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ABSTRACT

Reasoning models improve their problem-solving ability through inference-time
scaling, allocating more compute via longer token budgets. Identifying which
reasoning traces are likely to succeed remains a key opportunity: reliably predict-
ing productive paths can substantially reduce wasted computation and improve
overall efficiency. We introduce Latent-Trajectory signals that characterize the
temporal evolution of a model’s internal representations during the generation of
intermediate reasoning tokens. By analyzing both the extent and temporal course
of latent representational change, as well as its alignment with the final state, we
show that these signals are strong predictors of solution accuracy, outperforming
conventional output-based confidence measures. We use latent-trajectory signals
to guide answer selection across multiple sampled generations, demonstrating that
they make test-time scaling more effective and efficient, reducing token usage by
up to 70% while preserving and even improving accuracy by 2.6% on average
in comparison with majority voting. Finally, we show that these signals often
emerge early in the reasoning trace, which enables early selection and allocation
of compute to the most promising candidates during generation. Our findings con-
tribute not only practical strategies for inference-time efficiency, but also a deeper
interpretability perspective on how reasoning processes are represented and dif-
ferentiated in latent space.

1 INTRODUCTION

Recent advances in large language models (LLMs) have shown that complex reasoning tasks can
be solved more effectively by scaling computing at inference time to generate longer and multiple
chains-of-thought (reasoning traces) and aggregating them into a final solution (Guo et al., 2025;
Abdin et al., 2025; OpenAI, 2024; Yang et al., 2025a). However, not all reasoning traces are equal:
while some contain productive steps that lead to correct answers, others may deviate into unpro-
ductive paths such as overthinking, failing to converge on a valid solution strategy, or exhibiting
inconsistent reasoning (Shojaee et al., 2025; Chen et al., 2024; Sun et al., 2025). Identifying the
quality of a reasoning trace (the likelihood of it leading to a correct solution) is critical. It not only
enables more reliable prediction of correct answers, but it can also improve computational efficiency
by potentially avoiding wasted effort on unproductive paths, and can provide feedback signals that
can enhance model training. By understanding which reasoning processes are effective, we can sys-
tematically guide models toward reinforcing productive strategies and suppressing ineffective ones.

Prior work has approached this problem by inspecting reasoning traces in their surface natural-
language form and identifying behaviors that lead to accurate answers, an approach that typically
relies on costly human or model annotations (Lee et al., 2025; Gandhi et al., 2025). In addition,
natural language traces may not always reflect the underlying strategies that models employ (Chen
et al., 2025; Stechly et al., 2025), and some models are trained to produce intermediate latent em-
beddings rather than explicit text (Hao et al., 2024). Thus, language alone may be an unreliable
proxy for evaluating reasoning trace quality. Other work has explored heuristic signals like trace
length (Hassid et al., 2025; Marjanović et al., 2025), output distribution statistics (Kadavath et al.,
2022; Yona et al., 2022), agreement-based self-consistency (Wang et al., 2023), or using trained
verifiers (Li et al., 2023; Zhang et al., 2024) to identify correct solutions, but these methods often
trade accuracy for simplicity, or computational cost for accuracy.
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We explore an alternative direction that solely leverages a models’ trajectory of hidden states to pre-
dict which traces lead to a correct solution. Previous studies have shown that probing hidden states
can reveal informative signals about safety (Turner et al., 2023; Zou et al., 2023), learning dynamics
(Olsson et al., 2022; Hosseini & Fedorenko, 2023), reliability (Meng et al., 2022; Yuksekgonul et al.,
2024), and performance (Wang et al., 2024) of LLMs. Building on this perspective, we hypothesize
that the temporal evolution of hidden states during the generation of intermediate reasoning tokens
contains predictive information about the final solution correctness, and can be leveraged for more
compute-efficient and accurate inference.

<think> Reasoning Trace </think>

Layer 

Early Answer Selection

Early Trace Pruning

Layer
 

S1
Average

Trajectory

LATENT-TRAJECTORY SIGNALS:

(A) Net Change (B) Cumulative Change (C) Aligned Change
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S1

S2

S3

Figure 1: Latent-trajectory framework. Trajectory vec-
tors are constructed from token-level hidden states, and
a set of three signals is derived to quantify their tempo-
ral evolution. These signals predict successful traces
and enable answer selection and early path selection in
multi-sample inference.

We introduce a family of Latent-
Trajectory (LT) signals that capture
three complementary temporal aspects
of a model’s internal representational
trajectory (see Figure 1): (i) the total
representational change from the start to
the end of the trace, (ii) the cumulative
change taken along the way, and (iii) the
extent to which the intermediate changes
progress towards or away from the final
state. These metrics operate directly
on hidden states, require no additional
training or external annotations, and can
be computed during inference.

Our experiments evaluate the use of LT
signals across families of reasoning-
enabled LLMs (DeepSeek-R1-Distill-
Qwen14B, Phi4-Reasoning-Plus, Qwen3-
14B) and domains spanning science,
math, and path optimization problems.
We show that LT can reliably distinguish
between traces leading to correct versus incorrect answers, yielding significantly higher discrimina-
tory power than methods using other model internal or output-distribution-based signals. Further,
we demonstrate that LT can be leveraged during inference to achieve both higher efficiency and
improved accuracy. In sample scaling experiments, early answer selection using LT yields up to a
70% reduction in token usage, along with 2.6% average accuracy gain over majority-vote baselines
by reducing the number of generations sampled. Finally, we show that these signals often emerge
early in the trace, enabling early recognition of strong candidates and allocating compute to them.

Our results show that a model’s internal dynamics can be reliable predictors of reasoning quality, of-
fering both practical tools for inference-time control and interpretability insights into how reasoning
trajectories evolve, opening paths for broader applications that exploit internal signals for efficiency,
accuracy, and calibrated decision-making.

2 RELATED WORK

Assessing Reasoning Quality: A growing body of work seeks to quantify the quality of reasoning
traces in order to predict solution accuracy with high reliability. Many strategies involve employing
verifier models, external or self, to assess the correctness of candidate answers (Weng et al., 2023;
Madaan et al., 2023; Zhang et al., 2024). These approaches are effective but substantially increase
inference cost. An alternative direction performs fine-grained analyses of the trace surface form,
proposing metrics that target factual and logical validity, as well as linguistic and semantic coherence
(Wu et al., 2025; Golovneva et al., 2022). Heuristics derived from output token distributions or from
trace length have also been explored to decide whether a path is likely to be accurate (Hassid et al.,
2025; Kadavath et al., 2022; Yona et al., 2022). Such methods often require annotation or structured
extraction from traces, which introduces dependence on human raters or auxiliary expert models and
can lead to model-specific heuristics. In contrast, LT signals are computed directly at inference time
without a teacher model or additional runs, which yields a more efficient procedure. Concurrent
work trains model-specific probes over hidden representations to detect when intermediate answers
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are likely correct (Zhang et al., 2025). Our approach shares the objective but remains training-free
and can be applied to diverse models and datasets with minimal setup.

Representational Analysis: Previous studies have shown that probing an LLM’s hidden states
reveals informative signals about reliability (Meng et al., 2022; Yuksekgonul et al., 2024), safety
(Turner et al., 2023; Zou et al., 2023), performance (Wang et al., 2024), and learning dynamics
(Olsson et al., 2022; Hosseini & Fedorenko, 2023). We extend this research direction to leverage
hidden states to predict accuracy in reasoning models. Closest to our approach, Wang et al. (2024)
examines representational curvature across layers (i.e. spatial perspective) for predicting answer
accuracy in instruction-tuned models. We differ by adopting a temporal perspective across tokens
and focusing specifically on reasoning models. Concurrent work (Li et al., 2025) extends sequential
representational analysis to detect repetition loops in mathematical reasoning, further supporting the
premise that temporal latent dynamics provide valuable insight into model behavior.

Efficient Inference Scaling: Scaling up inference-time computation is a key factor in improving
reasoning performance in LLMs (OpenAI, 2024; Guo et al., 2025; Abdin et al., 2025). While ef-
fective, previous studies (Balachandran et al., 2025; Shojaee et al., 2025; Sui et al., 2025) show that
models trained to generate long reasoning traces exhibit ‘overthinking’ and consume compute even
after reaching a correct solution. This has motivated efforts to curb such behavior, either by train-
ing models to produce more concise reasoning (Kang et al., 2025a; Shrivastava et al., 2025) or by
dynamically halting trace generation once the model is confident in its answer (Yang et al., 2025b;
Zhang et al., 2025). Another inference-time scaling strategy is to generate multiple samples and
aggregate answers using self-consistency (Wang et al., 2023), external verifiers (Zhang et al., 2024),
or iterative self-verification (Madaan et al., 2023; Balachandran et al., 2025). These methods boost
accuracy for both standard and reasoning models but come with substantially higher computational
cost. Recent work has sought to improve efficiency by pruning reasoning paths with trained classi-
fiers (Manvi et al., 2024; Li et al., 2024). In contrast, our experiments show that Latent-Trajectory
Signals provide a training-free way to guide reasoning-path selection and answer aggregation.

3 LATENT-TRAJECTORY SIGNALS OF REASONING QUALITY

Given a problem, reasoning models generate a sequence of tokens composed of a reasoning
trace followed by a final answer. The trace is often delimited by special tokens ({trace start},
{trace end}), such that:

q1, . . . , qi {trace start} t1, . . . , tr {trace end} a1, . . . , aj ,

where q1, . . . , qi are the user query (problem) tokens, t1, . . . , tr are the reasoning trace tokens, and
a1, . . . , aj are the final answer tokens. For each position r ∈ {1, . . . , R} within the reasoning trace,
the model produces a hidden state of activations at each layer l ∈ {1, . . . , L}, denoted by h

(r)
l ∈ Rd.

These hidden states form a 2D array of d-sized representations, indexed by layer and token position,
and encode the latent space of the model at each step of the reasoning trace (see Figure 1).

3.1 LATENT-TRAJECTORY SIGNALS

Net Change

Cumulative Change

Aligned Change

La
te

nt
 S

pa
ce

Reasoning Trace Segments

Figure 2: Latent-trajectory signals.

We seek to characterize the quality of a model’s interme-
diate reasoning by tracking the evolution of its internal
representations through the trace. To quantify this, we av-
erage token-level activations into a sequence of segment-
level states and extract trajectory signals that quantify the
magnitude and geometry of representational change.

First, to enhance the robustness of the signal and reduce
dimensionality, we divide the reasoning trace t1, . . . , tr
into non-overlapping reasoning segments, where each
segment is a contiguous block of k tokens (k = 500) 1.
For each transformer layer l ∈ 1, . . . , L and segment in-
dex n ∈ 1, . . . , N , we compute the segment-level hidden state h̃

(n)
l by averaging the token hidden

1We experimented with various segmentation methods, including delimiters. See Appendix F.
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states within that segment. Intuitively, h̃(n)
l corresponds to the average representation the model

maintains in latent space while processing segment n. This temporal coarse-graining smooths local
fluctuations in token-level dynamics while preserving the large-scale evolution of the model’s latent
space over the trace. The sequence {h̃(1)

l , . . . , h̃
(N)
l } at layer l provides a trajectory-level encoding

of the hidden-state evolution over the intermediate reasoning tokens.

Given the segment hidden states, we define two basic vectors that anchor our trajectory signals.
The reasoning drift vector: ul = h̃

(N)
l − h̃

(1)
l , captures the overall direction and distance the

model’s internal state travels during the trace. Complementarily, the update vector for segment n:
v
(n)
l = h̃

(n)
l − h̃

(n−1)
l , n = 2, . . . , N describes the incremental change between consecutive rea-

soning segments. Taken together, ul and v
(n)
l capture not only the overall extent of representational

movement, but also the step-by-step dynamics of how that movement unfolds.

From these primitives we derive three complementary signals that summarize (i) overall representa-
tional change, (ii) accumulated change over the trace, and (iii) extent of progress towards the final
state (see Figure 2). Each signal is computed per layer and then averaged across layers to yield a
single score per trace.

Net Change. First, we explore whether intermediate reasoning substantially alters the model’s
latent space and whether such change is predictive of accuracy. To assess this, we measure the mag-
nitude of representational change in the latent space between the first and last reasoning segment.

Formally, we measure the norm of the drift vector ul at each layer, which encodes the magnitude
of this change, and normalize by the number of segments to control for trace length. Finally, we
average across layers to obtain a single score:

NETCHANGE =
1

L

∑
l∈L

∥ul∥2
N

Larger values indicate that the final hidden state has substantially changed from the initial state,
suggesting that the reasoning steps produced significant changes in representational space.

Cumulative Change. While Net Change measures the overall representational change between
the initial and final reasoning segments, it does not characterize the intermediate latent-space
changes. To summarize the total amount of representational movement along the trace, we addi-
tionally compute the cumulative magnitude of the sequential updates to the reasoning trace.

We consider the update vectors v
(n)
l , which represent the changes in layer l between consecutive

reasoning segments. The norm of the update vectors ||v(n)l ||2 gives the magnitude of change at each
step, and aggregating the norms across all segments captures the total movement along the trajectory.
Finally, averaging across layers yields a single score:

CUMULATIVECHANGE =
1

L

∑
l∈L

N∑
n=2

∥v(n)l ∥2

Intuitively, Cumulative Change quantifies the overall shifts in representations during the course of
reasoning, independent of the final states. Larger values encode significant variations in representa-
tions across segments, while smaller values encode negligible or incremental updates.

Aligned Change. Beyond measuring the magnitudes of overall and intermediate changes, we ask
whether intermediate updates tend to proceed in the same direction as the final outcome. We hypoth-
esize that for reasoning traces leading to accurate solutions, the sequence of updates should mostly
advance toward the final representation.

Formally, this is assessed by comparing each update vector v(n)l with the drift vector ul. The cosine

similarity ⟨v(n)
l ,ul⟩

||v(n)
l ||2||ul||2

measures the angle between the two, indicating whether each local update

proceeds in the same general direction as the overall displacement. Averaging across segments and
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layers yields a single score:

ALIGNEDCHANGE =
1

L

∑
l∈L

1

N − 1

N∑
n=2

⟨v(n)l , ul⟩
∥v(n)l ∥2 ∥ul∥2

.

Higher values suggest that intermediate updates are aligned with the overall progress toward the
final state, while lower values indicate they are inconsistent or even opposed to it.

4 EXPERIMENTAL SETUP

4.1 BASELINES

For baselines, we compare with two alternative approaches: (1) Cross-Layer Signals, which summa-
rize representational changes across layers within a segment, and (2) Output Distribution Measures,
which estimate confidence from the token distribution at the final answer.

Cross-Layer Signals: Previous work has shown that changes across layers can be predictive of
answer accuracy in CoT. Following (Wang et al., 2024), for each reasoning segment n, we com-
pute the mean magnitude and angle of layer-to-layer changes and then average over segments:

LAYERMAG(n) =
1

L

L∑
l=2

∥h̃l − h̃l−1∥2
∥h̃L − h̃1∥2

; LAYERANG(n) =
1

L

L∑
l=2

arccos(cos(h̃l, h̃l−1))

arccos(cos(h̃L, h̃1))

Output Distribution Measures: Output distribution–based measures are commonly used as esti-
mates of model confidence (Yona et al., 2022; Kadavath et al., 2022; Manakul et al., 2023), and can
be used as proxies for final answer reliability. To compare against these metrics, we elicit the final
answer post the reasoning trace end using prompts of the for [. . . {trace end} Final Answer:],
and examine the probability distribution over the token that follows. Based on findings from Yona
et al. (2022), we considered three best performing output distribution measures: (i) Logit Margin:
the difference between the top-two token logits; (ii) Entropy: the entropy of the token distribution.
(iii) Perplexity: computed as the inverse probability of the model’s top-ranked token, providing a
scalar measure of confidence in its most likely continuation.

4.2 MODELS AND DATASETS

We evaluate three open-source reasoning models: Deepseek-R1-Distill-Qwen-14B (R1-D) (Guo
et al., 2025), Phi-4 Reasoning Plus Model (PHI4R+) (Abdin et al., 2025), and Qwen3-14B (QWEN3)
(Yang et al., 2025a). Our study tests our LT signals across three distinct reasoning domains: (i)
Scientific, measured using the GPQA Diamond benchmark, which comprises 198 graduate-level
multiple-choice questions in biology, chemistry, and physics (Rein et al., 2024); (ii) Mathematical,
evaluated on AIME 2025, a 30-problem set from the American Invitational Mathematics Examina-
tion (AIME); (iii) Algorithmic, assessed with a stratified subsample (n = 180) of the TSP bench-
mark, consisting of path-optimization problems across varying levels of difficulty (graphs of 6 to 13
nodes) (GeoMeterData, 2025).

5 RESULTS

5.1 LATENT-TRAJECTORY SIGNALS ARE PREDICTIVE OF SOLUTION ACCURACY

To assess whether LT signals predict solution correctness, we evaluate their discriminative power
using the area under the ROC curve (AUC). For each problem, we generate five independent solu-
tions (reasoning trace and final answer). For each trace, we compute a LT score from the hidden
states of the intermediate reasoning tokens. We then compute ROC-AUC with respect to accuracy
by sweeping a decision threshold over the scores, which captures how well the signals discriminate
solution correctness.

As shown in Figure 3, LT signals significantly distinguish between reasoning traces that lead to
accurate versus inaccurate solutions. Across datasets, the ROC-AUCs of our three LT signals remain

5
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Figure 3: ROC-AUC for distinguishing correct from incorrect predictions using LT (LT) and baseline
metrics. Higher values indicate better discriminative power. For comparability, Cumulative Change
was sign-reversed. LT signals consistently achieve above chance (dashed line) and more reliable
discrimination than baseline metrics. Error bars denote variability across models.

consistently above chance, demonstrating robust predictive power (Net Change mean ROC-AUC
= 0.71 ± 0.09; Cumulative Change = 0.74 ± 0.09; Aligned Change = 0.73 ± 0.08). In contrast,
the cross-layer magnitude and angle signals are less reliable and vary substantially across models
and reasoning domains (Cross-Layer Magnitude Change = 0.58±0.17; Cross-Layer Angle Change
= 0.67 ± 0.14). Output-distribution–based metrics are significantly weaker and less consistent,
with performance often close to or below chance level (Logit Margin = 0.59 ± 0.10; Entropy
= 0.44±0.10, Perplexity = 0.49±0.12). In summary, our results show that for models that produce
long intermediate traces, signals that capture the temporal evolution in latent space are stronger and
more robust predictors of solution accuracy than cross-layer geometry or output-distribution-based
confidence measures (see Appendix A for ROC-AUC scores for each model-dataset combination).
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Figure 4: Latent-trajectory signal distributions by accuracy for
Qwen3-14B on the AIME 2025 dataset. Correct traces show
larger Net/Aligned Change and smaller Cumulative Change than
incorrect ones. This indicates that correct reasoning corresponds
to larger, more directed representational shifts, while incorrect
reasoning involves more wandering and less aligned trajectories.

We found that Cumulative
Change was negatively corre-
lated with accuracy (Spearman’s
r = −.38), which indicates that
traces that traverse greater total
distance in representation space
tend to be less likely to produce
correct answers. This finding
mechanistically grounds prior
behavioral observations that
long but highly varying reason-
ing traces are associated with
lower accuracy (Balachandran
et al., 2025; Shojaee et al.,
2025). Net and Aligned Change
show positive associations with accuracy (Net Change = .28; Aligned Change = .32). Larger
overall representational change from the initial to the final hidden state is therefore linked to
better performance, and representational updates that progress more directly toward the final state
show an even stronger association. Figure 4 shows the distributions of the three trajectory metrics
for Qwen3 on AIME2025. The distribution of values further supports our findings: successful
trajectories cover greater distances in latent space, advance more directly toward the final state at
intermediate steps, and involve less path deviations. Equivalent plots for each model and dataset are
in Appendix B, including plots of layer-wise values for each LT signal.

5.2 LATENT-TRAJECTORY SIGNALS IMPROVE EFFICIENCY AND RELIABILITY OF
MULTI-SAMPLE INFERENCE

Building on our previous finding that LT signals strongly predict solution accuracy, we now inves-
tigate whether they can guide more accurate and efficient scaling strategies for sampling, selecting,
and aggregating solutions in multi-sample inference systems. Previous work demonstrates that gen-
erating multiple samples and aggregating them through self-consistency improves both accuracy and
reliability in language models (Wang et al., 2023; Kang et al., 2025b). In practice, majority voting
(MV) has become the default approach for recent releases of reasoning models (Abdin et al., 2025;
Guo et al., 2025), since a single inference pass is rarely sufficient for robust performance, especially
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in applications or agentic settings (Besta et al., 2025). This robustness, however, comes with in-
creased inference costs, particularly for reasoning models, where long chains of thought lead token
usage to grow by an order of magnitude with each additional sample. Here, we examine whether
LT-based selection can preserve the benefits of MV while reducing sample and token budget.

Experiment Setup: We generate multiple samples sequentially from the model and use LT signals
to decide online whether the current trace is likely correct and should be used as the final answer, or
whether additional samples are needed. Once a signal exceeds a calibrated threshold, we accept the
solution early and stop sampling. If no samples cross the threshold after at most k attempts, we fall
back to MV over the collected candidates (see Figure 5). This allows datapoints with strong internal
signals to be resolved quickly with fewer samples, while datapoints with weaker signals rely on the
robustness of aggregation. We set k = 5 and repeated this procedure independently for each signal.

We compared our approach against two sample aggregation baselines: (i) MV, and (ii) shortest-
answer selection, which chooses out of the sampled answers the candidate with the fewest tokens,
motivated by recent findings that shorter completions are strong signals of accuracy (Hassid et al.,
2025; Shrivastava et al., 2025; Marjanović et al., 2025).

Datapoint 1

C A

A A C A A C A C

S2S1 S3
Early 
Stopping

Datapoint 2

Majority
VoteS2S1 S3 S4 S5

Figure 5: Candidate solutions for a problem are evalu-
ated sequentially. If a solution’s signal value exceeds τ ,
it is immediately accepted as the final prediction. If no
solution crosses τ , the final answer is chosen via MV.

We select decision thresholds τ using a
cross-validation approach (see Appendix
D for details). On the calibration set, we
form candidate thresholds from quantiles
of the metric among incorrect solutions,
so each candidate fixes the proportion of
incorrect solutions that lie beyond the cut-
off. For each candidate, we simulated the
full decision rule on the calibration sub-
set, accepting a solution early when the
signal crosses the threshold and otherwise
aggregating with MV. The best-calibrated
threshold is then evaluated on the remaining data. We report accuracy as the fraction of problems
solved correctly, and efficiency in terms of (i) the average number of samples required, and (ii) the
proportion of reasoning tokens consumed relative to running the full inference procedure with five
samples. Reported results are averaged over the splits.

In addition to exploring each metric separately, we built a Combined LT score, built from a
weighted sum of the LT values, where signals that are more strongly associated with accuracy on the
calibration set contributed more to the final score (Appendix E reports details on its construction).

Results: As shown in Table 1, LT signals improve both efficiency and accuracy relative to self-
consistency based majority vote. On GPQA, R1-D gains about 2%, Qwen3 remains stable, and
Phi4R+ maintains competitive accuracy. On AIME2025, improvements are more pronounced with
4% for R1-D, 2% for Phi4R+, and a substantial 12% for Qwen3. On TSP, all models benefit, with
consistent gains of 1–3%. These results show that LT thresholds not only preserve correctness
across settings, but often deliver meaningful boosts by identifying correct reasoning paths even
when the majority of solutions are incorrect. Efficiency gains are considerably larger. On R1-D,
LT signals reduce the average number of tokens required to match or outperform MV by 50–66%
across datasets, Qwen3 achieves reductions of about 50-55%, and Phi4R+ reduces sampling by
30–35%. Across all settings, the Shortest@5 baseline reduces accuracy by an average of 1.4%,
showing that length alone is an unreliable proxy for correctness. In Appendix C, we further report
that LT signals enable early answer selection for >85% of data points on average across datasets,
and that accuracy within this subset consistently exceeds the baselines, confirming that LT signals
concentrate probability mass on more reliable solutions.

Overall, Latent-Trajectory-guided selection preserves, and often improves, the reliability of
majority-vote aggregation while substantially reducing inference costs, offering a reliable alterna-
tive to fixed-sample aggregation. The Combined LT score is frequently competitive with the best
individual signal and, in most cases, cuts token usage by at least half. This makes it a practical and
effective choice when applied to different models and datasets. At an aggregate level, compared
to MV@5, LT strategies exhibit: (i) Sample savings: Number of sampled answers is reduced on
average by 58% (32–76%); (ii) Token savings: As a consequence of sample savings, token usage
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(and thereby inference cost) is reduced on average by 48% (14–70%); (iii) Accuracy improvement:
Accuracy increases on average by 2.64% (−1.4–14.10%).

Table 1: Accuracy and efficiency with Latent-Trajectory (LT) signals. Baselines are MV@5 (ma-
jority vote across 5 samples) and Shortest@5 (shortest of 5 samples). Accuracy is reported as a
percentage, with parentheses indicating the change relative to MV@5. For efficiency, we report
the average number of samples required per datapoint, with parentheses showing the percentage re-
duction in total token usage relative to MV. Bold and Bold denote the best and second-best results
within each group. ✓ marks cases where the average number of samples was reduced more than half.

GPQA AIME2025 TSP

Model Strategy Acc.
(avg % / ∆Acc)

Samples
(avg / ∆Tok %)

Acc.
(avg % / ∆Acc)

Samples
(avg / ∆Tok %)

Acc.
(avg % / ∆Acc)

Samples
(avg / ∆Tok %)

R1-D MV@5 59.90 5.00 56.67 5.00 27.50 5.00
Shortest@5 60.91 (+1.0) 5.00 (0) 50.00 (-6.7) 5.00 (0) 28.75 (+1.3) 5.00 (0)
LT – Net 61.10 (+1.2) 1.69 (+53.9) ✓ 61.90 (+5.2) 1.22 (+68.7) ✓ 28.60 (+1.1) 1.43 (+70.6) ✓

LT – Cumulative 62.10 (+2.2) 1.88 (+48.1) ✓ 58.70 (+2.0) 2.56 (+29.9) 30.90 (+3.4) 1.61 (+66.4) ✓

LT – Aligned 61.10 (+1.2) 1.58 (+57.0) ✓ 60.30 (+3.6) 1.43 (+61.3) ✓ 29.50 (+2.0) 2.08 (+57.2) ✓

LT – Combined 61.80 (+1.9) 1.89 (+47.3) ✓ 61.90 (+5.2) 2.06 (+43.9) ✓ 30.10 (+2.6) 1.43 (+70.3) ✓

Phi4R+ MV@5 70.20 5.00 80.00 5.00 41.25 5.00
Shortest@5 69.19 (-1.0) 5.00 (0) 70.00 (-10.0) 5.00 (0) 38.75 (-2.5) 5.00 (0)
LT – Net 68.80 (-1.4) 2.97 (+20.2) 79.40 (-0.6) 2.19 (+41.1) ✓ 42.30 (+1.1) 1.59 (+67.2) ✓

LT – Cumulative 69.60 (-0.6) 2.99 (+18.9) 81.00 (+1.0) 2.43 (+32.1) ✓ 44.40 (+3.1) 2.63 (+42.2)
LT – Aligned 69.60 (-0.6) 3.40 (+14.5) 82.50 (+2.5) 2.51 (+30.8) 44.10 (+2.9) 1.96 (+58.7) ✓

LT – Combined 69.60 (-0.6) 3.28 (+16.3) 82.60 (+2.6) 2.54 (+28.7) 43.80 (+2.6) 2.30 (+50.5) ✓

Qwen3 MV@5 63.96 5.00 70.00 5.00 36.25 5.00
Shortest@5 64.47 (+0.5) 5.00 (0) 80.00 (+10.0) 5.00 (0) 30.63 (-5.6) 5.00 (0)
LT – Net 63.70 (-0.3) 1.42 (+63.9) ✓ 79.40 (+9.4) 1.60 (+57.3) ✓ 35.40 (-0.9) 3.18 (+34.0)
LT – Cumulative 63.30 (-0.7) 2.25 (+41.3) ✓ 84.10 (+14.1) 2.03 (+43.2) ✓ 36.30 (+0.1) 1.64 (+65.5) ✓

LT – Aligned 64.20 (+0.2) 1.75 (+52.0) ✓ 80.90 (+10.9) 1.59 (+58.2) ✓ 37.80 (+1.6) 2.08 (+56.4) ✓

LT – Combined 63.70 (-0.3) 1.70 (+53.4) ✓ 80.90 (+10.9) 1.49 (+60.3) ✓ 36.00 (-0.3) 2.46 (+48.4) ✓

5.3 LATENT-TRAJECTORY SIGNALS ENABLE EARLY SELECTION OF HIGH-QUALITY TRACES

Experiment Setup: While the previous section focused on using LT signals for end-of-trace an-
swer selection, we now ask whether these signals can also identify higher-quality trajectories early
in the reasoning process. To investigate this, we run a step-wise incremental early-exit evaluation.
We evaluate signals on partial traces taken at 500-token intervals up to the full trace. At each
checkpoint, we recompute Net Change and Cumulative Change 2 using only the tokens available so
far. For each partial trace, the most recent segment is used as the final segment. We then compute
the ROC-AUC of each signal at every checkpoint, revealing how predictive power evolves as the
trace unfolds, and whether prediction of solution correctness is possible without observing the full
trajectory.

Results: As Figure 6 shows, Net and Cumulative change provide predictive signals well above
chance, with ROC-AUC generally increasing as additional tokens are observed. ROC-AUC values
above .6 can be obtained within the first 4k tokens, with Net Change being a better predictor than
Cumulative Change early in the trace for GPQA and AIME2025. This pattern, however, reverses
for TSP, where Cumulative Change is significantly more predictive than Net Change throughout the
early and mid trace.

To investigate whether these early signals in the reasoning trace can be leveraged during inference,
we implement an early path selection policy when sampling multiple generations in parallel. At 2k
tokens, we compute the LT signals on the partial traces and use them as features for a lightweight ran-
dom forest classifier trained to predict correctness. The classifier selects a single candidate trajectory
to continue, while the other four paths are terminated. The chosen trace is decoded to completion,
and we report both the accuracy of this early path selection policy and the proportion of tokens saved
compared to running all five trajectories to the end.

Table 2 shows that early selection of high quality paths with LT substantially reduces inference cost
while maintaining or improving accuracy. Across models and datasets, accuracy remains highly

2As Aligned Change compares the direction of each segment with respect to the last segment, it is inconsis-
tent when applied earlier in the trace.
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Figure 6: (A) Predictive performance (ROC-AUC) of Net and Cumulative Change signals as a func-
tion of the number of tokens, across datasets. Shaded regions represent variation across models. (B)
Comparison of predictive performance at 4k tokens. Error bands indicate variation across models.
Performance of LT signals rises early well above the 0.5 baseline.

competitive with MV@5 as R1-D achieves a 6.7% gain on AIME2025 with only negligible differ-
ences on GPQA and TSP. PhiR+ consistently improves accuracy by 2–4% across datasets, while
Qwen3 yields gains of 2–3%. Efficiency gains are more significant with average token usage re-
duced by 50–65% for R1-D and Qwen3, and by 70% for PhiR+. At an aggregate level, we observe:
(i) accuracy increases on average by 2.1%; (ii) token usage reduction on average by 61%. Overall,
these results demonstrate that LT signals can effectively guide early selection of high quality paths,
allocating compute to the most promising generation candidate, thereby achieving competitive ac-
curacy to five five-sample majority vote with less than half of the inference cost.

Table 2: Evaluation of early path selection (at 2k tokens) using LT (LT) signals. Accuracy (%) and
Saved Tokens (%) with ∆ relative to Majority Vote (Maj@5).

GPQA AIME2025 TSP

Model Strategy Accuracy
(% / ∆%)

Saved Tokens
(∆%)

Accuracy
(% / ∆%)

Saved Tokens
(∆%)

Accuracy
(% / ∆%)

Saved Tokens
(∆%)

R1-D Maj@5 59.90 - 56.67 - 27.50 -
LT 59.39 (-0.5) +48.9 63.33 (+6.7) +50.1 26.25 (-1.3) +62.5

PhiR+ Maj@5 70.20 - 80.00 - 41.25 -
LT 72.22 (+2.0) +64.7 83.33 (+3.3) +67.3 45.63 (+4.4) +71.7

Qwen3 Maj@5 63.96 - 70.00 - 36.25 -
LT 66.50 (+2.5) +51.0 73.33 (+3.3) +69.1 38.13 (+1.9) +65.7

6 CONCLUSIONS

Our work introduced a family of LT signals that capture the temporal evolution of reasoning traces
within a models’ latent space. Across multiple reasoning domains and models, LT metrics pre-
dict final-answer correctness significantly above chance and outperform other internal and output-
distribution-based baselines. We further demonstrated their utility in practical test-time policies.
In inference-scaling experiments, using these signals for answer selection or early path selection
reduced token usage and often improved accuracy with respect to strong baselines such as major-
ity vote. Our efficiency gains address two complementary sources of inefficiency: (i) reducing the
number of samples required for reliable reasoning, and (ii) shortening individual trajectories by de-
tecting early answers of higher-quality. The approach is model-agnostic, simple to calibrate, and
compatible with existing sampling strategies. In addition to practical benefits, our results shed light
on the structure of reasoning in latent space, revealing how trajectories unfold during inference and
what distinguishes successful from unsuccessful reasoning paths.

There are several opportunities for future work. While we show the real-world utility of these signals
at inference time, trajectory-level signals could also provide actionable guidance for fine-tuning
and calibration, with the potential to guide models toward more reliable reasoning trajectories. In
addition, our study introduced lightweight techniques for metric aggregation and threshold selection.
An exciting direction for future work is to explore learned classifiers or ensembles to further boost
the informativeness of the signals.
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REPRODUCIBILITY STATEMENT

Section 3 outlines the models, datasets, and methodology used in detail. Section G in Appendix
describes inference parameters in detail. The data and code will be open-sourced upon publication.
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thoughtology: Let’s think about llm reasoning. arXiv preprint arXiv:2504.07128, 2025.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual asso-
ciations in GPT. In Advances in Neural Information Processing Systems, volume 35, pp. 17359–
17372, 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,

11

https://arxiv.org/abs/2207.05221
https://ojs.aaai.org/index.php/AAAI/article/view/34608
https://arxiv.org/abs/2502.18581
https://arxiv.org/abs/2507.06087
https://aclanthology.org/2023.acl-long.291/
https://openreview.net/forum?id=ndR8Ytrzhh
https://openreview.net/forum?id=ndR8Ytrzhh
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://aclanthology.org/2023.emnlp-main.557/
https://aclanthology.org/2023.emnlp-main.557/
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022. URL https://arxiv.org/
abs/2209.11895.

OpenAI. Learning to reason with llms. https://openai.com/index/
learning-to-reason-with-llms, 2024. Accessed: 2025-09-09.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity. arXiv preprint arXiv:2506.06941, 2025.

Vaishnavi Shrivastava, Ahmed Awadallah, Vidhisha Balachandran, Shivam Garg, Harkirat Behl,
and Dimitris Papailiopoulos. Sample more to think less: Group filtered policy optimization for
concise reasoning. arXiv preprint arXiv:2508.09726, 2025.

Kaya Stechly, Karthik Valmeekam, Atharva Gundawar, Vardhan Palod, and Subbarao Kambham-
pati. Beyond semantics: The unreasonable effectiveness of reasonless intermediate tokens. arXiv
preprint arXiv:2505.13775, 2025.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Na Zou, Hanjie Chen, and Xia Hu. Stop overthinking: A survey
on efficient reasoning for large language models. Transactions on Machine Learning Research,
2025. URL https://openreview.net/forum?id=HvoG8SxggZ. Accepted by TMLR.

Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Zheng, Hannaneh Hajishirzi, Nouha Dziri, and Dawn
Song. Omega: Can llms reason outside the box in math? evaluating exploratory, compositional,
and transformative generalization. arXiv preprint arXiv:2506.18880, 2025.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J. Vázquez, Ulisse Mini,
and Monte MacDiarmid. Steering language models with activation engineering, 2023. URL
https://arxiv.org/abs/2308.10248.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In International Conference on Learning Representations (ICLR), 2023. URL https:
//openreview.net/forum?id=1PL1NIMMrw.

Yiming Wang, Pei Zhang, Baosong Yang, Derek F Wong, and Rui Wang. Latent space chain-of-
embedding enables output-free llm self-evaluation. arXiv preprint arXiv:2410.13640, 2024.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and
Jun Zhao. Large language models are better reasoners with self-verification. In Findings of the
Association for Computational Linguistics: EMNLP 2023, pp. 2550–2575, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.167.
URL https://aclanthology.org/2023.findings-emnlp.167/.

Juncheng Wu, Sheng Liu, Haoqin Tu, Hang Yu, Xiaoke Huang, James Zou, Cihang Xie, and Yuyin
Zhou. Knowledge or reasoning? a close look at how llms think across domains. arXiv preprint
arXiv:2506.02126, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao,
and Weiping Wang. Dynamic early exit in reasoning models, 2025b. URL https://arxiv.
org/abs/2504.15895.

12

https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms
https://openreview.net/forum?id=HvoG8SxggZ
https://arxiv.org/abs/2308.10248
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://aclanthology.org/2023.findings-emnlp.167/
https://arxiv.org/abs/2504.15895
https://arxiv.org/abs/2504.15895


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Gal Yona, Amir Feder, and Itay Laish. Useful confidence measures: Beyond the max score. arXiv
preprint arXiv:2210.14070, 2022.

Mert Yuksekgonul, Varun Chandrasekaran, Erik Jones, Suriya Gunasekar, Ranjita Naik, Hamid
Palangi, Ece Kamar, and Besmira Nushi. Attention satisfies: A constraint-satisfaction lens on
factual errors of language models. In Proceedings of the 12th International Conference on Learn-
ing Representations (ICLR 2024), Vienna, Austria, 2024. URL https://openreview.net/
forum?id=gfFVATffPd.

Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reason-
ing models know when they’re right: Probing hidden states for self-verification. arXiv preprint
arXiv:2504.05419, 2025.

Yunxiang Zhang, Muhammad Khalifa, Lajanugen Logeswaran, Jaekyeom Kim, Moontae Lee,
Honglak Lee, and Lu Wang. Small language models need strong verifiers to self-correct reason-
ing. In Findings of the Association for Computational Linguistics: ACL 2024, pp. 15637–15653,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.findings-acl.924. URL https://aclanthology.org/2024.findings-acl.
924/.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
top-down approach to ai transparency. arXiv preprint arXiv:2310.01405, 2023.

13

https://openreview.net/forum?id=gfFVATffPd
https://openreview.net/forum?id=gfFVATffPd
https://aclanthology.org/2024.findings-acl.924/
https://aclanthology.org/2024.findings-acl.924/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PREDICTIVITY OF LATENT-TRAJECTORY SIGNALS

In Table 3 we provide the ROC-AUC and Spearman’s r values with accuracy for each Latent-
Trajectory (LT) and baseline metric computed per model-dataset pair.

Table 3: ROC-AUC and correlation (Spearman’s r) with accuracy for each mode-dataset pair.

GPQA AIME2025 TSP

Model Metric AUC Corr. AUC Corr. AUC Corr.

R1-D Net Change .688 .320 .757 .433 .641 .223
Cumulative Change .690 -.323 .697 -.333 .687 -.294
Aligned Change .670 .288 .755 .430 .662 .255
Layer Magnitude .606 .180 .795 .497 .449 -.080
Layer Angle .392 .184 .685 -.313 .740 -.378
Logit Margin .554 .092 .597 .163 .656 .246
Entropy .510 .016 .488 -.020 .588 .138
Perplexity .656 .266 .558 .097 .597 .153

PhiR+ Net Change .744 .391 .755 .366 .625 .433
Cumulative Change .740 -.384 .786 -.410 .785 -.333
Aligned Change .744 .391 .755 .366 .733 .430
Layer Magnitude .730 .368 .625 .180 .768 .497
Layer Angle .663 -.260 .727 -.325 .733 -.312
Logit Margin .652 .243 .535 .050 .438 .163
Entropy .230 -.321 .440 -.086 .426 -.020
Perplexity .369 -.194 .517 .024 .399 .097

Qwen3 Net Change .671 .286 .921 .651 .637 .229
Cumulative Change .655 -.259 .947 -.691 .748 -.414
Aligned Change .635 .225 .909 .632 .679 .300
Layer Magnitude .557 .095 .295 -.317 .387 -.189
Layer Angle .509 -.015 .878 -.584 .727 .380
Logit Margin .444 -.094 .728 .351 .602 .170
Entropy .513 .022 .286 -.324 .371 -.213
Perplexity .272 -.380 .454 -.071 .591 .151
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B LATENT-TRAJECTORY SIGNALS

To investigate how LT dynamics relate to model performance, we compare distributions of our three
representational signals—Net Change, Cumulative Change, and Aligned Change—conditioned on
whether a model’s final answer was correct or incorrect. Figures 4–6 present box plots of these
metrics across datasets and model families. These visualizations allow us to assess whether system-
atic differences in LT signals are associated with answer correctness, and whether such effects are
consistent across evaluation settings.

Across all three signals, consistent patterns emerge. Net Change values (Figure 7) are generally
higher for correct responses than for incorrect responses, suggesting that successful reasoning is as-
sociated with overall larger representational drifts. In contrast, Cumulative Change values (Figure 8)
are often larger for incorrect responses, indicating that when models answer incorrectly, their latent
trajectories tend to involve more movement through representational space, potentially reflecting
less stable reasoning. Finally, Aligned Change values (Figure 9) are again higher for correct re-
sponses, implying that effective reasoning requires updates that advance more directly towards the
final state.

Taken together, these results suggest that correct predictions are characterized by a larger overall
representational shift, accompanied by trajectories that are more directionally consistent, whereas
incorrect predictions tend to involve longer, less aligned paths through latent space, reflecting noisier
and less stable reasoning trajectories. This pattern holds across models and datasets, indicating that
LT signals provide complementary and reliable signals of reasoning quality.
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Figure 7: Distribution of Net Change by accuracy. Values are generally higher for correct than for
incorrect responses, suggesting that successful reasoning is associated with overall larger represen-
tational drifts, which may be a sign of deeper reasoning.
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Figure 8: Distribution of Cumulative Change by accuracy. Values are often larger for incorrect
responses, indicating that when models answer incorrectly, their latent trajectories tend to involve
more movement through representational space, potentially reflecting less stable reasoning.
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Figure 9: Distribution of Aligned Change by accuracy. Values are higher for correct responses,
implying that effective reasoning involves intermediate representational updates that advance more
directly towards the final state.
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We also provide the average layer-wise values of each LT signal in Figure 10, 11, and 12. Each
subplot compares how internal changes evolve by layer.
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Figure 10: Layer-wise Net Change values for correct vs. incorrect reasoning traces across mod-
els and benchmarks. Correct trajectories generally show larger representational shifts across layers
compared to incorrect ones, indicating that stronger net changes are associated with successful rea-
soning.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0

250

500

750

1000

1250

1500

1750

Ph
i4

+
GPQA

0

500

1000

1500

2000

AIME2025

0

250

500

750

1000

1250

1500

1750

2000

TSP

0

200

400

600

800

1000

1200

R1
-D

0

250

500

750

1000

1250

1500

1750

0

250

500

750

1000

1250

1500

1750

Incorrect Correct
0

200

400

600

800

1000

1200

1400

1600

Q
w

en
3

Incorrect Correct
0

1000

2000

3000

4000

5000

6000

Incorrect Correct
0

500

1000

1500

2000

Layer-wise values of Cumulative Change by Accuracy
Layer

0 8 16 24 32 40

Figure 11: Layer-wise Cumulative Change values for correct vs. incorrect reasoning traces across
models and benchmarks. Incorrect trajectories accumulate substantially larger representational
shifts across layers than correct ones, indicating that unsuccessful reasoning is associated with less
stable and more circuitous latent dynamics, indicating that correct traces take more direct paths
towards the final solution.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.00

0.05

0.10

0.15

0.20

0.25

Ph
i4

+
GPQA

0.00

0.05

0.10

0.15

0.20

AIME2025

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

TSP

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R1
-D

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Incorrect Correct
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Q
w

en
3

Incorrect Correct
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Incorrect Correct
0.00

0.02

0.04

0.06

0.08

0.10

Layer-wise values of Aligned Change by Accuracy
Layer

0 8 16 24 32 40

Figure 12: Layer-wise Aligned Change values for correct vs. incorrect reasoning traces across
models and benchmarks. Correct trajectories consistently exhibit stronger alignment across layers
compared to incorrect ones.
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C LATENT-TRAJECTORY SIGNALS FOR INFERENCE-TIME SCALING

In the main text, we evaluated efficiency and reliability when applying LT thresholds in a sequential
inference procedure. Here, we provide additional analyses focusing on the subset of samples that
exceeded the thresholds. This allows us to directly quantify (i) the accuracy of solutions accepted
early and (ii) the proportion of datapoints where the LT decision rule was triggered.

Table 4 reports accuracy and coverage for above-threshold samples across models and datasets. Ac-
curacy here refers only to the subset of candidate solutions whose LT score surpassed the calibrated
threshold, while the “Datapoints” column indicates the fraction of evaluation datapoints where an
early stop occurred. As expected, above-threshold samples are consistently more accurate than the
overall average, often approaching ceiling performance for stricter thresholds. At the same time,
the coverage varies: some learned thresholds are more lenient, allowing the rule to apply to a larger
fraction of datapoints, while others are stricter, isolating a smaller but more reliable subset.

Table 4: Above threshold evaluation across models and datasets with LT (LT) strategies. Accuracy
(%) of samples above threshold, and percentage of Datapoints where LT decision rule was applied.

GPQA AIME2025 TSP

Model Strategy Acc.
(%)

Datapoints
(%)

Acc.
(%)

Datapoints
(%)

Acc.
(%)

Datapoints
(%)

R1-D LT – Net 64.60 88.2 68.73 90.5 28.73 99.4
LT – Cumulative 67.57 81.4 75.63 54.0 32.13 96.4
LT – Aligned 63.77 92.0 73.00 82.5 31.60 93.4
LT – Combined 66.50 81.2 78.53 65.1 30.53 98.5

PhiR+ LT – Net 84.37 60.0 82.20 80.9 42.03 97.0
LT – Cumulative 84.87 57.1 89.53 74.6 56.20 74.7
LT – Aligned 88.10 44.6 89.33 71.4 49.73 88.7
LT – Combined 86.30 48.0 91.10 69.8 51.53 81.5

Qwen3 LT – Net 65.17 95.6 87.13 92.1 45.87 61.6
LT – Cumulative 69.47 74.1 96.50 85.7 37.90 95.8
LT – Aligned 64.73 87.7 85.37 95.2 40.50 87.5
LT – Combined 65.53 88.2 85.37 95.2 47.43 74.4

To further illustrate this tradeoff, Figure 13 plots accuracy as a function of threshold quantiles.
Higher quantiles consistently yield higher accuracy across all metrics, models, and datasets, indi-
cating that LT signals reliably concentrate correct solutions in their upper ranges. In several cases,
accuracy at the top quantiles approaches 100%, demonstrating that filtering by strong LT signals
isolates highly reliable reasoning traces.
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Figure 13: Accuracy of datapoints above thresholds defined over a range of quantiles. Given that
Cumulative Change is negatively correlated with accuracy, we inverted the quantile selection (i.e.,
replacing q with 1− q) so that higher quantiles consistently correspond to higher expected accuracy.
For all metrics, accuracy increases consistently with higher quantiles across datasets and models.
This evidences that these metrics are predictive of answer quality.
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D CALIBRATION PROCEDURE FOR THRESHOLD SELECTION

We use a three-fold shuffled cross-validation procedure. In each split, 30% of the data is set aside
for calibration and the remaining 70% is reserved for testing, with the same random seed applied
across folds to ensure consistency.

Candidate thresholds. Within each calibration fold and for each metric, we focus on the subset of
datapoints where the model’s answer was incorrect. If this subset contains fewer than 15 examples
or if the metric has no valid values, we default to using the median value of the metric on the
calibration set as the threshold. Otherwise, we construct a grid of candidate thresholds by taking the
20th through 99th percentiles of the metric values among the incorrect examples.

Evaluating a candidate threshold. For each threshold in this grid, calibration datapoints are di-
vided into two groups. The first group consists of datapoints where at least one candidate solution
exceeds the threshold. For these, we accept the first candidate that crosses the threshold and record
its accuracy. The second group contains the remaining datapoints, which are resolved using majority
vote across their candidates. The overall calibration accuracy for a given threshold is computed as
the weighted average of the accuracies from these two groups, proportional to their sizes.

Selecting the threshold. We then rank thresholds by their overall calibration accuracy. The two
best-performing thresholds are identified, and we set the final calibration threshold to their median.

Direction of comparison. For most metrics, higher values indicate stronger signals, so the thresh-
old rule is applied as metric ≥ t. The Cumulative Change signals behave in the opposite direction,
with smaller values being more predictive; here the rule is applied as metric ≤ t.
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E COMBINED LATENT-TRAJECTORY SCORE

In addition to exploring each metric separately, we built a Combined LT score. For each dataset,
we quantified the predictive utility of each signal by calculating its absolute Pearson correlation with
accuracy on a 10% calibration slice of the dataset. We align directions so that larger values always
indicate better performance (i.e. Cumulative Change was sign-inverted). We then normalize the
correlations to obtain weights that sum to one, which yields an interpretable distribution of relative
importance across metrics. The combined LT score for each sampled solution is a weighted sum of
the LT values, where signals that are more strongly associated with accuracy on the calibration set
contributed more to the final score. Table 5 reports the weights.

Table 5: Metric weights for Combined Latent Space score.

Model Dataset Net
Change

Cumulative
Change

Aligned
Change

DeepSeek R1 Distill Qwen 14B GPQA .35 .40 .25
Phi 4 Reasoning Plus GPQA .30 .38 .313
Qwen3 14B GPQA .43 .25 .32

DeepSeek R1 Distill Qwen 14B AIME2025 .31 .35 .34
Phi 4 Reasoning Plus AIME2025 .26 .45 .29
Qwen3 14B AIME2025 .30 .43 .28

DeepSeek R1 Distill Qwen 14B TSP .24 .39 .37
Phi 4 Reasoning Plus TSP .20 .38 .42
Qwen3 14B TSP .19 .43 .37
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F REPRESENTATIONAL AVERAGING

To enhance the signal robustness and reduce the dimensionality of the reasoning trace, we partition
it into non-overlapping reasoning segments of size 500. For each layer, we then average the token
representations within each segment. We found that this procedure preserves the overall trajectory
of the reasoning process.

The choice of 500 tokens was guided by the average answer lengths across datasets. The dataset
with the shortest responses still had an average of 5,000 tokens per answer. Setting the window to
500 tokens therefore ensures that, on average, we obtain at least 10 measurement points per answer
in this dataset, and proportionally more in the others. To further demonstrate that LT signals can
still be predictive of shorter reasoning traces, Figure 14 demonstrates how our ROC-AUC results are
equivalent when considering interval segments of 300 tokens.
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Figure 14: ROC-AUC for distinguishing correct from incorrect predictions using LT (LT) and base-
line metrics with reasoning segments of 300 token length. Higher values indicate better discrim-
inative power. For comparability, Cumulative Change was sign-reversed. LT signals consistently
achieve above chance (dashed line) and more reliable discrimination than baseline metrics. Error
bars denote variability across models.

In addition, we compared fixed-k strategy to defining segments by newline tokens, as other studies
report (Sun et al., 2025). However, segment sizes varied substantially across models under this
approach, making it less comparable across architectures.
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G MODELS AND INFERENCE SETTINGS

We perform our inference and evaluation using the Eureka ML Insights framework
(microsoft/eureka-ml-insights).

We used a max generation length of 31,768 tokens for all models. For all experiments, we report
model sources and inference parameters to ensure reproducibility:

DeepSeek-R1-Qwen-14B deepseek-ai/DeepSeek-R1-Distill-Qwen-14B

• Temperature = 0.6
• Top-p = 0.95

Phi-4-Reasoning-Plus microsoft/Phi-4-reasoning-plus

• Temperature = 0.8
• Top-k = 50
• Top-p = 0.95

Qwen3-14B (thinking enabled) Qwen/Qwen3-14B

• Temperature = 0.6
• Top-p = 0.95
• Top-k = 20
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https://github.com/microsoft/eureka-ml-insights
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
https://huggingface.co/microsoft/Phi-4-reasoning-plus
https://huggingface.co/Qwen/Qwen3-14B
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