

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AN UNLEARNING-ENHANCED GENERAL FRAMEWORK FOR TEST-TIME ADAPTATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Test-time Adaptation (TTA) aims to mitigate performance degradation caused by distribution shifts during testing time. While various TTA approaches exist, such as entropy minimization, pseudo-labeling, weight-space regularization and Bayesian methods, a generalized optimization framework for TTA is currently absent. To address this gap, we present a general framework for TTA. This framework provides a conceptual basis for understanding existing methods as specific instances within a broader optimization framework, and facilitates the development of new TTA methods. Additionally, our proposed framework brings attention to limitations in existing approaches by unveiling an implicit assumption that all source domain knowledge is universally beneficial for adapting to the target domain. In reality, only a portion of the source domain knowledge is useful due to potential large distribution discrepancies between the source and target domains. Based on this insight, we build upon our general framework and derive a novel method named *UnLearning-enhanced test-time adaptation (Lana)*. Specifically, it adaptively unlearns irrelevant source domain knowledge and then adapts to the target test domain. Through thorough theoretical analysis and empirical results, we showcase the effectiveness of our proposed method in enhancing TTA performance. This work contributes not only a broader understanding of TTA through a general framework but also a novel practical solution, *Lana*, derived from our general framework, offering a foundation for further advancements in addressing distribution shifts during testing in machine learning models.

1 INTRODUCTION

Deep neural networks demonstrate optimal performance when both the training and testing data conform to identical distributions. Nonetheless, this assumption does not align with the reality of real-world applications, where the distribution of test data frequently diverges from that of the training data. This incongruity inevitably results in a noticeable decline in performance when deploying a pre-trained model on such divergent test distributions. Consequently, the imperative arises to adapt the pre-trained model to the test data distribution (domain) in real-world applications, thereby mitigating the disparity between the training and test data.

To tackle this challenge, the concept of test-time adaptation (TTA) (Wang et al., 2021) is introduced, which involves adjusting a pre-trained model through the creation of a loss function solely based on unlabeled test data. Various TTA approaches have emerged, encompassing: (1) Entropy-minimization-based methods, such as Tent (Wang et al., 2021) and SAR (Niu et al., 2023); (2) Pseudo-labeling-based methods, including TAST (Jang et al., 2023) and AdaContrast (Chen et al., 2022a); (3) Weight-regularization-based methods, like EATA (Niu et al., 2022) and SWR (Choi et al., 2022). (4) Output-regularization-based methods: LAME (Boudiaf et al., 2022); and (5) Bayesian methods: SSA (Lee, 2025). Despite the diverse range of available methods, designing TTA approaches often necessitates substantial intuition. For example, EATA (Niu et al., 2022) and SWR (Choi et al., 2022) need carefully designed regularizations. Moreover, a general framework is currently absent to place existing methods within a shared optimization objective, as well as to offer guidance for the development of novel TTA methods.

In an effort to bridge this gap, we propose a general and versatile optimization objective for TTA. This framework offers several advantageous outcomes. First, many existing TTA methods can be

054
055 Table 1: A general optimization framework for TTA. We define a generalized TTA optimization
056 objective as $\mathcal{L}^{TTA} = \alpha D_{\Phi}(g_{\theta}(\mathbf{x}), \mathbf{z}) + \beta D_{\Psi}(\theta, \theta_*) \pm \mathcal{L}_{CE}(\mathcal{D}_{id}, \theta_*)$. Where α, β are constants,
057 $g_{\theta}(\mathbf{x})$ denotes the output class probabilities on a test data \mathbf{x} , $D_{\Phi}(g_{\theta}(\mathbf{x}), \mathbf{z})$ is *output space* regular-
058 ization represented as a Bregman divergence associated with function Φ , $D_{\Psi}(\theta, \theta_*)$ is *weight space*
059 regularization represented as a Bregman divergence associated with function Ψ , $\mathcal{L}_{CE}(\mathcal{D}_{id}, \theta_*)$ is the
060 cross-entropy loss on in-distribution (ID) data. This last loss term is optional for TTA, but may be
061 present in some TTA methods. Various TTA methods can be recovered from this general optimization
062 objective by setting different Φ, Ψ and the arguments of the Bregman divergence.

Category	Method	Recover Setting
Entropy-minimization	Tent (Wang et al., 2021)	$\alpha = -1, \beta = 0, \Phi(\mathbf{p}) = \sum_{i=1}^{i=n} \mathbf{p}_i \log \mathbf{p}_i, \mathbf{p} = g_{\theta}(\mathbf{x})$
	SAR (Niu et al., 2023)	$\alpha = -1, \beta = 0, \Phi(\mathbf{p}) = \sum_{i=1}^{i=n} \mathbf{p}_i \log \mathbf{p}_i, \mathbf{p} = g_{\theta+\varepsilon(\theta)}(\mathbf{x})$ $\varepsilon(\theta) = \rho \operatorname{sign}(\nabla_{\theta} \mathcal{L}_{\theta}^{TTA}) \ \nabla_{\theta} \mathcal{L}_{\theta}^{TTA}\ / \ \nabla_{\theta} \mathcal{L}_{\theta}^{TTA}\ _2$
Pseudo-labeling	TAST (Jang et al., 2023)	$\alpha = 1, \beta = 0, \Phi(\mathbf{p}) = \sum_{i=1}^{i=n} \mathbf{p}_i \log \mathbf{p}_i, D_{\Phi}(\mathbf{p}, \mathbf{q}) = \text{KL}(g_{\theta}(\mathbf{x}), \hat{g}_{\theta}(\mathbf{x}))$
	AdaContrast (Chen et al., 2022a)	$\alpha = 1, \beta = 0, \Phi(\mathbf{p}) = \sum_{i=1}^{i=n} \mathbf{p}_i \log \mathbf{p}_i, D_{\Phi}(\mathbf{p}, \mathbf{q}) = \text{KL}(g_{\theta}(\mathbf{x}), \mathbf{y})$
Weight-regularization	EATA (Niu et al., 2022)	$\alpha = -1, \Psi(\theta) = \frac{1}{2} \theta^T F \theta, F$ is a diagonal Fisher information matrix
	SWR (Choi et al., 2022)	$\alpha = -1, \Psi(\theta) = \frac{1}{2} \theta^T M \theta, M$ is a diagonal sensitivity matrix
Output-regularization	LAME (Boudiaf et al., 2022)	$D_{\phi}(\tilde{\mathbf{z}}_i, \mathbf{q}_i) = \text{KL}(\tilde{\mathbf{z}}_i \parallel \mathbf{q}_i)$ and $D_{\phi}(\mathbf{z}, \mathbf{z}') = \frac{1}{2} \ \mathbf{z} - \mathbf{z}'\ ^2$
Bayesian-based	SSA (Lee, 2025)	$D_{\Phi}(\mathbf{p}, \mathbf{q}) = \text{KL}(g_{\theta}(\mathbf{x}), \mathbf{v})$ $\mathbf{p} = \theta, \mathbf{q} = \theta_*, D_{\Phi}(\mathbf{p}, \mathbf{q}) = (\theta - \theta_*)^T \Delta_k(\theta - \theta_*)$
Our method	<i>Lana</i>	$\Phi(\mathbf{p}) = \sum_{i=1}^{i=n} \mathbf{p}_i \log \mathbf{p}_i$. First-order Taylor expansion to the first term. Second-order Taylor expansion to the third term. (We provide the derivation details in the Framework and Method Section.)

075
076 easily *reinvented* by our general framework with minimal effort, offering deeper insights into their
077 shared characteristics. Secondly, researchers and practitioners can circumvent redundant efforts and
078 expedite the development of new TTA methods by leveraging our general framework as a foundation.
079 As detailed in Table 1, our framework is designed to flexibly accommodate and recover a diverse
080 collection of TTA methods across different categories by setting different Bregman divergence
081 (Banerjee et al., 2005). In addition, our framework reveals that existing TTA methods only emphasize
082 direct adaptation of the pre-trained model to the target test data distribution. However, test data may
083 significantly differ from training data. Accordingly, the knowledge learned in pre-trained models may
084 interfere with the test data distribution. As a result, directly adapting the pre-trained model to the
085 target test data distribution could result in negative transfer effects (Zhang et al., 2022b), potentially
086 leading to suboptimal performance for the target test data distribution.

087 To address this challenge, we build upon our general framework and introduce an innovative ap-
088 proach named *unLearning-enhanced* test-time adaptation (*Lana*) to boost the effectiveness of TTA.
089 Specifically, *Lana* is derived from our general TTA framework and it consists of a two-step process:
090 initially, we employ adaptive unlearning to remove irrelevant and less important information from the
091 pre-trained source domain weights. Subsequently, we adapt the unlearned model to the distribution of
092 the target test data. This approach draws inspiration from two sources. First, it is biologically-inspired
093 and takes cues from human learning, where the process of unlearning plays a significant role in
094 acquiring new skills (Gravitz, 2019; Wang et al., 2025), aligning with insights from neuroscience that
095 highlight the importance of unlearning in cognitive processes and learning new knowledge (Davis
096 & Zhong, 2017; Richards & Frankland, 2017). Second, it addresses the common issue in neural
097 networks where the pre-trained neural network tends to easily memorize irrelevant and unimportant
098 information in source domain training data (Carlini et al., 2019), which hampers their adaptability
099 to new, unseen target domain data, as their model capacity becomes cluttered with irrelevant and
100 unimportant source domain information (Feldman & Zhang, 2020). Our proposed *Lana* is a new TTA
101 paradigm and can be integrated with existing TTA methods to further improve their performance. To
102 highlight the disparities between conventional TTA methods and our approach, *Lana*, we depict their
103 distinctions with *Lana* in Figure 1.

104 To evaluate the effectiveness of the proposed method, we perform extensive experiments on two large-
105 scale and challenging TTA datasets, (1) ImageNet-C which consists of various TTA scenarios with
106 imbalanced data labels, mixture of different test data distributions and small batch size; (2) DomainNet
107 which consists of various natural data distribution shift. In particular, when integrating the proposed
108 adaptive unlearning with the Tent method (Wang et al., 2021), our method substantially improves
109 the TTA performance from 47.3% to 61.1% with VitBase backbone and improves the performance
110 from 22.0% to 37.4% with ResNet50 backbone on ImageNet-C, indicating the significant benefits of

adaptive unlearning. Furthermore, the results show that our method substantially outperforms those state-of-the-art (SOTA) TTA methods by more than 3%.

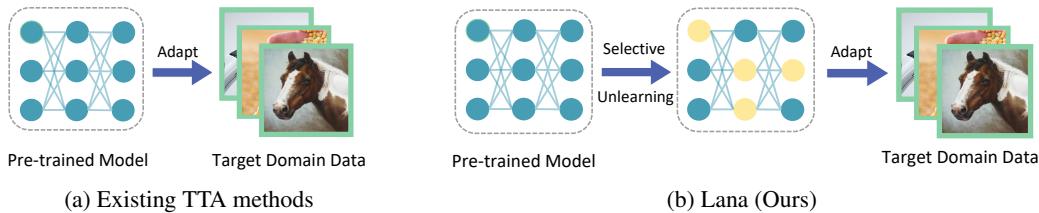


Figure 1: Comparisons between Existing TTA methods and *Lana* (Ours). (a) Conventional TTA methods operate under the assumption that all source-domain knowledge is universally beneficial for the target domain, leading them to directly adapt the pre-trained models from the source domain to the target domain. (b) However, in practical scenarios, the substantial dissimilarity between the source and target domains renders only a fraction of the source-domain knowledge pertinent for effective adaptation to the new domain. *Lana* (Our approach) employs a more nuanced strategy: it adaptively discards less relevant source-domain knowledge before adapting the model to the target domain. By strategically unlearning unimportant information, *Lana* optimizes the adaptation process for enhanced performance on test domains.

Our contributions can be summarized as the following:

- We introduce a general optimization framework for TTA, incorporating entropy minimization, pseudo-labeling, weight-regularization, output-regularization and Bayesian methods. Additionally, the framework offers a general guideline for the development of novel TTA methods.
- Building upon our proposed TTA framework, we develop and derive a novel biologically-inspired unlearning-enhanced TTA method aimed at enhancing adaptability to target test data distributions.
- Extensive theoretical analysis and experiments conducted on large-scale TTA datasets validate the effectiveness of the proposed method.

2 RELATED WORK

2.1 TEST-TIME ADAPTATION

Test-time adaptation (TTA) (Liang et al., 2020; Schneider et al., 2020; Wang et al., 2021; Iwasawa & Matsuo, 2021; Mummadil et al., 2021; Zhou & Levine, 2021; Sun et al., 2020; Liu et al., 2021; Bartler et al., 2022; Gandelsman et al., 2022; Wang et al., 2022; Gong et al., 2022; Boudiaf et al., 2022; Gao et al., 2022; Kim et al., 2022; Shu et al., 2022; Goyal et al., 2022; Zhang et al., 2022a; Shin et al., 2022; Yuan et al., 2023; Lim et al., 2023; Zhao et al., 2023; Zhou et al., 2023; Kang et al., 2023; Prabhudesai et al., 2023; Peng et al., 2023; Brahma & Rai, 2023; Yu et al., 2023; Lee, 2025) refers to the process of adjusting or fine-tuning a pre-trained model on unseen target test data distribution during the testing phase. The goal is to enhance the model’s performance on test data, especially when the test data distribution differs from the training data distribution.

Fully Test-Time Adaptation Fully TTA can adapt to the target test data distribution without changing the training procedure. Fully TTA methods can be further categorized into: (1) *entropy minimization-based methods* which minimize the model prediction entropy on the target test data distribution and then make predictions on test data distribution, consisting of Tent (Wang et al., 2021) and SAR (Niu et al., 2023); (2) *pseudo-labeling-based methods* leverage a pre-trained model to predict the target test data, generating pseudo-labels that are subsequently employed to compute the adaptation loss, including TAST (Jang et al., 2023) and AdaContrast (Chen et al., 2022a); (3) *weight-regularization-based methods* achieve TTA by applying regularization to the pre-trained model weights, ensuring that different model weights undergo updates with varying learning rates, including EATA (Niu et al., 2022) and SWR (Choi et al., 2022). However, there is currently a lack of a general optimization framework to understand these different approaches and a general guideline for creating potentially

novel TTA methods. On the other hand, existing TTA methods primarily concentrate on the direct adaptation of source domain knowledge to the target test data distribution. But, they often neglect the fact that not all source domain knowledge is relevant or beneficial for the target test data distribution, which can significantly differ from the training data distribution. In contrast, our approach prioritizes the adaptive unlearning of unimportant or irrelevant source domain knowledge from the pre-trained model, enabling a more effective adaptation to the characteristics of the target test data distribution.

2.2 MACHINE UNLEARNING

Machine unlearning (MU), as discussed in works such as (Guo et al., 2020; Wu et al., 2020; Bourtoule et al., 2021; Ullah et al., 2021), involves the deliberate removal or erasure of previously acquired information or knowledge from a pre-trained model. This practice is particularly relevant in the context of adhering to privacy regulations (Ginart et al., 2019). The existing approaches in MU can be further categorized into: (1) *Exact Unlearning*: This approach achieves the same effect as retraining from scratch with the remaining dataset. Representative works include (Wu et al., 2020; Bourtoule et al., 2021; Sekhari et al., 2021; Ullah et al., 2021). However, exact unlearning is computationally and memory inefficient to achieve. (2) *Approximate Unlearning*: This approach aims to improve unlearning efficiency by reducing the requirement of exact unlearning. Representative works include (Guo et al., 2020; Nguyen et al., 2020; Mehta et al., 2022).

Unlike traditional MU that aim to completely erase data traces from pre-trained models, our unlearning-enhanced TTA method is designed to dynamically eliminate less relevant information from the pre-trained model. This adaptive unlearning approach significantly improves the model’s adaptation ability and performance on new test domains.

3 FRAMEWORK AND METHOD

In this section, we outline the TTA problem setup. Subsequently, we introduce a general framework for TTA. Following that, we derive a novel TTA method from our framework.

3.1 PROBLEM SETUP AND PRELIMINARY

Test-Time Adaptation We commonly assumed that the test data \mathcal{D}_{test} will exhibit the same distribution as training data. However, it is frequently observed that the distribution of test data differs from that of the training data. To tackle this challenge, TTA entails adjusting a pre-trained model using unlabeled testing data $\mathbf{x} \sim \mathcal{D}_{test}$ using an unsupervised adaptation loss function. Afterward, the adapted model employs the updated parameters to make predictions on the test input \mathbf{x} .

Bregman Divergence Suppose $\Phi : \Omega \rightarrow \mathbb{R}$ is a continuously differentiable and strictly convex function which is defined on a convex set Ω . The Bregman divergence (Banerjee et al., 2005) associated with Φ for two points p and q can be interpreted as the difference between the Φ value at point p and the value obtained by approximating Φ through a first-order Taylor expansion centered at point q , followed by the evaluation of this approximation at point p as:

$$D_{\Phi}(p, q) = \Phi(p) - \Phi(q) - \langle \nabla \Phi(q), p - q \rangle \quad (1)$$

$\nabla \Phi(q)$ represents the gradient of Φ at point q , and $\langle \cdot, \cdot \rangle$ denotes the dot product between two vectors. In the following, we will utilize Bregman divergence to establish a general framework for TTA.

3.2 A GENERAL OPTIMIZATION FRAMEWORK FOR TTA

In the following, we reformulate and recast various established TTA algorithms in terms of a more general TTA optimization objective as the following:

$$\mathcal{L}^{TTA} = \underbrace{\alpha D_{\Phi}(g_{\theta}(\mathbf{x}), \mathbf{z})}_{\text{output space}} + \underbrace{\beta D_{\Psi}(\theta, \theta_*)}_{\text{weight space}} \pm \underbrace{\mathcal{L}_{CE}(\mathcal{D}_{id}, \theta_*)}_{\text{ID data (optional)}} \quad (2)$$

where θ are the current model parameters. α, β are regularization constants. $g_{\theta}(\mathbf{x})$ denotes the output class probabilities on a test data \mathbf{x} . The term $D_{\Phi}(g_{\theta}(\mathbf{x}), \mathbf{z})$ represents a form of regularization in the

216 *output space*. It is expressed as the Bregman divergence associated with the function Φ . The constant
 217 vector \mathbf{z} serves as a reference vector. On the other hand, $D_\Psi(\boldsymbol{\theta}, \boldsymbol{\theta}_*)$ represents a form of regularization
 218 applied to the *weight space or model parameter space*. It is also expressed as a Bregman divergence,
 219 this time associated with the function Ψ . The term $\boldsymbol{\theta}_*$ refers to the optimal model parameters that
 220 were learned for source domain data. This part of loss function is used to ensure that the model
 221 doesn't adapt too rapidly (more stable) to new test domains. $\mathcal{L}_{CE}(\mathcal{D}_{id}, \boldsymbol{\theta}_*) = \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}_{id}} \mathcal{L}_{CE}(\mathbf{x}, y)$
 222 is the cross-entropy loss on the in-distribution (ID) data. This loss term is optional but may be
 223 required by some existing methods. For instance, the existing TTA method, EATA (Niu et al., 2022),
 224 utilizes optimization on unlabeled ID samples. EATA argues that while TTA methods do not have
 225 access to the training data, they can leverage the unlabeled ID test data. Additionally, it's worth
 226 noting that various existing TTA methods can be easily *reinvented* with this general framework.
 227 Specifically, we cast (1) entropy-minimization methods: Tent (Wang et al., 2021) and SAR (Niu
 228 et al., 2023); (2) pseudo-labeling methods: TAST (Jang et al., 2023) and AdaContrast (Chen et al.,
 229 2022a); (3) weight-regularization methods: EATA (Niu et al., 2022) and SWR (Choi et al., 2022);
 230 (4) output-regularization methods: LAME (Boudiaf et al., 2022); (5) Bayesian methods: SSA (Lee,
 231 2025) as special instances of Eq. (2). Due to space constraints, we only outline the essential steps
 232 for deriving different TTA methods. Other details, e.g., sample selection and data augmentation, are
 233 not included since they are orthogonal to the TTA optimization, which can be integrated with them
 234 seamlessly. Due to space limitations, we present the derivations for LAME (Boudiaf et al., 2022),
 235 SWR (Choi et al., 2022), SAR (Niu et al., 2023) and SSA (Lee, 2025). We put other TTA methods,
 236 including Tent (Wang et al., 2021), EATA (Niu et al., 2022), AdaContrast (Chen et al., 2022a) and
 237 TAST (Jang et al., 2023) in Appendix. Detailed derivations can be found in Appendix B.

238 **SAR As A Special Case** SAR (Niu et al., 2023) is a sharpness-aware optimization (Foret et al.,
 239 2021)-based TTA method. In Eq. (2), we set $\alpha = -1, \beta = 0$ and take Φ to be the negative entropy
 240 function, i.e., $\Phi(\mathbf{p}) = \sum_{i=1}^{i=n} p_i \log p_i$. We set $\mathbf{p} = g_{\boldsymbol{\theta}+\varepsilon(\boldsymbol{\theta})}(\mathbf{x})$, i.e., the softmax probability output
 241 of the neural network on the test data and $\mathbf{q} = \mathbf{v}$, i.e., the uniform distribution on the class probability
 242 distribution. $D_\Phi(\mathbf{p}, \mathbf{q}) = \mathbb{KL}(g_{\boldsymbol{\theta}+\varepsilon(\boldsymbol{\theta})}(\mathbf{x}), \mathbf{v})$. We then recovered the SAR method.

243 **SWR As A Special Case** SWR (Choi et al., 2022) is a weight-regularization-based method. It can be
 244 expressed as the following objective:

$$\mathcal{L}^{TTA} = -\mathbb{KL}(g_{\boldsymbol{\theta}}(\mathbf{x}), \mathbf{v}) + \mathbb{KL}(\hat{g}_{\boldsymbol{\theta}}(\mathbf{x}), \mathbf{v}) + \beta(\boldsymbol{\theta} - \boldsymbol{\theta}_*)^T M(\boldsymbol{\theta} - \boldsymbol{\theta}_*) \quad (3)$$

245 where M is a diagonal matrix, where $M = \text{diag}(m_1, m_1, \dots, m_2, m_2, \dots, m_L, m_L, \dots)$. The
 246 diagonal elements in M are layer-wise penalty constants which indicates how fast those layer
 247 parameters should be updated. In Eq. (2), we set $\alpha = -1$ and take $\Psi(\boldsymbol{\theta}) = \frac{1}{2} \boldsymbol{\theta}^T M \boldsymbol{\theta}$. We set $\mathbf{p} = \boldsymbol{\theta}$
 248 and $\mathbf{q} = \boldsymbol{\theta}_*$. $D_\Psi(\mathbf{p}, \mathbf{q}) = (\boldsymbol{\theta} - \boldsymbol{\theta}_*)^T M (\boldsymbol{\theta} - \boldsymbol{\theta}_*)$. Then, we recovered the SWR.

249 **LAME As a Special Case** LAME (Boudiaf et al., 2022) is an output-regularization-based approach.
 250 In Eq. (2), we set $\alpha = 1, \beta = -1$. $D_\phi(\tilde{\mathbf{z}}_i, \mathbf{q}_i) = \mathbb{KL}(\tilde{\mathbf{z}}_i \parallel \mathbf{q}_i)$ and $D_\phi(\mathbf{z}, \mathbf{z}') = \frac{1}{2} \|\mathbf{z} - \mathbf{z}'\|^2$

251 **SSA As a Special Case** SSA (Lee, 2025) is a Bayesian-based approach.

252 In Eq. (2), we set $\alpha_k = \sqrt{\frac{\sigma_\lambda^2}{\eta^2 \sigma_k^2}}$, where σ_λ denotes a constant associated with steady-state regime, η
 253 is a constant, σ_k is the standard deviation at step k . The posterior mean can be approximately solved
 254 by the following optimization:

$$J(\boldsymbol{\theta}) = \underbrace{\alpha_k \mathbb{E}_{\mathbf{x} \sim D_k} [\mathbb{KL}(p_{\boldsymbol{\theta}}(\cdot \mid \mathbf{x}) \parallel \mathbf{v})]}_{\text{output-space}} + \underbrace{\frac{\beta_k}{2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|_{\Lambda_k}^2}_{\text{weight-space (Bayes/SSA proximal)}} \quad (4)$$

255 $\mathbf{p} = g_{\boldsymbol{\theta}}(\mathbf{x})$, i.e., the softmax probability output of the neural network on the test data and $\mathbf{q} = \mathbf{v}$,
 256 i.e., the uniform distribution on the class, $D_\Phi(\mathbf{p}, \mathbf{q}) = \mathbb{KL}(g_{\boldsymbol{\theta}}(\mathbf{x}), \mathbf{v})$. We set $\mathbf{p} = \boldsymbol{\theta}$ and $\mathbf{q} = \boldsymbol{\theta}_*$,
 257 $D_\Psi(\mathbf{p}, \mathbf{q}) = (\boldsymbol{\theta} - \boldsymbol{\theta}_*)^T \Lambda_k (\boldsymbol{\theta} - \boldsymbol{\theta}_*)$

258 3.3 AN UNLEARNING-ENHANCED TTA METHOD

259 The general framework in section 3.2 reveals that existing TTA methods focus on the direct adaptation
 260 of the pre-trained model to the target test data distribution, but overlook an important fact that the
 261 distribution of test data often substantially diverges from that of the training data. Consequently, not

270 all the knowledge stored in a pre-trained model is beneficial for handling unseen test data. In fact,
 271 certain elements of this pre-trained model may impede the model’s ability to adapt effectively.
 272

273 To address this issue, we propose a new TTA paradigm built on our general framework. We introduce
 274 a novel unlearning-enhanced optimization principle for TTA, which for the first time formulates
 275 adaptation as a *two-sided process*: (i) selectively unlearning source-specific biases that hinder
 276 adaptation, and (ii) simultaneously adapting to new test data distribution. For illustration, we propose
 277 the following unlearning-enhanced TTA (*Lana*) to reflect this dual objective by integrating with
 278 Tent (Wang et al., 2021). It is important to note that integrating *Lana* with other TTA methods is
 279 straightforward. We thus omit the details. The learning objective is shown below:
 280

$$\min_{\theta} H(g_{\theta+\delta(\theta)}(\mathbf{x})), \quad (5)$$

$$\delta(\theta) := \arg \min_{\delta} \alpha H(g_{\theta+\delta}(\mathbf{x})) - \mathcal{L}_{CE}(\mathcal{D}_{id}, \theta + \delta) \quad (6)$$

283 In Eq. (6), we (1) maximize the loss on the source domain data, i.e., $\mathcal{L}_{CE}(\mathcal{D}_{id}, \theta)$, to facilitate
 284 adaptive unlearning irrelevant source domain knowledge; and (2) minimize the entropy loss on
 285 the target test data distribution to ensure the unlearning on source domain does not degrade the
 286 performance on the target test data distribution. Importantly, our method *does not rely on* raw source
 287 data. It requires only the Fisher Information Matrix, which can be efficiently estimated. In Eq.
 288 (5), we optimize the test data entropy loss function initialized with the unlearning-enhanced model
 289 parameters to ensure adaptation to the test data distribution. In this regard, adaptive unlearning of
 290 certain source domain knowledge can be advantageous in facilitating adaptation to the target test data.

291 **Lana As a Special Case** In the following, we propose an algorithm to solve Eq. (5 and 6) and derive
 292 the algorithm from our general optimization framework in Eq. (2). We set $\beta = 0$. We then set Φ to be
 293 the negative entropy function, i.e., $\Phi(\mathbf{p}) = \sum_{i=1}^{i=n} \mathbf{p}_i \log \mathbf{p}_i$. We then set $\mathbf{p} = g_{\theta}(\mathbf{x})$, i.e., the softmax
 294 probability output of the neural network on the test data and $\mathbf{q} = \mathbf{v}$, i.e., the uniform distribution on
 295 the class probability distribution. Then, we optimize Eq. (6) and (5) alternatively by gradient descent.
 296 In Eq. (6), we adopt first-order Taylor expansion on the first loss term as following:

$$H(g_{\theta}(\mathbf{x})) \approx H(g_{\theta_*}(\mathbf{x})) + \nabla_{\theta} H(g_{\theta_*}(\mathbf{x}))(\theta - \theta_*) \quad (7)$$

297 The second loss term in Eq. (6) is the cross entropy loss on the source domain data, which are
 298 unavailable during TTA. We adopt Taylor expansion to approximate it as the following:
 299

$$\mathcal{L}_{CE}(\mathcal{D}_{id}, \theta) \approx \mathcal{L}_{CE}(\mathcal{D}_{id}, \theta_*) + \nabla_{\theta} \mathcal{L}_{CE}(\mathcal{D}_{id}, \theta_*)(\theta - \theta_*) + \frac{1}{2}(\theta - \theta_*)^T F(\theta - \theta_*) \quad (8)$$

300 where F is the Fisher Information Matrix (FIM) of the loss $\mathcal{L}(\mathcal{D}_{id}, \theta)$ on the source domain data.
 301 Since $\nabla_{\theta} \mathcal{L}_{CE}(\mathcal{D}_{id}, \theta_*)$ is close to zero at the stationary point, i.e., θ_* , we thus only need to optimize
 302 the quadratic term in Eq. (8). In summary, the approximate loss for Eq. (6) can be expressed as:
 303

$$\mathcal{L}_{unlearn} \approx \alpha \nabla_{\theta} H(g_{\theta_*}(\mathbf{x}))(\theta - \theta_*) - \frac{1}{2}(\theta - \theta_*)^T F(\theta - \theta_*) \quad (9)$$

304 We then take the gradient with respect to θ for the right hand side of the Eq. (9), we can obtain:
 305

$$\alpha \nabla_{\theta} H(g_{\theta_*}(\mathbf{x})) - F(\theta - \theta_*) = 0 \quad (10)$$

306 Solving the above equation leads to the following unlearning for the source domain model:
 307

$$\theta_f = \theta_* + \alpha F^{-1} \nabla_{\theta} H(g_{\theta_*}(\mathbf{x})) \quad (11)$$

308 where in Eq. (11), the precondition matrix FIM F^{-1} facilitates adaptive unlearning in source-domain
 309 pre-trained data knowledge. Its role is to enable a slower update of crucial parameters associated with
 310 the source domain to preserve important source domain knowledge, while permitting less critical
 311 parameters to undergo more rapid unlearning of irrelevant knowledge. This is because the FIM
 312 F^{-1} indicates the parameter importance for source domain knowledge. FIM can be efficiently
 313 computed once before TTA using a small subset of unlabeled in-domain test examples (Niu et al.,
 314 2022). It’s crucial to recognize that the Hessian matrix of the KL divergence aligns with the FIM,
 315 representing the local curvature of parameter changes. In practical terms, this relationship is denoted
 316 as $\nabla_{\delta}^2 \mathbb{KL}(g_{\theta}(\mathbf{x}) || g_{\theta+\delta}(\mathbf{x}))|_{\delta=0} = F$ (Lemma 1 in Appendix C). This equation identifies the steepest
 317 direction for achieving the most rapid unlearning of the output probability distribution in the source
 318 domain. It is clear that *Lana*, seeks uniform low loss within a Riemannian manifold where each point
 319

324 represents a probability distribution from the perspective of information geometry. This captures
 325 the underlying geometry in the model parameter space. This optimization objective promotes the
 326 neural network parameter whose entire neighborhoods in Riemannian manifold (characterized by
 327 $\mathbb{E}_x \text{KL}(g_\theta(x) || g_{\theta+\delta}(x)) \leq \rho$) have uniformly low loss value. This is in contrast to existing TTA
 328 methods which treat all parameters in the Euclidean space in the same way, which may not be suitable
 329 for direct adaptation of the source domain model to the target domain. (More details and analysis can
 330 be found in Appendix C.) In practice, this loss landscape area often shows significantly improved
 331 generalization (Izmailov et al., 2018). To simplify computation, we employ a diagonal approximation
 332 of the FIM. The parameter α represents the unlearning rate. Since source domain data is not available
 333 during TTA, we follow (Niu et al., 2022) to efficiently estimate the FIM, which is only needed to be
 334 calculated once. The entire algorithm is shown in Algorithm 1 in Appendix. We also provide detailed
 335 theoretical analysis and proof in Appendix.
 336

337 4 EXPERIMENT

339 4.1 SETUP

341 In this section, we perform experiments to evaluate the effectiveness of the proposed TTA method,
 342 *Lana*, compared to various existing methods. Specifically, we evaluate different methods with
 343 different model architectures under different normalization layers (including Batch Normalization
 344 (BN) (Ioffe & Szegedy, 2015), Group normalization (GN) (Wu & He, 2018) and Layer normalization
 345 (LN) (Ba et al., 2016)). We perform experiments on ImageNet-C (Deng et al., 2009; Hendrycks &
 346 Dietterich, 2019; Hendrycks et al., 2020) and DomainNet (Peng et al., 2019). These datasets are
 347 widely recognized and extensively utilized for assessing out-of-distribution generalization. ImageNet-
 348 C comprises a diverse set of challenges, including 15 different types of corrupted images falling
 349 into four primary categories: noise, blur, weather, and digital artifacts. DomainNet is a large-scale
 350 multi-source domain adaptation dataset. Following (Saito et al., 2019), we use a subset of DomainNet
 351 with 126 classes which consists of four domains (Clipart, Painting, Real and Sketch) with natural shift,
 352 known as DomainNet-126. In our study, we conduct a comparative analysis of our proposed method
 353 against the SOTA techniques. We conduct adaptation on ResNet-50-BN (R-50-BN), ResNet-50-GN
 354 (R-50-GN) (He et al., 2016) and VitBase-LN (Vit-LN) (Dosovitskiy et al., 2021). For experiments on
 355 DomainNet-126, we follow the architecture in (Liang et al., 2021).

356 **Baselines** Following (Niu et al., 2023), we compare to the following SOTA baselines, including Tent
 357 (Wang et al., 2021), EATA (Niu et al., 2022), AdaContrast (Chen et al., 2022a), SAR (Niu et al.,
 358 2023), DeYO Lee et al. (2024), TEA (Yuan et al., 2024).

359 **TTA scenarios** In alignment with the experimental setup described in (Niu et al., 2023), our study
 360 evaluates the performance of three distinct TTA scenarios. These scenarios encompass: (1) *Online*
 361 *Imbalanced Label Distribution Shifts*, where the imbalance ratio r is calculated as $r = \frac{q_{max}}{q_{min}}$. Here,
 362 q_{max} represents the proportion of the majority class within the dataset, while q_{min} signifies the
 363 proportion of the minority class. As r increases, existing TTA methods exhibit a decreasing level of
 364 performance. In accordance with (Niu et al., 2023), we set $r = \infty$, resulting in test samples being
 365 presented in class order. (2) *Mixed Distribution Shifts*, which involves evaluating different methods
 366 on a combination of 15 corruption types. (3) *Small Batch Size*, where it is observed that existing TTA
 367 methods' performance deteriorates as the batch size decreases. We conduct a comparative analysis
 368 between our method and existing ones, specifically assessing their performance when the batch size
 369 is set to 1.

370 **Implementation Details** Following (Niu et al., 2023), our experiments are conducted on ResNet50-
 371 BN, ResNet50-GN and VitBase-LN (Dosovitskiy et al., 2021), obtained from torchvision or timm.
 372 We employ SGD as the optimizer with momentum of 0.9. The batch size is set to be 64 (except
 373 for experiments with batch size=1). The number of adaptive unlearning step is set to be 1, i.e.,
 374 $J = 1$, for efficiency. The learning rate is set to be 0.00025 for ResNet models and 0.001 for Vision
 375 Transformer models. We follow a similar test-time sample selection strategy as in (Niu et al., 2023),
 376 where samples with low loss values are chosen for calculating the TTA loss. For hyperparameter
 377 search, following (Yu et al., 2023), we use the first task of each dataset as the validation dataset
 378 to apply grid search for selecting the best hyperparameters. For example, we apply grid search
 379 that achieves the best TTA performance by adapting from uncorrupted ImageNet to Gaussian noise

378 Table 2: Comparisons with SOTA on ImageNet-C (severity level 5) by test accuracy (%) under **online**
379 **imbalanced label shifts** (imbalance ratio = ∞). “BN”/“GN”/“LN” denote Batch/Group/Layer normalization.

Method	Noise			Blur			Weather				Digital					
	Gauss	Shot	Impulse	Defocus	Glass	Motion	Zoom	Snow	Frost	Fog	Bright	Contrast	Elastic	Pixel	JPEG	Avg
ResNet50 (BN)	2.2	2.9	1.8	17.8	9.8	14.5	22.5	16.8	23.4	24.6	59.0	5.5	17.1	20.7	31.6	18.0
• EATA	0.3	0.3	0.3	0.2	0.2	0.5	0.9	0.8	0.9	1.8	3.5	0.2	1.2	0.9	0.9	0.9
• AdaContrast	0.1	0.1	0.2	0.9	0.8	1.3	2.2	0.8	0.4	2.6	3.0	8.8	0.9	1.2	0.8	1.6
• SAR	1.4	1.9	1.5	1.0	1.0	1.5	2.9	1.9	2.0	4.4	5.7	0.6	3.3	4.0	3.8	2.5
• Tent	1.2	1.4	1.7	1.6	0.9	1.2	2.6	1.7	1.8	3.6	5.0	0.5	2.6	3.2	3.1	2.1
• Tent+Lana (Ours)	2.1_{±0.3}	1.8_{±0.1}	2.3_{±0.3}	1.2_{±0.1}	1.2_{±0.1}	1.8_{±0.1}	3.2_{±0.2}	2.2_{±0.2}	3.4_{±0.3}	4.7_{±0.1}	5.9_{±0.1}	0.7_{±0.1}	3.5_{±0.1}	4.1_{±0.1}	4.0_{±0.1}	2.8_{±0.1}
ResNet50 (GN)	17.0	19.0	19.7	11.3	21.3	24.9	40.4	47.4	33.6	69.2	36.3	18.0	28.4	52.2	30.6	30.6
• EATA	2.0	28.3	28.1	14.9	17.1	24.4	25.3	32.2	32.0	39.8	66.7	33.6	24.5	41.9	38.4	31.6
• AdaContrast	0.1	0.1	0.1	0.5	0.7	0.3	0.2	0.3	0.5	0.3	0.2	0.6	0.3	0.2	0.3	0.3
• SAR	33.1	36.5	35.5	19.2	19.5	33.3	27.7	23.9	45.3	50.1	71.9	46.7	7.1	52.1	56.3	37.2
• Tent	3.6	3.3	2.7	13.9	7.5	19.3 ⁺	17.0 ⁺	16.5 ⁺	21.9 ⁺	1.8 ⁺	70.5 ⁺	42.2 ⁺	6.6 ⁺	49.4 ⁺	53.7 ⁺	25.0 ⁺
• Tent+Lana (Ours)	35.3_{±1.2}	35.9_{±0.5}	35.6_{±1.0}	18.8_{±0.5}	19.2_{±1.0}	33.5_{±0.7}	23.9_{±3.5}	33.1_{±4.6}	45.0_{±0.4}	48.2_{±1.2}	71.6_{±0.2}	45.7_{±0.2}	8.5_{±0.1}	51.3_{±0.7}	56.6_{±0.2}	37.4_{±0.8}
VitBase (LN)	9.4	6.7	8.3	29.1	23.4	34.0	27.0	15.8	26.3	47.4	54.7	43.9	30.5	44.5	47.6	29.9
• EATA	3.9	34.6	36.7	4.1	45.3	47.2	49.3	47.7	56.5	55.4	62.2	72.2	21.7	56.2	64.7	49.9
• AdaContrast	0.1	0.1	0.1	5.0	6.5	8.5	1.8	2.3	13.4	17.1	32.5	35.3	6.4	3.1	7.0	7.0
• SAR	46.5	43.1	48.9	55.3	54.3	58.9	54.6	42.2	66.2	60.9	69.6	66.6	58.0	58.0	58.0	58.0
• Tent	32.7	1.3	34.6	54.4	52.3	58.2 ⁺	52.2 ⁺	7.7	12.0 ⁺	69.3 ⁺	76.1 ⁺	66.1 ⁺	56.7 ⁺	69.4 ⁺	66.4 ⁺	47.5 ⁺
• Tent+Lana (Ours)	50.4_{±1.2}	50.2_{±1.5}	51.4_{±0.8}	55.6_{±0.2}	54.7_{±0.2}	59.4_{±0.2}	56.1_{±0.1}	62.9_{±2.1}	63.4_{±1.9}	70.1_{±0.2}	76.6_{±0.1}	66.2_{±0.2}	70.1_{±0.1}	67.4_{±0.1}	61.1_{±0.3}	61.1_{±0.3}
• TEA	46.9	43.7	49.3	55.4	54.4	54.1	55.9	55.1	53.5	46.3	70.0	66.8	61.1	69.8	66.8	58.3
• TEA+Lana (Ours)	51.5_{±1.3}	51.4_{±1.5}	51.9_{±0.4}	56.8_{±0.2}	54.9_{±0.1}	59.6_{±0.3}	56.8_{±0.1}	63.7_{±2.1}	63.4_{±2.0}	70.6_{±0.2}	77.5_{±0.1}	66.6_{±0.1}	62.7_{±0.2}	70.2_{±0.1}	67.6_{±0.1}	61.7_{±0.2}
• DeYO	53.5	36.0	54.6	57.6	58.7	63.7	46.2	67.6	66.0	73.2	77.9	66.7	69.0	73.5	70.3	62.3
• DeYO+Lana (Ours)	55.0_{±0.6}	35.7_{±2.2}	56.1_{±0.7}	59.9_{±0.3}	58.5_{±0.2}	65.6_{±0.2}	46.6_{±1.52}	68.8_{±0.2}	70.0_{±0.1}	80.1_{±0.2}	76.8_{±0.1}	70.0_{±0.1}	74.8_{±0.2}	71.6_{±0.3}	63.5_{±1.5}	

391 Table 3: Comparisons with SOTA on ImageNet-C (severity level 5) by test accuracy (%) under **Batch Size = 1**.
392 “BN”/“GN”/“LN” denote the Batch/Group/Layer normalization.

Method	Noise			Blur			Weather				Digital						
	Gauss	Shot	Impulse	Defocus	Glass	Motion	Zoom	Snow	Frost	Fog	Bright	Contrast	Elastic	Pixel	JPEG	Avg	
ResNet50 (BN)	2.2	2.9	1.9	17.9	9.8	14.8	22.5	16.9	23.3	24.4	58.9	5.4	17.0	20.6	31.6	18.0	
• EATA	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	
• AdaContrast	0.1	0.1	0.1	0.4	0.4	0.5	1.0	0.3	0.2	0.8	1.3	1.2	0.3	0.5	0.3	0.5	
• SAR	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
• Tent	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.2	0.1	0.1	
• Tent+Lana (Ours)	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.12	
ResNet50 (GN)	18.0	19.8	17.9	19.8	11.4	21.4	24.9	40.4	47.3	33.6	69.3	36.3	18.6	28.4	52.3	30.6	
• EATA	24.8	28.3	25.7	18.1	17.3	28.5	29.3	44.5	44.3	41.6	70.9	44.6	27.0	46.8	55.7	36.5	
• AdaContrast	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	
• SAR	23.4	26.6	23.9	18.4	15.4	28.6	28.6	30.4	44.9	44.7	25.7	72.3	44.5	14.8	47.0	56.1	34.5
• Tent	3.5	2.9	2.5	3.6	3.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	
• Tent+Lana (Ours)	33.0_{±0.5}	36.0_{±0.2}	33.8_{±0.2}	18.8_{±0.2}	19.2_{±0.3}	31.7_{±0.4}	34.3_{±0.4}	37.3_{±0.2}	46.3_{±0.2}	10.7_{±0.1}	72.5_{±0.1}	46.9_{±0.1}	9.9_{±0.1}	51.6_{±0.3}	56.8_{±0.2}	35.9_{±0.2}	
VitBase (LN)	9.5	6.7	8.2	29.0	23.4	33.9	27.1	15.9	26.5	47.2	54.7	44.1	30.5	44.5	47.8	29.9	
• EATA	29.7	25.1	34.6	44.7	39.2	48.3	42.4	37.5	45.9	60.0	65.9	61.2	46.4	58.2	59.6	46.6	
• AdaContrast	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
• SAR	40.8	36.4	41.5	53.7	50.7	57.5	52.8	59.1	52.8	50.7	50.7	57.9	68.1	57.9	68.9	56.3	
• Tent	32.7	1.3	43.4	52.4	48.3 ⁺	48.3 ⁺	30.5 ⁺	16.5 ⁺	65.7	72.9	72.9	51.6 ⁺					
• Tent+Lana (Ours)	49.0_{±0.1}	47.6_{±0.2}	49.6_{±0.1}	55.3_{±0.1}	53.1_{±0.2}	59.2_{±0.2}	55.4_{±0.3}	60.9_{±0.2}	51.1_{±0.3}	70.3_{±0.2}	76.7_{±0.4}	66.7_{±0.0}	61.1_{±0.2}	70.2_{±0.1}	67.6_{±0.0}	59.6_{±0.2}	
• TEA	43.1	37.3	43.4	54.5	51.7	59.1	54.6	59.4	51.2	70.3	75.2	66.2	39.3	71.0	67.1	57.6	
• Tea+Lana	44.9_{±0.3}	38.9_{±0.1}	44.0_{±0.1}	56.2_{±0.4}	52.8_{±0.1}	60.8_{±0.2}	55.4_{±0.3}	61.2_{±0.4}	51.0_{±0.1}	72.4_{±0.5}	75.5_{±0.1}	66.0_{±0.1}	60.2_{±0.3}	73.0_{±0.5}	67.3_{±0.1}	58.7_{±0.2}	
• DeYO	54.0	52.1	55.1	58.8	59.5	64.2	53.5	68.2	66.4	73.7	78.3	68.2	68.9	73.8	70.8	64.4	
• DeYO+Lana	56.0_{±0.5}	54.6_{±3.1}	54.9_{±0.6}	59.1_{±0.2}	61.5_{±0.2}	63.9_{±0.2}	55.5_{±4.1}	69.5_{±0.1}	68.3_{±0.1}	74.1_{±0.2}	79.9_{±0.1}	69.4_{±0.2}	69.2_{±0.1}	74.7_{±0.0}	72.4_{±0.2}	65.5_{±0.6}	

406 corrupted ImageNet. For DomainNet, we apply TTA by adapting from Clipart to Painting to select
407 the optimal hyperparameters. During TTA, for trainable parameters of our method, we follow the
408 approach presented in Tent (Wang et al., 2021) by adapting the affine parameters of group/layer
409 normalization layers in ResNet50-GN/VitBase-LN. The method is evaluated over three runs, and
410 results are presented as mean and standard deviation. We perform all the experiments on a single
411 A6000 Nvidia GPU. Code will be released upon acceptance.

412 RESULTS

414 **Online Imbalanced Label Distribution Shifts** We compare with state-of-the-art TTA methods in
415 online imbalanced label distribution shifts in Table 2. The results show that our method can improve
416 by more than 3% compared to SAR on ImageNet-C under this challenging online imbalanced label
417 distribution shifts with VitBase-LN. This improvement is significant considering the challenging data
418 corruptions and large number image classes in ImageNet-C dataset. We can also observe that the
419 network with batch normalization (BN) does not perform well across different compared methods.
420 This aligns with the findings of (Niu et al., 2023), which assert that BN poses a substantial impediment
421 to TTA performance in wild test scenarios.

422 **Batch Size = 1** We evaluate the effectiveness of existing TTA methods with batch size = 1 in Table 3.
423 The results show that our method can improve by more than 3% compared to SAR on ImageNet-C
424 under this challenging setting with test batch size = 1 with VitBase-LN.

425 **Mixed Distribution Shifts** We evaluate the effectiveness of existing TTA methods in mixed distribu-
426 tion shifts in Table 8 in Appendix. The results show that our method can improve by 1% compared to
427 SAR on ImageNet-C under the mixture of 15 data corruptions with VitBase-LN.

428 The performance enhancement seen with VitBase surpasses that of ResNet, primarily due to VitBase’s
429 propensity for overfitting to the training data (Chen et al., 2022b). The overfitting can lead to the
430 memorization of a greater amount of irrelevant information, making the process of unlearning both
431 more beneficial and essential. All these results highlight the advantages of our method, *Lana*, and
432 emphasize the importance of integrating unlearning in TTA.

432 **Results on DomainNet-126** Results on DomainNet-126 are shown in Table 6 in Appendix. We can
 433 observe that integrating Lana with Tent/AdaContrast further improves TTA.
 434

435 **4.3 ABLATION STUDY**
 436

437 **Hyperparameter Analysis**, we evaluate the sensitivity of hyperparameters α and J in Table 7 in
 438 Appendix. This shows that as the unlearning rate increases, TTA performance first increases and
 439 then declines due to heightened unlearning effects. When $\alpha = 0.0$, i.e., there is no unlearning,
 440 the performance drops significantly. With unlearning, our method improves the TTA performance
 441 by more than 13.8%. This indicates the necessity and beneficial effect of unlearning. Moreover,
 442 an increase in the number of unlearning steps initially leads to a slight performance improvement,
 443 followed by a subsequent decrease. To optimize efficiency, we choose one step of unlearning.
 444

445 **Efficiency Evaluation** To compare the running efficiency of the proposed method with existing
 446 methods, we evaluate their running efficiency in Table 9 in Appendix. To further improve runtime
 447 efficiency, we apply the unlearning step once every two adaptation iterations instead of every step.
 448 With this improvement, our method increases computational cost by less than 53% compared to Tent,
 449 while achieving substantially higher performance and remaining significantly faster than SAR and
 450 AdaContrast. Additional optimizations—such as sparse FIM masking and parameter freezing—can
 451 further reduce overhead.
 452

453 **Impact on Forgetting of Source Domain Performance** Following (Niu et al., 2022; Zhang et al.,
 454 2023), we evaluate the performance on source domain after adapting the model to target domain. We
 455 present the results in Table 4. These results demonstrate that, after adapting to the target domain, the
 456 accuracy on the source domain remains largely unaffected, indicating minimal forgetting.
 457

458 Table 4: Impact on source domain test accuracy after adaptation on each corrupted dataset on ImageNet-C (severity
 459 level 5) by test accuracy (%) under **online imbalanced label shifts** (imbalance ratio = ∞). “BN”/“GN”/“LN”
 460 denote Batch/Group/Layer normalization, respectively.
 461

Method	Source Model	Noise			Blur				Weather				Digital			
		Gauss	Shot	Impulse	Defocus	Glass	Motion	Zoom	Snow	Frost	Fog	Bright	Contrast	Elastic	Pixel	JPEG
• Tent	78.01	78.79	79.10	79.16	81.06	79.74	80.99	80.51	59.91	30.63	80.39	80.96	80.49	79.22	81.64	81.81
• EATA	78.01	72.03	74.34	70.54	77.33	75.08	73.07	74.30	75.17	76.49	77.64	77.01	33.63	75.13	77.53	78.15
• AdaContrast	78.01	72.20	74.67	71.18	78.01	75.11	73.42	74.76	75.35	76.67	77.87	77.23	34.5	75.84	78.23	78.82
• SAR	78.01	79.37	79.66	79.74	81.36	80.24	81.26	81.05	80.43	75.09	80.55	81.13	80.57	79.48	81.91	81.99
• Tent+Lana (Ours)	78.01	79.46	79.42	79.86	81.72	80.48	81.15	81.07	79.72	78.81	80.7	80.89	80.94	79.46	82.11	82.02

462 **Effect of Batch Size in Batch Normalization for TTA performance.** To evaluate the effect of
 463 different batch size for the network with batch normalization, we perform an evaluation with different
 464 batch sizes, i.e., 32 and 64 in Table 5.
 465

466 Table 5: Comparisons with SOTA on ImageNet-C (severity level 5) by test accuracy (%) under different batch
 467 size (bs) with batch normalization.
 468

Method	Noise			Blur				Weather				Digital					
	Gauss	Shot	Impulse	Defocus	Glass	Motion	Zoom	Snow	Frost	Fog	Bright	Contrast	Elastic	Pixel	JPEG		
bs = 64	• SAR	33.0	34.9	33.9	29.8	29.8	44.2	49.9	48.9	43.0	58.3	67.4	40.1	55.7	59.5	53.5	45.5
bs = 64	• Lana (Ours)	34.6	36.3	36.2	31.5	30.4	45.1	51.0	50.0	44.0	59.4	68.2	39.3	56.8	60.0	55.1	46.5
bs = 32	• SAR	31.2	30.8	34.0	28.6	28.1	44.3	50.0	49.6	42.9	57.6	66.6	27.3	55.7	58.6	53.5	43.9
bs = 32	• Lana (Ours)	33.2	34.2	35.3	28.8	29.8	45.5	50.7	50.8	44.3	58.7	67.4	31.1	56.6	60.2	53.6	45.3

475 **Integrating with Other TTA Base Methods** To evaluate the effectiveness of the proposed method
 476 integrating with other base approaches, we present the results in Table 12 in Appendix.
 477

478 **Evaluation of different methods under a standard TTA setting** To assess the effectiveness of
 479 various TTA approaches under the standard TTA setting, we follow the setup outlined in (Yuan et al.,
 480 2024). The results are presented in Table 11 in Appendix.
 481

482 **5 CONCLUSION**
 483

484 This paper proposes a general framework for TTA. Based on the framework, we derive a novel
 485 unlearning-enhanced TTA method from our framework to further enhance the TTA performance.
 486 Extensive theoretical analysis and experiments on various TTA scenarios show the effectiveness of
 487 the proposed method.
 488

486 REFERENCES
487

488 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint*
489 *arXiv:1607.06450*, 2016.

490 Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, Joydeep Ghosh, and John Lafferty. Clustering
491 with bregman divergences. *Journal of machine learning research*, 6(10), 2005.

492

493 Alexander Bartler, Andre Bühler, Felix Wiewel, Mario Döbler, and Bin Yang. Mt3: Meta test-
494 time training for self-supervised test-time adaption. In *International Conference on Artificial*
495 *Intelligence and Statistics*, pp. 3080–3090. PMLR, 2022.

496

497 Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca Bertinetto. Parameter-free online
498 test-time adaptation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
499 *Recognition*, pp. 8344–8353, 2022.

500

501 Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
502 Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *2021 IEEE Symposium*
503 *on Security and Privacy (SP)*, pp. 141–159. IEEE, 2021.

504

505 Stephen P Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

506

507 Dhanajit Brahma and Piyush Rai. A probabilistic framework for lifelong test-time adaptation.
508 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
509 3582–3591, 2023.

510

511 Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
512 Evaluating and testing unintended memorization in neural networks. In *28th USENIX Security*
513 *Symposium (USENIX Security 19)*, pp. 267–284, 2019.

514

515 Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation.
516 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
517 295–305, 2022a.

518

519 Jie-Neng Chen, Shuyang Sun, Ju He, Philip HS Torr, Alan Yuille, and Song Bai. Transmix: Attend to
520 mix for vision transformers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
521 *Pattern Recognition*, pp. 12135–12144, 2022b.

522

523 Sungha Choi, Seunghan Yang, Seocheon Choi, and Sungrack Yun. Improving test-time adaptation via
524 shift-agnostic weight regularization and nearest source prototypes. In *European Conference on*
525 *Computer Vision*, pp. 440–458. Springer, 2022.

526

527 Ronald L Davis and Yi Zhong. The biology of forgetting—a perspective. *Neuron*, 95(3):490–503,
528 2017.

529

530 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
531 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
532 pp. 248–255. Ieee, 2009.

533

534 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
535 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
536 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
537 In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

538

539 Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
540 deep (stochastic) neural networks with many more parameters than training data. *arXiv preprint*
541 *arXiv:1703.11008*, 2017.

542

543 Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long
544 tail via influence estimation. *Advances in Neural Information Processing Systems*, 33:2881–2891,
545 2020.

540 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
 541 for efficiently improving generalization. In *International Conference on Learning Representations*,
 542 2021. URL <https://openreview.net/forum?id=6Tm1mpos1rM>.

543

544 Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei Efros. Test-time training with masked autoen-
 545 coders. *Advances in Neural Information Processing Systems*, 35:29374–29385, 2022.

546 Yunhe Gao, Xingjian Shi, Yi Zhu, Hao Wang, Zhiqiang Tang, Xiong Zhou, Mu Li, and Dimitris N
 547 Metaxas. Visual prompt tuning for test-time domain adaptation. *arXiv preprint arXiv:2210.04831*,
 548 2022.

549

550 Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
 551 deletion in machine learning. *Advances in neural information processing systems*, 32, 2019.

552 Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee. Note:
 553 Robust continual test-time adaptation against temporal correlation. *Advances in Neural Information*
 554 *Processing Systems*, 35:27253–27266, 2022.

555

556 Sachin Goyal, Mingjie Sun, Aditi Raghunathan, and J Zico Kolter. Test time adaptation via conjugate
 557 pseudo-labels. *Advances in Neural Information Processing Systems*, 35:6204–6218, 2022.

558

Lauren Gravitz. The importance of forgetting. *Nature*, 571(July):S12–S14, 2019.

559

560 Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
 561 from machine learning models. In *International Conference on Machine Learning*, pp. 3832–3842.
 562 PMLR, 2020.

563

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 564 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 565 pp. 770–778, 2016.

566

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
 567 corruptions and perturbations. In *International Conference on Learning Representations*, 2019.
 568 URL <https://openreview.net/forum?id=HJz6tiCqYm>.

569

570 Dan Hendrycks, Norman Mu, Ekin Dogus Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
 571 narayanan. Augmix: A simple data processing method to improve robustness and uncertainty. In
 572 *International Conference on Learning Representations*, 2020.

573

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
 574 reducing internal covariate shift. In *International conference on machine learning*, pp. 448–456.
 575 pmlr, 2015.

576

577 Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic
 578 domain generalization. *Advances in Neural Information Processing Systems*, 34:2427–2440, 2021.

579

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Av-
 580 eraging weights leads to wider optima and better generalization. *Annual Conference on Uncertainty*
 581 *in Artificial Intelligence*, 2018.

582

Minguk Jang, Sae-Young Chung, and Hye Won Chung. Test-time adaptation via self-training with
 583 nearest neighbor information. In *The Eleventh International Conference on Learning Representa-
 584 tions*, 2023. URL <https://openreview.net/forum?id=EzLtb4M1SbM>.

585

Juwon Kang, Nayeong Kim, Donghyeon Kwon, Jungseul Ok, and Suha Kwak. Leveraging proxy of
 586 training data for test-time adaptation. In *International conference on machine learning*, 2023.

588

589 Junho Kim, Inwoo Hwang, and Young Min Kim. Ev-tta: Test-time adaptation for event-based
 590 object recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 591 *Recognition*, pp. 17745–17754, 2022.

592

Jae-Hong Lee. Bayesian weight enhancement with steady-state adaptation for test-time adaptation in
 593 dynamic environments. In *Forty-second International Conference on Machine Learning*, 2025.
 URL <https://openreview.net/forum?id=rRQ8hvILhb>.

594 Jonghyun Lee, Dahuin Jung, Saehyung Lee, Junsung Park, Juhyeon Shin, Uiwon Hwang, and Sungroh
 595 Yoon. Entropy is not enough for test-time adaptation: From the perspective of disentangled
 596 factors. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 597 <https://openreview.net/forum?id=9w3iw8wDuE>.

598
 599 Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
 600 hypothesis transfer for unsupervised domain adaptation. In *International conference on machine
 601 learning*, pp. 6028–6039. PMLR, 2020.

602 Jian Liang, Dapeng Hu, Yunbo Wang, Ran He, and Jiashi Feng. Source data-absent unsupervised
 603 domain adaptation through hypothesis transfer and labeling transfer. *IEEE Transactions on Pattern
 604 Analysis and Machine Intelligence*, 44(11):8602–8617, 2021.

605 Hyesu Lim, Byeonggeun Kim, Jaegul Choo, and Sungha Choi. Ttn: A domain-shift aware batch
 606 normalization in test-time adaptation. In *The Eleventh International Conference on Learning
 607 Representations*, 2023.

608
 609 Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexandre
 610 Alahi. Ttt++: When does self-supervised test-time training fail or thrive? *Advances in Neural
 611 Information Processing Systems*, 34:21808–21820, 2021.

612 David A McAllester. Pac-bayesian model averaging. In *Proceedings of the twelfth annual conference
 613 on Computational learning theory*, pp. 164–170, 1999.

614
 615 Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N Ravi. Deep unlearning via randomized
 616 conditionally independent hessians. In *Proceedings of the IEEE/CVF Conference on Computer
 617 Vision and Pattern Recognition*, pp. 10422–10431, 2022.

618 Chaithanya Kumar Mummadli, Robin Hutmacher, Kilian Rambach, Evgeny Levinkov, Thomas Brox,
 619 and Jan Hendrik Metzen. Test-time adaptation to distribution shift by confidence maximization
 620 and input transformation. *arXiv preprint arXiv:2106.14999*, 2021.

621
 622 Quoc Phong Nguyen, Bryan Kian Hsiang Low, and Patrick Jaillet. Variational bayesian unlearning.
 623 *Advances in Neural Information Processing Systems*, 33:16025–16036, 2020.

624 Shuacheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
 625 Tan. Efficient test-time model adaptation without forgetting. In *International conference on
 626 machine learning*, pp. 16888–16905. PMLR, 2022.

627
 628 Shuacheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiqian Wen, Yaofo Chen, Peilin Zhao, and Mingkui
 629 Tan. Towards stable test-time adaptation in dynamic wild world. In *The Eleventh International
 630 Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=g2YraF75Tj>.

632 Andi Peng, Aviv Netanyahu, Mark K Ho, Tianmin Shu, Andreea Bobu, Julie Shah, and Pulkit
 633 Agrawal. Diagnosis, feedback, adaptation: A human-in-the-loop framework for test-time policy
 634 adaptation. In *International conference on machine learning*, 2023.

635
 636 Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 637 for multi-source domain adaptation. In *Proceedings of the IEEE International Conference on
 638 Computer Vision*, pp. 1406–1415, 2019.

639 Mihir Prabhudesai, Anirudh Goyal, Sujoy Paul, Sjoerd Van Steenkiste, Mehdi SM Sajjadi, Gaurav
 640 Aggarwal, Thomas Kipf, Deepak Pathak, and Katerina Fragkiadaki. Test-time adaptation with
 641 slot-centric models. In *International Conference on Machine Learning*, pp. 28151–28166. PMLR,
 642 2023.

643 Blake A Richards and Paul W Frankland. The persistence and transience of memory. *Neuron*, 94(6):
 644 1071–1084, 2017.

645
 646 Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell, and Kate Saenko. Semi-supervised
 647 domain adaptation via minimax entropy. In *Proceedings of the IEEE/CVF international conference
 648 on computer vision*, pp. 8050–8058, 2019.

648 Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
 649 Bethge. Improving robustness against common corruptions by covariate shift adaptation. *Advances*
 650 *in neural information processing systems*, 33:11539–11551, 2020.

651

652 Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember
 653 what you want to forget: Algorithms for machine unlearning. *Advances in Neural Information*
 654 *Processing Systems*, 34:18075–18086, 2021.

655 Inkyu Shin, Yi-Hsuan Tsai, Bingbing Zhuang, Samuel Schulter, Buyu Liu, Sparsh Garg, In So Kweon,
 656 and Kuk-Jin Yoon. Mm-tta: multi-modal test-time adaptation for 3d semantic segmentation. In
 657 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 658 16928–16937, 2022.

659

660 Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and Chaowei
 661 Xiao. Test-time prompt tuning for zero-shot generalization in vision-language models. *Advances*
 662 *in Neural Information Processing Systems*, 35:14274–14289, 2022.

663 Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training
 664 with self-supervision for generalization under distribution shifts. In *International conference on*
 665 *machine learning*, pp. 9229–9248. PMLR, 2020.

666

667 Enayat Ullah, Tung Mai, Anup Rao, Ryan A Rossi, and Raman Arora. Machine unlearning via
 668 algorithmic stability. In *Conference on Learning Theory*, pp. 4126–4142. PMLR, 2021.

669

670 Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-
 671 time adaptation by entropy minimization. In *International Conference on Learning Representations*,
 672 2021. URL <https://openreview.net/forum?id=uX13bZLkr3c>.

673

674 Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
 675 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 7201–7211, 2022.

676

677 Zhenyi Wang, Enneng Yang, Li Shen, and Heng Huang. A comprehensive survey of forgetting in
 678 deep learning beyond continual learning. *IEEE Transactions on Pattern Analysis and Machine*
 679 *Intelligence*, 2025.

680

681 Yinjun Wu, Edgar Dobriban, and Susan Davidson. Deltagrad: Rapid retraining of machine learning
 682 models. In *International Conference on Machine Learning*, pp. 10355–10366. PMLR, 2020.

683

684 Yuxin Wu and Kaiming He. Group normalization. In *Proceedings of the European conference on*
 685 *computer vision (ECCV)*, pp. 3–19, 2018.

686

687 Yongcan Yu, Lijun Sheng, Ran He, and Jian Liang. Benchmarking test-time adaptation against
 688 distribution shifts in image classification. *arXiv preprint arXiv:2307.03133*, 2023.

689

690 Longhui Yuan, Binhuai Xie, and Shuang Li. Robust test-time adaptation in dynamic scenarios.
 691 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 692 15922–15932, 2023.

693

694 Yige Yuan, Bingbing Xu, Liang Hou, Fei Sun, Huawei Shen, and Xueqi Cheng. Tea: Test-time
 695 energy adaptation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 696 *Recognition*, pp. 23901–23911, 2024.

697

698 Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and
 699 augmentation. *Advances in Neural Information Processing Systems*, 35:38629–38642, 2022a.

700

701 Wen Zhang, Lingfei Deng, Lei Zhang, and Dongrui Wu. A survey on negative transfer. *IEEE/CAA*
 702 *Journal of Automatica Sinica*, 10(2):305–329, 2022b.

703

704 Yifan Zhang, Xue Wang, Kexin Jin, Kun Yuan, Zhang Zhang, Liang Wang, Rong Jin, and Tieniu Tan.
 705 Adanpc: Exploring non-parametric classifier for test-time adaptation. In *International Conference*
 706 *on Machine Learning*, pp. 41647–41676. PMLR, 2023.

702 Bowen Zhao, Chen Chen, and Shu-Tao Xia. Delta: degradation-free fully test-time adaptation.
703 In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=eGm22rqG93>.
704
705 Aurick Zhou and Sergey Levine. Bayesian adaptation for covariate shift. In A. Beygelzimer,
706 Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing
707 Systems*, 2021. URL <https://openreview.net/forum?id=15HPeY8MGQ>.
708
709 Zhi Zhou, Lan-Zhe Guo, Lin-Han Jia, Dingchu Zhang, and Yu-Feng Li. Ods: Test-time adaptation in
710 the presence of open-world data shift. In *International conference on machine learning*, 2023.
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A APPENDIX**
 757

758 In this appendix, we first cast exist existing TTA methods as special cases. We then provide detailed
 759 theoretical analysis. Next, we further present implementation details. After that, we provide more
 760 experimental results.
 761

762 **B RECAST EXISTING TTA METHODS INTO OUR UNIFIED AND GENERAL
 763 FRAMEWORK**
 764

765 **Tent As A Special Case** Tent (Wang et al., 2021) is a entropy minimization-based method. Specifically,
 766 it minimizes the following loss function:
 767

$$\mathcal{L}^{TTA} = H(g_{\theta}(\mathbf{x})) \quad (12)$$

770 where $H(g_{\theta}(\mathbf{x}))$ is the entropy function on the classifier class probabilities output. The above loss
 771 function can be equivalently expressed as the following:
 772

$$\mathcal{L}^{TTA} = -\mathbb{KL}(g_{\theta}(\mathbf{x}), \mathbf{v}) \quad (13)$$

774 where we use \mathbb{KL} to denote the KL-divergence between two probability distributions. \mathbf{v} is a uniform
 775 class distribution on the output classes. In this case, in Eq. (2), we set $\alpha = -1, \beta = 0$ and take Φ to
 776 be the negative entropy function, i.e., $\Phi(\mathbf{p}) = \sum_{i=1}^{i=n} p_i \log p_i$. We set $\mathbf{p} = g_{\theta}(\mathbf{x})$, i.e., the softmax
 777 probability output of the neural network on the test data and $\mathbf{q} = \mathbf{v}$, i.e., the uniform distribution on
 778 the class. $D_{\Phi}(\mathbf{p}, \mathbf{q}) = \mathbb{KL}(g_{\theta}(\mathbf{x}), \mathbf{v})$. We recover the Tent.
 779

SAR As A Special Case SAR (Niu et al., 2023) is a sharpness-aware optimization (Foret et al., 2021)-based TTA method. Specifically, it first perturbs the model parameters by maximizing the following loss function:
 780

$$\mathcal{L}^{TTA} = -\mathbb{KL}(g_{\theta}(\mathbf{x}), \mathbf{v}) \quad (14)$$

781 Then, it obtains the perturbation $\varepsilon(\theta) = \rho \operatorname{sign}(\nabla_{\theta} \mathcal{L}_{\theta}^{TTA}) |\nabla_{\theta} \mathcal{L}_{\theta}^{TTA}| / \|\nabla_{\theta} \mathcal{L}_{\theta}^{TTA}\|_2$. Next, it mini-
 782 mizes the perturbed loss function $\mathcal{L}_{\theta+\varepsilon(\theta)}^{TTA} = -\mathbb{KL}(g_{\theta+\varepsilon(\theta)}(\mathbf{x}), \mathbf{v})$. In this case, in Eq. (2), we set
 783 $\alpha = -1, \beta = 0$ and take Φ to be the negative entropy function, i.e., $\Phi(\mathbf{p}) = \sum_{i=1}^{i=n} p_i \log p_i$. We set
 784 $\mathbf{p} = g_{\theta+\varepsilon(\theta)}(\mathbf{x})$, i.e., the softmax probability output of the neural network on the test data and $\mathbf{q} = \mathbf{v}$,
 785 i.e., the uniform distribution on the class probability distribution. $D_{\Phi}(\mathbf{p}, \mathbf{q}) = \mathbb{KL}(g_{\theta+\varepsilon(\theta)}(\mathbf{x}), \mathbf{v})$.
 786 We then recovered the SAR method.
 787

EATA As A Special Case EATA (Niu et al., 2022) is a weight-regularization-based technique. It
 790 achieves this by imposing a penalty on weight updates using the Fisher Information Matrix (FIM), F .
 791 EATA can be expressed as:
 792

$$\mathcal{L}^{TTA} = -\mathbb{KL}(g_{\theta}(\mathbf{x}), \mathbf{v}) + \beta(\theta - \theta_*)^T F(\theta - \theta_*) \quad (15)$$

793 In Eq. (2), we set $\alpha = -1$ and take $\Psi(\theta) = \frac{1}{2} \theta^T F \theta$. We set $\mathbf{p} = \theta$ and $\mathbf{q} = \theta_*$. $D_{\Psi}(\mathbf{p}, \mathbf{q}) =$
 794 $(\theta - \theta_*)^T F(\theta - \theta_*)$. Then, we recovered the EATA method.
 795

SWR As A Special Case SWR (Choi et al., 2022) is a weight-regularization-based method. Specifically, it optimizes the following objective:
 796

$$\mathcal{L}^{TTA} = H(g_{\theta}(\mathbf{x})) - \Lambda H(\hat{g}_{\theta}(\mathbf{x})) + \beta \sum_{l=1}^{l=L} m_l \|\theta^l - \theta_*^l\|^2 \quad (16)$$

800 where $\Lambda > 0$ is a constant and $\hat{g}_{\theta}(\mathbf{x})$ is the average predication probability within a mini-batch.
 801 SWR maximizes this entropy $H(\hat{g}_{\theta}(\mathbf{x}))$ to encourage the output probability distributions not too
 802 confident. m_l is a layer-wise parameter penalty constant, L is the total number of layers and θ^l are
 803 the network parameters in the l^{th} layer. Equivalently, it can be expressed as the following objective:
 804

$$\mathcal{L}^{TTA} = -\mathbb{KL}(g_{\theta}(\mathbf{x}), \mathbf{v}) + \mathbb{KL}(\hat{g}_{\theta}(\mathbf{x}), \mathbf{v}) + \beta(\theta - \theta_*)^T M(\theta - \theta_*) \quad (17)$$

805 where M is a diagonal matrix, where $M = \operatorname{diag}(m_1, m_1, \dots, m_2, m_2, \dots, m_L, m_L, \dots)$. The
 806 diagonal elements in M are layer-wise penalty constants which indicates how fast those layer
 807

parameters should be updated. In this case, in Eq. (2), we set $\alpha = -1$ and take $\Psi(\theta) = \frac{1}{2}\theta^T M\theta$. We set $p = \theta$ and $q = \theta_*$. $D_\Psi(p, q) = (\theta - \theta_*)^T M(\theta - \theta_*)$. Then, we recovered the SWR.

AdaContrast As a Special Case AdaContrast (Chen et al., 2022a) is a *hard* pseudo-labeling based method. We denote \mathbf{y} as the one-hot vector for the pseudo label predicted by the nearest neighbours in a target domain data point. AdaContrast optimizes the following objective:

$$\mathcal{L}^{TTA} = \mathbb{KL}(g_\theta(\mathbf{x}), \mathbf{y}) \quad (18)$$

In this case, in Eq. (2), we set $\alpha = 1, \beta = 0$. We take Φ to be the negative entropy function, i.e., $\Phi(p) = \sum_{i=1}^{i=n} p_i \log p_i$. We set $p = g_\theta(\mathbf{x})$, i.e., the softmax probability output on the test data \mathbf{x} and q to be the one-hot vector of the ground truth class distribution. Then, $D_\Phi(p, q) = \mathbb{KL}(g_\theta(\mathbf{x}), \mathbf{y})$. We recovered AdaContrast.

TAST As a Special Case TAST (Jang et al., 2023) is a *soft* pseudo-labeling based method. We denote $\hat{g}_\theta(\mathbf{x})$ as the soft pseudo-label on test data \mathbf{x} predicted by the nearest neighbours. TAST optimizes the following:

$$\mathcal{L}^{TTA} = \mathbb{KL}(g_\theta(\mathbf{x}), \hat{g}_\theta(\mathbf{x})) \quad (19)$$

In Eq. (2), we set $\alpha = 1, \beta = 0$. We take Φ to be the negative entropy function, i.e., $\Phi(p) = \sum_{i=1}^{i=n} p_i \log p_i$. We set $p = g_\theta(\mathbf{x})$, i.e., the softmax probability output of the neural network on the test data and $q = \hat{g}_\theta(\mathbf{x})$. Then, $D_\Phi(p, q) = \mathbb{KL}(g_\theta(\mathbf{x}), \hat{g}_\theta(\mathbf{x}))$. We recovered TAST.

The unified and general optimization objective for TTA is defined as the following:

$$\mathcal{L}^{TTA} = \underbrace{\alpha D_\Phi(g_\theta(\mathbf{x}), \mathbf{z})}_{\text{output space}} + \underbrace{\beta D_\Psi(\theta, \theta_*)}_{\text{weight space}} \pm \underbrace{\mathcal{L}_{CE}(\mathcal{D}_{id}, \theta_*)}_{\text{ID data (optional)}} \quad (20)$$

The following is the definition of Bregman divergence:

$$D_\Phi(p, q) = \Phi(p) - \Phi(q) - \langle \nabla \Phi(q), p - q \rangle \quad (21)$$

B.1 TENT/SAR AS A SPECIAL CASE

In Eq. (20), we set $\alpha = -1, \beta = 0$ and take $\Phi(p) = \sum_{i=1}^{i=n} p_i \log p_i$. Here, p and q are probability simplex, i.e., $\sum_{i=1}^{i=n} p_i = 1$ and $\sum_{i=1}^{i=n} q_i = 1$. Then, we plug $\Phi(p)$ into Eq. (21). We can obtain the following equation:

$$D_\Phi(p, q) = \sum_{i=1}^{i=n} p_i \log p_i - \sum_{i=1}^{i=n} q_i \log q_i - \langle \log(q) + 1, p - q \rangle \quad (22)$$

$$= \sum_{i=1}^{i=n} p_i \log p_i - \sum_{i=1}^{i=n} p_i \log q_i - \sum_{i=1}^{i=n} p_i + \sum_{i=1}^{i=n} q_i \quad (23)$$

$$= \sum_{i=1}^{i=n} p_i \log \frac{p_i}{q_i} \quad (24)$$

$$= -H(p) + H(p, q) \quad (25)$$

$$= \mathbb{KL}(p || q) \quad (26)$$

where $H(p)$ is the entropy for the probability distribution p . and $H(p, q)$ is the cross entropy between probability distributions p and q .

When we take the probability distribution $p = g_\theta(\mathbf{x})$, i.e., the TTA model output probability distribution over the classes, and $q = \mathbf{v}$, i.e., the uniform distribution over the underlying classes, $D_\Phi(p, q) = \mathbb{KL}(g_\theta(\mathbf{x}), \mathbf{v})$. This precisely recovers the Tent/SAR method.

864 B.2 EATA AS A SPECIAL CASE
865866 In Eq. (20), we set $\alpha = 0$, we take $\Psi(\boldsymbol{\theta}) = \frac{1}{2}\boldsymbol{\theta}^T F \boldsymbol{\theta}$. We set $p = \boldsymbol{\theta}$ and $q = \boldsymbol{\theta}_*$. where F is the
867 diagonal Fisher information matrix.
868

869
$$D_{\Phi}(p, q) = \Phi(p) - \Phi(q) - \langle \nabla \Phi(q), p - q \rangle \quad (27)$$

870

871
$$= \frac{1}{2}\boldsymbol{\theta}^T F \boldsymbol{\theta} - \frac{1}{2}\boldsymbol{\theta}_*^T F \boldsymbol{\theta}_* - \langle \boldsymbol{\theta}_* F, \boldsymbol{\theta} - \boldsymbol{\theta}_* \rangle \quad (28)$$

872

873
$$= \frac{1}{2}\boldsymbol{\theta}^T F \boldsymbol{\theta} + \frac{1}{2}\boldsymbol{\theta}_*^T F \boldsymbol{\theta}_* - \langle \boldsymbol{\theta}_* F, \boldsymbol{\theta} \rangle \quad (29)$$

874

875
$$= \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_*)^T F(\boldsymbol{\theta} - \boldsymbol{\theta}_*) \quad (30)$$

876

877 Then, we recover the EATA method.
878879 B.3 SWR AS A SPECIAL CASE
880881 SWR (Choi et al., 2022) is a weight-regularization-based method. Specifically, it optimizes the
882 following objective:
883

884
$$\mathcal{L}^{TTA} = H(g_{\boldsymbol{\theta}}(\mathbf{x})) - \boldsymbol{\Lambda} H(\hat{g}_{\boldsymbol{\theta}}(\mathbf{x})) + \beta \sum_{l=1}^{l=L} m_l \|\boldsymbol{\theta}^l - \boldsymbol{\theta}_*^l\|^2 \quad (31)$$

885

886 where $\boldsymbol{\Lambda} > 0$ is a constant and $\hat{g}_{\boldsymbol{\theta}}(\mathbf{x})$ is the average predication probability within a mini-batch. SWR
887 maximizes this entropy $H(\hat{g}_{\boldsymbol{\theta}}(\mathbf{x}))$ to encourage the output probability distributions not too confident.
888 m_l is a layer-wise parameter penalty constant, L is the total number of layers and $\boldsymbol{\theta}^l$ are the network
889 parameters in the l^{th} layer. Equivalently, it can be expressed as the following optimization objective:
890

891
$$\mathcal{L}^{TTA} = -\mathbb{KL}(g_{\boldsymbol{\theta}}(\mathbf{x}), \mathbf{v}) + \mathbb{KL}(\hat{g}_{\boldsymbol{\theta}}(\mathbf{x}), \mathbf{v}) + \beta(\boldsymbol{\theta} - \boldsymbol{\theta}_*)^T M(\boldsymbol{\theta} - \boldsymbol{\theta}_*) \quad (32)$$

892

893 where M is a diagonal matrix, where
894

895
$$M = \text{diag}(m_1, m_1, \dots, m_2, m_2, \dots, m_L, m_L, \dots) \quad (33)$$

896

897 The diagonal elements in M are layer-wise penalty constants which indicates how fast those layer
898 parameters should be updated. In this case, in Eq. (2), we set $\alpha = -1$ and take $\Psi(\boldsymbol{\theta}) = \frac{1}{2}\boldsymbol{\theta}^T M \boldsymbol{\theta}$.
900 We set $p = \boldsymbol{\theta}$ and $q = \boldsymbol{\theta}_*$. By deriving the SWR as the following equation:
901

902
$$D_{\Phi}(p, q) = \Phi(p) - \Phi(q) - \langle \nabla \Phi(q), p - q \rangle \quad (34)$$

903

904
$$= \frac{1}{2}\boldsymbol{\theta}^T M \boldsymbol{\theta} - \frac{1}{2}\boldsymbol{\theta}_*^T M \boldsymbol{\theta}_* - \langle \boldsymbol{\theta}_* M, \boldsymbol{\theta} - \boldsymbol{\theta}_* \rangle \quad (35)$$

905

906
$$= \frac{1}{2}\boldsymbol{\theta}^T M \boldsymbol{\theta} + \frac{1}{2}\boldsymbol{\theta}_*^T M \boldsymbol{\theta}_* - \langle \boldsymbol{\theta}_* M, \boldsymbol{\theta} \rangle \quad (36)$$

907

908
$$= \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_*)^T M(\boldsymbol{\theta} - \boldsymbol{\theta}_*) \quad (37)$$

909

910 Then, we recovered the SWR method.
911912 B.4 FIT LAME LOSS INTO GENERAL TTA FRAMEWORK
913

914
$$\mathcal{L}^{\text{LAME}}(\tilde{Z}) = \sum_i \mathbb{KL}(\tilde{z}_i \parallel \mathbf{q}_i) - \sum_{i,j} w_{ij} \tilde{z}_i^T \tilde{z}_j$$

915

916 Where:
917

918 • \tilde{z}_i : soft pseudo-label for test input x_i , e.g., from $p_{\theta}(y|x_i)$
 919 • q_i : smoothed or sharpened version of pseudo-label
 920 • w_{ij} : similarity-based affinity weight (e.g., based on k-NN in feature space)

922 The KL divergence in the first term can be written as Bregman divergence as the following:
 923

$$924 \quad D_{\phi}(\tilde{z}_i, q_i) = \text{KL}(\tilde{z}_i \parallel q_i)$$

925 We then formulate the second term: $\sum_{i,j} w_{ij} \tilde{z}_i^\top \tilde{z}_j$
 926

927 as a Bregman divergence, we can reinterpret it through the lens of negative similarity minimization,
 928 which corresponds to Bregman divergence induced by a quadratic function.

929 If we choose:
 930

$$931 \quad \phi(z) = \frac{1}{2} \|z\|^2$$

932 then the corresponding Bregman divergence is:
 933

$$934 \quad D_{\phi}(z, z') = \frac{1}{2} \|z - z'\|^2$$

937 Note that:
 938

$$939 \quad \|z_i - z_j\|^2 = \|z_i\|^2 + \|z_j\|^2 - 2z_i^\top z_j$$

941 So:
 942

$$943 \quad z_i^\top z_j = \frac{1}{2} (\|z_i\|^2 + \|z_j\|^2 - \|z_i - z_j\|^2)$$

945 Therefore:
 946

$$947 \quad -z_i^\top z_j = -\frac{1}{2} \|z_i\|^2 - \frac{1}{2} \|z_j\|^2 + \frac{1}{2} \|z_i - z_j\|^2$$

948 Now summing over i, j with weights w_{ij} , we get:
 949

$$950 \quad -\sum_{i,j} w_{ij} z_i^\top z_j = \sum_{i,j} w_{ij} \left[\frac{1}{2} \|z_i - z_j\|^2 - \frac{1}{2} \|z_i\|^2 - \frac{1}{2} \|z_j\|^2 \right]$$

953 We can rewrite the *affinity regularization term* as a weighted sum of Bregman divergences:
 954

$$955 \quad \sum_{i,j} w_{ij} \cdot D_{\phi}(\tilde{z}_i, \tilde{z}_j) \quad \text{where} \quad D_{\phi}(\tilde{z}_i, \tilde{z}_j) = \frac{1}{2} \|\tilde{z}_i - \tilde{z}_j\|^2$$

958 Thus:
 959

$$960 \quad -\sum_{i,j} w_{ij} \tilde{z}_i^\top \tilde{z}_j \quad \longrightarrow \quad \sum_{i,j} w_{ij} D_{\phi}(\tilde{z}_i, \tilde{z}_j) + \text{const}$$

963 B.5 FIT SSA LOSS INTO GENERAL TTA FRAMEWORK

965 **Objective.** We instantiate the general TTA objective as

$$967 \quad J(\theta) = \underbrace{\alpha_k \mathbb{E}_{x \sim D_k} [\mathbb{KL}(p_{\theta}(\cdot | x) \parallel v)]}_{\text{output-space (entropy minimization)}} + \underbrace{\frac{\beta_k}{2} \|\theta - \theta_0\|_{\Lambda_k}^2}_{\text{weight-space (Bayes/SSA proximal)}} \quad (38)$$

971 where v is the uniform distribution over classes, θ_0 are the source weights, $\Lambda_k \simeq I$ (or a small
 972 diagonal), and $\beta_k \propto \sigma_{\Lambda} / \sigma_k^2$ with σ_k^2 an online estimate of gradient-noise variance.

972 **Forward (gradient) step on the output term.** Let
 973

$$974 \quad \ell(\mathbf{x}; \boldsymbol{\theta}) = -H(p_{\boldsymbol{\theta}}(\cdot | \mathbf{x})), \quad \mathbf{g}_k = \nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{x} \sim D_k} [\ell(\mathbf{x}; \boldsymbol{\theta})]. \quad (39)$$

975 Take a covariance-aware scaled step
 976

$$977 \quad \mathbf{v}_k = \mathbf{m}_k - \alpha_k \eta \mathbf{g}_k, \quad (40)$$

978 with step scaler, e.g.,
 979

$$980 \quad \alpha_k = \sqrt{\frac{\sigma_{\lambda}^2}{\eta^2 \sigma_k^2}} \quad (41)$$

983 **Backward (proximal) step on the quadratic weight term.** We then solve the proximal subproblem
 984

$$985 \quad \boldsymbol{\theta}_{k+1} = \arg \min_{\boldsymbol{\theta}} \frac{1}{2\eta} \|\boldsymbol{\theta} - \mathbf{v}_k\|_2^2 + \frac{\beta_k}{2} \|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|_{\boldsymbol{\Lambda}_k}^2. \quad (42)$$

987 Setting the gradient to zero gives
 988

$$989 \quad \frac{1}{\eta}(\boldsymbol{\theta} - \mathbf{v}_k) + \beta_k \boldsymbol{\Lambda}_k (\boldsymbol{\theta} - \boldsymbol{\theta}_0) = 0 \implies (I + \eta \beta_k \boldsymbol{\Lambda}_k) \boldsymbol{\theta} = \mathbf{v}_k + \eta \beta_k \boldsymbol{\Lambda}_k \boldsymbol{\theta}_0. \quad (43)$$

991 Hence
 992

$$993 \quad \boldsymbol{\theta}_{k+1} = (I + \eta \beta_k \boldsymbol{\Lambda}_k)^{-1} (\mathbf{v}_k + \eta \beta_k \boldsymbol{\Lambda}_k \boldsymbol{\theta}_0). \quad (44)$$

995 **Affine shrinkage (Kalman-style form).** Define the gain
 996

$$997 \quad A_k = (I + \eta \beta_k \boldsymbol{\Lambda}_k)^{-1} \eta \beta_k \boldsymbol{\Lambda}_k = I - (I + \eta \beta_k \boldsymbol{\Lambda}_k)^{-1}. \quad (45)$$

999 Then equation 44 is equivalently
 1000

$$1001 \quad \boldsymbol{\theta}_{k+1} = \mathbf{v}_k + A_k (\boldsymbol{\theta}_0 - \mathbf{v}_k). \quad (46)$$

1002 Substituting equation 40 yields the Kalman-style mean update
 1003

$$1004 \quad \mathbf{m}_{k+1} = (\mathbf{m}_k - \alpha_k \eta \mathbf{g}_k) + A_k (\boldsymbol{\theta}_0 - (\mathbf{m}_k - \alpha_k \eta \mathbf{g}_k)). \quad (47)$$

1006 **Parameter mapping and small-step limit.** If $\boldsymbol{\Lambda}_k \simeq I$ and $\eta \beta_k \ll 1$,
 1007

$$1008 \quad A_k \approx \eta \beta_k I \implies \beta_k \approx \frac{1}{\eta} a_k \quad \text{when } A_k = a_k I. \quad (48)$$

1010 Together with $\beta_k \propto \sigma_{\lambda} / \sigma_k^2$ and the choice of α_k in equation 41, this recovers the Bayesian weight
 1011 enhancement + steady-state adaptation behavior within our generalized TTA framework.
 1012

1014 C THEORETICAL ANALYSIS

1015 In this section, we perform theoretical analysis for our proposed method. In Theorem 2, *Lana*
 1016 can be characterized as an optimization in a Riemannian manifold (defined as $\mathcal{M} = \{g_{\boldsymbol{\theta}}(\mathbf{x})\}$) to
 1017 ensure uniform low loss in a probability distribution space. This helps achieve better generalization
 1018 compared to achieve low loss in a single distribution. This is in contrast to existing TTA methods
 1019 which treat all parameters in the Euclidean space in the same way without considering the underlying
 1020 parameter geometry, which may not be suitable for direct adaptation of the source domain model to
 1021 the target domain.
 1022

1023 In Theorem C, we prove the generalization bound for *Lana*.
 1024

1025 Lemma 1

$$\nabla_{\boldsymbol{\delta}}^2 \mathbb{KL}(p(\mathbf{x} | \boldsymbol{\theta}) || p(\mathbf{x} | \boldsymbol{\theta} + \boldsymbol{\delta}))|_{\boldsymbol{\delta}=\mathbf{0}} = F \quad (49)$$

1026 **proof**1027 First, the $\mathbb{KL}(p(\mathbf{x}|\boldsymbol{\theta})||p(\mathbf{x}|\boldsymbol{\theta} + \boldsymbol{\delta}))$ can be decomposed into the following:

1029

1030

1031

$$\begin{aligned} \mathbb{KL}(p(\mathbf{x}|\boldsymbol{\theta})||p(\mathbf{x}|\boldsymbol{\theta} + \boldsymbol{\delta})) &= \mathbb{E}_{P(\mathbf{x}|\boldsymbol{\theta})}[\log P(\mathbf{x}|\boldsymbol{\theta})] \\ &\quad - \mathbb{E}_{P(\mathbf{x}|\boldsymbol{\theta})}[\log P(\mathbf{x}|\boldsymbol{\theta} + \boldsymbol{\delta})] \end{aligned} \quad (50)$$

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

$$\begin{aligned} \nabla_{\boldsymbol{\delta}} \mathbb{KL}(p(\mathbf{x}|\boldsymbol{\theta})||p(\mathbf{x}|\boldsymbol{\theta} + \boldsymbol{\delta})) &= \nabla_{\boldsymbol{\delta}} \mathbb{E}_{P(\mathbf{x}|\boldsymbol{\theta})}[\log P(\mathbf{x}|\boldsymbol{\theta})] \\ &\quad - \nabla_{\boldsymbol{\delta}} \mathbb{E}_{P(\mathbf{x}|\boldsymbol{\theta})}[\log P(\mathbf{x}|\boldsymbol{\theta} + \boldsymbol{\delta})] \\ &= -\mathbb{E}_{P(\mathbf{x}|\boldsymbol{\theta})}[\nabla_{\boldsymbol{\delta}} \log P(\mathbf{x}|\boldsymbol{\theta} + \boldsymbol{\delta})] \\ &= -\int P(\mathbf{x}|\boldsymbol{\theta}) \nabla_{\boldsymbol{\delta}} \log P(\mathbf{x}|\boldsymbol{\theta} + \boldsymbol{\delta}) d\mathbf{x} \end{aligned} \quad (51)$$

1047

Therefore, the Hessian with respect to $\boldsymbol{\delta}$ is as the following:

1048

1049

1050

1051

1052

1053

1054

1055

1056

Then, we apply Lemma 1 by setting $P(\mathbf{x}|\boldsymbol{\theta} + \boldsymbol{\delta}) = g_{\boldsymbol{\theta} + \boldsymbol{\delta}}(\mathbf{x})$ and $P(\mathbf{x}|\boldsymbol{\theta}) = g_{\boldsymbol{\theta}}(\mathbf{x})$. Then, we can obtain the conclusion that $\nabla_{\boldsymbol{\delta}}^2 \mathbb{KL}(g_{\boldsymbol{\theta}}(\mathbf{x})||g_{\boldsymbol{\theta} + \boldsymbol{\delta}}(\mathbf{x}))|_{\boldsymbol{\delta}=\mathbf{0}} = F$

1057

1058

Theorem 2 *With one step of adaptive unlearning by Eq. (11), Lan approximately minimizes the following flatness-seeking optimization objective. That is, solving Eq. (5) and Eq. (6) approximately solves the following optimization:*

1059

1060

1061

1062

$$\begin{aligned} \nabla_{\boldsymbol{\delta}}^2 \mathbb{KL}(p(\mathbf{x}|\boldsymbol{\theta})||p(\mathbf{x}|\boldsymbol{\theta} + \boldsymbol{\delta}))|_{\boldsymbol{\delta}=\mathbf{0}} &= \\ &= -\int P(\mathbf{x}|\boldsymbol{\theta}) \nabla_{\boldsymbol{\delta}}^2 \log P(\mathbf{x}|\boldsymbol{\theta} + \boldsymbol{\delta})|_{\boldsymbol{\delta}=\mathbf{0}} d\mathbf{x} \\ &= -\mathbb{E}_{P(\mathbf{x}|\boldsymbol{\theta})} \text{Hessian}(\log P(\mathbf{x}|\boldsymbol{\theta})) \\ &= F \end{aligned} \quad (53)$$

1063

1064

1065

1066

1067

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\delta}: d(\boldsymbol{\theta}, \boldsymbol{\theta} + \boldsymbol{\delta}) \leq \sigma} H(g_{\boldsymbol{\theta} + \boldsymbol{\delta}}(\mathbf{x})) \quad (54)$$

$$d(\boldsymbol{\theta}, \boldsymbol{\theta} + \boldsymbol{\delta}) = \mathbb{E}_{\mathbf{x}} \mathbb{KL}(g_{\boldsymbol{\theta}}(\mathbf{x})||g_{\boldsymbol{\theta} + \boldsymbol{\delta}}(\mathbf{x})) \quad (55)$$

where $\sigma > 0$ is a constant.

1068

1069

We take the first-order Taylor expansion on $H(g_{\boldsymbol{\theta} + \boldsymbol{\delta}}(\mathbf{x}))$ as the following:

1070

1071

1072

1073

$$H(g_{\boldsymbol{\theta} + \boldsymbol{\delta}}(\mathbf{x})) \approx H(g_{\boldsymbol{\theta}}(\mathbf{x})) + \nabla_{\boldsymbol{\theta}} H(g_{\boldsymbol{\theta}}(\mathbf{x}))^T \boldsymbol{\delta} \quad (56)$$

1074

According to Lemma 1, we use second-order Taylor expansion at $\boldsymbol{\delta} = \mathbf{0}$ as the following:

1075

1076

1077

1078

1079

$$\begin{aligned} d(\boldsymbol{\theta}, \boldsymbol{\theta} + \boldsymbol{\delta}) &= \mathbb{E}_{\mathbf{x}} [\underbrace{\mathbb{KL}(g_{\boldsymbol{\theta}}(\mathbf{x})||g_{\boldsymbol{\theta} + \boldsymbol{\delta}}(\mathbf{x}))|_{\boldsymbol{\delta}=\mathbf{0}}}_{=0} + \underbrace{\nabla_{\boldsymbol{\delta}} \mathbb{KL}(g_{\boldsymbol{\theta}}(\mathbf{x})||g_{\boldsymbol{\theta} + \boldsymbol{\delta}}(\mathbf{x}))|_{\boldsymbol{\delta}=\mathbf{0}}}_{=0} \boldsymbol{\delta} \\ &\quad + \frac{1}{2} \boldsymbol{\delta}^T \nabla_{\boldsymbol{\delta}}^2 \underbrace{\mathbb{KL}(p(\mathbf{x}|\boldsymbol{\theta})||p(\mathbf{x}|\boldsymbol{\theta} + \boldsymbol{\delta}))|_{\boldsymbol{\delta}=\mathbf{0}}}_{=F \text{ by Lemma 1}} \boldsymbol{\delta}] + O(\boldsymbol{\delta}^3) \end{aligned} \quad (57)$$

1080 Therefore,

1081

$$1082 d(\boldsymbol{\theta}, \boldsymbol{\theta} + \boldsymbol{\delta}) \approx \frac{1}{2} \boldsymbol{\delta}^T \mathbf{F} \boldsymbol{\delta} \quad (58)$$

1083

1084 Then, optimize the following optimization problem

1085

$$1086 \max_{d(\boldsymbol{\theta}, \boldsymbol{\theta} + \boldsymbol{\delta}) \leq \sigma} H(g_{\boldsymbol{\theta} + \boldsymbol{\delta}}(\mathbf{x})) \quad (59)$$

1088

1089 We can convert this constrained optimization by Lagrangian duality (Boyd & Vandenberghe, 2004),
1090 we can obtain the following:

1091

$$1092 \max_{\boldsymbol{\delta}} [H(g_{\boldsymbol{\theta}}(\mathbf{x})) + \nabla_{\boldsymbol{\theta}} H(g_{\boldsymbol{\theta}}(\mathbf{x}))^T \boldsymbol{\delta} - \gamma(\frac{1}{2} \boldsymbol{\delta}^T \mathbf{F} \boldsymbol{\delta} - \sigma)] \quad (60)$$

1093

1094 We take the gradient with respect to $\boldsymbol{\delta}$ and obtain the following:

1095

$$1096 \nabla_{\boldsymbol{\theta}} H(g_{\boldsymbol{\theta}}(\mathbf{x})) - \gamma \mathbf{F} \boldsymbol{\delta} = 0 \quad (61)$$

1097

1098

$$1099 \boldsymbol{\delta} = \frac{1}{\gamma} \mathbf{F}^{-1} \nabla_{\boldsymbol{\theta}} H(g_{\boldsymbol{\theta}}(\mathbf{x})) \quad (62)$$

1100

1103 This corresponds to the adaptive unlearning step. Then, the conclusion follows.

1104 **Theorem** We denote the distribution of \mathbf{x} as \mathcal{D} and the test set S , which is sampled independently
1105 and identically distributed (i.i.d.) from \mathcal{D} . *Lana* Eq. (5) and Eq. (6) is equal to following optimization
1106 objective.

1108

$$1109 \min_{\boldsymbol{\theta}} H(g_{\boldsymbol{\theta} + \boldsymbol{\delta}(\boldsymbol{\theta})}(\mathbf{x})), \quad (63)$$

1110

1111

$$1112 \boldsymbol{\delta}(\boldsymbol{\theta}) := \alpha \mathbf{F}^{-1} \nabla_{\boldsymbol{\theta}} H(g_{\boldsymbol{\theta}}(\mathbf{x})) \quad (64)$$

1113

1114 And we have the generalization bound:

1115

$$1116 \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [H(g_{\boldsymbol{\theta}}(\mathbf{x}))] \leq \mathbb{E}_{\mathbf{x} \sim S} [H(g_{\boldsymbol{\theta} + \boldsymbol{\delta}(\boldsymbol{\theta})}(\mathbf{x}))] + \left(\frac{m^2}{d} e^{1 - \frac{m^2}{d}} \right)^{d/2} \quad (65)$$

1117

1118

$$1119 + \sqrt{\frac{\frac{1}{4} k \log \left(1 + \frac{m^2 \|\boldsymbol{\delta}\|_2^2}{k \sigma(\boldsymbol{\theta})^2} \right) + \frac{1}{4} + \log \frac{n}{\delta} + 2 \log (6n + 3k)}{n - 1}}, \quad (66)$$

1120

1121 where d is the dimension of $\boldsymbol{\theta}$, m is an arbitrary constant, and where $\sigma(\boldsymbol{\theta})$ is positively related to the
1122 scale of $\|\boldsymbol{\delta}(\boldsymbol{\theta})\|_2$.

1123 By PAC-Bayesian bound (McAllester, 1999; Dziugaite & Roy, 2017) we have with probability at
1124 least $1 - \delta$ over the test set S , the following generalization bound holds for any prior P and posterior
1125 Q over parameters:

1126

$$1127 \mathbb{E}_{\boldsymbol{\theta} \sim Q} [\mathbb{E}_{\mathbf{x} \sim \mathcal{D}} [H(g_{\boldsymbol{\theta}}(\mathbf{x}))]] \leq \mathbb{E}_{\boldsymbol{\theta} \sim Q} [\mathbb{E}_{\mathbf{x} \sim S} [H(g_{\boldsymbol{\theta}}(\mathbf{x}))]] + \sqrt{\frac{KL(Q||P) + \log \frac{n}{\delta}}{2(n - 1)}},$$

1128

1129 where $n = |S|$ and k is the number of parameters. Besides, if $P = \mathcal{N}(\boldsymbol{\mu}_P, \sigma_P^2 \mathbf{I})$ and $Q =$
1130 $\mathcal{N}(\boldsymbol{\mu}_Q, \sigma_Q^2 \mathbf{I})$, then the KL divergence can be written as follows:

1131

$$1132 KL(Q||P) = \frac{1}{2} \left[\frac{k \sigma_Q^2 + \|\boldsymbol{\mu}_P - \boldsymbol{\mu}_Q\|_2^2}{\sigma_P^2} - k + k \log \left(\frac{\sigma_P^2}{\sigma_Q^2} \right) \right] \quad (67)$$

1133

1134 Following Theorem 1 of (Foret et al., 2021), we have with probability $1 - \frac{6\delta}{\pi^2 j^2}$, the KL-divergence
 1135 is bounded by
 1136

1137
$$KL(Q||P) \leq \frac{1}{2} \left[1 + k \log \left(1 + \frac{\|\theta\|_2^2}{k\sigma_Q^2} \right) \right], \quad (68)$$

 1138
 1139
 1140

1141 where $j \leq \lfloor k \log(1 + \exp(4n/k)) \rfloor$.
 1142

1143 We assumed $\mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[H(g_{\theta}(\mathbf{x}))] \leq \mathbb{E}_{\delta \sim \mathcal{N}(0, \sigma I)}[\mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[H(g_{\theta+\delta}(\mathbf{x}))]]$, with the above derivation, the
 1144 generalization bound can be written as follows:
 1145

1146
 1147
 1148
$$\mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[H(g_{\theta}(\mathbf{x}))] \leq \mathbb{E}_{\delta \sim \mathcal{N}(0, \sigma I)}[\mathbb{E}_{\mathbf{x} \sim \mathcal{S}}[H(g_{\theta+\delta}(\mathbf{x}))]] \quad (69)$$

 1149

1150
$$+ \sqrt{\frac{\frac{1}{4}k \log \left(1 + \frac{\|\delta\|_2^2}{k\sigma^2} \right) + \frac{1}{4} + \log \frac{n}{\delta} + 2 \log(6n + 3k)}{n - 1}} \quad (70)$$

 1151
 1152

1153 Now we consider the relation between $\max_{\delta: d(\theta, \theta+\delta) \leq \rho} H(g_{\theta+\delta}(\mathbf{x}))$ and
 1154 $\mathbb{E}_{\delta \sim \mathcal{N}(0, \sigma I)}[\mathbb{E}_{\mathbf{x} \sim \mathcal{S}}[H(g_{\theta+\delta}(\mathbf{x}))]]$. As $d(\theta, \theta + \delta)$ is a continuous distance metric, there
 1155 exist $\sigma(\theta)$ such that $\{\|\delta\|_2 \leq \sigma(\theta)\} \subset \{d(\theta, \theta + \delta) \leq \rho\}$. In this case we have
 1156

1157
$$\max_{\delta: d(\theta, \theta+\delta) \leq \rho} H(g_{\theta+\delta}(\mathbf{x})) \geq \max_{\|\delta\|_2 \leq \sigma(\theta)} \mathbb{E}_{\mathbf{x} \sim \mathcal{S}}[H(g_{\theta+\delta}(\mathbf{x}))]$$

 1158

1159 Consider $\delta \sim \mathcal{N}(0, \sigma^2 I)$, we have $\frac{\delta}{\sigma} \sim \mathcal{N}(0, I_d)$ and $\forall m > 0$
 1160

1161
 1162
 1163
$$\mathbb{E}_{\delta \sim \mathcal{N}(0, \sigma I)}[\mathbb{E}_{\mathbf{x} \sim \mathcal{S}}[H(g_{\theta+\delta}(\mathbf{x}))]]$$

 1164
 1165
 1166
$$= \mathbb{E}_{\delta}[\mathbb{E}_{\mathbf{x} \sim \mathcal{S}}[H(g_{\theta+\delta}(\mathbf{x}))] \mid \|\frac{\delta}{\sigma}\|_2 \leq m] \mathbb{P}(\|\frac{\delta}{\sigma}\|_2 \leq m)$$

 1167
 1168
$$+ \mathbb{E}_{\delta}[\mathbb{E}_{\mathbf{x} \sim \mathcal{S}}[H(g_{\theta+\delta}(\mathbf{x}))] \mid \|\frac{\delta}{\sigma}\|_2 > m] \mathbb{P}(\|\frac{\delta}{\sigma}\|_2 > m)$$

 1169
 1170
$$\leq \max_{\|\delta\|_2 \leq m\sigma} [\mathbb{E}_{\mathbf{x} \sim \mathcal{S}}[H(g_{\theta+\delta}(\mathbf{x}))]] \mathbb{P}(\|\frac{\delta}{\sigma}\|_2 \leq m) + \mathbb{P}(\|\frac{\delta}{\sigma}\|_2 > m).$$

 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178 As $\frac{\delta}{\sigma} \sim \mathcal{N}(0, I)$, by Chernoff bound of chi-squared distribution we have,
 1179

1180
 1181
$$\mathbb{P}(\|\frac{\delta}{\sigma}\|_2 > m) \leq \left(\frac{m^2}{d} e^{1 - \frac{m^2}{d}} \right)^{d/2}, \quad (72)$$

 1182
 1183

1184 where d is the number of parameters. Thus by taking $\sigma = \sigma(\theta)/m$ we have
 1185

1186
 1187
$$\mathbb{E}_{\delta \sim \mathcal{N}(0, \sigma(\theta)/m I)}[\mathbb{E}_{\mathbf{x} \sim \mathcal{S}}[H(g_{\theta+\delta}(\mathbf{x}))]] \leq \max_{\|\delta\|_2 \leq \sigma(\theta)} [\mathbb{E}_{\mathbf{x} \sim \mathcal{S}}[H(g_{\theta+\delta}(\mathbf{x}))]] + \left(\frac{m^2}{d} e^{1 - \frac{m^2}{d}} \right)^{d/2}, \quad (73)$$

 1188

1188 Combining the above equation with Eq. (69), we have
 1189
 1190
$$\mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[H(g_{\theta}(\mathbf{x}))] \leq \mathbb{E}_{\delta \sim \mathcal{N}(0, \sigma(\theta)/m\mathbf{I})}[\mathbb{E}_{\mathbf{x} \sim S}[H(g_{\theta+\delta}(\mathbf{x}))]]$$

 1191
$$+ \sqrt{\frac{\frac{1}{4}k \log \left(1 + \frac{m^2 \|\delta\|_2^2}{k\sigma(\theta)^2}\right) + \frac{1}{4} + \log \frac{n}{\delta} + 2 \log(6n + 3k)}{n - 1}}$$

 1192
 1193
$$\leq \max_{\|\delta\|_2 \leq \sigma(\theta)} [\mathbb{E}_{\mathbf{x} \sim S}[H(g_{\theta+\delta}(\mathbf{x}))]] + \left(\frac{m^2}{d} e^{1 - \frac{m^2}{d}}\right)^{d/2}$$

 1194
 1195
$$+ \sqrt{\frac{\frac{1}{4}k \log \left(1 + \frac{m^2 \|\delta\|_2^2}{k\sigma(\theta)^2}\right) + \frac{1}{4} + \log \frac{n}{\delta} + 2 \log(6n + 3k)}{n - 1}} \quad (74)$$

 1196
 1197
$$\leq \max_{\delta: d(\theta, \theta+\delta) \leq \rho} H(g_{\theta+\delta}(\mathbf{x})) + \left(\frac{m^2}{d} e^{1 - \frac{m^2}{d}}\right)^{d/2}$$

 1198
 1199
$$+ \sqrt{\frac{\frac{1}{4}k \log \left(1 + \frac{m^2 \|\delta\|_2^2}{k\sigma(\theta)^2}\right) + \frac{1}{4} + \log \frac{n}{\delta} + 2 \log(6n + 3k)}{n - 1}}.$$

 1200
 1201
 1202
 1203
 1204
 1205

D MORE IMPLEMENTATION DETAILS

D.1 DATASET DETAILS

- **ImageNet-C:** ImageNet-C is a dataset created for the purpose of evaluating the robustness and generalization ability of computer vision models. It is a corruption dataset, meaning that it contains images that have been corrupted to simulate real-world challenges that models might face. The corruption consists of 15 different types, i.e., Gaussian noise, shot noise, impulse noise, defocus blur, glass blue, motion blur, zoom blur, snow, frost, fog, brightness, contrast, elastic transformation, pixelation, and JPEG compression. Each corruption type further contains 5 different severity levels and the larger severity level means more severe distribution shift. ImageNet-C can assess how well a computer vision model trained on clean data can perform on images that have been corrupted in various ways. This helps in understanding the model’s resilience to different types of distortions and aids in the development of more robust and generalizable models.
- **DomainNet:** DomainNet is a comprehensive multi-source domain adaptation dataset. In line with the methodology proposed by (Saito et al., 2019), we employ a specific subset of DomainNet called DomainNet-126, which comprises 126 classes distributed across four distinct domains: Clipart, Painting, Real, and Sketch. This subset is particularly notable for its representation of natural shifts inherent in real-world data.

D.2 BASELINE DETAILS

- Tent (Wang et al., 2021): Tent is an entropy-minimization based TTA method. We follow the hyper-parameter setting in Tent (Wang et al., 2021). In particular, we employ SGD as the optimizer, incorporating a momentum factor of 0.9 and utilizing a batch size of 64. The chosen learning rates are 0.00025 for ResNet models and 0.001 for Vit models. Notably, when the batch size is 1, the learning rates are adjusted to 0.00025/32 for ResNet models and 0.001/64 for Vit models. The trainable parameters involves adjusting the affine parameters of normalization layers.
- EATA (Niu et al., 2022): EATA is a weight-regularization-based method. It regularizes the TTA model updates so that weights are important to the source-domain domain will be updated slower and weights that are less important to the source-domain will be updated slower.
- SAR (Niu et al., 2023): SAR, a sharpness-aware entropy minimization technique, enhances TTA stability by addressing two key issues: eliminating partially noisy samples characterized by large gradients and promoting the convergence of model weights towards a flat minimum. This approach ensures that the model becomes resilient to the presence of the remaining noisy samples.

1242 • AdaContrast (Chen et al., 2022a) is an online pseudo labeling method combined with
 1243 contrastive learning to perform TTA.
 1244

1245
 1246 **E MORE EXPERIMENTAL RESULTS**
 1247

1248
 1249 **Impact on Source Domain Performance** Following (Niu et al., 2022; Zhang et al., 2023), we also
 1250 evaluate the performance on source domain after adapting the model to the target domain test data.
 1251 We present the results in Table 4. We can observe that our method (Lana) overally outperforms
 1252 existing TTA methods in terms of source-domain accuracy. This indicates that our method leads to
 1253 minimal forgetting of source domain knowledge since our adaptive unlearning strategy considers
 1254 the parameter importance with respect to the source domain and constrains the forgetting on source
 1255 domain.
 1256

1257 **Effect of Batch Size for Batch Normalization.** To evaluate the effect of different batch size for the
 1258 network with batch normalization, we perform an evaluation with different batch sizes, i.e., 32 and
 1259 64 in Table 5. The results indicate that our method improves more than 1% compared to SOTA TTA
 1260 method with different batch sizes.
 1261

1262 **DomainNet-126 Results**
 1263

1264 Table 6: Comparisons with SOTA on **DomainNet-126** by test accuracy (%). C, P, R and S denote the domain of
 1265 Clipart, Painting, Real and Sketch, respectively. → indicates the transfer direction.
 1266

Method	C→P	C→R	C→S	P→C	P→R	P→S	R→C	R→P	R→S	S→C	S→P	S→R	Avg
Source Model	49.1	62.0	50.5	56.7	74.9	48.2	58.3	53.0	60.0	57.2	62.7	47.8	56.7
• Tent	53.1	64.1	53.1	57.3	73.9	56.8	58.0	65.6	52.0	63.1	62.0	66.6	60.5
• Tent+Lana (Ours)	54.5	66.4	54.7	57.2	73.3	57.0	58.5	66.7	52.1	63.9	63.8	67.8	61.3
• EATA	54.3	65.3	54.0	58.4	73.4	57.3	57.7	64.2	51.9	63.6	62.4	67.9	60.9
• SAR	53.0	64.8	53.1	56.8	73.7	56.7	56.7	64.3	51.3	62.9	62.2	67.5	60.2
• AdaContrast	57.2	69.6	56.3	61.8	77.2	60.3	62.2	66.3	54.3	67.2	65.2	72.2	64.1
• AdaContrast + Lana (Ours)	57.6_{±0.1}	70.4_{±0.1}	56.8_{±0.0}	62.8_{±0.1}	78.2_{±0.1}	60.9_{±0.0}	62.6_{±0.0}	67.1_{±0.1}	55.0_{±0.0}	67.8_{±0.0}	65.8_{±0.1}	72.9_{±0.0}	64.8_{±0.1}

1271
 1272 **Hyperparameter Sensitivity Analysis**
 1273

1274 Table 7: Analysis of unlearning rate α and unlearning steps J under online imbalanced label shifts
 1275 with VitBase.
 1276

α	0.0	0.03	0.05	0.07
Accuracy	47.3	60.9	61.1	60.5
J	1	2	3	
Accuracy	61.1	61.3	60.4	

1282
 1283 **Mixture of 15 different corrupted data distributions**
 1284

1285 Table 8: Comparisons with SOTA test accuracy on ImageNet-C under **mixture of 15 different**
 1286 **corrupted data distributions.**
 1287

Method	Accuracy	Method	Accuracy
ResNet50 (GN)	30.6	VitBase (LN)	29.9
• Tent	13.4	• Tent	16.5
• EATA	38.1	• EATA	55.7
• AdaContrast	0.38	• AdaContrast	1.26
• SAR	38.3	• SAR	57.1
• Tent+Lana (Ours)	38.5_{±0.1}	• Tent+Lana (Ours)	58.1_{±0.1}

1294
 1295 **Efficiency Evaluation**
 1296

1296 Table 9: Efficiency comparisons with SOTA TTA methods by A5000 with VitBase-LN under online
 1297 imbalanced label shifts on ImageNet-C.

Method	Running time (hours)
• Tent	2.87
• EATA	3.08
• AdaContrast	8.26
• SAR	5.67
• Tent+Lana (Ours)	4.39

1304 Integration with other TTA methods

1306 Table 10: Comparisons with SOTA on ImageNet-C (severity level 5) by test accuracy (%) under **Batch Size =**
 1307 1. “BN”/“GN”/“LN” denote the Batch/Group/Layer normalization.

	Gauss	Shot	Impulse	Defocus	Glass	Motion	Zoom	Snow	Frost	Fog	Bright	Contrast	Elastic	Pixel	JPEG
VitBase (LN)	9.5	6.7	8.2	29.0	23.4	33.9	27.1	15.9	26.5	47.2	54.7	44.1	30.5	44.5	47.8
• Tent	42.2	1.0	43.3	52.4	48.2	55.5	50.5	16.5	16.9	66.4	74.9	64.7	51.6	67.0	64.3
• Tent+Lana (Ours)	49.0	47.6	49.6	55.3	53.1	59.2	55.4	61.0	51.1	70.3	76.7	66.7	61.1	70.2	67.6
• EATA	29.7	25.1	34.6	44.7	39.2	48.3	42.4	37.5	45.9	60.0	65.9	61.2	46.4	58.2	59.6
• EATA+Lana(Ours)	31.3	28.6	35.9	46.2	45.3	51.5	46.5	46.3	46.5	65.2	69.3	64.5	50.3	62.6	64.1
• SAR	40.8	36.4	41.5	53.7	50.7	57.5	52.8	59.1	50.7	68.1	74.6	65.7	57.9	68.9	65.9
• SAR+Lana(Ours)	43.2	38.2	43.7	54.5	51.8	58.9	53.9	60.7	49.2	69.9	75.3	64.5	59.6	69.2	66.3

1314 Evaluation of different methods under a standard TTA setting

1316 To assess the effectiveness of various TTA approaches under the standard TTA setting, we follow the
 1317 setup outlined in (Yuan et al., 2024). The results are presented in Table 11.

1318 Table 11: Comparison of Different TTA methods under a standard TTA setting

Method	Acc (%) \uparrow	mCE (%) \downarrow
TENT	81.41	48.13
ETA	79.58	52.64
EATA	79.59	52.62
SAR	79.77	51.94
TEA	83.34	43.69
TEA + Lana	84.95	41.87

1327 Integration with other TTA methods

1329 Table 12: Accuracy comparison of different methods with and without Lana.

Method	Accuracy (%)
Tent	47.7
Tent + Lana	59.6
EATA	46.6
EATA + Lana	55.3
SAR	56.3
SAR + Lana	58.9

1340 F ALGORITHM

1341 Algorithm 1 *Lana* for TTA.

```

1: REQUIRE: pre-trained model parameters  $\theta_*$ , TTA model learning rate  $\eta$ , unlearning rate  $\alpha$ .
2: for  $k = 1$  to  $K$  do
3:   Randomly sample a mini-batch of test data  $\mathbf{x}$ 
4:   for  $j = 1$  to  $J$  do
5:      $\theta_k^j = \theta_k^{j-1} + \alpha[F^{-1}\nabla_{\theta}H(g_{\theta_*}(\mathbf{x}))]$  (unlearning)
6:   end for
7:    $\theta_{k+1} = \theta_k - \eta\nabla H(g_{\theta_k^j}(\mathbf{x}))$  (adapt to test data)
8: end for

```