
Published in Transactions on Machine Learning Research (02/2024)

Leveraging Function Space Aggregation
for Federated Learning at Scale

Nikita Dhawan∗† nikita@cs.toronto.edu
University of Toronto and Vector Institute

Nicole Mitchell∗ nicolemitchell@google.com
Google Research

Zachary Charles zachcharles@google.com
Google Research

Zachary Garrett zachgarrett@google.com
Google Research

Gintare Karolina Dziugaite gkdz@google.com
Google DeepMind and Mila - Quebec AI Institute

Reviewed on OpenReview: https: // openreview. net/ forum? id= Ytp9KFKZfZ

Abstract

The federated learning paradigm has motivated the development of methods for aggregating
multiple client updates into a global server model, without sharing client data. Many fed-
erated learning algorithms, including the canonical Federated Averaging (FedAvg), take a
direct (possibly weighted) average of the client parameter updates, motivated by results in
distributed optimization. In this work, we adopt a function space perspective and propose
a new algorithm, FedFish, that aggregates local approximations to the functions learned
by clients, using an estimate based on their Fisher information. We evaluate FedFish on
realistic, large-scale cross-device benchmarks. While the performance of FedAvg can suffer
as client models drift further apart, we demonstrate that FedFish is more robust to longer
local training. Our evaluation across several settings in image and language benchmarks
shows that FedFish outperforms FedAvg as local training epochs increase. Further, Fed-
Fish results in global networks that are more amenable to efficient personalization via local
fine-tuning on the same or shifted data distributions. For instance, federated pretraining
on the C4 dataset, followed by few-shot personalization on Stack Overflow, results in a 7%
improvement in next-token prediction by FedFish over FedAvg.

1 Introduction

Methods for aggregating separately trained neural networks have received renewed attention as machine
learning models and data reach ever larger scales (Wortsman et al., 2022; Li et al., 2022; Rame et al.,
2023). Parallel training can yield gains in computational efficiency (Assran et al., 2020; Li et al., 2022) and
meet constraints on access to private data, as in Federated Learning (FL; McMahan et al., 2017). Model
aggregation plays a central role in how clients collaboratively train a model in a distributed manner via FL
without sharing data among each other or with any orchestrating server. Given that the cross-device FL
setting is characterized by client data heterogeneity, unreliable client availability and network constraints
(Kairouz et al., 2021), FL is typically carried out over multiple communication rounds in which updates from
∗Equal contribution.
†Work done as Student Researcher at Google Research.

1

https://openreview.net/forum?id=Ytp9KFKZfZ


Published in Transactions on Machine Learning Research (02/2024)

local training are aggregated to iteratively improve the global model. The canonical approach to aggregation,
implemented by the FedAvg method and its adaptive variants (Reddi et al., 2020), is to combine client
model parameter updates by averaging them, weighted in proportion to their respective dataset sizes.

In this work, we take a function space perspective (Benjamin et al., 2018) of model aggregation in FL, where
we aim to obtain a global model that simultaneously matches each client model’s logit outputs on that
client’s data. One motivation for this is to allow for, and reap the benefits of, more local training between
global updates. The performance of algorithms like FedAvg depends heavily on the number of local training
iterations. When the data are heterogeneous across clients, training too long between communication rounds
leads to updates that hurt the global model’s performance, a phenomenon known as client drift (Karimireddy
et al., 2020). Indeed, prior work has shown that the number of local training steps dictates a trade-off between
the speed of convergence and the quality of the resulting model (Charles & Konečnỳ, 2021; Malinovskiy et al.,
2020; Pathak & Wainwright, 2020). These results imply that selecting the number of local steps is critical.
It is also challenging, in part, due to the difficulties of hyperparameter tuning in federated settings (Kuo
et al., 2023), and in part because the number of local steps has wide ranging effects. These include not
only the speed of convergence (Pathak & Wainwright, 2020; Mitra et al., 2021), but also the optimization
dynamics (Charles & Rush, 2022) and even whether the method acts as a meta-learner (Collins et al., 2022;
Charles et al., 2023). While there are a variety of FL methods aimed at mitigating client drift (see Wang
et al. (2021) for an overview), many of these introduce extra hyperparameters to tune and remain sensitive
to the number of local steps (Mitra et al., 2021; Charles & Konečnỳ, 2021). Instead, we argue that the
choice of model aggregation technique plays a role in the client drift problem. Taking a function space view
of the client models sidesteps the drift problem by aiming for a global model that in the function space more
accurately represents each client model.

A key obstacle to our function space approach, matching the client models’ outputs on client data, is its
dependence on client data. FL constrains access to client data, preventing a direct approach where the global
server uses client data to match the corresponding model outputs. As a step towards parametric function
space model aggregation which does not require direct access to client data, we propose and implement a
Fisher-weighted federated averaging algorithm, called FedFish. This method is derived from an objective
that minimizes an approximate function space distance between local client models and the global model. The
closed-form solution of this objective depends on the networks’ Fisher Information (Cover, 1999), which are
typically too expensive to compute and store for large models. The approximations required to implement our
method in practice lead to a parametric aggregation scheme which accounts for the client data distributions
via the functions represented by their local models. We investigate the advantage this confers upon FedFish
over simple averaging (FedAvg) in regression, image classification and language modeling benchmarks.

Our extensive evaluation includes domain-specific criteria as well as metrics specific to FL. We demonstrate
settings in which FedFish outperforms FedAvg, especially as the amount of local training is varied. Image
and language experiments with varying levels of client data heterogeneity show improved post-personalization
performance of FedFish throughout training, when the global model is locally fine-tuned for a few steps by
clients that were held out during training. This observation also holds when measuring transfer performance
by drawing the evaluation clients from a shifted data distribution. For instance, in an experiment with
federated pretraining on the large and hetergenous C4 dataset, followed by few-shot personalization on
Stack Overflow clients, FedFish is able to improve upon FedAvg’s next-token prediction performance by
5-7%, depending on the amount of personalization data available. We provide insight into these gains by
assessing a measure of deviation between global and local models, coined the Client-Server Barrier. Finally,
we discuss the impact of these methods and settings on the cost of communication between clients and the
server.

Contributions.

• We formalize a function space perspective of federated learning to motivate a scalable algorithm,
FedFish, which aims to match client input–output functions during aggregation.

• Via a synthetic example, we demonstrate that FedFish outperforms FedAvg as client data hetero-
geneity increases. We then investigate this performance at larger scales than have been explored by
previous works.

2



Published in Transactions on Machine Learning Research (02/2024)

Figure 1: Given two functions modeled over disjoint supports (left), a direct parameter average fails to
represent either function well (center), while function space aggregation aims to preserve both functional
relationships (right).

• Our thorough empirical results show that FedFish allows for longer local client training compared
to FedAvg. We find that the global models learned via FedFish have greater ability to be per-
sonalized via fine-tuning on the same or shifted data distributions, indicating they provide a better
initialization for local training in each round.

• We propose to evaluate effects of aggregation via a Client-Server Barrier, leveraging the function
space perspective to gain further insight into the observed results.

2 Federated Learning in the Function Space

We now define the federated learning problem from a function space perspective and describe the approxi-
mations that lead to a practical and parametric objective.

2.1 Problem Setting

Let a network parameterized by θ be trained on a dataset of input–target pairs, D = (X,y), to optimize
a loss function L, such that it represents a function f(X; θ) = Z, where Z denotes the network’s outputs
across all inputs. Consider the canonical federated learning setting, where a global model’s parameters
θG are broadcast to N clients for local training. Each client i trains their model on local data Di (with
a corresponding set of input data Xi) for a fixed number of iterations to produce trained parameters θi.
These parameters are then communicated back to a global server where they are aggregated using a specific
aggregation technique. This procedure is repeated over multiple rounds, where the aggregated model from
each round serves as the initialization for local training in the subsequent round.

Viewing FL from a function space perspective, the aggregated model should ideally match the input–output
relationships learned by each client so far. More formally, for each federated round, we define the optimal
global model as the one that produces outputs closest to each client’s outputs when evaluated on the corre-
sponding input data. Let us denote this function space distance as D (·, ·). Averaging this quantity over all
clients, we obtain the following objective:

θ∗G = arg min
θ

1
N

N∑
i=1
D (f(Xi; θ), f(Xi; θi)) . (1)

We depict this idealized objective in fig. 1, where two client functions are learned on different supports (left)
and we wish to aggregate them into a model that preserves both functional relationships (right), which direct
parameter averaging cannot achieve (center).

The objective in eq. (1) depends on function outputs, which in turn rely on client-specific inputs Xi. Exactly
implementing this would require global access to the local client data, which violates a fundamental constraint
in federated learning. This necessitates a parametric approximation to the function space distance such that
it may be estimated without actual data points.

3



Published in Transactions on Machine Learning Research (02/2024)

2.2 Approximating Function Space Distance

The function space distance can be estimated with a second-order Taylor approximation with respect to
model parameters θ, centered at θi, the client network whose outputs are to be matched. This is useful in a
federated context because appropriate approximations to this estimate lead to a parametric method which
does not directly depend on client data.

Setting D (·, ·) to be the Kullback-Leibler (KL) divergence between softmax outputs of the networks,

D(f(Xi; θ), f(Xi; θi)) ≈
1
2(θ − θi)TFi(θ − θi) (2)

≈ 1
2

|θi|∑
j=1

F
(j)
i (θ(j) − θ(j)

i )2, (3)

where Fi is the Fisher Information matrix corresponding to θi. In eq. (2), the zero-th and first order terms
vanish because D (·, ·) is a non-negative function that evaluates to zero when its arguments are equal. Hence,
its value and gradient both vanish at θ = θi, leaving only the second order term. Note that this approximation
does not require θi to be optimal and can be used at intermediate stages of training in multi-round FL. We
defer complete details of this derivation to appendix A.2.

The full Fisher Information matrix is expensive to compute and store for large scale networks. Further,
the corresponding closed-form solution to this optimization problem would involve the inverse sum of Fisher
Information matrices, which need not be invertible in practice. Common approximations (Kirkpatrick et al.,
2017) involve using the diagonal empirical Fisher Information matrix, as shown in eq. (3), where F (j)

i is the
j-th diagonal entry of Fi.

3 FedFish Algorithm

Given function space distance approximations in section 2.2, we now obtain a parametric aggregation scheme
that can be practically implemented in federated settings. Plugging eq. (3) into eq. (1) and solving the convex
optimization problem gives:

θ∗G = arg min
θ

1
2N

N∑
i=1

|θi|∑
j=1

F
(j)
i (θ(j) − θ(j)

i )2 =
∑N
i=1 diag(Fi)T θi∑N
i=1 diag(Fi)

, (4)

where diag(Fi) represents the diagonal of Fi. Hence, the global model at each round is the Fisher-weighted
average of client models, normalized by the sum of all Fisher diagonals. In this form, FedFish is simple to
implement and efficient to deploy in cross-device federated settings. The empirical Fisher diagonal can be
computed during local training, via an average of squared gradients of the training objective with respect
to mini-batches of data, as shown in algorithm 2. Similar to common FedAvg implementations, the clients
communicate model deltas to the global server, which are then aggregated and used as pseudo-gradients in
one step of global model optimization. FedFish can be combined with adaptive optimization techniques
for different choices of global optimizers. We show this procedure for SGD with global learning rate ηg and
local learning rate ηc in algorithm 1. See appendix A.5 for a discussion of efficiency improvements.

Note that we recover the FedAvg algorithm if the Fisher coefficients for each parameter are the same
across client networks. Such a condition is unlikely to hold even approximately, especially in settings with
increasing data heterogeneity. Fisher coefficients account for the influence of each parameter on its network’s
predictions with respect to corresponding inputs. Intuitively, FedFish has the following advantages: (1)
Each local parameter’s contribution to the global aggregate is proportionate to a measure of its importance
for making predictions on its training data, which improves upon the FedAvg global model. (2) Derived
from a function space perspective, FedFish simply aims to match the functions learned by clients so far,
without relying on optimality assumptions. This makes it compatible with heterogeneous datasets, longer
local training as well as multiple rounds of FL. We empirically test for these gains across several settings
ranging from toy to large scales.

4



Published in Transactions on Machine Learning Research (02/2024)

Algorithm 1 FedFish (SGD)
Require: rounds R, local epochs E, θG, client

datasets D, global lr ηg, local lr ηc
1: for r ← 1 to R do
2: Sample a cohort of clients, C
3: for i ∈ C in parallel do
4: Compute client weights, wi = |Di|
5: θi ← θG
6: ∆θi, Fi ← FedLocalTrain(E, θi, Di, ηc)
7: end for

8: θG ← θG − ηg
∑N
i=1 wiF

T
i ∆θi∑N

i=1 wiFi

9: end for
10: return θG

Algorithm 2 FedLocalTrain (SGD)
Require: E, θi, Di, ηc

1: ModelDelta, SumFisher← 0, 0
2: for e← 1 to E do
3: for b ∈ Di do
4: g ← ∇θL(θi, b)
5: θi ← θi − ηc g
6: ModelDelta← ModelDelta + ηc g
7: end for
8: end for
9: for b ∈ Di do

10: g ← ∇θL(θi, b)
11: SumFisher← SumFisher + g2

12: end for
13: return ModelDelta, SumFisher

4 Evaluation and Client-Server Barrier

While there are natural domain-relevant evaluation metrics for our benchmarks, here, we describe specific
criterion relevant to FL. The commonly used global and personalization performance are useful indicators
of successful FL algorithms. However, they may be confounded by local optimization choices. Hence, we
formalize the Client-Server Barrier below and additionally evaluate it in section 5, as a more direct measure
of the quality of a given aggregation method. The criteria below are defined in terms of a performance metric
Li(·) that measures a quantity of interest, such as loss or prediction error, on client data Di.

Global Performance. The most natural measure of success in FL is the performance of the global model on
held-out client data, averaged over clients. Using our notation from before, this is given by 1

N

∑N
i=1 Li(θG).

Client Personalization Performance. While global performance is akin to a network’s zero-shot abilities,
we are often interested in its personalization ability to unseen clients after a few steps of fine-tuning. Quick
adaptation of the network to particular clients or downstream use cases is critical in the compute-constrained
settings that FL targets. We measure client personalization by fine-tuning θG on a portion of each held-out
client dataset and then evaluating each fine-tuned model on the remaining unseen client data (the same
portion used for measuring global performance), averaging over clients as before.

Client-Server Barrier. For a given performance metric L and aggregation technique, we define the Client-
Server Barrier as the difference in this performance metric between each client model θi and the aggregated
global model θG with respect to the client data Di, averaged over all the clients involved in the aggregation.
Mathematically, this is given by

1
N

N∑
i=1

(Li(θG)− Li(θi)) = 1
N

N∑
i=1

Li(θG)− 1
N

N∑
i=1

Li(θi). (5)

This is a simple and direct measure of the impact of aggregation on model performance and can be computed
in a federated manner: averaging the broadcast global model’s performance across all client data in the
sampled cohort (first term), and averaging trained local models’ performance on their respective client data
across the sampled cohort (second term).

5 Experiments

Using the criteria described in section 4, we now conduct a systematic empirical evaluation of FedFish in
varied settings, compared to the best performing variant of FedAvg. We first demonstrate the advantage of
FedFish as client data heterogeneity increases in a toy regression problem. We then assess its performance
across settings in larger scale image and language benchmarks.

5



Published in Transactions on Machine Learning Research (02/2024)

−10 −8 −6 −4 −2 0 2 4

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
t

Client 1
Client 2

FedAvg
FedFish

−10 −8 −6 −4 −2 0 2 4

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

t

Client 1
Client 2

FedAvg
FedFish

−10 −8 −6 −4 −2 0 2 4

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

t

Client 1
Client 2

FedAvg
FedFish

0.00 0.05 0.10 0.15 0.20 0.25 0.30

FedFish Client-Server Barrier

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fe
dA

vg
C

lie
nt

-S
er

ve
rB

ar
ri

er

x=y
Client 1
Client 2
Full Overlap
Partial Overlap
No Overlap

Figure 2: As heterogeneity across clients increases (top left → top right → bottom left), FedAvg
deteriorates, while FedFish matches predictions of both client models. For each setting shown and each
client within it, the FedFish global model has lower barrier to the clients (bottom right).

5.1 A Toy Regression Demonstration

Figure 2 shows a non-linear regression problem with two clients across which data is distributed with varying
heterogeneity, including full (+), partial (◦) and no overlap (?). We plot the local functions learned by each
client, as well as the global functions produced by aggregation via FedAvg and FedFish after one round.
For completely homogeneous client data, FedAvg and FedFish fit similar functions. When there is partial
overlap, FedAvg seems to reasonably retain predictions on one client’s data while poorly fitting the other,
while FedFish fits both datasets well. In the extreme case of completely disjoint supports, FedAvg fails to
fit either client dataset, but FedFish matches the locally learned functions of both clients on their respective
input data. The Client-Server Barrier (CSB) defined in eq. (5) is computed in terms of mean squared error
for each client on their corresponding data. As shown by all the points above the x = y line in fig. 2 (bottom
right), the CSB is lower for FedFish than FedAvg in each of these settings, with more significant difference
as data heterogeneity increases. We hypothesize that accounting for the functions learned by local models
confers this advantage upon FedFish.

5.2 Image Classification and Text Benchmarks

Datasets and architectures. We consider a variety of federated benchmarks for image classification
(EMNIST (Cohen et al., 2017), CIFAR100 (Krizhevsky et al.)) and language modeling (Stack Overflow
(Authors, 2019), CC-News (Hamborg et al., 2017) and C4 (Raffel et al., 2020)). In particular, C4 is a large-
scale and significantly heterogenous dataset. For these domains, we use standard classifier and transformer
architectures, respectively.

For EMNIST, we partition the handwritten characters according to their author, as proposed by Caldas
et al. (2018). For Stack Overflow, posts on the eponymous web forum are partitioned by their author
as well. For CIFAR100, we partition the examples over 100 clients in a heterogeneous fashion using the

6



Published in Transactions on Machine Learning Research (02/2024)

0 1000 2000 3000 4000 5000 6000

Training Iterations

0.0

0.2

0.4

0.6

0.8

G
lo

ba
lA

cc
ur

ac
y

FedAvg
FedFish
4 local epochs
8 local epochs
16 local epochs

0 1000 2000 3000 4000 5000 6000

Training Iterations

0.0

0.2

0.4

0.6

0.8

Po
st

-P
er

so
na

liz
at

io
n

A
cc

ur
ac

y

FedAvg
FedFish
4 local epochs
8 local epochs
16 local epochs

Figure 3: Training on EMNIST with FedFish converges faster and to a higher global accuracy (left) and
post-personalization accuracy (right) than training with FedAvg, across varying numbers of local epochs.
Results are shown with fixed compute across configurations: each training iteration corresponds to a local
epoch, and each marker indicates 100 federated communication rounds.

two-level latent Dirichlet allocation scheme proposed by Reddi et al. (2020). For CC-News and C4, we
use Dataset Grouper (Charles et al., 2023) to partition web-crawled examples according to their base URL
(e.g. nytimes.com). More details about data splits, architectures and hyperparameters are included in
appendix A.3.

Performance metrics. We evaluate global performance, client personalization performance and Client-
Server Barrier (see section 4), using standard domain-relevant performance metrics. These include classifi-
cation accuracy for images and next-token prediction accuracy and perplexity for language modeling. Since
C4 is a very large scale dataset that may generally be used as a pretraining corpus, we evaluate its global
model on held-out clients from C4 itself as well as on the shifted Stack Overflow and CC-News datasets. This
tests the methods’ transfer performance in addition to adaptability to new clients that were not seen during
training. For the C4 experiments, we also vary the amount of fine-tuning data used for personalization –
25% or 50% of each held-out client’s data – to assess few-shot performance. Additional details are reported
in A.3.

5.2.1 Effect of Local Training on Global Model Performance

We study the effect of local training on the global model’s performance by varying the number of epochs of
training clients perform in between rounds. Since increasing the number of local epochs for a fixed number of
rounds increases computational costs, we present our results by separately fixing compute (or total number
of training iterations) and number of aggregation rounds. We provide a complete table of results covering
all settings in table 3 of appendix A.4 and discuss representative experiments here. With fixed compute,
fig. 3 (left) shows a decline in global accuracy as number of local epochs is increased for both FedAvg and
FedFish, as expected by the client-drift phenomenon. However, within each setting, and across datasets,
FedFish outperforms FedAvg, suffering a more graceful decline in performance with more local training
and converging to higher performance faster. Figure 4 similarly shows FedFish outperforming FedAvg in
terms of classification accuracy and next-token prediction accuracy for CIFAR100 (left) and Stack Overflow
(right) datasets, respectively. In both of these settings, FedFish is much more robust to longer periods
of local training that FedAvg, whose performance suffers as local training increases. In fig. 5 (left), we
use the heterogeneous C4 dataset for federated training and evaluate its zero-shot performance on unseen
clients from C4 itself. The bottom row of the plot shows that the global model, without any personalization
data, benefits considerably from increased local epochs during federated pretraining for both algorithms,
with FedFish outperforming FedAvg.

7



Published in Transactions on Machine Learning Research (02/2024)

0.32 0.34 0.36 0.38 0.40 0.42 0.44

Global Accuracy

0

50

Pe
rs

on
al

iz
at

io
n

Tr
ai

ni
ng

D
at

a
(%

)

FedAvg
FedFish
4 local epochs
16 local epochs

0.22 0.24 0.26 0.28 0.30 0.32 0.34

Next-token Prediction Accuracy

0

50

Pe
rs

on
al

iz
at

io
n

Tr
ai

ni
ng

D
at

a
(%

)

FedAvg
FedFish
8 local epochs
16 local epochs

Figure 4: Global and post-personalization performance in terms of classification accuracy on CIFAR100
(left) and next-token prediction accuracy on Stack Overflow (right). Varying number of local training
epochs can significantly impact FedAvg performance while FedFish remains relatively robust to this.

0.300 0.305 0.310 0.315 0.320 0.325 0.330 0.335 0.340

Next-token Prediction Accuracy

0

25

50

Pe
rs

on
al

iz
at

io
n

Tr
ai

ni
ng

D
at

a
(%

)

0.18 0.20 0.22 0.24 0.26 0.28

Next-token Prediction Accuracy

0

25

50

Pe
rs

on
al

iz
at

io
n

Tr
ai

ni
ng

D
at

a
(%

)

FedAvg
FedFish
1 local epoch
16 local epochs

0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325

Next-token Prediction Accuracy

0

25

50

Pe
rs

on
al

iz
at

io
n

Tr
ai

ni
ng

D
at

a
(%

)

Figure 5: Transfer (global and post-personalization) performance in terms of next-token prediction after
federated pretraining on C4 and evaluating on C4 (left), Stack Overflow (center) and CC-News (right).
Personalizing with 0%, 25% or 50% of held-out client data results in FedFish outperforming FedAvg,
especially with longer local training.

5.2.2 Post-Personalization Performance

At scale, pretrained models are often personalized or fine-tuned for a small number of steps using local client
data before deployment. Accordingly, we fine-tune the global models for a few steps on limited datapoints
from held-out clients and evaluate the metrics discussed earlier. Consistent with global performance reported
above, we observe across tasks that FedFish yields models with higher post-personalization performance
than those trained with FedAvg. This is shown on EMNIST in fig. 3 (right), on CIFAR100 in fig. 4 (left),
on Stack Overflow in fig. 4 (right), and on C4 in fig. 5 (left). Notably we see that personalization worsens
performance on CIFAR100 trained with FedAvg using 16 local epochs, while substantially improving CI-
FAR100 trained with FedFish using the same configuration. By contrast, FedAvg with 16 local epochs on
Stack Overflow improves dramatically with personalization, despite still underperforming all other models.
Interestingly, we see in the case of C4 that more than aggregation algorithm the amount of local training
seems to impact personalization performance. While both FedFish models trained with 1 or 16 local epochs
have higher zero-shot performance than either FedAvg model, the 16 local epoch FedAvg model’s post-
personalization performance surpasses that of FedFish with 1 local epoch as the amount of fine-tuning data
increases. Overall, we find that models trained with FedFish using longer periods of local training tend to
be more amenable to personalization than models trained with FedAvg.

5.2.3 Transfer Performance

Considering FedAvg and FedFish as methods of federated pretraining, we further evaluate the networks
trained on C4 in terms of their transfer performance (fig. 5) on Stack Overflow (center) and CC-News (right).
Here, performance is in terms of next-token prediction accuracy. We similarly report the perplexity for each
of these settings in appendix A.3.3. We vary the amount of data available for personalization, between
0%, 25% and 50% of each held-out client dataset. The reported performance is always evaluated on the
unseen 50% of the data. In each of these settings, we find that transfer performance benefits from longer
local training for both methods and FedFish yields better zero-shot, few-shot and post-personalization

8



Published in Transactions on Machine Learning Research (02/2024)

0.00 0.02 0.04 0.06 0.08 0.10
FedFish Client-Server Barrier

0.00

0.05

0.10

0.15

0.20

0.25
Fe

dA
vg

 C
lie

nt
-S

er
ve

r B
ar

rie
r

200

400

600

800

1000

1200

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
FedFish Client-Server Barrier

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fe
dA

vg
 C

lie
nt

-S
er

ve
r B

ar
rie

r

200

400

600

800

1000

1200

1400

0.0 0.2 0.4 0.6 0.8 1.0
FedFish Client-Server Barrier

0.0

0.2

0.4

0.6

0.8

1.0

Fe
dA

vg
 C

lie
nt

-S
er

ve
r B

ar
rie

r

200

400

600

800

1000

0.00 0.02 0.04 0.06 0.08 0.10
FedFish Client-Server Barrier

0.00

0.02

0.04

0.06

0.08

0.10

Fe
dA

vg
 C

lie
nt

-S
er

ve
r B

ar
rie

r

2000

4000

6000

8000

10000

Figure 6: Measuring the Client-Server Barriers throughout training illustrates differences in how aggregating
via FedAvg or FedFish influences the training trajectory. Colors indicate the federated round. Stack
Overflow with 8 local epochs (top left), Stack Overflow with 16 local epochs (top right), CIFAR100 with
16 local epochs (bottom left), and C4 with 16 local epochs (bottom right).

performance than FedAvg. We observe largest gains in the case of federated pretraining on C4, followed
by few-shot personalization on Stack Overflow clients, where FedFish improves upon FedAvg’s next-token
prediction performance by 5-7%, depending on the amount of personalization data available. These results are
promising since they encourage longer local training, which connotes parallelism and efficiency gains. Note,
the results in fig. 5 correspond to a fixed number of federated rounds, R; we similarly report performance at
round R/2 in table 5 of appendix A.4.

5.2.4 Client-Server Barrier

To gain more insight into the performance of FedFish, which only differs from FedAvg in the aggregation
step, we measure the Client-Server Barrier (CSB) defined in eq. (5), using accuracy as the metric L, for
different model checkpoints across rounds of federated training. Note that we fix seeds to control cohort
sampling in each federated round, such that the dataset iteration for FedAvg and FedFish training runs
match. In fig. 6, we plot this quantity for FedFish on the x-axis and for FedAvg on the y-axis, using
networks trained on Stack Overflow with 8 local epochs (top left), Stack Overflow with 16 local epochs (top
right), CIFAR100 with 16 local epochs (bottom left) and C4 with 16 local epochs (bottom right). Points lying
above or below the x = y line on these plots indicate whether FedFish or FedAvg, respectively, achieves
lower CSB in those rounds. We observe the relative round-over-round aggregation performance of FedAvg
and FedFish vary significantly for different datasets and settings throughout training. For Stack Overflow,
the CSB steadily increases with rounds of training, with FedFish achieving lower barrier than FedAvg

9



Published in Transactions on Machine Learning Research (02/2024)

during later stages of federated training. This difference is more stark when training with 16 local epochs as
compared to 8 local epochs. In the case of C4, while the barrier generally increases with rounds of training,
we see that FedFish tends to have lower values in the beginning stages of training while FedAvg obtains
lower CSB towards the final 20% of training rounds. This indicates connections to linear mode connectivity
in later stages of training. We discuss this connection in appendix A.6 and leave deeper explorations to
future work. Interestingly, CIFAR100 CSB values decrease with rounds of federated training with FedFish
achieving lower barrier than FedAvg throughout. On investigating further, we find that the client and data
splits on CIFAR100 are such that each local model achieves very high performance right from the beginning
of training, and maintains that performance throughout. Hence, the reduction in CSB as rounds increase is
indicative of the improvement of the global model as it bridges its gap to local models. This is in contrast
to the other datasets we present, wherein the local models often improve their performance more gradually.

5.3 Communication Cost

In general, cost of communication between clients and the server is directly related to the number of rounds
of federated training as well as the number of units of (parametric) information to be exchanged. So far, we
have demonstrated that FedFish can reduce the number of communication rounds by allowing longer local
training. However, the procedure described in algorithm 1 requires clients to communicate their parameters
as well as Fisher diagonals to the global server. Relative to FedAvg, this increases communication cost of
per round by a factor of two for FedFish. However, as demonstrated in figs. 3 and 9 (see appendix A.5),
the advantage of training with FedFish for more local epochs can eliminate the communication overhead
from our FedFish implementation when achieving comparable accuracy to FedAvg in half the number of
communication rounds (compare EMNIST FedAvg with 8 local epochs after 800 communication rounds to
EMNIST FedFish with 16 local epochs after 400 communication rounds). Alternatively, our method can
be combined with adaptive federated optimization techniques (Reddi et al., 2020) so that clients only have
to communicate their weighted parameters, diag(Fi)T θi and the normalization step is folded into the server
optimization. In this case, the communication cost of FedFish would be the same, per round, as that of
FedAvg. We leave this adaptive extension of our method to future work.

6 Related Work

Federated Learning. Federated Learning (FL) is a well-established paradigm, introduced in McMahan
et al. (2017) and advanced through variants that account for adaptive optimization (Reddi et al., 2020),
client drift (Karimireddy et al., 2020; Dandi et al., 2022) or heterogeneity (Li et al., 2020). Recent works
have also explored its connections to representation learning (Collins et al., 2022) and meta-learning (Charles
et al., 2023). Relevant to our function space perspective of FL are frameworks that view FL as a distributed
inference problem. Al-Shedivat et al. (2021) and Guo et al. (2023) aim to approximate local posterior
distributions over client parameters, deriving MCMC-based and variational inference objectives, respectively.
Performance of both these methods rely on a “burn-in” period of FedAvg training, after which the proposed
algorithms are applied. The amount of burn-in training is a crucial hyperparameter and given this setting,
Hou et al. (2022) find that simply chaining FedAvg and FedSGD is actually a theoretically sound, efficient
alternative.

This work evaluates performance in settings with varied amounts of local training. At the extreme of the local
training spectrum are methods that operate in the one-shot setting (Guha et al., 2019), to take advantage
of local models that are independently trained to convergence and aggregated only once. This single-round
training is a special case of FL and leads to aggregation objectives derived for optimal local models. In
practice, not all clients are available simultaneously and coordinating a single round of FL is unrealistic
when there are millions of clients. In contrast, the more general multi-round setting has the advantage of
allowing for new clients and for clients to benefit from each other indirectly. This is the setting our work has
focused on, where at each round, client models are initialized from the global model obtained in the previous
round, intuitively allowing future clients to leverage information aggregated previously.

Concurrent to our work, Jhunjhunwala et al. (2023) also experiment with the one-shot setting and propose
to optimize a Fisher-weighted objective to train the global model for several epochs after all clients converge

10



Published in Transactions on Machine Learning Research (02/2024)

independently. In contrast, our work proposes a method for general multi-round federated training from
scratch, with iterative global aggregation that is computationally equivalent to one iteration per round. The
function space aggregation perspective makes no assumptions about the optimality of client models and
motivates application of resulting algorithms to FL settings with multiple rounds. The resulting method is
constrained to neither few local steps nor full local convergence. It is robust to local hyperparameter choices,
which can otherwise be expensive and tedious to tune.

Model aggregation. Model aggregation has recently received attention in a number of works, most of
which differ in their data and training choices during pretraining and fine-tuning, as opposed to the aggre-
gation technique itself. For example, Wortsman et al. (2022) average parameters of models trained using
different hyperparameters, random seeds, etc. Rame et al. (2023) build on this to reuse foundation models
fine-tuned on an auxiliary task. In these works, fine-tuning started from the same model is likely to yield
networks in the same loss basin for a new task, thus enabling parameter-space averaging and exploiting
model diversity to improve performance. Model averaging has also shown up in the empirical study of Li
et al. (2022) showing benefits of parallel fine-tuning of large language models on diverse data over monolithic
single-model training. Similar motivations appear in Gu et al. (2023). Matena & Raffel (2022) also imple-
ment a specific Fisher-weighting, but only evaluate it in the one-shot setting to merge converged or optimal
models. In fact, model averaging has been in practical use for large models at least since Vaswani et al.
(2017), where final models are the result of averaging previous checkpoints. We believe our motivations for
model aggregation are general and their application to these varied settings is exciting future work.

Additional literature relevant to the Client-Server Barrier evaluation criterion (section 4) is discussed in
appendix A.6.

7 Discussion and Outlook

In this work, we provided a function-space perspective of federated learning and proposed an aggregation
technique for locally trained client models based on the input-output functions they parameterize. FedFish
is a parametric, iterative algorithm that is robust to longer local training and client data heterogeneity.

While we have highlighted the settings where FedFish has advantages over FedAvg, we now discuss its
limitations and possible extensions. First, FedFish is derived from a second-order Taylor expansion of a
function space distance. There is scope to go beyond this quadratic form for better approximations (for
an example, see Dhawan et al. (2023)) to derive parametric model aggregation objectives. Second, we
make a diagonal approximation to the Fisher Information matrix that effectively treats each parameter
as independent. It is well-understood that deep neural network parameters are highly correlated. Better
approximations to the Fisher Information matrix, such as K-FAC (Martens & Grosse, 2015) or FishLeg
(Garcia et al., 2023), could further boost Fisher-weighted model aggregation. However, higher dimensional
approximations to the Fisher Information matrix present new challenges if applied naively, since they often
increase computational burden and/or communication costs between clients and the server. Critical to
compatibility with FL systems in practice, FedFish can also be easily combined with adaptive optimization
techniques as well as differentially private training.

The demonstrated advantage of FedFish over FedAvg across various large-scale settings, in terms of global
performance, personalization, transfer to shifted distributions and a Client-Server Barrier metric, presents a
compelling case for applying this aggregation technique more broadly. While our primary focus is FL at scale,
a function-based model aggregation method and the barrier-based evaluation can be applied in any other
setting where multiple models of the same architecture are trained with potentially different optimization
algorithms, randomness, hyperparameters, data splits, etc. These use cases may allow for more flexibility in
the use of data for merging, presenting new opportunities for improved function space aggregation.

Acknowledgments

The authors would like to thank Daniel M. Roy and Sewoong Oh for feedback on various drafts; Sean
Augenstein for helpful discussions and Keith Rush for experiment infrastructure support.

11



Published in Transactions on Machine Learning Research (02/2024)

References
Maruan Al-Shedivat, Jennifer Gillenwater, Eric Xing, and Afshin Rostamizadeh. Federated learning via
posterior averaging: A new perspective and practical algorithms. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=GFsU8a0sGB.

Mahmoud Assran, Arda Aytekin, Hamid Reza Feyzmahdavian, Mikael Johansson, and Michael G Rabbat.
Advances in asynchronous parallel and distributed optimization. Proceedings of the IEEE, 108(11):2013–
2031, 2020.

The TensorFlow Federated Authors. TensorFlow Federated Stack Overflow dataset, 2019.
URL https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/
stackoverflow/load_data.

Ari S Benjamin, David Rolnick, and Konrad Kording. Measuring and regularizing networks in function
space. In ICLR, 2018.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

Zachary Charles and Jakub Konečnỳ. Convergence and accuracy trade-offs in federated learning and meta-
learning. In International Conference on Artificial Intelligence and Statistics, pp. 2575–2583. PMLR,
2021.

Zachary Charles and Keith Rush. Iterated vector fields and conservatism, with applications to federated
learning. In International Conference on Algorithmic Learning Theory, pp. 130–147. PMLR, 2022.

Zachary Charles, Nicole Mitchell, Krishna Pillutla, Michael Reneer, and Zachary Garrett. Towards fed-
erated foundation models: Scalable dataset pipelines for group-structured learning. arXiv preprint
arXiv:2307.09619, 2023.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist to
handwritten letters. 2017 International Joint Conference on Neural Networks (IJCNN), 2017. doi: 10.
1109/ijcnn.2017.7966217.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Fedavg with fine tuning: Local
updates lead to representation learning. Advances in Neural Information Processing Systems, 35:10572–
10586, 2022.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Yatin Dandi, Luis Barba, and Martin Jaggi. Implicit gradient alignment in distributed and federated learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 6454–6462, 2022.

Nikita Dhawan, Sicong Huang, Juhan Bae, and Roger Baker Grosse. Efficient parametric approximations of
neural network function space distance. In International Conference on Machine Learning, pp. 7795–7812.
PMLR, 2023.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy, and Surya
Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time
evolution of the neural tangent kernel. Advances in Neural Information Processing Systems, 33:5850–5861,
2020.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Linear mode connectivity
and the lottery ticket hypothesis. In International Conference on Machine Learning, pp. 3259–3269.
PMLR, 2020.

12

https://openreview.net/forum?id=GFsU8a0sGB
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data


Published in Transactions on Machine Learning Research (02/2024)

Jezabel R Garcia, Federica Freddi, Stathi Fotiadis, Maolin Li, Sattar Vakili, Alberto Bernacchia, and Guil-
laume Hennequin. Fisher-legendre (fishleg) optimization of deep neural networks. In The Eleventh In-
ternational Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
c9lAOPvQHS.

Xinran Gu, Kaifeng Lyu, Longbo Huang, and Sanjeev Arora. Why (and when) does local sgd generalize
better than sgd? arXiv preprint arXiv:2303.01215, 2023.

Neel Guha, Ameet Talwalkar, and Virginia Smith. One-shot federated learning. arXiv preprint
arXiv:1902.11175, 2019.

Han Guo, Philip Greengard, Hongyi Wang, Andrew Gelman, Yoon Kim, and Eric Xing. Federated learning
as variational inference: A scalable expectation propagation approach. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=dZrQR7OR11.

Felix Hamborg, Norman Meuschke, Corinna Breitinger, and Bela Gipp. news-please: A generic news crawler
and extractor. In Proceedings of the 15th International Symposium of Information Science, pp. 218–223,
March 2017. doi: 10.5281/zenodo.4120316.

Charlie Hou, Kiran Koshy Thekumparampil, Giulia Fanti, and Sewoong Oh. Fedchain: Chained algorithms
for near-optimal communication cost in federated learning. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=ZaVVVlcdaN.

Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. Towards a theoretical and practical understanding
of one-shot federated learning with Fisher information. In Federated Learning and Analytics in Practice:
Algorithms, Systems, Applications, and Opportunities, 2023.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. Foundations and Trends R© in Machine Learning, 14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In International
conference on machine learning, pp. 5132–5143. PMLR, 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced research).
URL http://www.cs.toronto.edu/~kriz/cifar.html.

Kevin Kuo, Pratiksha Thaker, Mikhail Khodak, John Nguyen, Daniel Jiang, Ameet Talwalkar, and Virginia
Smith. On noisy evaluation in federated hyperparameter tuning. Proceedings of Machine Learning and
Systems, 5, 2023.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and Luke Zettle-
moyer. Branch-train-merge: Embarrassingly parallel training of expert language models. arXiv preprint
arXiv:2208.03306, 2022.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine learning and systems, 2:429–450, 2020.

Grigory Malinovskiy, Dmitry Kovalev, Elnur Gasanov, Laurent Condat, and Peter Richtarik. From local
SGD to local fixed-point methods for federated learning. In Hal Daumé III and Aarti Singh (eds.),
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pp. 6692–6701. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/malinovskiy20a.html.

13

https://openreview.net/forum?id=c9lAOPvQHS
https://openreview.net/forum?id=c9lAOPvQHS
https://openreview.net/forum?id=dZrQR7OR11
https://openreview.net/forum?id=ZaVVVlcdaN
http://www.cs.toronto.edu/~kriz/cifar.html
https://proceedings.mlr.press/v119/malinovskiy20a.html
https://proceedings.mlr.press/v119/malinovskiy20a.html


Published in Transactions on Machine Learning Research (02/2024)

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate curva-
ture. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Michael S Matena and Colin A Raffel. Merging models with Fisher-weighted averaging. Advances in Neural
Information Processing Systems, 35:17703–17716, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and
statistics, pp. 1273–1282. PMLR, 2017.

Aritra Mitra, Rayana Jaafar, George J Pappas, and Hamed Hassani. Linear convergence in federated learning:
Tackling client heterogeneity and sparse gradients. Advances in Neural Information Processing Systems,
34:14606–14619, 2021.

Reese Pathak and Martin J Wainwright. FedSplit: An algorithmic framework for fast federated optimization.
Advances in neural information processing systems, 33:7057–7066, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Alexandre Rame, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Léon Bottou, and David Lopez-Paz. Model
ratatouille: Recycling diverse models for out-of-distribution generalization. 2023.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv
Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint arXiv:2003.00295,
2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat, Galen
Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field guide to federated optimization.
arXiv preprint arXiv:2107.06917, 2021.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model soups: averaging
weights of multiple fine-tuned models improves accuracy without increasing inference time. In Interna-
tional Conference on Machine Learning, pp. 23965–23998. PMLR, 2022.

14



Published in Transactions on Machine Learning Research (02/2024)

A Appendix

A.1 Notation

f Function represented by a neural network

θ Network parameters

D (·, ·) Function space distance

X Input data

y Target data

Z Network outputs

θG Global aggregated model

N Number of clients

Di Dataset (Xi,yi) corresponding to client i

θi Locally trained model for client i

J
(z)
θ Output Jacobian matrix

F Fisher Information matrix

diag(F ) Diagonal of Fisher Information matrix

Li Performance metric of interest, evaluated on data Di for client i

A.2 FedFish Derivation

We present the complete details of our derivation for FedFish here.

Given N client models with locally trained parameters (θi)Ni=1 and a function space distance as D (·, ·) we
defined the optimal global model to be:

θ∗G = arg min
θ

1
N

N∑
i=1
D (f(Xi; θ), f(Xi; θi)) . (6)

We make a second-order Taylor approximation to the function space distance above with respect to model
parameters θ, centered at each client’s θi, the network whose outputs are to be matched. Setting D (·, ·) to
be the Kullback-Leibler (KL) divergence between softmax outputs of the networks, we have for each client i,

D (f(Xi; θ), f(Xi; θi)) ≈ D (f(Xi; θi), f(Xi; θi)) (7)

+ (θ − θi)T
[(
J

(z)
θ

)T∇ZD (f(Xi; θ), f(Xi; θi))
∣∣∣∣
θ=θi

]
(8)

+ 1
2(θ − θi)T

[
∇2
θD (f(Xi; θ), f(Xi; θi))

∣∣∣∣
θ=θi

]
(θ − θi), (9)

where J (z)
θ is the output Jacobian, arising in eq. (8) from the chain rule.

For any distance measured between the softmax outputs of the networks, D (·, ·), the first term in eq. (7) is
0. Since the distance is minimized at θ = θi, the gradient, ∇ZD (f(Xi; θ), f(Xi; θi)) in eq. (8) is also 0 when
evaluated at θ = θi, causing this term to vanish.

15



Published in Transactions on Machine Learning Research (02/2024)

Finally, applying the chain rule to the Hessian in eq. (9) yields

∇2
θD(f(Xi; θ), f(Xi; θi))

∣∣∣∣
θ=θi

=
(
J

(z)
θ

)T∇2
ZD(f(Xi; θ), f(Xi; θi))J (z)

θ (10)

+∇ZD(f(Xi; θ), f(Xi; θi))T∇2
θf(X, θ)

∣∣∣∣
θ=θi

. (11)

Again, the second term in eq. (11) vanishes as ∇ZD(f(Xi; θ), f(Xi; θi)) = 0 when evaluated at θ = θi.

Since we consider models that are trained with cross-entropy loss, a natural measure of difference between
outputs of two models is the KL divergence. In this case, ∇2

ZDKL(f(Xi; θ), f(Xi; θi)) is the Fisher Informa-

tion matrix for outputs, FZ. Via chain rule, the first term above
(
J

(z)
θ

)T
FZJ

(z)
θ = Fθ is simply the Fisher

Information matrix for the network parameters. Henceforth, we simply denote this as F or Fi to indicate
the Fisher Information matrix corresponding to parameters θi of client i.

Our final approximation to function space distance reduces to

D(f(Xi; θ), f(Xi; θi)) ≈
1
2(θ − θi)TFi(θ − θi) (12)

≈ 1
2

|θi|∑
j=1

F
(j)
i (θ(j) − θ(j)

i )2. (13)

Here, eq. (13) makes a diagonal approximation to the Fisher Information matrix, with F
(j)
i denoting the

j-th diagonal entry of Fi.

Plugging eq. (13) into the optimization problem of eq. (6) gives

θ∗G = arg min
θ

1
2N

N∑
i=1

|θi|∑
j=1

F
(j)
i (θ(j) − θ(j)

i )2. (14)

Equation (4) is now a convex optimization problem, which we can solve by taking its gradient with respect
to θ and setting it to 0. It has the following closed-form solution:

θ∗G =
∑N
i=1 diag(Fi)T θi∑N
i=1 diag(Fi)

, (15)

A.3 Experimental Details

A.3.1 Datasets, Tasks & Models

We use four datasets for training models using FedAvg and FedFish: the federated extended MNIST
dataset (EMNIST) (Cohen et al., 2017), the CIFAR100 dataset (Krizhevsky et al.), the Stack Overflow
dataset (Authors, 2019) and the C4 dataset (Raffel et al., 2020). We additionally use the CC-News (Hamborg
et al., 2017) and Stack Overflow datasets for evaluating transfer and post-personalization performance of
models trained on C4 using each algorithm of study.

Each of these datasets is publicly available. EMNIST is licensed under Standard Reference Data by NIST.
CIFAR100 is published by the authors. Stack Overflow is licensed under the Creative Commons Attribution-
ShareAlike 3.0 Unported License. C4 and CC-News are hosted by commoncrawl.org and we access both
through HuggingFace datasets.

Table 1 lists the scale of each dataset, the associated task and the model used for training. We include
additional details on dataset preprocessing and model configuration for each experiment setting below.

16



Published in Transactions on Machine Learning Research (02/2024)

Table 1: Datasets, Tasks & Models

Dataset Num Clients Num Examples Task Model

Train Test Train Test

EMNIST 3.4K 3.4K 672K 77K
Character

Recognition
CNN

CIFAR100 500 100 50K 10K
Image

Recognition

ResNet-18

with GroupNorm

Stack

Overflow
342K 204K 135.8M 16.6M

Next-Token

Prediction

350M Parameter

Decoder-only Transformer

C4 15.6M 8.5K 364.9M 365K
Next-Token

Prediction

1.5B Parameter

Decoder-only Transformer

CC-News – 8.8K – 708K
Next-Token

Prediction

1.5B Parameter

Decoder-only Transformer

EMNIST The EMNIST dataset is comprised of 28x28 grey-scale pixel images of alphanumeric handwritten
characters. There are 62 characters represented. The dataset has natural heterogeneity stemming from
characters being written by different authors. We partition the handwritten characters in EMNIST according
to their author, as proposed by Caldas et al. (2018). We train a two-layer LeNet CNN model (Lecun et al.,
1998) for character recognition: two convolutional layers with 3x3 kernels and strides of length 1, a max
pooling layer using dropout with p = 0.25, a dense layer with 128 units and dropout with p = 0.5, and a
final dense output layer.

CIFAR100 The CIFAR100 dataset consists of 32x32x3 pixel images with one of 100 labels. We preprocess
the images using standard data augmentations, including padding to 36x36 dimensions, randomly cropping
to 32x32, randomly flipping along the vertical axis and applying normalization. We partition CIFAR100
according to the two-level Dirichlet allocation scheme proposed by Reddi et al. (2020). We train a standard
ResNet-18 model with the batch normalization layers replaced with group normalization layers, following
Reddi et al. (2020).

Stack Overflow The Stack Overflow dataset is a language-modeling dataset consisting of question–answer
pairs from stackoverflow.com. Each client corresponds to a user on the platform. The data is split into
train, test and validation: train client examples are from before 2018-01-01 UTC, test client examples are
from after 2018-01-01 UTC, and validation clients are held out from both train and test splits. We train a
350M parameter decoder-only transformer model on the train split of Stack Overflow. We use the validation
client split in our evaluations of both the Stack Overflow base model and the C4 base model (for assessing
transfer performance, see below).

C4 The Colossal Clean Crawled Corpus (C4) dataset is a cleaned version of Common Crawl’s web crawl
corpus (Raffel et al., 2020). We use the federated version of this dataset presented in Charles et al. (2023),

17



Published in Transactions on Machine Learning Research (02/2024)

Dataset EMNIST CIFAR100 Stack Overflow C4

Number of clients per round 64 64 16 8

Number of training rounds 1500 1500 1500 10000

Batch size for local training 10 25 4 4

Max client dataset size per round 100 100 16 16

Sequence length (training) - - 128 1024

Sequence length (personalization and evaluation) - - 128 128

Number of personalization epochs 1 4 4 4

Global learning rate 1e-3 1e-3 1e-2 1e-2

Local learning rate 1e-3 1e-3 1e-3 1e-3

Table 2: Final hyperparameter configurations for all datasets.

where each client corresponds to a different domain name (i.e., nytimes.com. We train a 1.5B parameter
decoder-only transformer model on the train split of federated C4.

We evaluate the C4 base model on a federated version of the C4 test split, as well as federated CC-News and
Stack Overflow to assess transfer performance. CC-News is similarly split by domain name, using Dataset
Grouper (Charles et al., 2023). We further measure few-shot performance of the C4 base model by conducting
a personalization evaluation on 25% of held-out client data for each dataset of interest (C4, CC-News, Stack
Overflow). Because of this specific personalization evaluation, we filter C4 evaluation datasets to have at
least 4 examples per client.

A.3.2 Federated Algorithm Configuration and Hyperparameters

We implement the federated algorithms, FedAvg and FedFish, such that a global model is broadcast to
a number or clients at each round, client train their models locally, model deltas are returned as pseudo-
gradients to the global server for aggregation, and a global optimizer is used to make a single update on the
global model using the aggregated pseudo-gradients as its own gradient.

Optimizers. We follow standard configurations used in Charles et al. (2023), with stochastic gradient
descent as the local optimizer and Adam as the global server optimizer, across experiments.

Hyperparameter Tuning We fix hyperparameters like number of clients per round, number of training
rounds, local batch size, maximum dataset size for any client and sequence length for language models to
reasonable values based on previous literature. For local and global learning rates, we conducted a grid
search over [1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2, 1e-1], and chose the best performing hyperparameters. Final
hyperparameter configurations used to obtain the results in the paper are listed in table 2. These are held
consistent for FedAvg and FedFish experiments.

A.3.3 Hardware Configuration

We run image-classification experiments on a TPU Pod slice consisting of 4 TPU v2 chips in a 2x2 topology,
interconnected on a single machine. Each TPU v2 chip contains two TensorCores, 16 GiB of high-bandwidth
memory, and 90.75 GiB RAM. We run language-modeling experiments on a TPU Pod slice consisting of
16 TPU v3 chips in a 4x4 topology, configured to use a multi-machine inter-chip interconnect mesh. Each
TPU v3 chip contains two TensorCores, 32 GiB of high-bandwidth memory, 87.25 GiB RAM, 900 GBps
bandwidth, and 123 teraflops peak compute.

18



Published in Transactions on Machine Learning Research (02/2024)

Dataset Local epochs Method
Global Accuracy Personalized Accuracy

Fixed compute Fixed rounds Fixed compute Fixed rounds

EMNIST

4
FedAvg 81.38 81.38 83.09 83.09

FedFish 82.64 82.64 83.44 83.44

8
FedAvg 82.05 82.24 83.46 83.82

FedFish 83.19 84.42 84.37 85.6

16
FedAvg 76.45 77.52 77.96 79.63

FedFish 79.01 82.86 81.05 84.96

CIFAR100

4
FedAvg 35.75 35.75 37.06 37.06

FedFish 36.88 36.88 41.31 41.31

16
FedAvg 28.56 33.28 36.00 32.13

FedFish 31.63 37.72 40.53 44.69

Table 3: Longer local training improves overall performance in terms of both global model accuracy as
well as personalization. When amount of compute, i.e. total number of training epochs, is fixed, FedFish
can achieve better performance than FedAvg with fewer rounds of communication between the server and
clients.

3.85 3.90 3.95 4.00 4.05 4.10 4.15 4.20 4.25

Perplexity

0

25

50

Pe
rs

on
al

iz
at

io
n

Tr
ai

ni
ng

D
at

a
(%

)

4.2 4.4 4.6 4.8 5.0 5.2

Perplexity

0

25

50

Pe
rs

on
al

iz
at

io
n

Tr
ai

ni
ng

D
at

a
(%

)

FedAvg
FedFish
1 local epoch
16 local epochs

4.0 4.1 4.2 4.3 4.4

Perplexity

0

25

50

Pe
rs

on
al

iz
at

io
n

Tr
ai

ni
ng

D
at

a
(%

)

Figure 7: Transfer performance on perplexity (lower is better) after federated pretraining on C4 and evalu-
ating on C4 (left), Stack Overflow (center) and CC-News (right).

A.4 Additional Results

Here, we include additional results and report the performance visualized in section 5. Table 3 shows results
on image benchmarks where performance is computed by keeping either the computational requirement or
the total number of rounds fixed. For the former, we limit the number of training rounds according to
the number of local epochs so that total amount of client-side training remains constant. Unsurprisingly,
allowing for more rounds of training helps performance. However, at fixed compute, we see that FedFish is
able to achieve better performance than FedAvg with fewer rounds of communication. Table 4 and table 5
include full results on our language modeling experiments, including different numbers of local training
epochs, different datasets used for federated pretraining or personalization, different performance metrics and
different amounts of data used for personalization. Finally, similar to fig. 5 with shows next-token prediction
performance, we present perplexity performance for the C4 transfer experiments in appendix A.3.3.

A.5 Efficiency of FedFish

We recognize that there are opportunities to improve the efficiency of FedFish, both in terms of computation
and communication. As presented in algorithm 2, each client takes an additional pass over its data to estimate

19



Published in Transactions on Machine Learning Research (02/2024)

Training

Dataset

Training Local

Epochs

Personalization

Dataset
Method

Global Personalized (25%) Personalized (50%)

Token Pred Perplexity Token Pred Perplexity Token Pred Perplexity

Stack Overflow

8

Stack Overflow

FedAvg 32.00 3.79 - - 32.34 3.90

FedFish 32.98 3.77 - - 34.28 3.68

16
FedAvg 21.77 5.56 - - 25.46 4.61

FedFish 31.27 3.96 - - 32.60 3.81

C4

1

C4

FedAvg 30.16 4.26 30.81 4.21 30.95 4.20

FedFish 31.15 4.19 32.10 4.12 32.34 4.11

16
FedAvg 31.04 4.13 32.26 4.12 32.73 4.08

FedFish 32.37 3.99 33.54 3.92 33.98 3.87

C4

1

Stack Overflow

FedAvg 17.91 5.29 19.85 5.13 21.58 5.03

FedFish 19.55 5.101 22.07 4.91 23.38 4.815

16
FedAvg 18.83 5.13 19.63 5.201 22.98 4.69

FedFish 19.54 5.16 26.89 4.32 27.77 4.22

C4

1

CC-News

FedAvg 29.03 4.38 29.45 4.34 29.73 4.31

FedFish 29.53 4.41 30.14 4.35 30.61 4.32

16
FedAvg 29.96 4.25 29.69 4.35 31.00 4.21

FedFish 31.00 4.15 31.75 4.08 32.58 3.98

Table 4: Full results on global and post-personalization performance of language models that are pretrained
in a federated manner with varying number of local epochs and then evaluated on different datasets. These
results correspond to the entire R rounds of federated training.

Training

Dataset

Training Local

Epochs

Personalization

Dataset
Method

Global Personalized (25%) Personalized (50%)

Token Pred Perplexity Token Pred Perplexity Token Pred Perplexity

C4

1

C4

FedAvg 26.82 4.67 27.56 4.61 27.73 4.60

FedFish 27.69 4.63 28.70 4.55 28.91 4.54

16
FedAvg 28.63 4.42 29.84 4.37 30.11 4.39

FedFish 30.33 4.28 31.54 4.11 31.61 4.10

1

Stack Overflow

FedAvg 17.10 5.38 19.92 5.20 21.78 5.10

FedFish 17.25 5.41 19.62 5.2 21.10 5.08

16
FedAvg 18.57 5.29 16.23 7.03 18.91 6.09

FedFish 17.80 5.42 20.81 4.77 22.78 4.58

1

CC-News

FedAvg 26.03 4.79 26.44 4.75 26.72 4.72

FedFish 26.23 4.86 26.88 4.80 27.34 4.76

16
FedAvg 27.55 4.58 27.23 4.59 28.02 4.55

FedFish 28.91 4.44 29.86 4.29 30.06 4.27

Table 5: Results on global and post-personalization performance of language models in different settings,
evaluated at R/2 rounds of federated training.

the Fisher diagonal (lines 9-12) and communicates this estimate along with its model update (line 13). This
results in an increase in computational cost equivalent to one epoch of training and a two-fold increase in
communication cost.

A.5.1 Computational Overhead of FedFish

To eliminate the need for an additional forward and backward pass through the model to compute Fisher
information, we can instead use the gradients from the last local epoch of training. This is a further
approximation as the gradients are with respect to the evolving client model rather than with respect to

20



Published in Transactions on Machine Learning Research (02/2024)

0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44

Next-token Prediction Accuracy

0

50

Pe
rs

on
al

iz
at

io
n

Tr
ai

ni
ng

D
at

a
(%

)

FedAvg
FedFish
1 local epoch
16 local epochs

3.4 3.6 3.8 4.0 4.2

Perplexity

0

50

Pe
rs

on
al

iz
at

io
n

Tr
ai

ni
ng

D
at

a
(%

)

FedAvg
FedFish
1 local epoch
16 local epochs

Figure 8: Global and post-personalization performance in terms of next-token prediction (left) and perplexity
(lower is better) (right) after federated pretraining on C4 using FedAvg or FedFish where the Fisher is
estimated using gradients from epoch E.

Training

Dataset

Training Local

Epochs

Personalization

Dataset
Method

Global Personalized (50%)

Token Pred Perplexity Token Pred Perplexity

C4

1

C4

FedAvg 30.16 4.26 30.95 4.20

FedFish 32.10 4.10 34.86 3.93

16
FedAvg 31.04 4.13 32.72 4.08

FedFish 30.28 4.07 44.31 3.42

Table 6: Results from ablation study of FedFish without computational overhead, where the Fisher is
estimated using gradients from epoch E. Global and post-personalization performance of model pretrained
and personalized on C4 evaluated at R rounds of federated training.

the fully updated client model that will be merged. The computational overhead of FedFish, as presented
in algorithm 2, is likely to be more of a hindrance as models scale. Given this efficiency concern is most
relevant for the largest setting we consider, we perform an ablation study on C4 to investigate the effect of
making the approximation described above.

We run FedFish C4 experiments using gradients from the last epoch of local training in each round to com-
pute the Fisher diagonal. Results are presented in fig. 8 and table 6. We find that this further approximation
does not reduce performance - even when only training with a single pass over the data. Surprisingly, we
see a substantial improvement in personalization performance for training with 16 local epochs when using
gradients from the 16th epoch rather than from an additional pass after fixing the local model.

A.5.2 Communication Overhead of FedFish

Note that overall communication cost is not just measured in bits communicated per round, but also in the
total number of communication rounds required. Depending on the network constraints one of these factors
may be more critical to minimize. As discussed in section 5.3, the presented implementation of FedFish
(see algorithm 1 and algorithm 2) has twice the communication cost (per federated round) of FedAvg.
This overhead can be eliminated by combining our method with adaptive federated optimization techniques
(Reddi et al., 2020), having clients only send their weighted parameters and folding the normalization into
the server optimization. We leave this extension to future work, and provide a more critical look at the
advantage of FedFish given the presented implementation.

Ablation: Communication Rounds Figure 9 depicts the evaluation performance of FedAvg and Fed-
Fish on EMNIST across local epochs normalized by the number of communication rounds. FedFish con-
verges faster and to a higher global accuracy and post-personalization accuracy than FedAvg. Despite the
additional cost per round of FedFish, convergence over fewer communication rounds is useful for a setting
in which the network is not bandwidth-constrained but clients are intermittently reachable.

21



Published in Transactions on Machine Learning Research (02/2024)

0 100 200 300 400 500 600 700 800

Communication Rounds

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

G
lo

b
a
l
A

cc
u
ra

cy

FedAvg

FedFish

4 local epochs

8 local epochs

16 local epochs

0 100 200 300 400 500 600 700 800

Communication Rounds

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

P
o
st
−

P
er

so
n
al

iz
a
ti
o
n

A
cc

u
ra

cy

FedAvg

FedFish

4 local epochs

8 local epochs

16 local epochs

Figure 9: When normalizing by communication rounds, training on EMNIST with FedFish converges faster
and to a higher global accuracy (left) and post-personalization accuracy (right) than with FedAvg. Results
are shown for experiments across varying numbers of local epochs. Each marker indicates 100 federated
communication rounds.

0 100 200 300 400 500 600 700 800

Communication Cost (|θ| parameters sent)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

G
lo

b
al

A
cc

u
ra

cy

FedAvg

FedFish

4 local epochs

8 local epochs

16 local epochs

0 100 200 300 400 500 600 700 800
Communication Cost (|θ| parameters sent)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
P

os
t
−

P
er

so
n
al

iz
a
ti
on

A
cc

u
ra

cy

FedAvg

FedFish

4 local epochs

8 local epochs

16 local epochs

Figure 10: When normalizing by communication cost, training on EMNIST with FedFish matches the
performance of FedAvg both in terms of global accuracy (left) and post-personalization accuracy (right),
with half the number of communication rounds. Results are shown for experiments across varying numbers
of local epochs. Each marker indicates 100 federated communication rounds.

Ablation: Communication Cost Figure 10 depicts the evaluation performance of FedAvg and Fed-
Fish on EMNIST across local epochs normalized by the total communication cost (measured in units of
|θ|). FedFish performs comparably to FedAvg both in global accuracy and post-personalization accuracy.
Taking the additional cost per round of FedFish into account, FedFish is no more costly than FedAvg
measured in terms of bits communicated to accuracy achieved.

A.6 Additional Related Works

Linear Mode Connectivity. Frankle et al. (2020) The Client-Server Barrier is largely inspired by the
error barrier definition in Fort et al. (2020). There the authors define an error barrier as the maximum
increase in error on a linear path in the parameter space between two models. There are a few key differences
between the error barrier and client-server barrier: they consider models trained on the same training data;
using our notation, the losses Li are identical for all i; i indexes over different models θi (e.g., models trained
in the same centralized way but independently). The error barrier corresponds then to the maximum over

22



Published in Transactions on Machine Learning Research (02/2024)

{wi}i=1,...,N , where wi is the weight corresponding to θi when linearly interpolating between {θi}i=1,...,N .
Prior to Fort et al. (2020), error barriers appeared under “instability” definition in Frankle et al. (2020)
for evaluating how different trajectories of a pair of networks connect in the loss landscape. Later, similar
metrics were used in other model averaging work, such as Wortsman et al. (2022), where the authors consider
multiple networks trained with different hyperparameters.

23


	Introduction
	Federated Learning in the Function Space
	Problem Setting
	Approximating Function Space Distance

	FedFish Algorithm
	Evaluation and Client-Server Barrier
	Experiments
	A Toy Regression Demonstration
	Image Classification and Text Benchmarks
	Effect of Local Training on Global Model Performance
	Post-Personalization Performance
	Transfer Performance
	Client-Server Barrier

	Communication Cost

	Related Work
	Discussion and Outlook
	Appendix
	Notation
	FedFish Derivation
	Experimental Details
	Datasets, Tasks & Models
	Federated Algorithm Configuration and Hyperparameters
	Hardware Configuration

	Additional Results
	Efficiency of FedFish 
	Computational Overhead of FedFish
	Communication Overhead of FedFish

	Additional Related Works


