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ABSTRACT

Transfer learning is known to perform efficiently in many applications empirically,
yet limited literature reports the mechanism behind the scene. This study establishes
both formal derivations and heuristic analysis to formulate the theory of transfer
learning in deep learning. Our framework utilizing layer variational analysis proves
that the success of transfer learning can be guaranteed with corresponding data
conditions. Moreover, our theoretical calculation yields intuitive interpretations
towards the knowledge transfer process. Subsequently, an alternative method
for network-based transfer learning is derived. The method shows an increase in
efficiency and accuracy for domain adaptation. It is particularly advantageous when
new domain data is sufficiently sparse during adaptation. Numerical experiments
over diverse tasks validated our theory and verified that our analytic expression
achieved better performance in domain adaptation than the gradient descent method.

1 INTRODUCTION

Transfer learning is a technique applied to neural networks admitting rapid learning from one (source)
domain to another domain, and it mimics human brains in terms of cognitive understanding. The
concept of transfer learning has been considerably advantageous, and different frameworks have been
formulated for various applications in different fields. For instance, it has been widely applied in image
classification (Quattoni et al., 2008; Zhu et al., 2011; Hussain et al., 2018), object detection (Shin
et al., 2016), and natural language processing (NLP) (Houlsby et al., 2019; Raffel et al., 2019). In
addition to applications in computer vision and NLP, transferability is fundamentally and directly
related to domain adaptation and adversarial learning (Luo et al., 2017; Cao et al., 2018; Ganin et al.,
2016). Another majority field adopting transfer learning is domain adaptation, which investigates
transition problems between two close domains (Kouw & Loog, 2018). A typical understanding is
that transfer learning deals with a general problem where two domains can be rather distinct, allowing
sample space and label space to differ. While domain adaptation is considered a subfield in transfer
learning where the sample/label spaces are fixed with only the probability distributions allowed to be
varied. Several studies have investigated the transferability of network features or representations
through experimentation, and discussed their relation to network structures (Yosinski et al., 2014),
features, and parameter spaces (Neyshabur et al., 2020; Gonthier et al., 2020).

In general, all methods that improve the predictive performance of a target domain, using knowledge
of a source domain, are considered under the transfer learning category (Weiss et al., 2016; Tan et al.,
2018). This work particularly focuses on network-based transfer-learning, which refers to a specific
framework that reuses a pretrained network. This approach is often referred to as finetuning, which
has been shown powerful and widely applied with deep-learning models (Ge & Yu, 2017; Guo et al.,
2019). Even with abundant successes in applications, the understanding of the network-based transfer
learning mechanism from a theoretical framework remains limited.

This paper presents a theoretical framework set out from aspects of functional variation analy-
sis (Gelfand et al., 2000) to rigorously discuss the mechanism of transfer learning. Under the
framework, error estimates can be computed to support the foundation of transfer-learning, and an
interpretation is provided to connect the theoretical derivations with transfer learning mechanism.

Our contributions can be summarized as follows: we formalize transfer learning in a rigorous setting
and variational analysis to build up a theoretical foundation for the empirical technique. A theorem is
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proved through layer variational analysis that under certain data similarity conditions, a transferred
net is guaranteed to transfer knowledge successfully. Moreover, a comprehensible interpretation is
presented to understand the finetuning mechanism. Subsequently, the interpretation reveals that the
reduction of non-trivial transfer learning loss can be represented by a linear regression form, which
naturally leads to analytical (globally) optimal solutions. Experiments in domain adaptation were
conducted and showed promising results, which validated our theoretical framework.

2 RELATED WORK

Transfer Learning Transfer learning based on deep learning has achieved great success, and
finetuning a pretrained model has been considered an influential approach for knowledge transfer (Guo
et al., 2019; Girshick et al., 2014; Long et al., 2015). Due to its importance, many studies attempt to
understand the transferability from a wide range of perspectives, such as its dependency on the base
model (Kornblith et al., 2019), and the relation with features and parameters (Pan & Yang, 2009).
Empirically, similarity could be a factor for successful knowledge transfer. The similarity between
the pretrained and finetuned models was discussed in (Xuhong et al., 2018). Our work begins by
setting up a mathematical framework with data similarity defined, which leads to a new formulation
with intuitive interpretations for transferred models.

Domain Adaptation Typically domain adaptations consider data distributions and deviations to
search for mappings aligning domains. Early literature suggested that assuming data drawn from
certain probabilities (Blitzer et al., 2006) can be used to model and compensate for the domain
mismatch. Some studies then looked for theoretical arguments when a successful adaptation can be
yielded. Particularly, (Redko et al., 2020) estimated learning bounds on various statistical conditions
and yielded theoretical guarantees under classical learning settings. Inspired by deep learning, feature
extractions (Wang & Deng, 2018) and efficient finetuning of networks (Patricia & Caputo, 2014;
Donahue et al., 2014; Li et al., 2019) become popular techniques for achieving domain adaptation
tasks. The finetuning of networks was investigated further to see what was being transferred and
learned in (Wei et al., 2018). This will be close to our investigation on weights optimizations.

3 MATHEMATICAL FRAMEWORK AND ERROR ESTIMATES

3.1 FRAMEWORK FOR NETWORK-BASED TRANSFER LEARNING

To formally address error estimates, we first formulate the framework and notations for consistency.

Definition 3.1 (Neural networks). An n-layer neural network f : R`0 → R`n is a function of the
form:

f = fn ◦ fn−1 ◦ · · · ◦ f1 (1)

for each j = 1, . . . , n, fj = σj ◦ Aj : R`j−1 → R`j is a layer composed by an affine function
Aj(z) := Wjz+bj and an activation function σj : R`j → R`j , withWj ∈ L

(
R`j−1 ,R`j

)
, bj ∈ R`j

and L(K,V ) the collection of all linear maps between two linear spaces K → V .

The concept of transfer learning is formulated as follows:

Definition 3.2 (K-layer fixed transfer learning). Given one (large and diverse) dataset D =
{(xi, yi) ∈ X × Y} and a corresponding n-layer network f = fn ◦ fn−1 ◦ ... ◦ f1 : X → Y
trained by D under loss L(f), the k-layer fixed transfer learning finds a new network g : X → Y of
the form,

g = gn ◦ gn−1 ◦ · · · ◦ gk+1 ◦ fk ◦ · · · ◦ f1︸ ︷︷ ︸
fixed

, (2)

under loss L(g) when a new and similar dataset D̃ = {(x̃i, ỹi) ∈ X × Y} is given. The first k
layers of f remain fixed and gj := σj ◦ Ãj are new layers with affine functions Ãj to be adjusted
(k < j < n).

The net f trained by the original data D is called the pretrained net and g trained by new data D̃ is
called the transferred net or the finetuned net. Transfer learning has the empirical implication of
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“transferring” knowledge from one domain to another by fixing the first few pretrained layers. One
main goal of this study is to characterize the transferring process under layer finetuning.

We utilize the loss function to define the concept of a “well-trained” net, in order to comprehend
the transfer learning mechanism. The losses for the pretrained net f and the transferred net g are
computed on a general label space Y with norm ‖ · ‖Y :

L(f) =
1

N

N∑
i=1

‖f(xi)− yi‖2Y , L(g) =
1

N

N∑
i=1

‖g(x̃i)− ỹi‖2Y . (3)

Definition 3.3 (Well-trained net). Given a dataset D = {(xi, yi) ∈ X × Y}, a network h is called
well-trained under data D within error εtrained > 0 if

L(h) =

N∑
i=1

‖h(xi)− yi‖2Y ≤ ε2
trained. (4)

The definition then implies that a well-pretrained net f within error εpretrained is to satisfy

L(f) ≤ ε2
pretrained. (5)

In certain domain adaptation applications, discussions are in terms of probability distributions (Redko
et al., 2020). Our framework is compatible with the usual probabilistic setting under the independent
and identically distributed (i.i.d.) consideration, frequently applied in practice. In this case, Eq. (3) is
equivalent to

L(f) = E(x,y)∼D `2(f(x), y), L(g) = E(x̃,ỹ)∼D̃ `2(g(x̃), ỹ) (6)

where ` is a norm (error) function.

One intuition for successful knowledge transfer is that the previous knowledge base and the new
domain share some common (or similar) features. The resemblance of two datasets D, D̃ under
transfer learning in this work is defined by:

Definition 3.4 (Data deviation). The data deviation εdata ≥ 0 of two datasets D and D̃ is defined as,

max
i

{
min
j

{
‖(x̃i, ỹi)− (xj , yj)‖X×Y

}}
≤ εdata, (i ≤ |D̃|, j ≤ |D|) (7)

Note that the first minimization in Eq. (7) is recognized as performing sample alignment in the
context of domain adaptation. In fact, for each i ≤ |D̃| there exists an index

ji := arg min
j

{
‖(x̃i, ỹi)− (xj , yj)‖X×Y

}
(8)

such ji then corresponds to the closet sample in D to i. This step is usually referred to as sample
alignment. Domain alignment is then to perform sample alignment over all samples of a given
domain. Consequently, this definition aligns two datasets first and then considers the largest distance
among all aligned pairs. Without loss of generality, in the rest discussions the sample index is
rearranged by Eq. (8) with ji renamed as i for convenience.

3.2 TRANSFER LOSS BOUND VIA LAYER VARIATIONS

Neural networks of the form Eq. (1) with Lipschitz activation functions are Lipschitz continuous.
We utilize Lipschitz constants to control the network propagation and estimate the error of the last
r-layer finetuned nets. The Lipschitz constant of a network h is denoted by Ch in this paper. Let a
pretrained net f be composed of two parts:

f = (fn ◦ · · · ◦ fn−r+1) ◦ (fn−r ◦ · · · ◦ f1) := F ◦ Fn−r (9)

where Fn−r = fn−r ◦ · · · ◦ f1 are layers to be fixed and F = fn ◦ ... ◦ fn−r+1 are the last r layers
to be finetuned (1 < r < n). With only two essential definitions above, our main theorem addressing
the validity of the transfer learning technique can be derived:
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Theorem 3.5 (Finetuned loss bounded by pretrain loss and data). Let D, D̃ be two datasets with deviation
εdata and f = F ◦ Fn−r be a well pretrained network under D, then a net finetuning the last r layers
of f with the form g := (F + δF ) ◦ Fn−r has bounded loss on D̃,

L(g) =
1

N

N∑
i=1

‖g(x̃i)− ỹi‖2Y ≤ C1ε
2
pretrained + C2 ε

2
data, (10)

where δF is a Lipschitz function with CδF ≤ εdata. C1, C2 are two constants depending on CFn−r
,

CF and Cx̃ := maxi ‖x̃i‖X .

Sketch Proof. By g = (F + δF ) ◦ Fn−r and notations in Eq. (8), we have

g (x̃i) = (F + δF ) ◦ Fn−r (x̃i) = f(xji) + v1 (11)

with v1 := δF ◦ Fn−r(x̃i) + f(x̃i)− f(xji). We compute,

1

N

N∑
i=1

‖g(x̃i)− ỹi‖2Y =
1

N

N∑
i=1

‖f(xji)− ỹi + v1‖2Y ≤ 3
(
ε2

pretrained + ε2
data + ‖v1‖2Y

)
, (12)

with Eq. (5) and the triangle inequality applied in the last inequality. Further, we estimate,

‖v1‖2Y ≤ 2
(
‖δF◦Fn−r(x̃i))‖2Y+‖f(x̃i)−f(xi)‖2Y

)
≤ 2
(
C2
δF C

2
Fn−r

C2
x̃+C2

F C
2
Fn−r

ε2
data

)
. (13)

With Eq. (12) and condition CδF ≤ εdata, the result Eq. (10) can be yielded. For the complete proof,
see Appendix 7.1.

Theorem 3.5 depicts that the finetuned loss is bounded by the pretrained loss and the data difference in
Eq. (10), linking the relation of network functions and data into one. This then explains our intuition
why a well-pretrained net beforehand is necessary, and transfer learning is anticipated to be viable
on datasets with certain similarities. Thus, with minimal conditions and definitions, Theorem 3.5
succinctly addresses when transfer learning guarantees a well-finetuned model under a new dataset.
In fact, the generalization error under finetuning is also bounded (Theorem 7.1 Appendix).
Remark 3.6. For two very different datasets, one has εdata � 0. Eq. (10) then indicates such transfer
learning process is generally more difficult as the upper bound becomes large, even with a small
pretraining error εpretrained. Typically in domain adaptation tasks, εdata is not expected to be large.

Remark 3.7. Eq. (10) is regarded as an extension of Eq. (5) whenever D̃ 6= D. The two equations
coincide if εdata = 0 where two domains D, D̃ perfectly align.

4 INTERPRETATIONS & CHARACTERIZATIONS OF NETWORK-BASED
TRANSFER LEARNING

Inspired by the mathematical framework of Theorem 3.5, an intuitive interpretation of network-based
transfer learning can be derived, which in turn leads to a novel formulation for neural network
finetuning. The derivation begins with the Layer Variational Analysis (LVA), where the effect of data
variation and transmission can be addressed.

4.1 LAYER VARIATIONAL ANALYSIS (LVA)

To clarify the effect of one layer variation (r = 1 in Theorem 3.5), we denote the latent variables zi,
z̃i and the last finetuned layer gn from Eq. (2) by,

zi := Fn−1(xi), z̃i := Fn−1(x̃i), gn := fn + δfn (14)

The target prediction error can be related to the pretrain error via the following expansion,

‖g(x̃i)− ỹi‖Y =
∥∥(gn(z̃i)− fn(z̃i)

)
+
(
fn(z̃i)− fn(zi)

)
+
(
f(xi)− yi

)
+
(
yi − ỹi

)∥∥
Y (15)

with six self-canceled-out terms added for auxiliary purposes. Note the identities g(x̃i) = gn(z̃i),
fn(zi) = f(xi) are used and the second grouping can be rewritten by,

fn(z̃i)− fn(zi) = J(fn)(zi) · δzi + δzTi ·H(fn)(zi) · δzi +O(δz3
i ) (16)
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where δzi := (z̃i − zi) corresponds to the latent feature shift; J(fn)(zi) and H(fn)(zi) are the
Jacobian and the Hessian matrix of fn at zi, respectively. In principle, non-linear activation functions
introduce high order δzi terms to Eq. (16), where by considering regression type problems (assuming
fn purely an affine function) the finetune loss Eq. (15) is allowed to be simplified as,

L(g) =
1

N

N∑
i=1

‖δfn(z̃i)− qi‖2Y (17)

with δyi := ỹi − yi and the vector qi ∈ Y defined as

qi := δyi − J(fn)(zi) · δzi + (yi − f(xi)) (18)

which is referred to as transferal residue. Via Transmission of Layer Variations (Appendix 7.3) one
may also write,

qi = δyi − J(f)(xi) · δxi + (yi − f(xi)) (19)

4.2 LVA INTERPRETATIONS & INTUITIONS

The equivalent form Eq. (17) of the transfer loss L(g) = 1
N

∑N
i=1 ‖g(x̃i)− ỹi‖2Y under LVA renders

an intuitive interpretation for network-based transfer learning. The resulting picture is particularly
helpful for domain adaptations.

Transferal residue: We justify the name transferal residue of Eq. (19). There are two pairs:

qi = δyi − J(f)(xi) · δxi
domain mismatch (∆)

+ (yi − f(xi))
pretrain error(?)

(20)

where the first pair (∆) evaluates domain mismatch; the other measures the pretrain error. To see
this, observe: (a) a perfect pretrain f gives f(xi) = yi then (?) = 0, and (b) if two domains match
perfectly D = D̃, δxi = δyi = 0 then (∆) = 0.

In such a perfect case, qi ≡ 0 and there is nothing new for f to learn/adapt in D̃. On the contrary, if f
is ill-pretrained with ‖δxi‖, ‖δyi‖ large, qi becomes large too, indicating there is much to adapt in D̃.
Therefore, the transferal residue characterizes the amount of new knowledge needed to be learned in
the new domain, and hence the name. In short,

‖qi‖ → 0 (nothing to adapt), ‖qi‖ → ∞ (much to adapt)

Layer variations to cancel transferal residue: Whenever the transferal residue is nonzero, the
finetune net g adjusts from f to react, as Eq. (17) assigns layer variation δfn to neutralize qi.
Minimizing the adaptation loss L(g) with δfn, we see that

qi ≈ 0
no

↪−−→
adapt

δfn ≈ 0, qi 6= 0
need
↪−−−→

adapt
δfn

⊗←− min Eq. (17)

In fact, the last adaptation step⊗ is analytically solvable if δfn is a linear functional with ‖ · ‖Y being
L2-norm. By Moore-Penrose pseudo-inverse, the minimum is achieved at

δfn =
(
z̃T · z̃

)−1
z̃T · q (21)

with z̃ := (z̃1, . . . , z̃N ) and q := (q1, . . . , qN ). In short, layer variations tend to digest the knowledge
discrepancy due to domain differences.

Knowledge transfer: As qi reflects the amount of new knowledge left to be digested in D̃, we
see a term J(f)(xi)δxi automatically emerges trying to reduce the remainder in qi. Especially, the
Jacobian term appears with a negative sign opposite to f(xi); it is presented as a self-correction
(self-adaptation) to the new domain. The purpose of J(f)(xi)δxi serves to annihilate the new label
shift δyi Eq. (20) (e.g. Fig. 1) and notice that the self-correction not needed if D = D̃, δxi = 0.

Since the pretrained f contains previous domain information, the term J(f)(xi)δxi indicates the
old knowledge is carried over by f to dissolve the new unknown data. Such quantification then
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Figure 1: An illustration of transferal residue Eq. (20). In this example, a pretrained (animal classifier)
f with 1-hot label is adapted from D → D̃, where D is of dog images and D̃ is of cat images. The
self-correction term transferring the old knowledge attempts to correct predictions, Eq. (20).

yields an interpretation and renders an intuitive view for network-based transfer learning. The LVA
formulation naturally admits 4 types of domain transitions according to Eq. (20): (a) δxi = δyi = 0,
(b) δxi 6= 0, δyi = 0, (c) δxi = 0, δyi 6= 0 and (d) δxi 6= 0, δyi 6= 0.

The analysis can be extended to multi-layer cases as well as Convolutional Neural Networks (CNN);
only that the analytic computation soon becomes cumbersome. Therefore, only one-layer LVA
finetuning is demonstrated in this work. Further discussions and calculations for LVA of two layers
and CNNs can be found in Appendix 7.2. Although there is no explicit formula for multi-layer
cases to obtain the optimal solution, iterative regression can be utilized recursively to obtain a sub-
optimal result analytically without invoking gradient descent. The LVA formulation not only renders
interesting perspectives in theory but also demonstrates successful knowledge adaptations in practice.

5 EXPERIMENTS

Three experiments in various fields were conducted to verify our theoretical formulation. The first task
was a simulated 1D time series regression, the second was Speech Enhancement (SE) of a real-world
voice dataset; the third was an image deblurring task by extending our formula onto Convolutional
Neural Networks (CNNs). The three tasks demonstrated the LVA had prompt adaptation ability under
new domains and confirmed the calculations Eq. (15)∼(18). The code is available on Github1. For
detailed implementations and additional results on adaptive image classifications, see Appendix 8.

5.1 TIME SERIES (1D SIGNAL) REGRESSION

Goal: Train a DNN predicting temporal signal D and adapt it to another signal with noise D̃.

Dataset: Two signals are designed as follows, with D̃ mimicking a noisy signal (a low-quality device)

D =
{

(ti, sin(5πti))
}
i
, D̃ =

{
(ti + 0.05 ξi, γ(ti) sin(5πti)) + 0.03 ηi)

}
i

(22)

with {ti | i = 1, . . . , 2000} ∈ [−1, 1] equally distributed, γ(ti) = 0.4 ti + 1.3998, ξi ∼ N (1.5, 0.8),
ηi ∼ U(−1, 1). N (µ, σ) is a normal distribution of mean µ and variance σ; U as a uniform
distribution [−1, 1].

Implementation: The pretrained model f consists of 3 fully-connected layers of 64 nodes with
ReLu as activation functions. We refer to Appendix for more implementation details.

Result analysis: The adaptation results were compared between the conventional gradient descent
(GD) method and LVA by Eq. (18), (21). The transferred net g from f was finetuned with GD for
12000 epochs, while LVA only requires one step to derive. After adaptation, LVA reached the lowest
L2-loss compared to GD of same finetuned layer numbers, see Fig. 2(f). This verified the stability
and validity of the proposed framework. In addition to obtaining the lowest loss, the actual signal

1https://github.com/HHTseng/Layer-Variational-Analysis.git
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prediction performance can also be observed improved via visualization Fig. 2(b)∼(e) in the case
of finetuning the last one and two layers. Notably, the finetuning loss of two layers indeed further
decreased than that of one layer, which met the expectation as the two-layer case had more free
parameters to reduce loss. Comparing Fig. 2(b)(c), it showed that the 1-layer case LVA obtained more
accurate signal predictions compared to GD’s predictions. Fig. 2(d)(e) showed the results of 2-layer
finetune by GD and LVA. The 2-layer LVA formulation is derived in Appendix 7.2. Observing that the
LVA formulation equips prompt adaptation ability, we further conduct two real-world applications.

Figure 2: (a) Datasets D and D̃ given by Eq. (22), (b) 1-layer finetuning by GD, (c) 1-layer LVA
finetuning, (d) 2-layer finetuning by GD, (e) 2-layer LVA finetuning, (f) the training loss on the
finetuned net over epochs.

5.2 SPEECH ENHANCEMENT

To prove that the proposed method is effective on real data, we conducted experiments on an SE task.

Goal: Train a SE model to enhance (denoise) speech signals in a noisy environment D and adapt to
another noisy environment D̃.

Dataset: Speech data pairs were prepared for the source domain D (served as the training set) and
target domain D̃ (served as the adaptation set) as follows:

D = {(xijk, yi)}N1,N2

i,k

adapt−→ D̃ = {(x̃ijk, ỹi)}Ñ1,Ñ2

i,k (xijk = yi + cj × nk; x̃ijk = ỹi + c̃j × ñk)

where yi denotes a patch2 of a clean speech (as a label), which is then corrupted with noise nk of
type k to form a noisy speech (patch) xijk over an amplification of cj ∝ exp (−SNRj), determined
by a signal-to-noise ratio (SNRj) given. N1 (resp. Ñ1) denotes the number of patches extracted from
clean utterances in D (resp. D̃); N2 (resp. Ñ2) is the number of noise types contained in D (resp.
D̃). An SE model f on D performed denoising such that f(xijk) = yi. In this experiment, 8,000
utterances (corresponding to N1 = 112,000 patches) were randomly excerpted from the Deep Noise
Suppression Challenge (Reddy et al., 2020) dataset; these clean utterances were further contaminated
with domain noise types: nk ∈ {White-noise, Train, Sea, Aircraft-cabin, Airplane-takeoff}, (thus
N2 = 5), at four SNR levels: {−5, 0, 5, 10} (dB) to form the training set. These 112,000 noisy-clean
pairs were used to train the pretrained SE model. We tested performance using different numbers
of adaptation data with Ñ1 varying from 20 to 400 patches (Fig. 3). These adaptation data were
contaminated by three target noise types: ñk ∈ {Baby-cry, Bell, Siren} (thus Ñ2 = 3) at {−1, 1}
(dB) SNR. Note the speech contents, noise types, and SNRs were all mismatched in the training and
adaptation sets.

Implementation: A Bi-directional LSTM (BLSTM) (Chen et al., 2015) model was used to construct
the SE model f under L2-loss, consisting of one-layer BLSTM of 300 nodes and one fully-connected
layer for output. The transferred net g adapted from f by finetuning the last layer was performed by
GD to compare with LVA in Eq. (21). For data processing and network, details see Appendix 8.2.

Domain alignment: It was mentioned that the domain alignment ought to be applied prior to LVA.
For real-world data, optimal transport (Villani, 2009) (OT) was selected for implementation to match
domain distributions. To contrast, LVA with and without OT were conducted.

Evaluation metric: SE performances are usually measured by 3 evaluation metrics, L2-error (MSE),
the perceptual evaluation of speech quality (PESQ) (Rix et al., 2001) and short-time objective
intelligibility (STOI) (Taal et al., 2011). Each metric evaluates different aspects of speech: PESQ
∈ [−0.5, 4.5] evaluates speech quality; STOI ∈ [0, 1] estimates speech intelligibility.

2A patch is defined as a temporal segment extracted from an utterance. We used 128 magnitude spectral
vectors to form a patch in practice.
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Figure 3: Performance of GD vs. LVA by different patch amount Ñ1 of D̃ for adaptation.

Result analysis: We excerpted another 100 utterances, contaminated with the target noise types:
ñk ∈ {Baby-cry, Bell, Siren} at {−1, 1} (dB) SNR levels, to form the test set. Note that the speech
contents were mismatched in the adaptation and test sets. Fig. 3 showed the domain adaptation results
from environment D → D̃ to compare GD with LVA. On this test set, the PESQ and STOI of the
original noisy speech (without SE) were 1.704 and 0.808, respectively. The results in Fig. 3 showed
consistent out-performance of LVA over GD under a different number of adaptation data in D̃ (Ñ1 as
the horizontal axis). Especially, the L2-loss of LVA was notably less than that of GD, confirming that
LVA indeed derived the globally optimal weights of a transferred net. Meanwhile, it was observed
that LVA significantly outperformed GD when the amount of target samples in D̃ was considerably
less. It was also noticed that the LVA equipped OT alignment (LVA-OT) achieves similar performance
to LVA. An example of the enhanced spectrograms by different SE models: the Pretrained, GD, LVA,
and LVA-OT are shown in Fig. 4 with clean and unprocessed noisy spectrograms for comparison.
Fig. 4 shows LVA recovers the speech components with clear structures than Pretrained and GD (see
green rectangles). More extensive result analyses are provided in Appendix 8.2.

Figure 4: Spectrograms of an utterance (Baby-cry noise at SNR −1 dB; Ñ1 = 400 for adaptation).

5.3 SUPER RESOLUTION FOR IMAGE DEBLURRING

Goal: Train a Super-Resolution Convolutional Neural Network (SRCNN, Fig. 5) (Dong et al., 2016)
to deblur images of domain D and adapt to another more blurred domain D̃.

Figure 5: [SRCNN for image deblurring] Pretrain model: a sequence of CNN layers f = fn ◦ · · · f2 ◦
f1. Then last CNN layer fn is finetuned to adapt to more blurred images in D̃.
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Dataset: 2000 high-resolution images were randomly selected as labels from the CUFED
dataset (Wang et al., 2016) to train SRCNN. The source domain (x, y) ∈ D and the target do-
main (x̃, ỹ) ∈ D̃ were set as follows,

x ∈ {×3 blurred patches}, x̃ ∈ {×4, ×6 blurred patches}, y = ỹ ∈ {High-Res patches}
Fig. 6 shows image pairs for adaptation. Another image dataset SET14 (Zeyde et al., 2010) was used
to test adapted models. More image preparation details see Appendix 8.3.

Figure 6: Sample images (CUFED) of D and D̃.

Implementation: This experiment demonstrated that image related tasks can also be implemented
by extending our LVA, Eq. (17), (18), from fully-connected layers to CNNs. Although the analytic
formula Eq. (21) is only valid on a fully-connected layer of regression type, a key observation
admitting such extension is that CNN kernels can locally be regarded as a fully-connected layer, in
that every receptive field is exactly covered by the kernels of a CNN. By proper arrangement, a CNN
kernel C = (Cijγ) can be folded as a fully-connected layer of 2D matrix weight W = (W`m). As
such, the LVA can be extended onto CNNs as finetune layers; detailed implementations see Appendix.
In this experiment, an SRCNN model f (Fig. 5) was trained on source domain D to perform deblur
f(x) = y, and subsequently used GD and LVA to adapt f → g on D̃ such that g(x̃) = ỹ.

Result analysis: Fig. 7 showed the results of adapted models by GD and LVA. In Fig. 7, column (b)
were more blurred inputs x̃ of D̃; column (c)(d)(e) were deblurred images to be compared with the
ground truths in column (a). Column (c)(d) compared the two methods adapted with the same number
of target domain samples (N = 256 patches) and LVA reached the highest PSNR scores. While
more target domain samples were exclusively included for GD to N = 16384 in column (e), the
corresponding PSNRs were still not compatible to the LVA adaptation. There were more extensive
experiments conducted to contrast the adaptation outcome of GD and LVA, see Appendix 8.3.

Figure 7: Image deblurring results of adapted SRCNNs on testing data SET14.

6 CONCLUSIONS

This study aims to provide a theoretical framework for interpreting the mechanism under domain
adaptation. We derived a firm basis to ensure that a finetuned net can be adapted to a new dataset.
The objective of this study was achieved to address “why transfer learning might work?” and unravel
the underlying process. Based on the LVA, a novel formulation for finetuned nets was introduced
and yielded meaningful interpretations of transfer learning. The formalism was further validated
by domain adaptation applications in Speech Enhancement and Super Resolution. Various tasks
were observed to reach the lowest L2-loss under LVA, where the LVA is the theoretical limit for the
gradient descent to approach. The LVA interpretations and successful experiments give this study an
inspiring perspective to view transfer learning.
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7 APPENDIX

7.1 PROOF OF THEOREM 3.6

Consider finetuning on the last r layers in Eq. (2) with k+r = n. Denote Fn−r = fn−r ◦ · · · ◦f1 and
the last r layers F = fn ◦ ... ◦ fn−r+1 of pretrained network and finetuned net G = gn ◦ ... ◦ gn−r+1.
We also write the difference G− F = δF . With the notations, we rewrite

g (x̃i) = G ◦ Fn−r (x̃i) = (F + δF ) ◦ Fn−r (x̃i) = f(xji) + v1, (A.23)

where v1 = δF ◦ Fn−r(x̃i) + f(x̃i)− f(xji) and ji is the corresponding index such that Eq. (7) is
satisfied. Therefore, one computes,

1

N

N∑
i=1

‖g(x̃i)− ỹi‖2Y =
1

N

N∑
i=1

‖f(xji)− ỹi + v1‖2Y

≤ 3

N

N∑
i=1

(
‖f(xji)− yji‖2Y + ‖yji − ỹi‖2Y + ‖v1‖2Y

)
≤ 3

(
ε2

pretrained + ε2
data + ‖v1‖2Y

)
,

(A.24)

where the last term is further estimated by the triangle inequality to yield

‖v1‖2Y ≤ 2
(
‖δF ◦ Fn−r(x̃i))‖2Y + ‖f(x̃i)− f(xji)‖2Y

)
≤ 2
(
C2
δF C

2
Fn−r

C2
x̃ + C2

F C
2
Fn−r

ε2
data

)
.

(A.25)
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with Cx̃ := maxi ‖x̃i‖X . Note that without any additional assumption, the first term in Eq. (A.25)
is of order 1. To obtain a small error of g, one sufficient condition is to have CδF ≈ εdata. It is
interesting to point out that the analysis relates the Lipschitz constant CδF of the network perturbation
with the data similarity εdata.

Theorem 7.1 (Generalization error bound). Given a test (held-out) set D̃test = {(x(test)
i , y(test)

i ) ∈
X × Y}Ntest

i=1 with |D̃test| ≤ |D̃|, then a well-finetuned net g in Theorem 3.5 has a generalization error
bound,

Ltest(g) =
1

Ntest

Ntest∑
i=1

‖g(x̃test
i )− ỹtest

i ‖2Y ≤ C1 ε
2
data + C2 L(g) (A.26)

where εdata is the data deviation between D̃ and D̃test computed by Definition 3.4. C1, C2 are two
constants with C1 depending on the Lipschitz constant Cg and L(g) the finetune loss in Theorem 3.5.

Proof.

Ltest(g) =
1

Ntest

Ntest∑
i=1

‖g(x̃test
i )− ỹtest

i ‖2Y

≤ 3

Ntest

Ntest∑
i=1

(
‖g(x̃test

i )− g(x̃i)‖2Y + ‖ỹtest
i − ỹi‖2Y + ‖g(x̃i)− ỹi‖2Y

)
≤ 3

Ntest

Ntest∑
i=1

(
C2
g ε

2
test + ε2

test

)
+

3

Ntest

N∑
i=1

‖g(x̃i)− ỹi‖2Y

(A.27)

7.2 PERTURBATION APPROXIMATION DERIVATION FOR 2-LAYER CASE

Similarly, let δzi := z̃i − zi and denote the finetuned nth layer and (n− 1)th layer by

gn = fn + δfn, gn−1 = fn−1 + δfn−1 (A.28)

The perturbation assumption allows the approximation of

fn−1(z̃i) ≈ fn−1(zi) + J(fn−1)(zi) · δzi, (A.29)

where J(fn−1)(zi) is the Jacobian matrix of fn−1 at zi. The network assumed to deviate from the
pretrained fn−1 by an affine function,

δfn−1(z̃i) := Wn−1 · δzi + b, (A.30)

for some weight Wn−1 and bias b. With Eq. (A.29) and Eq. (A.30), we obtain

gn−1(z̃i) ≈ fn−1(zi) + b+
(
J(fn−1)(zi) +Wn−1

)
· δzi. (A.31)

With Eq. (A.31),

g(x̃i) = (fn + δfn) ◦ gn−1(z̃i)

≈ fn ◦ fn−1(zi) + fn ◦
((
J(fn−1)(zi) +Wn−1

)
· δzi + b

)
+ δfn ◦ fn−1(zi).

(A.32)

Note that the terms involving multiplications δfn and δfn−1 are omitted as we only focus on the first
order terms. Parallel to Eq. (15) for 1-layer case, we approximate

‖g(x̃i)− ỹi‖Y = ‖ (g(x̃i)− fn ◦ fn−1(zi)) + (fn ◦ fn−1(zi)− yi) + (yi − ỹi) ‖Y (A.33)

and therefore,

‖g(x̃i)− ỹi‖Y ≈ ‖δfn ◦ fn−1(zi) + fn ◦
((
J(fn−1)(zi) +Wn−1 + b

)
(z̃i − zi)

)
+ f(xi)− yi − δyi‖Y .

(A.34)
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We see that the 2-layer fine-tuning case involves three unknown (parameters), including δfn, b, and
Wn−1. Although there is no explicit formula to obtain the optimal solution, iterative regression can
be utilized multiple times to obtain a sub-optimal result analytically without using gradient descent.
In fact, one notices that if b is ignored, the optimization of δfn and Wn−1 based on the L2-loss can be
solved. Once δfn and Wn−1 are solved and fixed, b can be introduced back into the formula and can
be solved again by regression. Similar approximations for general multi-layers cases would still be
reliable as long as the features in the latent space are close to each other. That is to say, the features of
the source and target domain share similarities. These intuition-motivated formulations were shown
to successfully adapt knowledge in experiments for both images and speech signals. The results can
be found in Section 5.

7.3 TRANSMISSION OF LAYER VARIATIONS

We show heuristically the propagation of layer variations in neural nets can be traced via data
deviations. Given two datasets D, D̃ with the indexing after sample alignment, we define

δxi := x̃i − xi, δyi := ỹi − yi (A.35)

Let the data deviation be ε from Def. 3.4, and Eq. (A.35) can be decomposed by orders of ε,

δxi = δx
(1)
i + δx

(2)
i + · · · , δỹi = δy

(1)
i + δy

(2)
i + · · · (A.36)

with O
(
‖δx(k)

i ‖X
)

= O
(
‖δy(k)

i ‖Y
)

= εk. To obtain a simple picture, first we neglect the high

order terms δx(2)
i , δy

(2)
i , etc. In such case, δx(1)

i and δy(1)
i can be simply denoted as δxi and δyi,

respectively, without confusion. By Eq. (14), finetuning the last layer in Theorem 3.5 reveals that

L(g) =
1

N

N∑
i=1

‖ (fn + δfn) ◦ fn−1 ◦ · · · ◦ f1 (x̃i)− ỹi‖2Y

=
1

N

N∑
i=1

‖δfn(z̃i)− ỹi + f(xi) + J(f)(xi)δxi‖2Y +O(ε2)

(A.37)

where J(f)(xi) is the Jacobian of f at xi and O(ε2) contains terms like H(f)(xi)δxiδxi, etc with
H(f)(xi) the Hessian tensor of f at xi. Some effort converts Eq. (A.37) into a familiar form,

L(g) =
1

N

N∑
i=1

‖δfn(z̃i)− qi‖2Y (A.38)

with

qi = δyi − J(f)(xi) · δxi + (yi − f(xi)) (A.39)

Regard that Eq. (A.38) recovers Eq. (16) via different routes and starting points, although the two qi’s
in Eq. (18) and (A.39) slightly differ due to distinct variational conditions. This heuristic derivation
then confirms that data deviations arouse network variations to induce the alternative finetune form.
Consequently, both derivations yield same results.

8 EXPERIMENTAL DETAILS

All code and data can be found at https://github.com/HHTseng/
Layer-Variational-Analysis.git. The norms ‖ · ‖X and ‖ · ‖Y in all experi-
ments are set as Euclidean L2-norms, unless otherwise specified. Some notable details are remarked
here.
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8.1 1D SERIES REGRESSION

Dataset A 1D series D for the pretrained f and another series D̃ for transfer learning are given by
(Fig. 8)

D =
{

(xi, sin(5πxi)) |xi ∈ [−1, 1]
}N=2000

i=1

D̃ =

(xi + 0.05 ξi, γ(xi) yi + 0.03 ηi)︸ ︷︷ ︸
(x̃i,ỹi)

|xi ∈ [−1, 1]


N=2000

i=1

(B.40)

with
γ(xi) = 0.4xi + 1.3998,

ξi ∼ N (1.5, 0.8) (normal distribution mean=1.5, variance=0.8),
ηi ∼ U(−1, 1) (uniform distribution in [−1, 1]).

Figure 8: The original data D and new data D̃ for transfer learning.

Network Architecture The pretrained model f using D was a 3 fully-connected-layer network
with 64 nodes at each layer and ReLu used as activation functions except the output layer. A finetuned
model gGD using Gradient Descent (GD) retrained the last layer of f by D̃. f and gGD were trained
under L2-loss with ADAM optimizer at learning rate 10−3 by 8,000 and 12,000 epochs, respectively.
The finetuned model by the LVA method gpesudo using D̃ required no training process but directly
replaced the last layer of f by fn 7→ (fn + δfn) with δfn given in Eq. (21).

Hardware One NVIDIA V100 GPU (32 GB GPU memory) with 4 CPUs (128 GB CPU memory).

Runtime Approximately 3 sec in the LVA method, 4 minutes in GD method.

8.2 SPEECH ENHANCEMENT

Dataset The utterances used in the experiment were excerpted from the Deep Noise Suppression
Challenge (Reddy et al., 2020). We randomly selected 8000 clean utterances for training and 100
utterances for testing. Five noise types {White-noise, Train, Sea, Aircraft-cabin, Airplane-takeoff}
were involved to form the training set (to estimate the pretrained SE model) and three noise types,
{Baby-cry, Bell, Siren} was used to form the transfer learning and testing sets. For the training set,
the 8000 clean utterances were equally divided and contaminated by the five noise types (thus, each
noise type had 1600 noisy utterances) at four signal-to-noise ratio (SNR) levels, {−5, 0, 5, 10} dB.
For the testing set, 100 clean utterances were contaminated by the {Baby-cry, Bell, Siren} noises at
{−1, 1} (dB) SNRs. For the adaptation set, we prepared 20-400 patches contaminated by three noise
types, {Baby-cry, Bell, Siren}, at {−1, 1} dB SNRs.

15



Published as a conference paper at ICLR 2023

Figure 9: The flowchart of a Deep Denoising Autoencoder (DDAE) for SE.

Implementation All speech utterances were recorded in a 16kHz sampling rate. The speech signals
were first transformed to spectral features (magnitude spectrograms) by a short-time Fourier transform
(STFT). The Hamming window with 512 points and a hop length of 256 points were applied to
transform the speech waveforms into spectral features. To adequately shrink the magnitude range,
a log1p function (log1p(x) := log(1 + x)) was applied to every element in the spectral features.
During training, noisy spectral vectors were treated as input to the SE model to generate enhanced
spectral vectors. The clean spectral vectors were treated as the reference, and the loss was computed
based on the difference of enhanced and reference spectral vectors. Subsequently, the SE model was
trained to minimize the difference. During inference, noisy spectral vectors were inputted to the
trained SE model to generate enhanced ones, which were then converted into time-domain waveform
with the preserved original noisy phase via inverse STFT.

Network Architecture The overall flowchart of the SE task is shown in Fig. 9. In this study, we
implemented SE systems using two neural network models to evaluate the proposed LVA. The first
one is the deep denoising autoencoder (DDAE) model (Lu et al., 2013), which serves as a simpler
neural-network architecture. The other is the Bi-directional LSTM (BLSTM) (Chen et al., 2015),
which is relatively complicated as compared to DDAE. For DDAE, the model is composed of 5
fully-connected layers with 512 units. Activation functions were added to each layer except the last
layer. The LeakyReLU with a negative slope of 0.01 was used as the activation function. For BLSTM,
the model consists of a one-layer BLSTM of 300 nodes and one fully-connected layer. The training
setting is the same for the two SE models. The learning rate of Adam Optimizer was set at 10−3.
After pretraining, only the last layer parameters were updated in the finetuning stage. According to
Eq. (21), the pseudo inverse of latent features was used to calculate δf .

Hardware One NVIDIA V100 GPU (32 GB GPU memory) with 4 CPUs (128 GB CPU memory).

Runtime Approximately 7 minutes in the LVA method and 25 minutes in GD method with 40
utterances.

8.2.1 ADAPTATION ON MISMATCHED SPEAKERS

In Sec. 5.2, we have confirmed the effectiveness of the proposed LVA on the noise type and SNR
adaptation of the SE task, where the main speech distortion is from the background noise. In
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(a) PESQ score of DDAE.

(b) STOI score of DDAE.
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(c) Loss of DDAE.

(d) PESQ score of BLSTM.

18



Published as a conference paper at ICLR 2023

(e) STOI score of BLSTM.

(f) Loss of BLSTM.
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this section, we further investigate the achievable performance of LVA on SE where speakers are
mismatched in the source and target domains.

First, we excluded the utterances of the speakers used in the training set and regenerated the adaptation
and the test set by randomly sampling 200 utterances (100 for the adaptation set and 100 for the test
set) from the remaining Deep Noise Suppression Challenge dataset. The experimental setup was
same as Sec. 5.2 with testing speakers not given in the training set. We note that since the speakers
did not match, an OT process was performed to align speakers. In Table 1, we denote LVA-OT as
LVA for shorthand. The comparison of BLSTM model adaptation using GD and LVA is shown in
Table 1. The table demonstrates that both GD and LVA improve the PESQ and STOI score after
adaptation, while LVA consistently yields better performance over different noise types and SNR
levels.

Table 1: Performance of finetuned models on mismatched speakers.
noisy Pretrain Finetuned Finetuned

(no SE) (no finetune) by GD by LVA
noise type SNR PESQ STOI PESQ STOI PESQ STOI PESQ STOI

Babycry −1 1.40 0.74 1.58 0.78 1.58 0.79 1.88 0.81
Babycry +1 1.52 0.77 1.69 0.80 1.71 0.82 1.97 0.83
Bell −1 1.96 0.84 1.97 0.84 2.18 0.86 2.44 0.89
Bell +1 2.07 0.86 2.09 0.86 2.29 0.87 2.55 0.90
Siren −1 1.56 0.81 1.74 0.82 1.81 0.84 2.03 0.84
Siren +1 1.64 0.83 1.84 0.84 1.97 0.85 2.08 0.85
Average - 1.69 0.81 1.82 0.82 1.92 0.84 2.16 0.85

8.2.2 ADAPTATION USING FULLSUBNET

In this extended experiment, we utilize a FullSubNet (Hao et al., 2021) pretrained network to perform
SE domain adaptation tasks. The FullSubNet is a state-of-the-art SE model reaching the performance
of PESQ: 2.89 and STOI: 0.96 on the DNS-challenge.

This implementation serves to examine the effect of a pretrained network. To compare with previous
results of the BLSTM model in Sec. 8.2, same source domain data and the target domain set are used
for adaptation. The FullSubNet receives an input of spectrum amplitude and outputs a complex Ideal
Ratio Mask (cIRM) to compare with cIRM labels under L2-loss. The architecture of the FullSubNet
is composed of a full-band and a sub-band model. Within each model, two stacked LSTM layers and
one fully connected layer are included. The LSTMs contain 512 hidden units and 384 hidden units in
the full-band model and the sub-band model, respectively. The detailed structures can be found in
(Hao et al., 2021).

A pretrained FullSubNet was obtained from the official Github3, where the last linear layer was
finetuned to adapt to the target set. The finetuned networks were subsequently evaluated on an
adaptation test set to measure PESQ and STOI, where the results are shown in Table 2. The
comparison shows that finetuning from a pretrained FullSubNet achieves enhanced baseline scores
on the target domain (see Table 2 [no finetune]). While adaptation under the gradient descent
significantly improves the pretrained network, the proposed LVA method outperforms the traditional
gradient descent method in terms of PESQ and STOI. The results are consistent with the previous SE
experiments to confirm that the proposed LVA promptly reaches better adaptation.

8.3 SUPER RESOLUTION FOR IMAGE DEBLURRING

CNN extension The LVA formulation Eq. (14) ∼ (19) can be extended to CNN layers with the
following observation shown in Fig. 11, where the left-hand side depicts the usual convolution
operation in CNNs. Given a CNN, denote the kernels by {Cijαβ} with (i, j, α, β) ∈ L1×L2×Cin×
Cout and L1, L2 the kernel size (e.g., 3× 3), Cin input channels and Cout output channels. It is noticed

3https://github.com/haoxiangsnr/FullSubNet
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Table 2: Performance of finetuned models from a pretrained FullSubNet.
noisy Pretrain Finetuned Finetuned

(no SE) (no finetune) by GD by LVA
noise type SNR PESQ STOI PESQ STOI PESQ STOI PESQ STOI

Babycry −1 1.08 0.75 1.88 0.91 2.37 0.89 2.61 0.91
Babycry +1 1.09 0.77 2.05 0.92 2.63 0.91 2.75 0.92
Bell −1 1.06 0.84 2.10 0.94 2.92 0.93 3.00 0.94
Bell +1 1.08 0.86 2.29 0.95 3.05 0.94 3.11 0.95
Siren −1 1.17 0.81 2.58 0.94 2.92 0.93 3.02 0.94
Siren +1 1.18 0.83 2.80 0.95 3.06 0.94 3.16 0.95
Average - 1.11 0.81 2.28 0.94 2.82 0.94 2.94 0.94

Figure 10: SRCNN for image deblurring. A pretrained model was composed by a sequence of CNN
layers f = fn ◦ · · · f2 ◦ f1, where the last CNN layer fn was finetuned to fit more blurred images D̃.

that CNN kernels Cijαβ cover a patch of the input image one at a time, denoted by xijα; then each
covered patch xijα has the same size as Cijαβ for a fixed β. Consequently, each output pixel value at
(k, `, β) is computed by,

yk`β =
∑
i,j,α

Cijαβ · xijα(k, `) (B.41)

where the underscore remarks indices are to be summed over. If we recall that a fully-connected
layer of weights {Wmn} calculates the output vector v = (v1, . . . , vm, . . .) from an input vector
u = (u1, . . . , un, . . .) by,

vm =
∑
n

Wmn · un (B.42)

then we noticed mathematically there is NO distinction between Eq. (B.41) and Eq. (B.42) as index
n has the role of ijα and m has the character of k`β. In this view, CNN kernels Cijαβ can be

transformed to a 2D matrix Wmn by an index conversion function η, and image patches xijα(k, `)
can be transformed into a 1-D vector un by another index function ξ, see Fig. 11 (RHS).

Thus, we completed the conversion of a CNN to a fully-connected-layer and naturally Eq. (17) ∼ (18)
follow. There can also be possible extensions to other locally-connected networks in the future scope.

Datasets We used the CUration of Flickr Events Dataset (CUFED) (Wang et al., 2016) to
train SRCNN (Scaman & Virmaux, 2018) for image deblurring, available at https://acsweb.
ucsd.edu/~yuw176/event-curation.html. We randomly selected 2000 images from the
CUFED and randomly crop 20 patches of size 33× 33 from each image. Three pairs of training &
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Figure 11: (LHS) The masked patch xijα is regarded as fully-connected under CNN kernels,
Eq. (B.41). (RHS) By flattening the input and the convolved output into 1D vectors, a CNN is
equivalent to a fully-connected layer Eq. (B.42).

finetune combination D, D̃ were considered, see Fig. 12,

D1 =
{

(xi, yi) | yi ∈ {original patches}, xi ∈ {×3 blurred patches}
}N=40K

i=1

D̃1 =
{

(x̃i, ỹi) | ỹi ∈ {original patches}, x̃i ∈ {×6 blurred patches}
}N=40K

i=1

(B.43)

D2 =
{

(xi, yi) | yi ∈ {original patches}, xi ∈ {×3 blurred patches}
}N=40K

i=1

D̃2 =
{

(x̃i, ỹi) | ỹi ∈ {original patches}, x̃i ∈ {×4, ×6 blurred patches}
}N=40K

i=1

(B.44)

and

D3 =
{

(xi, yi) | yi ∈ {original patches}, xi ∈ {×3,×4 blurred patches}
}N=40K

i=1

D̃3 =
{

(x̃i, ỹi) | ỹi ∈ {original patches}, x̃i ∈ {×6 blurred patches}
}N=40K

i=1

(B.45)

Another image dataset SET14 (Zeyde et al., 2010) for testing finetuned models.

Implementation The color images were first transformed to a different color space, YCbCr, to
apply the SRCNN model on a single luminance channel. Our SRCNN, Fig. 10, receives D and D̃ of
low resolution image patches to output high resolution ones of the same dimension. A pretrained
model composed by a sequence of CNN layers f = fn ◦ · · · f2 ◦ f1 was pretrained by D under
L2-loss. Then the last CNN layer fn was finetuned to adapt to more blurred images D̃. Two finetuning
methods by GD and LVA were compared. In particular, the conversion Eq. (B.41)⇔ Eq. (B.42) was
used to admit LVA solutions.

Multiple pretrained architectures f were implemented, of which were

f = f1 ◦ f2 ◦ f3, (3-layer CNNs)
f = f1 ◦ f2 ◦ f3 ◦ f4 ◦ f5, (5-layer CNNs)
f = f1 ◦ f2 ◦ f3 ◦ f4 ◦ f5 ◦ f6 ◦ f7 (7-layer CNNs)

(B.46)

Network Architecture We adopted the fast End-to-End Super Resolution model similar to the
original architecture of SRCNN (Dong et al., 2016) with the insertion of a batch-normalization layer
right after each ReLu activation function. The training batch size for f was set at 128, and the testing
batch size for gradient descent finetuning as 1.

The network architecture of pretrained models corresponding to Eq. (B.46):

1. 3-layer-CNN of kernel size: (9, 5, 5) with channel size: (1, 32, 32, 1).
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Figure 12: Samples of CUFED for training and finetuning (bicubic{×3,×4,×6}) for
Eq. (B.43)∼(B.43).

2. 5-layer-CNN of kernel size: (9, 5, 5, 5, 5) channel size: (1, 32, 32, 32, 32, 1).
3. 7-layer-CNN of kernel size: (9, 5, 5, 5, 5, 5, 5), channel size: (1, 32, 32, 32, 32, 32, 32, 1).

where the first and the last number in the channel size is always 1 to indicate the input and output
luminance channel.
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More extensive results Fig. 13 shows the deblurring results by finetuned models of GD and the
LVA, where our method reached the highest PSNR with the least finetuning samples N = 256. This
outcome indicated the LVA method is beneficial for few-shot learning, especially when adaptation
data is few.

More extensive experiments were conducted to observe performance. The following results com-
pared the finetune loss and PSNR with different combinations of training & finetune data in
Eq. (B.43)∼(B.45) and multiple pretrained architectures of f in Eq. B.46.

In Fig. (a)∼ (f), the horizontal axis of each subfigure is the patch number and the title of each subfigure
indicated the transition from the old data D to new data D̃ by D → D̃, e.g., {×3,×4} → ×6.

Overall, the following facts were observed in Fig. (a)∼(f):

1. The loss is roughly inverse-proportional to PSNR score. Increasing CNN layers can han-
dle more difficult tasks, such as {×3} → {×4,×6} compared to {×3} → {×6} and
{×4,×6} → {×3} since {×3} → {×4,×6} was asked to adapt to more new data than it
was originally trained.

2. In all figures, the LVA method had stable performance over GD in both loss and PSNR even
when sample sizes (x-axis) largely decreased. We can see ups and downs in orange bars, but
not blue bars.

3. Obviously in Fig. (a), GD showed difficulty in learning {×3} → {×4,×6} and {×3} →
{×6} than {×3,×4} → {×6}, but the LVA method remained roughly the same (stable) as
well as retaining its best performance over GD.

4. Overall, GD method improvement was not consistent with the data number, likely due
to the local minimum occurring in neural networks. Conversely in the LVA method, the
performance is (stably) proportional to data samples. Therefore, one could easily derive
acceptable results with few finetune data.

Fig. (a) ∼ (f) then concludes that the LVA method has better performance and is more efficient than
GD in terms of adaptation data amount considered.

Hardware One NVIDIA V100 GPU (32 GB GPU memory) with 4 CPUs (128 GB CPU memory).

Runtime Approximately 4 minutes in the LVA method and 15 minutes in the GD method with 256
patches (1,000 epochs).

8.4 ADDITIONAL EXPERIMENTS ON DOMAIN ADAPTIVE IMAGE CLASSIFICATIONS

We conduct two additional experiments on images to investigate domain adaptation ability using (1)
Office-31 (Saenko et al., 2010) and (2) MNIST→ USPS.

Office-31: Table 3 shows the results of domain transitions within the 3 domains of Office-31:
Amazon (A), DSLR (D) and Webcam (W), resulting in 6 possible transitions to classify 31 items.
On each individual source domain (A, D, W ), the pretrained model was trained for 30 epochs.
Subsequently, it was finetuned onto target domains for another 30 epochs. The proposed LVA
obtained higher adaptation accuracy in most domain transitions, confirming that LVA can promptly
adapt to new tasks.

Table 3: Office-31: adaptation accuracy between 3 domains.
Domain A→D A→W D→A D→W W→A W→D

pretrain 77.4 % 67.1 % 54.2 % 80.7 % 59.4 % 92.9 %

GD 78.7 % 71.0 % 58.7 % 86.5 % 60.6 % 94.2 %
LVA 84.5 % 79.4 % 71.0 % 87.7 % 70.3 % 93.6 %
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Figure 13: Results of image deblurring by SRCNN. Column (b): testing input images from SET14;
column (c): results of LVA model finetuned with 256 patches; column (d): results of GD model
finetuned with 256 patches; column (e): results of GD model finetuned with 16,384 patches. The
corresponding PSNR shown in the figures indicated our LVA method reached the best PSNR with the
least finetuning samples.

MNIST→USPS: In this experiment, the pretrained model was trained on MNIST (source domain)
with 98.94% accuracy by 20 epochs. While adapting to the target domain USPS, the accuracy of the
pretrained model dropped rapidly to 65.32%. Subsequently, gradient descent (GD) and the proposed
LVA were deployed to enhance the target domain results. Table 4 shows the adaptation accuracy
attained at different finetune epochs. It was observed that LVA consistently outperformed GD and
reached high accuracy in just a few epochs. These two additional experiments on image classifications
again verify that the proposed LVA is capable of real-world DA tasks; the adaptability is general.

Table 4: MNIST→ USPS (classification accuracy)
Finetune method 10 epochs 50 epochs 90 epochs 120 epochs

pretrain 65.32%

GD 74.64% 80.12% 82.06% 82.46%
LVA 86.90% 90.13% 90.83% 90.98%
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(a) PSNR of SRCNN.

(b) Loss of SRCNN.
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(c) Loss: finetuning f3 of f = f3 ◦ f2 ◦ f1 vs. patch number (x-axis)

(d) PSNR: finetuning f3 of f = f3 ◦ f2 ◦ f1

(e) Loss: finetuning f5 of f = f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1

(f) PSNR: finetuning f5 of f = f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1
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(g) Loss: finetuning f7 of f = f7 ◦ f6 ◦ f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1

(h) PSNR: finetuning f7 of f = f7 ◦ f6 ◦ f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1
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