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Abstract

Large language models (LLMs) have demon-001
strated impressive capabilities in mathemati-002
cal problem-solving, particularly in single-turn003
question-answering formats. However, real-004
world scenarios often involve mathematical005
question-answering that requires multi-turn or006
interactive information exchanges, and the per-007
formance of LLMs on these tasks is still under-008
explored. This paper introduces MathChat,009
a comprehensive benchmark specifically de-010
signed to evaluate LLMs across a broader spec-011
trum of mathematical tasks. These tasks are012
structured to assess the models’ abilities in013
multi-turn interactions and open-ended genera-014
tion. We evaluate the performance of various015
state-of-the-art LLMs on the MathChat bench-016
mark, and we observe that while these models017
excel in single-turn question answering, they018
significantly underperform in more complex019
scenarios that require sustained reasoning and020
dialogue understanding. To address the above021
limitations of existing LLMs when faced with022
multi-turn and open-ended tasks, we develop023
MathChatsync, a synthetic dialogue-based math024
dataset for LLM fine-tuning, focusing on im-025
proving models’ interaction and instruction-026
following capabilities in conversations. Experi-027
mental results emphasize the need for training028
LLMs with diverse, conversational instruction029
tuning datasets like MathChatsync. We believe030
this work outlines one promising direction for031
improving the multi-turn mathematical reason-032
ing abilities of LLMs, thus pushing forward the033
development of LLMs that are more adept at034
interactive mathematical problem-solving and035
real-world applications.036

1 Introduction037

Mathematical reasoning has been an essential task038

for computers for decades (Boblow, 1968). With039

the explosion in Large Language Model (LLM)040

development (Brown et al., 2020; Achiam et al.,041

2023; Touvron et al., 2023a,b; Jiang et al., 2023;042

Team et al., 2024), mathematical reasoning has 043

been widely recognized as a key ability for assess- 044

ing these models. Most math reasoning bench- 045

marks such as GSM8K (Cobbe et al., 2021), MATH 046

(Hendrycks et al., 2021), SVAMP (Patel et al., 047

2021), MAWPS (Koncel-Kedziorski et al., 2016), 048

ASDiv (Miao et al., 2020) and MathVista (Lu et al., 049

2024) feature the format of single-turn question an- 050

swering (QA), where the input is a single question 051

and the output is the solution. Recent studies (Yu 052

et al., 2024; Yue et al., 2024; Gou et al., 2024; Luo 053

et al., 2023; Tang et al., 2024) have scaled up such 054

QA data by distilling synthetic data from stronger 055

LLMs like GPT-4 (Achiam et al., 2023) or utilizing 056

human-annotated datasets of rationales in diverse 057

formats (Yue et al., 2024; Liang et al., 2023), con- 058

tinually pushing the limits of math QA accuracy. 059

For example, on one of the most widely recognized 060

benchmarks, GSM8K, accuracy has increased from 061

10.4% with a 175B-parameter model (Brown et al., 062

2020) to 88.2% achieved by a 7B-parameter model 063

(Shao et al., 2024) in the past few years. 064

While math-specialized LLMs have shown 065

promising progress on single-round QA bench- 066

marks, their mathematical capabilities have not 067

been verified in more complex scenarios. For in- 068

stance, in real-world applications, such as interac- 069

tive chatbots (Lee and Yeo, 2022; Jančařík et al., 070

2022; Wang et al., 2024) and problem-solving as- 071

sistants (Nguyen et al., 2019; Macina et al., 2023b), 072

math tasks extend beyond single-round QA and 073

require much more advanced reasoning and instruc- 074

tion following abilities such as dialogue understand- 075

ing, diagnostic reasoning, educational feedback, 076

etc. Can the established math-specialized LLMs 077

perform as well on multi-round math reasoning as 078

they do on single-round tasks? This question has 079

not been comprehensively studied, although many 080

recent studies have identified critical weaknesses of 081

state-of-the-art LLM reasoners that could happen 082

in multi-round interactions, such as long-context 083
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Figure 1: Taxonomy of MathChat. The inner ring rep-
resents the task categories involved in MathChat. The
intermediate ring lists the evaluation tasks in MathChat.
The outer ring shows the tested capabilities in our tasks
beyond simple math problem solving. See detailed de-
scriptions in Section 2.

reasoning (Chen et al., 2024), self-reflection ability084

(Huang et al., 2023), error identification (Authors,085

2024; Daheim et al., 2024), and educational con-086

tent generation (Shridhar et al., 2022; Kasneci et al.,087

2023; Macina et al., 2023a).088

Therefore, in this paper, we advance the explo-089

ration of LLMs’ mathematical reasoning abilities090

by introducing a new benchmark, MathChat. Fig-091

ure 1 shows the hierarchical ability taxonomy de-092

rived from the tasks in MathChat (e.g., those in093

Figure 3), which are more advanced than the capa-094

bilities tested by single-round QA and addresses the095

above limitations noted in state-of-the-art LLMs.096

Based on our MathChat benchmark, we find097

that current state-of-the-art math-specialized LLMs098

that are fine-tuned on extensive mathematical QA099

data struggle to reliably answer multi-turn ques-100

tions and understand instructions that extend be-101

yond single-round QA. Specifically, on open-ended102

tasks like ERROR ANALYSIS and PROBLEM GEN-103

ERATION in Figure 3, the fine-tuned LLMs fail104

catastrophically since they can hardly understand105

the provided instructions. These shortcomings are106

perhaps unsurprising for models like MetaMath107

(Yu et al., 2024), which was trained exclusively on108

augmented question-answer pairs from single-turn109

math datasets GSM8K and MATH. The tasks in110

MathChat obviously represent a shift in distribu-111

tion that challenges such models. However, even112

models like WizardMath (Luo et al., 2023) that113

were trained on more diverse data including open-114

ended dialogues and evolving instructions fail to115

achieve satisfactory performance on MathChat. We116

Mistral

WizardMath-Mistral

DeepSeek-Math

InternLM2- Math

GPT3.5-turbo

GSM8k

Follow-up
QA

Error CorrectionError Analysis

Problem 
Generation

Figure 2: The performance comparison among vari-
ous LLMs. Math LLMs (e.g., Deepseek-Math) have
great performance on single-round QA dataset GSM8K,
achieving similar performance to GPT-3.5. However,
they significantly underperform GPT3.5 on MathChat,
which requires more advanced reasoning abilities. We
average the evaluation metrics in each task and scale all
values into 0-1 for better visibility.

have also tried to reform our multi-turn math rea- 117

soning problem into a one-round math QA task 118

by including all dialogue history in the question 119

part, no significant performance improvement is 120

observed. These results indicate potential over- 121

tuning and data saturation towards the single-turn 122

QA data inside current math LLMs, and also high- 123

light a crucial open problem for the field of LLM 124

development: 125

How can we empower math-focused LLMs to 126

engage in multi-turn dialogues and follow diverse 127

instructions without significantly compromising 128

their problem-solving abilities? 129

To address the identified research challenge, we 130

conduct an exploratory study to investigate vari- 131

ous training data mixture strategies by leveraging 132

extensive public math QA data, general-domain 133

instruction tuning data, general-domain dialogue 134

data, and our constructed synthetic dialogue-based 135

math data (MathChatsync). The results indicate that 136

the model trained with MathChatsync significantly 137

outperforms the baselines fine-tuned on other mix- 138

ture datasets on open-ended tasks and surpasses the 139

base LLMs on problem-solving tasks (see Section 140

4 for more details). 141

In summary, this paper makes two main contri- 142

butions. First, we introduce and release a bench- 143

mark MathChat dedicated to multi-turn math rea- 144

soning and conversation, aimed at advancing the 145

development of a more generalized reasoner and 146

assistant in mathematical contexts—a capability 147

that existing math-specific LLMs currently lack. 148

Second, we demonstrate that integrating synthetic 149

math-dialogue dataset MathChatsync with super- 150
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vised fine-tuning (SFT) markedly enhances per-151

formance on open-ended tasks within MathChat,152

without compromising much accuracy on direct153

problem-solving tasks. The resulting fine-tuned154

LLMs surpass their counterparts trained on various155

combinations of existing datasets. We believe this156

paper offers a new perspective on the evaluation157

of math-specific LLMs and advances the goal of158

developing a general math reasoning assistant.159

2 MathChat160

We introduce MathChat, designed to provide a161

deeper and more comprehensive examination of162

LLMs’ abilities in multi-turn mathematical reason-163

ing and instruction-following. MathChatcontains164

four important tasks that have been under-explored165

by the community. (FOLLOW-UP QA, ERROR COR-166

RECTION, ERROR ANALYSIS, and PROBLEM GEN-167

ERATION) inspired by previous studies in the educa-168

tion domain that reveal the importance of following169

a sequence of Initiate-Response-Follow-up (Lim170

et al., 2020), learning from self-made errors (Heem-171

soth and Heinze, 2016), and posing new problems172

with solutions (Silver, 1994). The first two tasks173

focus on multi-turn mathematical problem-solving174

and reasoning, whereas the final two tasks eval-175

uate the models’ ability to follow mathematical176

instructions and respond to open-ended questions.177

All tasks within MathChat are sourced from the178

testing set of GSM8K, which we expanded using179

GPT-4 (we use gpt-4-0125-preview version in this180

paper.) to suit our specific requirements. While181

our benchmark is based on GPT-4, we have imple-182

mented robust quality assurance measures. We use183

the human-annotated GSM8k dataset as a seed for184

generating new tasks, ensuring that the foundation185

of our benchmark is rooted in high-quality data.186

Additionally, additional verification are involved187

in verifying the correctness of reference responses,188

especially for the first two tasks with deterministic189

answers. As a result, each task category contains190

the same number of samples as the GSM8K testing191

set—1,319. Table 1 shows some basic statistics of192

our benchmark and Figure 3 shows some examples.193

All prompts used to generate the task data can be194

found in the Appendix A.8.195

Follow-up QA In this task, we form a three-196

round dialogue between a human user and an AI197

assistant. The initial round consists of a question198

from the original GSM8K testing dataset, with its199

ground truth answer. We then use GPT-4 to gener-200

Follow-up QA Question (First Round) 46.25
Follow-up QA Question (Second Round) 34.43
Follow-up QA Question (Third Round) 41.60
Follow-up QA Answer (First Round) 52.78
Follow-up QA Answer (Second Round) 87.16
Follow-up QA Answer (Third Round) 93.84

Error Correction Wrong Attempt 54.82
Error Correction Mistake Correction 75.27

Error Analysis Wrong Attempt 66.17
Error Analysis Mistake Analysis 94.69

Problem Generation New Problem 55.37
Problem Generation New Answer 105.13

Table 1: Average lengths in MathChat benchmark. The
first-round QA is essentially GSM8k testing set. We can
find that our MathChat has more informative answers
than GSM8k.

ate two additional questions that require a deeper 201

understanding of the original question. The correct 202

answers are produced by GPT-4. To prevent over- 203

confidence in self-generated content by GPT-4, we 204

use two LLMs (GPT-4 and Claude) to verify the 205

correctness of the generated answers. Both models 206

are asked to verify if the answer is correct. If it 207

is not, we revise the answer based on their feed- 208

back. This process is iterated for three rounds for 209

both GPT-4 and Claude. As a result, the accep- 210

tance rate of generated answers by both models 211

improves from 70% to 92.4%. For the remaining 212

7.6% of the problems, the authors manually revised 213

the answers. Finally, we sampled 100 problems 214

from the 1319 test samples and confirmed that all 215

of them were correct, further verifying the overall 216

quality of the data. During the evaluation phase, 217

we present only the questions to the models, and 218

the answers generated by the evaluated LLM are 219

used in the subsequent round as shown in Figure 3, 220

following methodologies similar to general-domain 221

benchmarks like MT-bench (Zheng et al., 2023). 222

Error Correction In this task, we present a ques- 223

tion to GPT-4 and instruct it to intentionally gen- 224

erate an incorrect answer. The incorrectness of 225

this response is easily verified by comparing it to 226

the correct answer in the GSM8K dataset. We use 227

this incorrect QA pair as the dialogue history and 228

clearly state that the solution is incorrect, and then 229

we prompt the AI assistant to correct the wrong 230

answer. Quality control is simpler for this task 231

because we can directly check whether the final 232

answers align with the original answers in GSM8k. 233

To ensure our benchmark contains a diverse set of 234

error types, we conduct an analysis in Appendix 235

A.6. 236
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Follow-up QA

<User>: A robe takes 2 bolts of blue fiber and half that much white fiber.  How 
many bolts in total does it take?
<Assistant>: It takes 2/2=<<2/2=1>>1 …[14 words omitted] …The answer is 3.
<User> : If making the same robe requires twice as much white fiber as initially 
stated, how many bolts of fabric are needed now for one robe?
<Assistant>: Initially, it was stated …[61 words omitted] … The answer is 6.
<User>: If one robe requires 3 bolts of fabric and the production of each 
subsequent robe requires one additional bolt of fabric, how many bolts are needed 
for 3 robes?
<Assistant>: The first robe requires … [56 words omitted] … The answer is 12.

Error Correction

<User>: John buys 2 pairs of shoes for each of his 3 children.  They 
cost $60 each.  How much did he pay?
<Assistant>: Let's see. If John buys 2 pairs of shoes for $60, then 
for 3 children, that's 3 times $60. So, he would have spent $180.
<User>: That's not quite right. Could you check your calculation 
again?
<Assistant>: Oh, I see the mistake now. … [38 words omitted] … 
The answer should be $360.

Problem Generation

<User>: Your task is to create a similar math problem based on a given seed 
problem. The generated problem should be accompanied by a detailed solution.
<Assistant>: Understood, please give me the seed problem.
<User> : Seed problem: A robe takes 2 bolts of blue fiber and half that much white 
fiber.  How many bolts in total does it take?
Seed Solution:  It takes 2/2=<<2/2=1>>1 …[14 words omitted] … Answer is 3.
<Assistant>: New Problem: A bakery uses 4 pounds of flour to make a batch 
of 24 cupcakes and twice that amount of sugar in ounces. How many ounces 
of sugar does the bakery use?
Solution: First, we convert the… [42 words omitted] …The answer is 128.

Error Analysis

<User>: Please give me a math problem and I will answer that. You 
need to analyze my solution and correct it if I make errors.
<Assistant>: John buys 2 pairs of shoes for each of his 3 children.  
They cost $60 each.  How much did he pay?
<User>: If he bought 2 pairs for each of his 3 children, that's 2 + 3 
= 5 pairs of shoes. And if each pair costs $60, then he must have 
spent 5 * $60 = $300 in total.
<Assistant>: You're on the right track, but there seems to be a 
mistake … [76 words omitted] … The answer should be $360.

MathChat Examples

Figure 3: The examples of the four tasks in our MathChat benchmark. We place all tasks under a scenario of a
dialogue between the user and the assistant. The part with a italics font is the input to the LLMs and the highlighted
parts are generated by LLMs and to be evaluated.

Error Analysis LLMs have been proven to have237

weak error analysis abilities (Huang et al., 2023;238

Authors, 2024). The initial QA pair for the ERROR239

ANALYSIS task is similar to that used in the ERROR240

CORRECTION task, where the evaluated LLM is241

presented with an incorrect solution to a problem.242

However, the tasks diverge from the second round:243

while ERROR CORRECTION focuses on rectifying244

the answer, ERROR ANALYSIS further requires the245

model to first recognize that an error exists, then246

analyze the error and correct it. Although the two247

tasks share similarities in targeting errors, they pose248

distinctly different challenges for LLMs, especially249

those specialized in mathematics. These models250

are trained to solve problems directly, aligning well251

with the goal of ERROR CORRECTION. In contrast,252

ERROR ANALYSIS demands that the model not only253

understand the instructions but also identify and254

articulate the cause of errors before correcting them.255

To enhance data diversity in our benchmark, we256

generate a different batch of incorrect attempts for257

the ERROR ANALYSIS task, separate from those258

used in ERROR CORRECTION.259

Problem Generation The final task in MathChat,260

Problem Generation, has been a direction of in-261

terest in both computer science and education for262

many years (Polozov et al., 2015; Wang et al., 2021;263

Zhou et al., 2023b). In this task, we provide the264

LLM with an original question-solution pair from265

the source dataset as part of the dialogue history.266

We then ask the LLM to create a new problem- 267

solution pair that either delves deeper into the same 268

topic or applies the same mathematical principles 269

in a different context. This task is notably different 270

from the typical mathematical QA, as it requires a 271

model to generate questions rather than solve them. 272

It challenges models to exhibit both creative and 273

reasoning capabilities. 274

3 Evaluation of Existing LLMs on 275

MathChat 276

We assess a variety of baseline LLMs using the 277

MathChat benchmark. Detailed experimental set- 278

tings such as the descriptions of baseline models 279

are located in Appendix A.5.1. 280

3.1 Evaluation Metrics 281

For the problem-solving tasks (FOLLOW-UP QA 282

and ERROR CORRECTION), we extract the last nu- 283

merical value that appeared in the model’s response 284

and compare it to the ground truth number. This 285

approach aligns with the evaluation metrics used 286

in most prior studies on math word problem solv- 287

ing. For the instruction-following tasks (ERROR 288

ANALYSIS and PROBLEM GENERATION), we uti- 289

lize GPT-4 to assign scores from 1 to 5 (higher 290

is better) based on three carefully designed multi- 291

dimensional criteria, similar to (Zheng et al., 2023; 292

Kim et al., 2024). The ERROR ANALYSIS task 293

evaluates instruction following (IF), error diagnosis 294

(ED), and solution accuracy (SA). The PROBLEM 295
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GENERATION task assesses IF, SA, and problem296

quality (PQ). A detailed description of these evalua-297

tion rubrics is available in Appendix A.9. All these298

metrics are measured on a scale of 1 to 5. Empiri-299

cally, for instruction following tasks, a score of 1 to300

2 indicates the failure to understand the instructions.301

A score of 2 to 3 signifies a basic understanding302

of the instructions, but the generated responses are303

often wrong. A score of 3 to 4 means the model has304

a good understanding of the instructions and can305

generate corresponding answers, though mistakes306

may still occur sometimes. A score higher than 4307

indicates a very good response, which is usually308

fluent and relevant, with mistakes being rare.309

3.2 Prompting Template310

For math-specific LLMs like MetaMath and Wiz-311

ardMath, which are typically trained on specific312

QA templates, our MathChat involves multi-turn313

dialogues that do not strictly adhere to the formats314

of their training data. To fully exploit their potential315

in evaluation, we test these models in two settings:316

(i) using the chat template of their instruct mod-317

els, and (ii) adapting their specific QA templates318

to include our dialogue history in the question part,319

i.e., reforming our multi-turn math reasoning prob-320

lem to a one-round math QA task. For each task,321

we report results from the better-performing set-322

ting. Empirically, we find that for tasks requiring323

problem-solving skills, such as FOLLOW-UP QA324

and ERROR CORRECTION, the second setting sig-325

nificantly outperforms the first. However, perfor-326

mance is nearly identical across both settings for327

the instruction following tasks. These experimen-328

tal evaluations reveal that solving the challenging329

tasks in our benchmark requires models to possess330

deeper understanding and comprehension abilities.331

For models that cannot perform well on our tasks,332

it is not merely due to their unfamiliarity with chat-333

template data.334

3.3 Result Analysis and Observations335

Overall, while most math-specific LLMs (except336

for MAmmoTH) outperform GPT-3.5-turbo only in337

the Round1 of Follow-up QA (see the first column338

in Table 2), they fall short in all other tasks (other339

columns in Table 2). These outcomes suggest that340

current math-specific models are overly tuned to341

single-round QA data, and the significant perfor-342

mance drop in multi-round and complex tasks fur-343

ther validates the challenging nature of our bench-344

mark, testing the models’ diverse capabilities in345

mathematical reasoning, as illustrated in Figure 1. 346

We further investigate the models’ performance in 347

each task: 348

Follow-up QA. In Rounds 2 and 3 of the 349

FOLLOW-UP QA tasks, models face significant 350

challenges in multi-round math reasoning, with 351

accuracy reductions ranging from 20% to 50%. 352

This decline indicates that while math-specific 353

LLMs initially outperform general-purpose LLMs 354

and even GPT-3.5-turbo in Round 1, their per- 355

formance deteriorates more significantly in sub- 356

sequent rounds. Theoretically, if a model main- 357

tains consistent accuracy across all dialogue rounds, 358

with a first-round accuracy of x1, the expected 359

second-round accuracy would be x21 due to error 360

propagation. Interestingly, when comparing the 361

square of the first-round accuracy (x21) with the 362

actual second-round accuracy (x2), we observe a 363

contrasting pattern: x21 > x2 for all math-specific 364

LLMs, indicating a decline, whereas x21 < x2 for 365

all other general-purpose models. This finding 366

demonstrates that while math-specific LLMs ex- 367

cel at solving math problems in a single round, 368

they show weaker progressive reasoning capabili- 369

ties within dialogues. 370

Error Correction. In the ERROR CORRECTION 371

task, a clear distinction also exists between math- 372

specific LLMs and general-purpose LLMs. No- 373

tably, general LLMs exhibit higher accuracy in 374

correcting errors than in directly solving problems 375

(i.e., the first-round follow-up QA), whereas the 376

reverse is true for math-specific LLMs. This adap- 377

tive behavior is evident in general-purpose LLMs 378

but is noticeably lacking in math-specific LLMs, 379

suggesting their weak ability to learn and reason 380

from errors due to the over-tuning on single-round 381

QA tasks. The difficulty of this task in our bench- 382

mark further emphasizes the need for models to go 383

beyond single-round accuracy and develop robust 384

error-correction abilities. 385

Error Analysis. The ERROR ANALYSIS task re- 386

quires that models first identify errors in a given 387

solution before proceeding to analyze and correct 388

them. In practice, we find that math-specialized 389

LLMs often misinterpret the task’s instruction 390

about analyzing the solution and instead simply 391

repeat the previous answer, or just validate the in- 392

correct solution as correct. Conversely, only GPT- 393

3.5-turbo relatively performs well in verifying the 394

solution and pinpointing errors. This task presents 395
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Follow-up QA
R1* R2 R3

Error
Correction Error Analysis Problem Generation

Acc. Acc. IF ED SA IF PQ SA

General-Purpose 7B LLMs:
LLaMA2-chat 15.09 11.67 8.12 38.82 2.64 1.83 1.87 4.02 3.83 3.33

Mistral-Instruct 32.06 20.40 13.70 51.20 3.50 2.82 2.77 4.44 4.30 3.80
Gemma-it 37.60 17.65 10.57 46.15 3.07 2.05 3.11 3.09 3.75 2.48

Math-specialized 7B LLMs:
MAmmoTH 66.85 32.16 19.31 54.15 2.55 1.75 1.79 2.03 1.95 2.42
MetaMath 77.18 43.98 32.16 56.30 2.51 1.26 1.34 2.28 2.32 2.35

WizardMath 83.20 44.81 36.86 68.22 2.62 1.81 1.95 1.53 1.54 1.60
DeepSeek-Math 79.40 48.19 35.70 74.34 1.87 1.38 1.47 1.95 1.96 2.08
InternLM2-Math 83.80 40.20 28.64 72.70 2.88 2.24 2.35 4.31 4.31 3.50

GPT-3.5-turbo 74.68 55.26 45.59 75.90 4.12 3.64 3.71 4.62 4.62 4.23
GPT-4-turbo 94.62 76.36 73.41 81.11 4.60 4.35 4.45 4.94 4.94 4.87

GPT-4o 95.68 77.67 73.03 83.09 4.84 4.60 4.68 4.91 4.94 4.82
* The first round performance is essentially the performance on the original GSM8K dataset.

Table 2: The performance of three open-sourced general-purpose LLMs, five math-specialized LLMs,
and GPT-3.5-turbo on MathChat. All open-sourced models are in the size of 7B. R1, R2, and R3
denote different rounds in Follow-up QA. Evaluation metrics: Acc. (%), and others from 1 (lowest)
to 5 (highest), such as IF = Instruction Following, ED = Error Diagnosis, SA = Solution Accuracy
and PQ = Problem Quality. We bold the best performance achieved by open-sourced models.

a significant challenge for open-source mathemat-396

ical LLMs, indicating a common limitation: their397

ability to identify and analyze errors. The high398

failure rate in this task also shows the challenging399

nature of our benchmark.400

Problem Generation. The PROBLEM GENERA-401

TION task, similar to ERROR ANALYSIS, requires402

models to understand instructions that go beyond403

answering the given question. This task assesses404

several abilities: a model must accurately compre-405

hend the given instruction, understand the provided406

problem-solution pair, and generate a new and rel-407

evant problem-solution pair. We observe that all408

general-purpose LLMs and only one math-specific409

model InternLM2-Math perform well. Other math410

LLMs, which are heavily optimized for problem-411

solving, struggle with this task. Empirically, we412

find that those models still consistently attempt to413

solve problems even when clearly instructed to cre-414

ate new problems. The difficulty of adapting to415

problem generation highlights the rigidity of cur-416

rent math-specific models, suggesting that these417

models are overly tuned to solve problems and, as418

a result, find it challenging to adapt to other tasks.419

4 Enhancement via SFT420

Given the above challenges highlighted by our421

benchmark, it is natural to seek solutions to address422

these issues. In this section, we explore the perfor-423

mance improvements of general-purpose models424

enhanced by various supervised fine-tuning (SFT)425

strategies. See Appendix A.7 for case studies.426

4.1 Baselines 427

We first build a series of Mistral 7B baseline models 428

by applying supervised fine-tuning with existing 429

datasets. First, Mistral-Math is developed to spe- 430

cialize Mistral-Instruct in math reasoning. This 431

is achieved via fine-tuning the model by Arithmo 432

(akjindal53244, 2023) compilation, which includes 433

three existing datasets: MetaMath (Yu et al., 2024), 434

MathInstruct (Yue et al., 2024), and Lila-OOD 435

(Mishra et al., 2022). These dataset totally com- 436

prises about 540,000 entries. Second, Mistral- 437

Math-IT is then built for enhancing the instruc- 438

tion following ability of Mistral-Math. We uti- 439

lized the Alpaca-GPT4 dataset (Peng et al., 2023), 440

which includes 52,000 instruction-following in- 441

stances generated by GPT-4. We also use LIMA 442

(Zhou et al., 2023a), which contains 1,000 high- 443

quality prompts and responses from human inter- 444

actions. Last, Mistral-Math-IT-Chat gains the 445

ability to engage in conversation by tuning with a 446

dialogue dataset. We subsample the Ultra-chat200k 447

(Ding et al., 2023) to 50,000 dialogues to minimize 448

the training workload. Empirically, we find that 449

this subsampling does not significantly affect per- 450

formance on MathChat compared to using the en- 451

tire Ultrachat-200k dataset. Similarly, a series of 452

Gemma 7B models are developed using the same 453

SFT setting, and named following the same format. 454

4.2 Dialogue Dataset MathChatsync 455

While the Ultra-chat200k dataset includes dia- 456

logues spanning a variety of topics, math-related 457
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conversations should be specifically highlighted458

and incorporated into the SFT process. We thus in-459

troduce and release a new dataset MathChatsync,460

which is created by sampling QA pairs from461

Arithmo as seed examples. We then tasked GPT462

models to engage in real-world dialogues based463

on these seeds, enriching the dataset with diverse464

and contextually relevant mathematical discus-465

sions. The details of the generation prompts are466

provided in the Appendix A.9. Due to budget467

constraints, we generated 16,132 dialogues using468

GPT-4 and 131,346 dialogues using GPT-3.5-turbo,469

resulting in a total of 147,478 dialogues in the470

MathChatsync dataset. This dataset can serve as an471

augmented resource during the SFT stage for future472

math LLMs, enabling them to engage in dialogues473

without compromising their ability to reason in474

single-round QA. Since MathChatsync already in-475

cludes samples in forms of instruction and dialogue,476

Mistral and Gemma are tuned using both Arithmo477

and MathChatsync, resulting in Mistral-MathChat478

and Gemma-MathChat models, respectively.479

4.3 Result Analysis and Observations480

Table 3 presents the results of two series of LLMs481

that have been fine-tuned from Mistral and Gemma482

models. The evaluation follows the same settings483

on MathChat as presented in Table 2. Generally,484

the results suggest that our method of augmenting485

the training corpus enhances performance across486

all tasks. Notably, incorporating general-purpose487

instruction tuning data from sources such as Al-488

paca and UltraChat can improve performance on489

mathematical tasks. This improvement may stem490

partly from the inclusion of mathematical con-491

tent within these datasets. The addition of high-492

quality instruction data predominantly may also493

boost the LLMs’ natural language comprehension,494

thereby enhancing their ability to solve math prob-495

lems. Moreover, the model fine-tuned with our496

MathChatsync dataset demonstrates markedly su-497

perior overall performance. Appendix A.1 shows498

how we scale and calculate the overall score and499

Table 4 contains a more comprehensive compar-500

ison in terms of the overall performance. Since501

MathChatsync is created in a very simple and502

straightforward way, we believe that scaling up503

the quality and amount of such math dialogue data504

can bring more performance improvement, which505

we leave as our future work. Detailed analysis on506

each task follows.507

Follow-up QA. When performing SFT with ex- 508

isting datasets, adding instruction-following, dia- 509

logue or our MathChatsync datasets generally en- 510

hances the performance on follow-up QA tasks. 511

Notably, we observe that performance improve- 512

ments in the second and third rounds are signif- 513

icantly greater compared to the initial round of 514

the original GSM8K QA. A likely explanation is 515

that these datasets contain longer-context QA pairs, 516

which enable the model to reason based on the dia- 517

logue history rather than focusing predominantly 518

on more immediate contexts. 519

Error Correction. Fine-tuned models exhibit 520

better accuracy than base LLMs in error correction, 521

yet integrating additional datasets has not markedly 522

boosted performance. This limited improvement 523

suggests that essential skills such as DIAGNOSTIC 524

REASONING and SOLUTION REFINEMENT, indi- 525

cated in Figure 1, are not effectively learned from 526

the used datasets. Additionally, we observed that 527

our MathChatsync data negatively affects this task. 528

Upon examining the error cases, we discovered 529

that models trained with MathChatsync indeed have 530

a better understanding of “correcting the error”, 531

where they try to make improvements over previ- 532

ous incorrect attempts rather than simply making 533

new attempts. This contrasts with models trained 534

purely on problem-solving datasets, which tend to 535

give completely new solutions. The lower perfor- 536

mance of the model trained with MathChatsync may 537

be attributed to the dataset’s lack of manual filter- 538

ing of incorrect cases. We leave the quality control 539

problem and analysis to future work. 540

Error Analysis. Similar to Error Correction, 541

learning the ability to perform error analysis is 542

challenging when using SFT with math QA and 543

general instruction tuning datasets. Although the 544

performance on this task is not exceptionally high, 545

the inclusion of math-dialogue data in SFT has 546

proven to be a viable method for enhancing LLMs’ 547

capabilities in error analysis. Our analysis in Fig- 548

ure 5 also reveals that the models fine-tuned with 549

existing datasets (i.e., three baselines) typically af- 550

firm the correctness of previous answers and termi- 551

nate their responses prematurely. In contrast, our 552

MathChatsync dataset aids LLMs in understanding 553

how to conduct error analysis. 554

Problem Generation. On problem generation 555

task, we observe that the base models already 556

have reasonable performance and SFT without 557
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Follow-up QA
R1* R2 R3

Error
Correction Error Analysis Problem

Generation
(Scaled)
Overall

Acc. Acc. IF ED SA IF PQ SA Average

Mistral 7B Series:
Mistral-Instruct 32.06 20.40 13.70 51.20 3.50 2.82 2.77 4.44 4.30 3.80 0.550
Mistral-Math 70.20 32.31 24.60 70.22 2.18 1.60 1.71 3.54 3.28 3.75 0.519

Mistral-Math-IT 70.73 40.59 27.74 69.54 2.34 1.65 1.76 4.08 3.81 4.16 0.565
Mistral-Math-IT-Chat 71.79 39.22 27.36 69.15 2.31 1.50 1.63 4.39 4.20 4.28 0.574

Mistral-MathChat (Ours) 71.02 41.02 27.97 67.96 3.40 2.89 2.67 4.70 4.58 4.43 0.661

Gemma 7B Series:
Gemma-it 37.60 17.65 10.57 46.15 3.07 2.05 3.11 3.09 3.75 2.48 0.463

Gemma-Math 70.73 29.70 19.92 62.68 1.69 1.29 1.32 3.24 3.09 3.44 0.464
Gemma-Math-IT 72.02 43.36 32.57 62.60 1.76 1.40 1.46 3.34 3.32 3.61 0.508

Gemma-Math-IT-Chat 74.68 46.35 33.64 63.85 2.05 1.64 1.70 3.64 3.48 3.99 0.549
Gemma-MathChat (Ours) 72.14 47.10 32.64 61.86 3.43 2.90 2.90 3.77 3.72 3.74 0.623

Table 3: Performance of LLMs that are fine-tuned with different datasets. The best performance is
bold and the second best is underlined for each series.

MathChatsync generally hurts the performance.558

However, a notable finding is the increase in Solu-559

tion Accuracy (SA) scores following SFT, which560

suggests that fine-tuning on mathematical data561

helps the model recognize the importance of solu-562

tion correctness and extend this awareness to gener-563

ation tasks. Furthermore, our MathChat-enhanced564

SFT model records the best performance on this565

task, demonstrating the versatile utility of dialogue-566

enhanced training in mathematical contexts.567

5 Related Work568

Mathematical Reasoning. Recently, LLMs have569

demonstrated success in solving math word prob-570

lems through techniques like Chain of Thought571

(CoT) (Wei et al., 2022; Kojima et al., 2022), Pro-572

gram of Thought (PoT) (Chen et al., 2023), and573

sampling methods (Wang et al., 2022). These574

studies primarily focus on improving performance575

via better prompting design or inference strate-576

gies. Some researchers also attempted exten-577

sive pre-training on math-related corpora to ob-578

tain foundational mathematical LLMs (Lewkowycz579

et al., 2022; Taylor et al., 2022; Azerbayev et al.,580

2024). As for the evaluation of mathematical581

reasoning, popular benchmarks include GSM8K,582

MAWPS (Koncel-Kedziorski et al., 2016), MATH583

(Hendrycks et al., 2021), SVAMP (Patel et al.,584

2021), MathVista (Lu et al., 2024), MathVerse585

(Zhang et al., 2024), etc., and all of them are in586

single-round QA format. State-of-the-art (SOTA)587

models such as MetaMath (Yu et al., 2024), Wiz-588

ardMath, MathInstruct (Yue et al., 2024), ToRA589

(Gou et al., 2024), OpenMathInstruct (Toshniwal590

et al., 2024) augment extensive amount of math591

QA pairs from LLMs or humans as the additional592

training set to boost the performance. 593

Multi-Turn Dialogues in Reasoning. The ad- 594

vancement of dialogue capabilities in LLMs, par- 595

ticularly their proficiency in multi-turn interactions, 596

has been a key focus in LLM research (Ding et al., 597

2023; Tunstall et al., 2023; Zheng et al., 2023). 598

These are many studies on the intersection of math 599

reasoning and interaction. Frieder et al. (2024) ex- 600

plores error types within ChatGPT-generated math 601

solutions, including reasoning errors and miscal- 602

culations. An et al. (2023) proposes using error 603

analysis to improve the accuracy of final solutions. 604

CheckMate (Collins et al., 2024) a prototype plat- 605

form for human-LLM interaction focused on qual- 606

itative evaluation. Our work distinguishes itself 607

by examining an under-explored direction of open- 608

ended multi-turn dialogues: the benchmarking and 609

analysis of combined mathematical reasoning and 610

instruction-following on LLMs. 611

6 Conclusion 612

This paper introduces the MathChat benchmark 613

as a new evaluative framework for assessing the 614

capabilities of large language models (LLMs) in 615

mathematical problem-solving and open-ended QA 616

within multi-turn dialogue contexts. We demon- 617

strate that while existing math-specialized LLMs 618

excel at single-turn question-answering tasks, they 619

significantly struggle with more complex, open- 620

ended tasks that require understanding and fol- 621

lowing multi-turn instructions. We also collect 622

and release a fine-tuning dataset MathChatsync with 623

math-centered dialogue interactions. LLMs trained 624

with MathChatsync show marked improvements in 625

handling complex tasks in MathChat that require 626

higher levels of comprehension and adaptability. 627
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Limitation628

One consideration of our work is that the MathChat629

dataset is generated using LLMs. To address this630

concern, we have taken proactive measures to en-631

hance data quality and reliability. Instead of solely632

relying on GPT-4, we designed an augmentation633

strategy that builds upon the high-quality, human-634

annotated GSM8K dataset to generate novel tasks.635

This approach has been effective in expanding train-636

ing data and creating robust evaluation benchmarks.637

Additionally, for the two problem-solving tasks638

with deterministic answers, we integrated human639

verification alongside model validation to ensure640

response accuracy. These measures collectively641

strengthen the integrity of MathChat, providing a642

comprehensive and reliable benchmark for evaluat-643

ing multi-turn mathematical reasoning in LLMs.644

Importantly, the core contribution of MathChat645

extends beyond data generation—it establishes a646

structured evaluation framework for multi-turn rea-647

soning, advancing a crucial yet under-explored re-648

search direction.649

Broader Impact650

MathChat has the potential to significantly impact651

AI-driven education by enabling more interactive652

and adaptive tutoring systems. Applications of our653

work include intelligent tutoring assistants, educa-654

tional chatbots, and AI-powered problem-solving655

tools that can support students in developing math-656

ematical reasoning skills.657
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A Appendix978

A.1 Overall Results979

To facilitate a more thorough and direct comparison980

across different models on our MathChat bench-981

mark, we have formulated three comprehensive982

metrics based on two key aspects: problem-solving983

accuracy and open-ended task quality. Initially,984

we normalize all sub-metrics to a 0-1 scale. For985

problem-solving tasks, including follow-up QA986

and error correction, accuracies are normalized by987

dividing each by 100. For open-ended tasks, which988

are graded on a 1 to 5 scale, we normalize by divid-989

ing the scores by 5. We then define three metrics:990

1) Overall Average: the average score of all ten sub-991

metrics listed in Tables 2 and 3; 2) Task Average:992

the average score across the four tasks; 3) Category993

Average: the average score of the two categories,994

i.e., problem-solving and open-ended QA.995

The results in Table 4, based on the met-996

rics defined above, indicate that the model997

with a Mistral backbone, fine-tuned with our998

MathChatsync dataset, achieves the best perfor-999

mance across all three metrics. This proves the1000

effectiveness of our SFT dataset and suggests that1001

there is still potential for improvement in math-1002

specific LLMs.1003

A.2 Analysis of Answer Qualities1004

To evaluate the answer qualities of various mod-1005

els on our MathChat benchmark, we analyzed 5001006

outputs each from Mistral, InternLM2-Math (i.e., 1007

the best math-specialized LLM in Table 2), Mistral- 1008

Math, and our Mistral-MathChatsync model across 1009

tasks such as Follow-up QA, Error Analysis, and 1010

Problem Generation. We employed GPT-4 to cate- 1011

gorize these outputs according to a predefined set 1012

of output categories. Our analysis revealed that the 1013

Mistral-MathChatsync models excel in tasks requir- 1014

ing open-ended responses, like error analysis and 1015

problem generation, while performing comparably 1016

in problem-solving tasks. The following sections 1017

detail these results: 1018

LLMs + MathChatsync SFT achieves state-of- 1019

the-art accuracy in follow-up QA. As shown 1020

in Figure 4, all three math-specific models sig- 1021

nificantly outperform the original Mistral model, 1022

with our MathChatsync model slightly surpassing 1023

the other two, showing the strong mathematical 1024

problem solving ability is still maintained after 1025

MathChatsync fine-tuning. 1026

LLMs + MathChatsync SFT exhibits strong er- 1027

ror identification and correction abilities. Figure 1028

5 shows that although the Mistral model identifies 1029

errors in mathematical problems, it falls short in 1030

offering corrections. InternLM2-Math and Math- 1031

SFT show reduced error detection capabilities due 1032

to their intensive training on straightforward math 1033

QA. In contrast, our MathChatsync model demon- 1034

strates a robust capacity for both identifying and 1035

correcting errors. 1036

LLMs + MathChatsync SFT demonstrates su- 1037

perior performance in problem generation. As 1038

shown in 6, our MathChatsync model excels in prob- 1039

lem generation tasks, while the other two math- 1040

specific models (InternLM2-Math and Math-SFT) 1041

struggle with instruction following and basic com- 1042

prehension, highlighting the effectiveness of our 1043

MathChatsync fine-tuning approach. 1044

A.3 Connection Between Few-Shot Prompting 1045

and MathChat 1046

We conducted an experiment to compare the per- 1047

formance of models using few-shot prompting and 1048

MathChat on the GSM8K dataset. Our goal was 1049

to understand the differences in performance when 1050

using these two methods. In particular, we hypoth- 1051

esized that the additional context provided by few- 1052

shot prompting would positively impact the models’ 1053

performance, similar to how MathChat requires in- 1054

formation from the extra conversational context. 1055

The results in Table 5 show a general trend that 1056

few-shot prompting improves performance over 1057
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Model Overall Average Task Average Category Average
LLaMA2-chat 0.424 0.418 0.384
Mistral-Instruct 0.550 0.544 0.507
Gemma-it 0.463 0.463 0.432
MAmmoTH 0.422 0.442 0.424
MetaMath 0.451 0.470 0.463
WizardMath 0.454 0.492 0.476
DeepSeek-Math 0.452 0.500 0.476
InternLM2-Math 0.617 0.635 0.608
Gemma-Math 0.464 0.491 0.463
Gemma-Math-IT 0.508 0.528 0.511
Gemma-Math-IT-Chat 0.549 0.564 0.548
Mistral-Math 0.519 0.549 0.514
Mistral-Math-IT 0.565 0.586 0.557
Mistral-Math-IT-Chat 0.574 0.593 0.565
Gemma-MathChat (Ours) 0.623 0.622 0.608
Mistral-MathChat (Ours) 0.661 0.664 0.638

Table 4: Overall results of 7B LLMs. The best models are bold and the second best is underlined.
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Figure 4: The Round3 answer quality in follow-up QA task.
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Model GSM8K Zero
Shot (R1)

GSM8K Few
Shot

Performance
Drop (R1 to
R2)

Performance
Change

Mistral-Instruct 32.06 40.56 36.38% +26.49%
Gemma-it 37.60 36.54 53.04% -2.82%
MAmmoTH 66.85 59.36 51.88% -11.20%
MetaMath 77.18 72.25 43.04% -6.39%
WizardMath 83.20 78.99 46.15% -5.06%
DeepSeek-Math 79.40 80.97 39.29% +1.98%
InternLM2-Math 83.80 76.88 52.02% -8.26%

Table 5: Comparison of GSM8K Zero Shot and Few Shot Performance, Performance Drop (R1 to R2), and
Performance Change (Zero Shot to Few Shot).

zero-shot, but not uniformly. For instance, models1058

like Mistral-Instruct and DeepSeek-Math experi-1059

enced notable gains in performance from zero-shot1060

to few-shot prompting, with increases of 26.49%1061

and 1.98%, respectively. However, other models,1062

such as MetaMath and MAmmoTH, saw a per-1063

formance drop in the transition from zero-shot to1064

few-shot, indicating that not all models leverage1065

few-shot prompting effectively. Interestingly, mod-1066

els that benefit from few-shot prompting tend to1067

have a smaller performance drop from R1 to R2.1068

This indirectly supports your guess that there is a1069

correlation between multi-turn reasoning and few-1070

shot learning. We believe this is because both tasks1071

require models to have strong long-context com-1072

prehension and reasoning abilities.1073

A.4 Impact of Removing Prior Conversation1074

Context1075

In this experiment, we evaluate the performance of1076

various models on the second and third rounds (R21077

and R3) of questions, both with and without the1078

context provided by the previous rounds. Specif-1079

ically, we report the performance when running1080

on R2 and R3 questions individually, without the1081

context from R1 and R1/2 in Table 6, respectively.1082

The results indicate that removing the prior con-1083

versation context negatively impacts all models’1084

performance. This confirms that when a model can1085

engage with the full conversation context in Math-1086

Chat, it significantly enhances subsequent rounds1087

of problem-solving. These findings highlight the1088

importance of conversational context in evaluating1089

a model’s reasoning ability, further validating the1090

effectiveness of our benchmark.1091

A.5 Experiment Details 1092

A.5.1 Existing LLM Baselines 1093

We test three general-purpose, open-source models: 1094

LLaMA2-7B-chat (Touvron et al., 2023b), Mistral- 1095

7B-Instruct (Jiang et al., 2023) and Gemma-7B- 1096

it (Team et al., 2024). Additionally, we exam- 1097

ine five math-specific LLMs: MAmmoTH (Yue 1098

et al., 2024) create and release MathInstruct, a 1099

math problem-solving dataset including CoT-style 1100

and PoT-style annotations and perform Supervised 1101

Fine-Tuning (SFT) on various base LLMs. In 1102

this paper, we use their released MAmmoTH- 1103

Mistral-7B variant. MetaMath-Mistral-7B (Yu 1104

et al., 2024) is trained on augmented math data 1105

based on GSM8K and MATH. WizardMath-7B- 1106

v1.1 (Luo et al., 2023) utilizes both SFT and re- 1107

inforcement learning from evol-instruct Feedback 1108

on math instructions. InternLM2-7B-Math (Ying 1109

et al., 2024) and DeepSeek-7B-Math (Shao et al., 1110

2024) incorporate pre-training, SFT, and prefer- 1111

ence alignment focused on a mathematical corpus. 1112

We also present the performance of GPT-3.5-turbo, 1113

GPT-4-turbo and the latest GPT-4o. 1114

A.5.2 Supervised Fine-tuning Implementation 1115

We utilize Mistral-7B and Gemma-7B as our back- 1116

bone models and conduct fine-tuning using Low- 1117

Rank Adaptation (LoRA) (Hu et al., 2021), with 1118

the rank set to 8 and alpha to 16. In our training 1119

process, we do not employ any specific templates 1120

or prefixes for the QA pairs but utilize the default 1121

chat template of the base models for transform- 1122

ing dialogues. The implementation is based on 1123

Pytorch along with the DeepSpeed (Rasley et al., 1124

2020) Library, and the models are trained on 8 1125

NVIDIA V100 GPUs, each with 32GB of memory. 1126

We opt for float-16 (FP16) precision to decrease 1127

memory demands and computational requirements. 1128
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Model R2 (Original) R3 (Original) R2 (Without R1) R3 (Without R1/R2)
Mistral-Instruct 20.40 13.70 13.50 10.00
Gemma-it 17.65 10.57 15.16 6.60
MAmmoTH 32.16 19.31 21.75 9.25
MetaMath 43.98 32.16 30.47 17.82
WizardMath 44.81 36.86 41.70 29.80
DeepSeek-Math 48.19 35.70 48.14 35.18
InternLM2-Math 40.20 28.64 38.13 24.34

Table 6: Performance comparison of R2 and R3 with and without prior context from R1 and R1/2.

Calculation Error 
41.7%

Reasoning Error 
32.5%

Conceptual Error 
9.58%

Others, 2.40%

Figure 7: The distribution of error types on error correc-
tion task.

The fine-tuning is carried out over three epochs,1129

with a batch size of 32 and a learning rate of 3e-1130

5. The cumulative training time for integrating all1131

three types of datasets amounts to approximately1132

72 hours, and the training time for SFT with Math1133

+ MathChatsync is around 30 hours.1134

A.6 Error Type Analysis1135

To ensure our benchmark contains a diverse array1136

of error types, we randomly sampled 500 errors1137

from our error correction task and used GPT-4 to1138

determine their error types. The distribution of1139

errors are shown in Figure 7: Calculation Errors1140

were most frequent, accounting for 41.8% of the1141

total. Reasoning Errors constituted 32.6%, indi-1142

cating challenges in logical thinking and strategiz-1143

ing the steps required to solve problems. Concep-1144

tual Errors, making up 9.6%, pointed to difficul-1145

ties in understanding underlying mathematical con-1146

cepts. Ambiguity in solutions was noted in 13.8%1147

of cases, where the provided solution is ambiguous1148

or unclear. This range of error types highlights the1149

broad spectrum of challenges that MathChat con-1150

tains, making our benchmark a robust tool for diag-1151

nosing and improving error correction and analysis1152

ability across a variety of categories. 1153

A.7 Case Study 1154

Follow-up QA Figure 8 displays the responses 1155

from four LLMs on the follow-up QA task, specifi- 1156

cally focusing on the third round of each model’s 1157

response. The Mistral-instruct and Mistral-Math 1158

models, despite performing well in the first two 1159

rounds, exhibit reasoning errors in their third-round 1160

outputs. The InternLM2-Math model demonstrates 1161

a correct reasoning chain but makes a calculation 1162

error, resulting in an incorrect answer. These re- 1163

sults indicate that the three models struggle with 1164

long-context reasoning, leading to increased errors 1165

as the number of dialogue turns rises. In contrast, 1166

our model, trained with MathChatsync, consistently 1167

performs well and successfully solves the third- 1168

round problem. 1169

Error Analysis Figure 9 shows the responses 1170

from four LLMs on an error analysis task. This 1171

base model - Gemma-it 7B correctly identified the 1172

calculation error regarding the sheep in Toulouse 1173

and corrected the user’s response. However, the 1174

feedback was verbose and included unnecessary de- 1175

tails, potentially leading to confusion. The models 1176

fine-tuned with existing datasets failed to recognize 1177

the error in the user’s solution, incorrectly affirm- 1178

ing the erroneous calculation. This indicates a lack 1179

of training focus on error identification and correc- 1180

tion capabilities in these models. Trained with our 1181

MathChat dataset, the model successfully identi- 1182

fied and corrected the calculation error in a concise 1183

and clear manner. The analysis shows the impor- 1184

tance of targeted, dialogue-rich training datasets 1185

like MathChatsync in developing LLMs that are ca- 1186

pable of effective educational interaction. The su- 1187

perior performance of the MathChat-trained model 1188

demonstrates its potential as a valuable tool in edu- 1189

cational settings, offering precise and understand- 1190

able corrections that can aid learning. 1191
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Dialogue History of Mistral-instruct: (Reasoning Error)
<User>: The expenditure of Joseph in May was $500. In June, his expenditure was $60 less. How 
much was his total expenditure for those two months?

<Assistant>: To find the total expenditure for May and June, we first need to determine Joseph's 
expenditure in June. We know that his expenditure in May was $500 and it was $60 less in 
June.\n\nJoseph's expenditure in June = May's expenditure - $60\n                                            = $500 -
$60\n  = $440\n\nNow that we have the expenditure for both months, we can find the total by 
adding them together.\n\nTotal expenditure = May's expenditure + June's expenditure\n  = $500 
+ $440\n  = $940\n\nSo, the answer is $940.

<User>: Considering Joseph's expenditures, if in July he decided to increase his spending by 20% 
compared to June, what was his expenditure in July?

<Assistant>: To find Joseph's expenditure in July, we first need to determine how much more he 
spent compared to June, which was a 20% increase.\n\nPercentage increase = Total increase / 
Original amount * 100%\n = $X / $440 * 100%\n\nWe don't know the exact value of $X (the total 
increase), but we can find it by setting up an equation:\n\nTotal increase = Percentage 
increase * Original amount\n = 20% * $440\n   = 0.2 * $440\n  = $88\n\nNow that we know the 
total increase, we can find Joseph's expenditure in July:\n\nJoseph's expenditure in July = 
June's expenditure + Total increase\n  = $440 + $88\n = $528\n\nSo, the answer is $528.

<User>: Now, if Joseph decides to save 15% of his total expenditure in July for an emergency fund 
and the rest he plans to split equally to support three causes he believes in, how much money will 
each cause receive?

<Assistant>: First, let's calculate the amount Joseph saved for his emergency fund in 
July:\n\nAmount saved = Percentage saved * Total expenditure\n = 15% * $528\n                   = 0.15 
* $528\n  = $80.20 (rounded to the nearest cent)\n\nNow, we'll find the amount left for the three 
causes:\n\nAmount for causes = Total expenditure - Amount saved\n  = $528 - $80.20\n  = 
$447.80\n\nSince Joseph plans to split the money equally among the three causes, we can find 
the amount each cause will receive:\n\nAmount for one cause = Amount for causes / Number 
of causes\n = $447.80 / 3\n =$149.27. 

Follow-up QA Case Study

Dialogue History of Mistral-Math: (Reasoning Error)
<User>: The expenditure of Joseph in May was $500. In June, his expenditure was $60 less. How 
much was his total expenditure for those two months?

<Assistant>: Joseph's expenditure in May was $500.\nIn June, his expenditure was $60 less, so 
it was $500 - $60 = $440.\nTo find his total expenditure for those two months, we add his 
expenditure in May and June: $500 + $440 = $940.\nTherefore, Joseph's total expenditure for 
those two months was $940.

<User>: Considering Joseph's expenditures, if in July he decided to increase his spending by 20% 
compared to June, what was his expenditure in July?

<Assistant>:If Joseph's expenditure in June was $440, and he decided to increase his spending 
by 20% in July, we can calculate his expenditure in July by adding 20% of $440 to $440.\n20% of 
$440 is (20/100) * $440 = $88.\nSo, Joseph's expenditure in July would be $440 + $88 = 
$528.\nThe answer is: 528 

<User>: Now, if Joseph decides to save 15% of his total expenditure in July for an emergency fund 
and the rest he plans to split equally to support three causes he believes in, how much money will 
each cause receive?

<Assistant>: If Joseph's expenditure in July was $528, and he decides to save 15% of it for his 
emergency fund, we can calculate the amount he saves by multiplying $528 by 
15/100.\n15/100 * $528 = $84.\nSo, Joseph saves $84 for his emergency fund.\nThe remaining 
amount he plans to split equally among three causes is $528 - $84 = $444.\nTo find out how 
much each cause will receive, we divide $444 by 3.\n$444 / 3 = $148.\nTherefore, each cause 
will receive $148.\nThe answer is: 148

Dialogue History of InternLM2-Math: (Calculation Error)

<User>: The expenditure of Joseph in May was $500. In June, his expenditure was 
$60 less. How much was his total expenditure for those two months?

<Assistant>: To find the total expenditure for those two months, we need to 
add the expenditure in May and June. \nIn June, the expenditure was $60 less 
than in May, so we subtract $60 from $500 to get the June expenditure. \n$500 
- $60 = $440\nNow, we add the expenditure in May and June: $500 + $440 = 
$940\nTherefore, the total expenditure for those two months was $940.\nThe
answer is 940.

<User>: Considering Joseph's expenditures, if in July he decided to increase his 
spending by 20% compared to June, what was his expenditure in July?

<Assistant>: If Joseph increased his spending by 20% in July compared to 
June, we need to find 20% of the June expenditure and add it to the June 
expenditure. \n20% of $440 is (20/100) * $440 = $88\nSo, the expenditure in 
July was $440 + $88 = $528\nTherefore, Joseph's expenditure in July was 
$528.\nThe answer is 528.

<User>: Now, if Joseph decides to save 15% of his total expenditure in July for an 
emergency fund and the rest he plans to split equally to support three causes he 
believes in, how much money will each cause receive?

<Assistant>: First, we need to find 15% of the July expenditure to determine 
how much Joseph will save for his emergency fund. \n15% of $528 is (15/100) * 
$528 = $79.2\nSo, Joseph will save $79.2 for his emergency fund.\nThe
remaining amount that Joseph will split equally among three causes is $528 -
$79.2 = $448.8\nTo find out how much each cause will receive, we divide the 
remaining amount by 3: $448.8 / 3 = $149 \nTherefore, each cause will receive 
$149.6\nThe answer is 149. (Calculation Error)

Dialogue History of Mistral-MathChat (Ours): (Correct Solution!)

<User>: The expenditure of Joseph in May was $500. In June, his expenditure was 
$60 less. How much was his total expenditure for those two months?

<Assistant>: Joseph's expenditure in May was $500.\nIn June, his expenditure 
was $60 less, so it was $500 - $60 = $440.\nTo find the total expenditure for 
those two months, we add the expenditures together: $500 + $440 = 
$940.\nThe answer is: 940

<User>: Considering Joseph's expenditures, if in July he decided to increase his 
spending by 20% compared to June, what was his expenditure in July?

<Assistant>: To find the expenditure in July, we first calculate the 20% increase 
of $440, which is $440 * 0.20 = $88. Then, we add this increase to the 
expenditure in June: $440 + $88 = $528. So, Joseph's expenditure in July was 
$528.

<User>: Now, if Joseph decides to save 15% of his total expenditure in July for an 
emergency fund and the rest he plans to split equally to support three causes he 
believes in, how much money will each cause receive?

<Assistant>: First, we calculate 15% of $528, which is $528 * 0.15 = $79.20. This 
amount is saved for the emergency fund. The remaining amount for the three 
causes is $528 - $79.20 = $448.80. Since Joseph plans to split this equally 
among three causes, each cause will receive $448.80 / 3 = $149.60. 

Figure 8: This figure illustrates the responses of four different LLMs in a follow-up QA task.

Dialogue History: 
<User>: Please give me a math problem and I will answer that. You need to analyze my 
solution and correct it if I make errors.

<Assistant>: Let's solve a math problem. Toulouse has twice as many sheep as 
Charleston. Charleston has 4 times as many sheep as Seattle. Together, how many sheep 
do Toulouse, Charleston, and Seattle have if Seattle has 20 sheep?

<User>: Okay, let me try to solve it. If Seattle has 20 sheep, then Charleston has 4 times 
20, which is 80 sheep. Then, if Toulouse has twice as many sheep as Charleston, that 
would be 2 times 20, giving Toulouse 40 sheep. So, added together, they should have 20 
sheep + 80 sheep + 40 sheep = 140 sheep. Is that correct? Please check my work.

Gemma-MathChat Response (Ours): (Correct and fluent)
You made a mistake in your calculation. Let's go through it again. If Seattle has 20 sheep, 
then Charleston has 4 times 20, which is 80 sheep. If Toulouse has twice as many sheep 
as Charleston, that would be 2 times 80, giving Toulouse 160 sheep. So, added together, 

they should have 20 sheep + 80 sheep + 160 sheep = 260 sheep. Please check your 
calculation again.

Gemma-it Response: (Too verbose)
You correctly calculated the number of sheep for Charleston, but you doubled the 

number of sheep for Toulouse instead of multiplying it by 2. And you did not add the 
number of sheep for Seattle, Charleston, and Toulouse correctly. Corrected solution: 

Toulouse has twice as many sheep as Charleston. Charleston has 4 times as many sheep 
as Seattle. Together, how many sheep do Toulouse, Charleston, and Seattle have if Seattle 

has 20 sheep? Okay, let me try to solve it. If Seattle has 20 sheep, then Charleston has 4 
times 20, which is 80 sheep. Then, if Toulouse has twice as many sheep as Charleston, 

that would be 2 times 80, giving Toulouse 160 sheep. So, added together, they should have 
20 sheep + 80 sheep + 160 sheep = 260 sheep 

Gemma-Math-IT Response: (Fail to identify errors)
Yes, you are correct! Toulouse, Charleston, and Seattle have a total of 140 sheep.

Gemma-Math-IT-Chat Response: (Fail to identify errors)
Yes, that is correct. You have correctly calculated the number of sheep each city has and 

then added them together to find the total number of sheep they have. So, Toulouse, 
Charleston, and Seattle have a total of 140 sheep.Gemma-Math Response: (Fail to identify errors)

Yes, you are correct. Your solution is correct. Seattle has 20 sheep, Charleston has 80 
sheep, and Toulouse has 40 sheep. Added together, they have 20 + 80 + 40 = 140 sheep. 

You solved the problem correctly.

Error Analysis Case Study

Figure 9: This figure illustrates the responses of four different LLMs in an error analysis task. The base Gemma-it
model identifies and corrects the error but with verbosity, models fine-tuned with existing datasets fail to detect the
error, and the MathChatsync model successfully identifies and corrects the error succinctly and accurately.
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Problem Generation Figure 10 presents the re-1192

sponses from four LLMs on the problem generation1193

task. The Mistral-Instruct and Mistral-Math mod-1194

els provide incorrect solutions when generating a1195

new problem, while the InternLM2-Math model1196

fails to follow the instructions for generating solu-1197

tions to the new problem. Only our model, trained1198

with MathChatsync, successfully understands the1199

instructions and delivers a high-quality solution.1200

A.8 Prompt for Generating Task Data1201

The prompts used to generate our MathChat bench-1202

mark is provided in Figure 11, 12, 13 and 14.1203

A.9 Prompt for Evaluating Open-ended Tasks1204

We provide the prompts used for evaluating the1205

results of Error Analysis and Problem Generation1206

in Figure 15 and 16.1207

Prompt for Generating MathChatsync1208

The prompt for generating MathChatsync is shown1209

in Figure 17.1210
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Dialogue History
<User>: Your task is to create a similar math problem based on a given seed 

problem. The generated problem should be accompanied by a detailed solution.

<Assistant>: Understood, please give me the seed problem.

<User> : Seed problem: Carlos is planting a lemon tree. The tree will cost $90 to 
plant. Each year it will grow 7 lemons, which he can sell for $1.5 each. It costs $3 a 
year to water and feed the tree. How many years will it take before he starts earning 

money on the lemon tree? 
Solution: He makes $10.5 selling lemons each year because 7 x 1.5 = 

<<7*1.5=10.5>>10.5\n He earns $7.5 each year from the lemon tree because 10.5 -
3 = <<10.5-3=7.5>>7.5\n It will take 12 years to earn enough to pay off the tree 

because 90 / 7.5 = <<90/7.5=12>>12\n He will make money in year 13 because 12 + 
1 = <<12+1=13>>13. Answer is 13.

Problem Generation Case Study

Response of Mistral-instruct: (Low-quality Solution)

<Assistant>: Problem: Sarah is raising a rabbit. The rabbit hutch costs $120 to build. Each year, 
the rabbit produces 12 baby rabbits, which she can sell for $5 each. It costs $5 a year to feed 
and care for the rabbit. How many years will it take before she starts earning money on the 
rabbit farm?\n\n

Solution: Sarah makes $11 selling baby rabbits each year because 12 x 5 = <<12*5=60>>60, but 
she has to subtract the cost of caring for the mother rabbit, so she makes $11 - $5 = <<11-
5=6>>6\nShe earns $6 each year from the rabbit farm because 11 - 5 = 6\nIt will take 20 years to 
earn enough to pay off the rabbit hutch because 120 / 6 = <<120/6=20>>20\nShe will make 
money in year 21 because 20 + 1 = <<20+1=21>>21.

Response of InternLM2-Math: (No Solution Provided)

<Assistant>: Carlos is planting a lemon tree. The tree will cost $90 to plant. 
Each year it will grow 7 lemons, which he can sell for $1.5 each. It costs $3 a 
year to water and feed the tree. If Carlos sells all the lemons he grows and 
uses the money to pay off the initial planting cost, how many years will it take 
for him to earn $100 in total from the lemon tree.

Response of Mistral-Math: (Low-quality Solution)

<Assistant>: Carlos is planting an apple tree. The tree will cost $100 to plant. 
Each year it will grow 8 apples, which he can sell for $2 each. It costs $4 a year 
to water and feed the tree.\nHow many years will it take before he starts 
earning money on the apple tree?
Solution:\nHe makes $16 selling apples each year because 8 x 2 = 
<<8*2=16>>16\nHe earns $12 each year from the apple tree because 16 - 4 = 
<<16-4=12>>12\nIt will take 9 years to earn enough to pay off the apple tree 
because 100 / 12 = <<100/12=8.33>>8.33\nHe will make money in year 10 
because 9 + 1 = <<9+1=10>>10\nThe answer is: 10

Response of Mistral-MathChat: (Good Response!)

<Assistant>: Sara is planting a cherry tree. The tree will cost $120 to plant. 
Each year it will grow 10 cherries, which she can sell for $2 each. It costs $5 a 
year to water and feed the tree. How many years will it take before she starts 
earning money on the cherry tree?
Solution: She makes $20 selling cherries each year because 10 x 2 = 
<<10*2=20>>20\nShe earns $15 each year from the cherry tree because 20 - 5 
= <<20-5=15>>15\nIt will take 8 years to earn enough to pay off the tree 
because 120 / 15 = <<120/15=8>>8\nShe will make money in year 9 because 8 
+ 1 = <<8+1=9>>9

Figure 10: This figure illustrates the responses of four different LLMs in a problem generation task.
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Objective: To create a dialogue math problem-solving session involving two 
characters A and B that contains two follow-up question-answerings, where A 
acts as the questioner and B as the responder. 

Initial Round:

A (Questioner): Begins the session by asking a seed math problem.
B (Responder): Responds with the correct answer to the seed problem.

There should be exact four follow-up rounds in the response in the format of 
A:...\n B:...\n A:...\n B....\n.

A: Asks a follow-up question that is more challenging than the original problem, 
but logically connected to it. The answer should be a single value.
B: Provides a correct and detailed solution to the first follow-up question. End 
the response with 'The answer is \ANSWER{THE_FINAL_ANSWER}'. 
Second Follow-Up Round:

A: Poses another follow-up question, further increasing in difficulty from the 
first follow-up, and maintaining a logical connection to the previous questions. 
The answer should be a single value.
B: Responds with a correct and comprehensive solution to the second follow-up 
question. End the response with 'The answer is 
\ANSWER{THE_FINAL_ANSWER}'. 

Guidelines:

Complexity: Ensure that each follow-up question is more challenging than the 
preceding one, introducing new complexities or requiring deeper understanding.
Accuracy: B must provide accurate and mathematically sound answers.
Explanation: B should include clear explanations for each solution, demonstrating 
the thought process and mathematical principles used.
Clarity: Both A and B should use clear, concise language appropriate for the 
intended educational level of the math problems.
Creativity: A is encouraged to be creative in formulating follow-up questions 
that are engaging and thought-provoking.

System Prompt for Follow-up QA

Figure 11: The system prompt for generating FOLLOW-UP QA task data.
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Objective: To create a dialogue-based interaction centered around a math 
problem between two characters A and B, where A presents the original 
problem and B attempts to solve it, initially providing an incorrect solution, and 
then revising it to align with the correct answer.

There should be exact four rounds in the response in the format of A:...\n 
B:...\n A:...\n B....\n. The dialogue should follow the structure below:

1. A starts the dialogue by presenting a math problem. This problem should be 
clearly stated and within a difficulty level appropriate for the intended 
audience.

First Attempt at Solution by B.

2. B responds to the problem with an attempt to solve it. Importantly, this 
first attempt must give an incorrect answer value, demonstrating a common 
misunderstanding or error that could be made in solving such a problem.

Request for Revision by A:

3. After B's response, A points out that the solution is incorrect and prompt B 
to reconsider its approach and give a new answer. No need to explain the 
mistake at this point. Just ask B to revise the solution.

4. Taking into account the feedback from A, B revises its solution. This time, 
the answer should be correct and align with the seed answer provided initially. B 
should also explain the reasoning behind the revised solution, highlighting the 
correction of the initial mistake. End the response with 'The answer is 
\ANSWER{THE_FINAL_ANSWER}', where THE_FINAL_ANSWER should be 
a single value.

Notes:
Use the seed problem and answer provided to guide the dialogue. The final 

answer should be the same as the seed answer.
Ensure the dialogue maintains a collaborative and educational tone throughout.
The interaction should mimic a tutoring session, with A acting as a guide or 

teacher, and B as a learning student.
The math problem, incorrect solution, and subsequent dialogue should be 

tailored to the target audience's understanding level and learning objectives.
Keep the dialogue concise yet informative, focusing on the key educational 

aspects of the problem-solving process.

System Prompt for Error Correction

Figure 12: The system prompt for generating ERROR CORRECTION task data.
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Objective: To create a dialogue-based interaction centered around a math 
problem between two characters A and B, where A presents the original 
problem and B attempts to solve it, initially providing an incorrect solution, and 
then A pointing out the error and revising it to align with the correct answer.

There should be exact three rounds in the response in the format of A:...\n 
B:...\n A:...\n. The dialogue should follow the structure below:

1. A starts the dialogue by presenting a math problem. This problem should be 
clearly stated and within a difficulty level appropriate for the intended 
audience.

First Attempt at Solution by B.

2. B responds to the problem with an attempt to solve it. Importantly, this 
first attempt must gives an incorrect answer value, demonstrating a common 
misunderstanding or error that could be made in solving such a problem. And 
request for an evaluation and analysis by A:

3. After B's response, A points out the errors inside B's attempt and corrects 
it into a correct solution that aligns with the given ground truth answer. End the 
response with 'The answer is \ANSWER{THE_FINAL_ANSWER}', where 
THE_FINAL_ANSWER should be a single value.

Notes:
Use the seed problem and answer provided to guide the dialogue. The final 

answer should be the same as the seed answer.
Ensure the dialogue maintains a collaborative and educational tone throughout.
The interaction should mimic a tutoring session, with A acting as a guide or 

teacher, and B as a learning student.
Keep the dialogue concise yet informative, focusing on the key educational 

aspects of the problem-solving process.

System Prompt for Error Analysis

Figure 13: The system prompt for generating ERROR ANALYSIS task data.
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Objective: Creating new math problems based on a given seed problem. The 
generated problems should either explore the same topic in greater depth or apply 
the same mathematical principles in a different context. Each problem should be 
accompanied by a detailed solution that demonstrates the correct application of 
the mathematical principles involved.

Instructions:

1. Analyze the Seed Problem: Carefully read and understand the seed math 
problem provided. Identify the key mathematical concepts and principles it 
involves.

2. Determine the Focus: Choose whether to delve deeper into the same topic as 
the seed problem or to explore a different topic. In either case, ensure the new 
problem applies the same fundamental mathematical principles.

3. Create a New Problem: Craft a new math problem. If delving deeper into the 
same topic, make the problem more complex or nuanced. If exploring a different 
topic, find a creative way to apply the same principles. Ensure the problem is clear, 
concise, and mathematically sound.

4. Provide a Solution: Along with the problem, provide a step-by-step solution. The 
solution should be detailed enough to demonstrate the correct application of the 
mathematical principles involved. The final solution must be a single value instead 
of multiple values.

5. Ensure Variety and Creativity: When generating multiple problems, aim for a 
variety of contexts and applications. Avoid repetitive or overly similar problems to 
ensure a rich and diverse set of data.

6. Check for Accuracy and Clarity: Before finalizing, review the problem and 
solution for mathematical accuracy and clarity in expression. The problem should 
be challenging yet solvable, and the solution should be logical and well-explained.

Return the generated problem and solution in the following format without any 
additional information:

New Problem: [New Problem]
Solution: [Solution]

System Prompt for Problem Generation

Figure 14: The system prompt for generating PROBLEM GENERATION task data.
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Evaluation Prompt for Error Analysis
Evaluate the large language model's ability to identify and correct errors in an 
attempted solution to a math word problem. The evaluation focuses on the model's 
comprehension, analytical reasoning, and problem-solving capabilities within the 
context of mathematical problem-solving. Use the following criteria for scoring:

1. Understanding and Instruction Adherence: Assess how well the AI model 
understands the given task and follows the instructions. Consider whether the AI 
model accurately grasps the context and objectives of the task.
2. Identification of the Wrong Attempt: Evaluate the AI model's capability to 
identify and generate a reasonable and correct analysis of the wrong attempt. Assess 
the depth and accuracy of the analysis.
3. Correction of the Wrong Solution: Measure the effectiveness of the AI model in 
correcting the previously wrong solution into a correct one. This not only involves 
providing the correct answer but also explaining the correct approach to solving the 
problem, ensuring the explanation is mathematically sound and logically structured.

Scoring Guidelines (1-5 points):
1 point: The model shows very poor understanding and adherence to instructions, 
provides incorrect or irrelevant analysis of the wrong attempt, and fails to correct the 
solution or makes it worse.
2 points: The model demonstrates limited understanding and partial adherence to 
instructions, offers an inaccurate or shallow analysis of the wrong attempt, and 
corrects the solution with significant errors or misunderstandings.
3 points: The model shows fair understanding and adherence to instructions, provides 
a moderately accurate analysis of the wrong attempt with some correct elements, and 
corrects the solution with noticeable errors or logical flaws.
4 points: The model demonstrates good understanding and adherence to instructions, 
offers a well-reasoned and mostly accurate analysis of the wrong attempt, and 
corrects the solution effectively with minor mistakes or areas for improvement.
5 points: The model exhibits excellent understanding and strict adherence to 
instructions, provides a detailed and accurate analysis of the wrong attempt, and 
corrects the solution perfectly with a clear, logical, and mathematically sound 
explanation.

For each of the three aspects, provide a score along with a concise rationale for each 
score. Explain how the AI model's performance aligns with the evaluation criteria and 
contributes to effectively identifying, analyzing, and correcting the mathematical 
error. End the response for each score with "Score 1: {SCORE}", "Score 2: {SCORE}", 
and "Score 3: {SCORE}". The SCORE must be a number from 1-5.

Figure 15: The system prompt for evaluating ERROR ANALYSIS results using GPT-4.

23



Evaluation Prompt for Problem Generation
Evaluate the large language model's ability to generate a problem and solution based 
on a provided seed problem. The task assesses the model's understanding, creativity 
in problem generation, and accuracy in solution. Use the following criteria for scoring:

1. Understanding and Instruction Adherence: Assess whether the AI model fully 
grasps the task and adheres to the instructions given. Consider how well the 
generated problem aligns with the seed problem's topic or mathematical principles.
2. Problem Relevance and Quality: Evaluate the relevance and quality of the 
generated problem. Determine if it explores the same topic more deeply or applies 
the same mathematical principles in a different context, while also assessing the 
problem's complexity and ingenuity.
3. Solution Accuracy: Check the correctness of the solution provided for the 
generated problem. Ensure the solution is logically sound, mathematically accurate, 
and effectively solves the problem.

Scoring Guidelines (1-5):

1 point: The model does not understand the task, generates an unrelated problem, and 
provides an incorrect or irrelevant solution.
2 points:  The model shows limited understanding of the task, creates a problem 
somewhat related to the seed problem, but the solution has significant errors or is 
partially irrelevant.
3 points:  The model demonstrates a moderate understanding, generates a problem 
that is relevant and has quality, and provides a solution that is mostly correct with 
some errors or inconsistencies.
4 points: The model exhibits a good understanding, creates a relevant and well-
constructed problem, and provides a solution that is largely correct with minor 
mistakes.
5 points:  The model shows an excellent understanding of the task, generates a highly 
relevant and challenging problem, and provides a perfectly accurate and 
comprehensive solution.

When scoring, consider the overall effectiveness of the AI model in generating a 
coherent and related problem-solution pair. Provide a score for each criterion, and a 
rationale for each score, detailing how the AI model's performance aligns with the 
evaluation criteria and contributes to the quality of the generated content. End the 
response for each score with "Score 1: {SCORE}", "Score 2: {SCORE}", and "Score 3: 
{SCORE}". The SCORE must be a number from 1-5.

Figure 16: The system prompt for evaluating PROBLEM GENERATION results using GPT-4.
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Prompt for MathChatsync Generation
You are given a seed math mathematical problem and its answer, both of which 
are human-annotated and 100% correct. The objective is to create a simulated 
multi-round conversation between a human user (<User>) and an AI assistant 
(<Assistant>) based on the given math problem. The conversation should explore 
various aspects of the problem, including but not limited to direct solutions, 
rephrasings, follow-up queries, solution evaluations, and requests for similar 
problems. The dialogue must adhere to the following guidelines:

Conversation Participants:
<User>: The human user, who will initiate queries, seek clarifications, always ask 
questions.
<Assistant>: The AI assistant, tasked with providing clear, accurate, and 
educational responses to the user's inquiries.
Dialogue Structure:
The conversation must be limited to a maximum of five rounds.
Each round consists of a question from the <User> followed by an answer from the 
<Assistant>.
Content Guidelines:
Make sure all the conversations are related to the math problem itself, do not 
include any irrelevant chat like thank you and bye-bye, etc.
The Content may involve but not limited to rephrasing the problem, seeking 
further explanations, deliberately giving wrong answers and asking for correction, 
or asking for additional, similar problems that could appear in real life.

Input Format:
Seed Problem: <problem>
Seed Answer: <answer>

Desired output format:
<User> ...
<Assistant> ...
up to five rounds of conversation
<User> ...
<Assistant> ... 

Figure 17: The system prompt for generating the MathChatsync dataset for supervised fine-tuning.
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