7123 345 7584 7823 78.82
e SAR 78.01 7937 79.66 79.74 81.36 80.24 8126  81.05 8043 7509 80.55 8113 80.57 7948 8191 81.99
o Tent+Lana (Ours)  78.01 79.46 7942 79.86 81.72 80.48 81.15 8107 79.72 7881 80.7 80.89 80.94 7946 8211 82.02

Effect of Batch Size in Batch Normalization for TTA performance. To evaluate the effect of
different batch size for the network with batch normalization, we perform an evaluation with different
batch sizes, i.e., 32 and 64 in Table[3]

Table 5: Comparisons with SOTA on ImageNet-C (severity level 5) by test accuracy (%) under different batch
size (bs) with batch normalization.

Method Noise Blur ‘Weather Digital
Gauss  Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg
bs = 64 e SAR 33.0 349 339 29.8 29.8 442 49.9 489 430 583 674 40.1 557 595 535 455
S = e Lana (Ours) 34.6 363 36.2 315 304 451 510 500 440 594 682 39.3 56.8 60.0 551 46.5
bs =32 e SAR 31.2 308 34.0 28.6 28.1 443 500 496 429 576 66.6 273 557 58.6 535 439
0T e Lana(Ours) 33.2 342 353 28.8 298 455 50.7 508 443 587 674 311 56.6 60.2 536 453

Integrating with Other TTA Base Methods To evaluate the effectiveness of the proposed method
integrating with other base approaches, we present the results in Table [I2]in Appendix.

Evaluation of different methods under a standard TTA setting To assess the effectiveness of
various TTA approaches under the standard TTA setting, we follow the setup outlined in (Yuan et al.
2024). The results are presented in Table[TT]in Appendix.

5 CONCLUSION

This paper proposes a general framework for TTA. Based on the framework, we derive a novel
unlearning-enhanced TTA method from our framework to further enhance the TTA performance.
Extensive theoretical analysis and experiments on various TTA scenarios show the effectiveness of
the proposed method.
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A APPENDIX

In this appendix, we first cast exist existing TTA methods as special cases. We then provide detailed
theoretical analysis. Next, we further present implementation details. After that, we provide more
experimental results.

B RECAST EXISTING TTA METHODS INTO OUR UNIFIED AND GENERAL
FRAMEWORK

Tent As A Special Case Tent (Wang et al.| | 2021) is a entropy minimization-based method. Specifi-
cally, it minimizes the following loss function:

LTTA = H(go(x)) (12)

where H(ge(x)) is the entropy function on the classifier class probabilities output. The above loss
function can be equivalently expressed as the following:

L4 = _KIL(g(x), v) (13)

where we use KL to denote the KL-divergence between two probability distributions. v is a uniform
class distribution on the output classes. In this case, in Eq. (), we set « = —1, 8 = 0 and take P to
be the negative entropy function, i.e., ®(p) = >_'_| p;log p;. We set p = gg(x), i.e., the softmax
probability output of the neural network on the test data and g = v, i.e., the uniform distribution on
the class. Da(p, q) = KIL(gg (), v). We recover the Tent.

SAR As A Special Case SAR (Niu et al., 2023) is a sharpness-aware optimization (Foret et al.|
2021)-based TTA method. Specifically, it first perturbs the model parameters by maximizing the
following loss function:

L4 = —KL(go (), v) (14)

Then, it obtains the perturbation £(8) = p sign(VeLLT4)|VeLET4|/||VoLET4||2 Next, it mini-

mizes the perturbed loss function ng;zg) = —KL(go+<(6)(x), v). In this case, in Eq. , we set

a = —1, 8 = 0 and take ® to be the negative entropy function, i.e., ®(p) = Ezjf p; log p;. We set
P = got<(0)(T), i.e., the softmax probability output of the neural network on the test data and q = v,

i.e., the uniform distribution on the class probability distribution. D& (p, q) = KL(gg4c(g)(x), v).
We then recovered the SAR method.

EATA As A Special Case EATA (Niu et al., [2022) is a weight-regularization-based technique. It
achieves this by imposing a penalty on weight updates using the Fisher Information Matrix (FIM), F'.
EATA can be expressed as:

LTTA = _KL(ge(x),v) + 50 — 6.)TF(0 —86,) (15)
In Eq. , we set « = —1 and take ¥(60) = %OTFO. Wesetp = 6 and ¢ = 0.. Dg(p,q) =
(0 —0.)'F(6 — 0.). Then, we recovered the EATA method.

SWR As A Special Case SWR (Choi et al.| [2022) is a weight-regularization-based method. Specifi-
cally, it optimizes the following objective:

=L
LTTA = H(ge(x)) — AH (Go(x)) + 8 m|6" — 6L (16)
=1

where A > 0 is a constant and jg () is the average predication probability within a mini-batch.
SWR maximizes this entropy H (gg()) to encourage the output probability distributions not too
confident. m; is a layer-wise parameter penalty constant, L is the total number of layers and ' are
the network parameters in the [*” layer. Equivalently, it can be expressed as the following objective:

LTTA = _KIL(gg(x),v) + KL(jg(x),v) + 5(6 — 6.)TM(6 - 8.) (17)
where M is a diagonal matrix, where M = diag(my,my,--+ ,ma, ma,--- ,mp,mr,---). The

diagonal elements in M are layer-wise penalty constants which indicates how fast those layer
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parameters should be updated. In this case, in Eq. , we set a = —1 and take ¥(6) = 267 M 6.
Wesetp =0 and g = 0.. Dy(p,q) = (0 — 0,)TM(6 — 0.). Then, we recovered the SWR.
AdaContrast As a Special Case AdaContrast (Chen et al.||2022a) is a hard pseudo-labeling based

method. We denote y as the one-hot vector for the pseudo label predicted by the nearest neighbours
in a target domain data point. AdaContrast optimizes the following objective:

LT = KL(go(z),y) (18)

In this case, in Eq. @), we set a = 1,3 = 0. We take P to be the negative entropy function, i.e.,

®(p) = > i_| pilogp;. Weset p = go(x), i.e., the softmax probability output on the test data & and
g to be the one-hot vector of the ground truth class distribution. Then, D& (p, q) = KIL(gg (), y).
We recovered AdaContrast.

TAST As a Special Case TAST (Jang et al., 2023)) is a soft pseudo-labeling based method. We denote
Je(x) as the soft pseudo-label on test data  predicted by the nearest neighbours. TAST optimizes
the following:

LTT4 = KL(ge (), jo()) (19)

In Eq. , we set « = 1,8 = 0. We take ® to be the negative entropy function, i.e., ®(p) =

> i1 pilogp;. Weset p = gg(x), i.e., the softmax probability output of the neural network on the
test data and ¢ = gg (). Then, Ds(p, q) = KL(go(), jo(x)). We recovered TAST.

The unified and general optimization objective for TTA is defined as the following:

LTT4 = aDg(go(x), 2) +8 Dy (0,0,) = Lop(Dig, 6.) (20)
—_———
output space weight space ID data (optional)

The following is the definition of Bregman divergence:

Das(p,q) = ®(p) — ®(q) — (V®(q),p — q) 1)

B.1 TENT/SAR As A SPECIAL CASE

In Eq. 1| we set « = —1, 8 = 0 and take ®(p) = ZZT p; log p;. Here, p and g are probability
simplex, i.e., > . p; = Land >_._| ¢; = 1. Then, we plug ®(p) into Eq. . We can obtain the
following equation:

Da(p,q) =Y pilogp; — Y _gilogg; — (log(q) + 1,p — q) (22)

=1 =1

=> pilogp; — > piloggi — > pi+ Y a (23)
=1 =1 =1 =1

= pilog” (24)
i=1 i

=—H(p) + H(p,q) (25)

= KL(pllq) (26)

where H (p) is the entropy for the probability distribution p. and H (p, q) is the cross entropy between
probability distributions p and q.

When we take the probability distribution p = gg(x) , i.e., the TTA model output probability
distribution over the classes, and ¢ = v, i.e., the uniform distribution over the underlying classes,
Das(p,q) = KL(ge(x),v). This precisely recovers the Tent/SAR method.
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B.2 EATA As A SPECIAL CASE

In Eq. (20), we set o = 0, we take ¥(0) = 107 F60. We set p = 6 and ¢ = 6.. where F is the
diagonal Fisher information matrix.

Ds(p,q) = ®(p) — 2(q) — (V®(9):p — q) 27)
= %BTFH — %G*TFG* —(6.F,0 —0,) (28)
= %BTFB + %93’1?0* — (0.F,0) (29)
- %(0 —0.)"F(6-0,) (30)

Then, we recover the EATA method.

B.3 SWR As A SPECIAL CASE

SWR (Choi et al} 2022) is a weight-regularization-based method. Specifically, it optimizes the
following objective:

=L

LTTA = H(go(x)) — AH(go(x)) + B _ myl[0" — 6L (31)
=1

where A > 0 is a constant and jg () is the average predication probability within a mini-batch. SWR
maximizes this entropy H (ge(x)) to encourage the output probability distributions not too confident.
m; is a layer-wise parameter penalty constant, L is the total number of layers and @' are the network
parameters in the [ layer. Equivalently, it can be expressed as the following optimization objective:

LT = —KL(go (), v) + KL(go(), v)+
(O —6,)"M(6 -0, (32)

where M is a diagonal matrix, where

M:diag(mlamla"'am27m27"'7mL7mLa"') (33)

The diagonal elements in M are layer-wise penalty constants which indicates how fast those layer

parameters should be updated. In this case, in Eq. H we set a = —1 and take ¥(0) = 167 M6.

-2
We set p = 6 and g = 6,.. By deriving the SWR as the following equation:

Da(p,q) = ®(p) — 2(q) — (VL(9),p — q) (34)
= %OTMO — %O*TMO* —(6.M,6 —8,) (35)
= %GTMO + %O*TMO* —(6.M,6) (36)
- %(e —0,)TM(6-6.) (37)

Then, we recovered the SWR method.

B.4 FIiT LAME LOSS INTO GENERAL TTA FRAMEWORK

LUAME(Z) = ZKL(fi | @) — szgijij
) i,
Where:
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* Z;: soft pseudo-label for test input x;, e.g., from pg(y|x;)
* ¢,;: smoothed or sharpened version of pseudo-label

* w;;: similarity-based affinity weight (e.g., based on k-NN in feature space)

The KL divergence in the first term can be written as Bregman divergence as the following:
D¢ (2i,qi) = KL(Z; || qi)
We then formulate the second term: 3, ; w2 Z

as a Bregman divergence, we can reinterpret it through the lens of negative similarity minimization,
which corresponds to Bregman divergence induced by a quadratic function.

If we choose: )
8(2) = 5l2I

then the corresponding Bregman divergence is:

1
Dy(2,2) = 5l = 2|1

Note that:
Iz = 2lI° = llzall® + ll25]° — 22/ 2,
So:
T 1 2 2 2
22 =5 (1zall* + 25017 = 1z — z;17)
Therefore: ) 1 1
2]z = —5llml? = Sl + Sl 2

Now summing over 4, j with weights w;;, we get:

1 1 1

]

~ S ualz = Lo |3l - 1P - 3llal? - Sl 1P
2 2

We can rewrite the affinity regularization term as a weighted sum of Bregman divergences:
~ = ~ = L e

> wij - Dy(Zi,%;) where Dy(Z, %) = Sz =zl

0,J
Thus:

—Zw”,%;ré] — Zwithﬁ(’%i’gj) —+ const
0,J 0,J

B.5 FIT SSA LOSS INTO GENERAL TTA FRAMEWORK

Objective. We instantiate the general TTA objective as

J0) = akEeun [Kipo(-|2) [0)] + 20— 60l 3®)

output-space (entropy minimization) weight-space (Bayes/SSA proximal)

where v is the uniform distribution over classes, 8, are the source weights, Ay ~ I (or a small
diagonal), and 3, &x oo /o with o7 an online estimate of gradient-noise variance.
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Forward (gradient) step on the output term. Let
U(x;0) = —H(po(- |2)), &k = VoEoup,[l(x;0)]. (39)

Take a covariance-aware scaled step

Vi = My — 018k, (40)
with step scaler, e.g.,
2
X
TS 41)
oy

Backward (proximal) step on the quadratic weight term. We then solve the proximal subproblem
. 1 2 /Bk 2
Or+1 = argmin %HO—VHE + 7||9—90|\Ak- (42)
Setting the gradient to zero gives
1
5(0 —vi) + BrAk(0—60) = 0 = (I+nBrAk)O = vi + nBpA 6. (43)

Hence
Orir = (I+n8uAK) " (vi+ nBAK Oy ). (44)

Affine shrinkage (Kalman-style form). Define the gain

—1 —1
Ae = (I+nBeAi)  nBeAr = I— (I +nBrAi) . (45)
Then equation [#4]is equivalently
Ori1 = Vi + A (60 — Vi) (46)
Substituting equation 40| yields the Kalman-style mean update
myy1 = (my—arnge) + Ak (90 — (myg — o, ng))- 47)
Parameter mapping and small-step limit. If Ay ~ [ and 0 < 1,
1
Ar ~ nbi 1 = Br =~ —ar when Ay = ail. (48)

Ui

Together with 34 o o /o and the choice of oy, in equation this recovers the Bayesian weight
enhancement + steady-state adaptation behavior within our generalized TTA framework.

C THEORETICAL ANALYSIS

In this section, we perform theoretical analysis for our proposed method. In Theorem [2} Lana
can be characterized as an optimization in a Riemannian manifold (defined as M = {go(x)}) to
ensure uniform low loss in a probability distribution space. This helps achieve better generalization
compared to achieve low loss in a single distribution. This is in contrast to existing TTA methods
which treat all parameters in the Euclidean space in the same way without considering the underlying
parameter geometry, which may not be suitable for direct adaptation of the source domain model to
the target domain.

In Theorem|[C] we prove the generalization bound for Lana.

Lemma 1
V3KL(p(x|6)[p(x|6 + 6))|s—0 = F (49)
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proof

First, the KLL(p(x|0)||p(x|@ + §)) can be decomposed into the following:

KL(p(z|0)||p(x[0 + 9)) = Ep(z|e)[log P(x|0)]
— Ep(z|0)[log P(z|60 + J)]

VsKL(p(z|0)||p(z|0 + 8)) = VsEp(ze)[log P(z|0)]
— VsEp(a)0)[log P(z|0 + §)]
= —Ep(a)9)[Ves log P(z|60 + )]

- —/P(ac|0)V5 log P(|0 + 8)da

V3KL(p(2|0)||p(x|0 + 4))
_ / P(x|6)V2 log P(2(0 + 8)dx

Therefore, the Hessian with respect to 9 is as the following:

V3KL(p(x|0)||p(2|0 + 8))|s=0 =
= —/P(m|0)v§ log P(x|0 + 8)|s—odx

= —Ep(a|6)Hessian(log P(x|0))
=F

(50)

(G

(52)

(53)

Then, we apply Lemmal(l] by setting P(z|6 + 8) = go45(x) and P(x|6) = go(x). Then, we can

obtain the conclusion that V2KL(gg()||ge+5(T))|s=0 = F

Theorem 2 With one step of adaptive unlearning by Eq. (I1)), Lana approximately minimizes the
following flatness-seeking optimization objective. That is, solving Eq. (3)) and Eq. ({6) approximately

solves the following optimization:

Inﬂ}n 5:(1(9,1%3-;-)%)§0' H(99+5 (w))
(6,6 + 9) = E;KL(ge(2)||g6+5(x))

where o > 0 is a constant.

proof

We take the first-order Taylor expansion on H(ggts(x)) as the following:

H(go+s(x)) ~ H(ge(x)) + VoH (go(x))" 8

According to Lemmal([I} we use second-order Taylor expansion at § = 0 as the following:

(6,0 + &) =E[KL(go(x)||g0+5(x))|s=0 + V5sKL(g0(2)|go+5(x))|5=0 6

=0 =0
1
+ 50" V5 KL(p(x|0)[[p(x|0 + 8))|5=0 8] + O(5%)

=F by Lemma

20
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Therefore,

d(6,0 +96) ~ %JTF(S (58)

Then, optimize the following optimization problem

H 59
16535 <, (96+5(x)) (59)

We can convert this constrained optimization by Lagrangian duality (Boyd & Vandenberghel |[2004)),
we can obtain the following:

wmax[H (g0(w)) + VoH (go())" 6 ~ 2367 F6 — o] (60)

We take the gradient with respect to d and obtain the following:

VoH (go(x)) —vFd =0 (61)

1
6= ;F’lvaH(ge(m)) (62)

This corresponds to the adaptive unlearning step. Then, the conclusion follows.

Theorem We denote the distribution of @ as D and the test set S, which is sampled independently
and identically distributed (i.i.d.) from D. Lana Eq. (5) and Eq. (6) is equal to following optimization
objective.

min H(ge-4(0) (@), (63)
5(0) := aF 'VoH(go(x)) (64)
And we have the generalization bound:
m2 1—"’—’2 d/2
Exnp[H(96(2))] < Eans[H(go+s(0)(@))] + (e ™ T) (65)

Lilog (14 Z2AEY 4L 1 4 1602 4 210g (60 + 3k
gk 108 %o ()2 5 +1og § +2log (6n + 3k)

+ n—1

; (66)

where d is the dimension of 8, m is an arbitrary constant, and where o (0) is positively related to the
scale of |[0(0)|]2.

By PAC-Bayesian bound (McAllester, |1999; Dziugaite & Roy,|[2017) we have with probability at
least 1 — & over the test set .9, the following generalization bound holds for any prior P and posterior
@ over parameters:

KL(Q||P)+1log %
2(n—1) ’

Eo~q[Ez~p[H (g6(2))] < Eong[Eans[H(go(x))]] + \/

where n = |S| and k is the number of parameters. Besides, if P = N(up,0%I) and Q =
N(po, aé I), then the KL divergence can be written as follows:

1[kod + lep — poll3 o?
KL(Q||P) = Q > 2 _k+klog 0—5 } (67)
Q

3 )

21



Under review as a conference paper at ICLR 2026

Following Theorem 1 of (Foret et al.,[2021), we have with probability 1 — wé—im the KL-divergence
is bounded by
1 10113
KL(Q||P) < I+klog |14+, (68)
2 k:UQ

where j < |klog(1 + exp(4n/k))|.

We assumed Eqp[H (9o (%))] < Eson0,01)[Ex~p[H (90+5(x))]], with the above derivation, the
generalization bound can be written as follows:

Eenp[H(g0(2))] < Eson(0,01)[Eans[H (go+5(x))]] (69)
1klog (1 + %) + 3 + log % + 2log (6n + 3k)
+ — (70)

Now we consider the relation between  maxs.q0,0+5)<, H(ge+s(x)) and
Esn(0,01) [Ez~s[H (g0+5(x))]]. As d(6,0 + ) is a continuous distance metric, there
exist o(0) such that {||6]]2 < c(0)} C {||d(0,60 + §)||]2 < p}. In this case we have

H > Epos[H
M(eff};%)gp (96+5(x)) > |I6|]ing§(9) z~s[H (go+s(x))]

Consider § ~ N(0,0I), we have £ ~ N(0, 1) and V. > 0

Esn (0,01 [Ez~s[H (g0+5(x))]]

= Es[Eams(H(goss@)I |21 < mlP(I [l < m)

+ Es[EasH(gora(@)] | 2112 > mlP( 2l > m)

(71)
1) 1)
< Eps[H P(l|—1]y < P(||— .
< B s H(gos(@)JB(1 |l < m) +B( |7 12 > m)
0
< max [Exos[H(ge+s(x))l] +P(|[=|]2 > m).
[16]|2<mo o
As g ~N (0, I'), by Chernoff bound of chi-squared distribution we have,
0 m? w2 g
P(H;\b >m) < (76 )=, (72)

where d is the number of parameters. Thus by taking o = ¢ (8)/m we have

m2 _ m?2
Es A (0,0(6)/mI) [ Ee~s[H (go+5(x))]] < \|5\I|ngx(e)[E”S[H(gﬂ‘s(m))“+(7d el =TI )42 (73)
250
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Combining the above equation with Eq. (69), we have

Exnp[H (96(x))] < Esnr(0,0(6)/m1)[Ez~s[H (go+s5(x))]]

1 m2||8|3 1 n
7klog (1+ wo@r ) T 1t log % + 2log (6n + 3k)
+

n—1
m? m?
< max [Egus[H(gors(@))]] + (—-e' =T )Y/?

= [[8l[2<a(6) d
2
Lklog (1+ fo1al) + & +1og 2 + 2log (60 + 3k) (74)

+

n—1
< max  H(gess(x)) + (miel—”%)d/?
~ 6:d(0,0+6)<p 9o+9 d
. Lilog (14 5ol + 4 +log % + 210g (6n + 3k)

n—1

D MORE IMPLEMENTATION DETAILS

D.1

DATASET DETAILS

» ImageNet-C: ImageNet-C is a dataset created for the purpose of evaluating the robustness
and generalization ability of computer vision models. It is a corruption dataset, meaning that
it contains images that have been corrupted to simulate real-world challenges that models
might face. The corruption consists of 15 different types, i.e., Gaussian noise, shot noise,
impulse noise, defocus blur, glass blue, motion blur, zoom blur, snow, frost, fog, brightness,
contrast, elastic transformation, pixelation, and JPEG compression. Each corruption type
further contains 5 different severity levels and the larger severity level means more severe
distribution shift. ImageNet-C can assess how well a computer vision model trained on
clean data can perform on images that have been corrupted in various ways. This helps
in understanding the model’s resilience to different types of distortions and aids in the
development of more robust and generalizable models.

* DomainNet: DomainNet is a comprehensive multi-source domain adaptation dataset. In
line with the methodology proposed by (Saito et al.,2019), we employ a specific subset of
DomainNet called DomainNet-126, which comprises 126 classes distributed across four
distinct domains: Clipart, Painting, Real, and Sketch. This subset is particularly notable for
its representation of natural shifts inherent in real-world data.

D.2 BASELINE DETAILS

* Tent (Wang et al.,|2021): Tent is an entropy-minimization based TTA method. We follow
the hyper-parameter setting in Tent (Wang et al., 2021). In particular, we employ SGD as
the optimizer, incorporating a momentum factor of 0.9 and utilizing a batch size of 64. The
chosen learning rates are 0.00025 for ResNet models and 0.001 for Vit models. Notably,
when the batch size is 1, the learning rates are adjusted to 0.00025/32 for ResNet models and
0.001/64 for Vit models. The trainable parameters involves adjusting the affine parameters
of normalization layers.

* EATA (Niu et al.} [2022): EATA is a weight-regularization-based method. It regularizes
the TTA model updates so that weights are important to the source-domain domain will be
updated slower and weights that are less important to the source-domain will be updated
slower.

* SAR (Niu et al.,|2023): SAR, a sharpness-aware entropy minimization technique, enhances
TTA stability by addressing two key issues: eliminating partially noisy samples characterized
by large gradients and promoting the convergence of model weights towards a flat minimum.
This approach ensures that the model becomes resilient to the presence of the remaining
noisy samples.
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* AdaContrast (Chen et al.l |2022a) is an online pseudo labeling method combined with
contrastive learning to perform TTA.

E MORE EXPERIMENTAL RESULTS

Impact on Source Domain Performance Following (Niu et al.| 2022} Zhang et al., 2023)), we also
evaluate the performance on source domain after adapting the model to the target domain test data.
We present the results in Table |4, We can observe that our method (Lana) overally outperforms
existing TTA methods in terms of source-domain accuracy. This indicates that our method leads to
minimal forgetting of source domain knowledge since our adaptive unlearning strategy considers
the parameter importance with respect to the source domain and constrains the forgetting on source
domain.

Effect of Batch Size for Batch Normalization. To evaluate the effect of different batch size for the
network with batch normalization, we perform an evaluation with different batch sizes, i.e., 32 and
64 in Table[5] The results indicate that our method improves more than 1% compared to SOTA TTA
method with different batch sizes.

DomainNet-126 Results

Table 6: Comparisons with SOTA on DomainNet-126 by test accuracy (%). C, P, R and S denote the domain of
Clipart, Painting, Real and Sketch, respectively. — indicates the transfer direction.

Method C—P C—R C—S P—C P—R P-S R—C R—-P R—S S—C S—P S—R Avg
Source Model 49.1 62.0 50.5 56.7 74.9 482 583 53.0 60.0 57.2 62.7 4718 56.7

o Tent 53.1 64.1 53.1 57.3 73.9 56.8 58.0 65.6 52.0 63.1 62.0 66.6 60.5

o Tent+Lana (Ours) 54.5 66.4 54.7 572 733 57.0 58.5 66.7 52.1 63.9 63.8 67.8 61.3

* EATA 54.3 65.3 54.0 584 734 57.3 51.7 64.2 519 63.6 62.4 67.9 60.9

e SAR 53.0 64.8 53.1 56.8 3.7 56.7 56.7 64.3 513 629 622 67.5 60.2

o AdaContrast 57.2 69.6 56.3 61.8 77.2 60.3 622 66.3 54.3 67.2 65.2 72.2 64.1

o AdaContrast + Lana (Ours) 576101 704101 568:00 62.8:01 782:01 609:100 626100 671101 550100 67.8:00 65801 72900 64801

Hyperparameter Sensitivity Analysis

Table 7: Analysis of unlearning rate v and unlearning steps J under online imbalanced label shifts
with VitBase.

! 0.0 0.03 0.05 0.07
Accuracy 47.3 60.9 61.1 60.5
J 1 2 3
Accuracy 61.1 61.3 60.4

Mixture of 15 different corrupted data distributions

Table 8: Comparisons with SOTA test accuracy on ImageNet-C under mixture of 15 different
corrupted data distributions.

Method Accuracy Method Accuracy
ResNet50 (GN) 30.6 VitBase (LN) 29.9

o Tent 13.4 o Tent 16.5

o EATA 38.1 o EATA 55.7

o AdaContrast 0.38 o AdaContrast 1.26

o SAR 383 o SAR 57.1

o Tent+Lana (Ours) 38.5.¢; o Tent+Lana (Ours) 58.1.¢;

Efficiency Evaluation
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Table 9: Efficiency comparisons with SOTA TTA methods by A5000 with VitBase-LN under online
imbalanced label shifts on ImageNet-C.

Method Running time (hours)
e Tent 2.87
e EATA 3.08
o AdaContrast 8.26
e SAR 5.67
o Tent+Lana (Ours) 4.39

Integration with other TTA methods

Table 10: Comparisons with SOTA on ImageNet-C (severity level 5) by test accuracy (%) under Batch Size =
1. “BN”/“GN”/“LN” denote the Batch/Group/Layer normalization.

Gauss  Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

VitBase (LN) 9.5 6.7 8.2 29.0 234 339 27.1 159 265 472 547 44.1 30.5 445 478
o Tent 422 1.0 433 52.4 482 555 50.5 16.5 169 66.4 749 64.7 51.6 67.0 643
o Tent+Lana (Ours) 49.0 47.6 49.6 55.3 531 59.2 554 61.0 511 703 76.7 66.7 61.1 70.2  67.6
o EATA 29.7 25.1 346 44.7 392 483 424 375 459 600 659 61.2 46.4 582  59.6
o EATA+Lana(Ours) 31.3 28.6 359 46.2 453 515 46.5 463 465 652 693 64.5 50.3 62.6 64.1
e SAR 40.8 364 415 537 50.7 575 52.8 59.1 50.7  68.1 74.6 65.7 579 689 659
© SAR+Lana(Ours) 432 38.2 437 54.5 518 589 53.9 60.7 492 699 753 64.5 59.6 69.2 663

Evaluation of different methods under a standard TTA setting

To assess the effectiveness of various TTA approaches under the standard TTA setting, we follow the
setup outlined in (Yuan et al.l 2024)). The results are presented in Table @

Table 11: Comparison of Different TTA methods under a standard TTA setting

Method Acc(%)1T wmCE (%) |
TENT 81.41 48.13
ETA 79.58 52.64
EATA 79.59 52.62
SAR 79.77 51.94
TEA 83.34 43.69
TEA + Lana 84.95 41.87

Integration with other TTA methods

Table 12: Accuracy comparison of different methods with and without Lana.

Method Accuracy (%)
Tent 47.7
Tent + Lana 59.6
EATA 46.6
EATA + Lana 553
SAR 56.3
SAR + Lana 58.9

F ALGORITHM

Algorithm 1 Lana for TTA.

1: REQUIRE: pre-trained model parameters 6., TTA model learning rate 7, unlearning rate «.
2: fork =1to K do
3:  Randomly sample a mini-batch of test data «
4 for j =1to J do
5 0, = 0,"' +a[F'VeH(ge.(x))] (unlearning)
6:  end for
7 Or+1 = 0, — NV H(g,; (x)) (adapt to test data)
k
8: end for
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