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Abstract

Despite the advantageous subquadratic complexity of modern recurrent deep learn-1

ing models – such as state-space models (SSMs) – recent studies have highlighted2

their potential shortcomings compared to transformers on reasoning and memoriza-3

tion tasks. In this paper, we dive deeper into one of such benchmarks: associative4

recall (AR), which has been shown to correlate well with language modeling5

performance, and inspect in detail the effects of scaling and optimization issues6

in recently proposed token mixing strategies. We first demonstrate that, unlike7

standard transformers, the choice of learning rate plays a critical role in the per-8

formance of modern recurrent models: an issue that can severely affect reported9

performance in previous works and suggests further research is needed to stabilize10

training. Next, we show that recurrent and attention-based models exhibit contrast-11

ing benefits when scaling in width as opposed to depth, with attention being notably12

unable to solve AR when limited to a single layer. We then further inspect 1-layer13

transformers, revealing that despite their poor performance, their training dynamics14

surprisingly resemble the formation of induction heads, a phenomenon previously15

observed only in their 2-layer counterparts. Finally, through architectural ablations,16

we study how components affects Transformer and Mamba’s performance and17

optimization stability.18

1 Introduction19

Since early developments [Rumelhart et al., 1986, Elman, 1990], RNNs have driven progress in20

machine learning techniques for sequential data, with milestones such as Echo-State Networks [Jaeger,21

2001] the LSTM [Hochreiter and Schmidhuber, 1997] and the GRU [Cho et al., 2014]. However, two22

problems severely limit the application of RNNs in modern times: first, GPU architectures designed23

for large matrix multiplications struggle with sequential processing. Secondly, it is widely known24

that recurrent models are hard to train due to vanishing and exploding gradients issues [Bengio et al.,25

1994, Hochreiter et al., 2001, Pascanu et al., 2013].26

Attention. These challenges have led to the introduction of a different paradigm: the Attention27

mechanism, implemented around the Transformer architecture [Vaswani et al., 2017]. Instead of28

processing inputs sequentially while building up internal memory (RNNs), Attention computes29

large matrices of pairwise interactions between data points, allowing for modeling direct links30

between elements in a sequence and thus attenuating the vanishing gradient issue. While Attention,31

being based on matrix multiplications, is extremely GPU efficient, computing pairwise interactions32

results in O(L2) inference and memory complexity, where L denotes the input sequence length. For33

this reason, techniques such as patching [Dosovitskiy et al., 2021, Pagnoni et al., 2024], gradient34

checkpointing [Chen et al., 2016], and FlashAttention [Dao et al., 2022, Dao, 2023, Shah et al.,35

2024] become of paramount importance when training and deploying Attention-based models at36

scale. Despite this limitation, Transformers successfully powers most state-of-the-art architectures37

we use today: beyond large language models [Devlin, 2018, Brown et al., 2020, Team et al., 2024],38
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Attention found widespread application in vision [Dosovitskiy et al., 2021, Touvron et al., 2021,39

Bertasius et al., 2021, Liu et al., 2024a], graph processing [Ma et al., 2023], and genome analysis40

domains [Dalla-Torre et al., 2024], among others.41

Nevertheless, the quadratic complexity of Attention has remained a pressing limitation, prompting42

numerous efforts to develop more efficient approximations [Wang et al., 2020, Choromanski et al.,43

2020, Chen et al., 2021, Lee-Thorp et al., 2022]. Many of these approaches have even revealed44

connections to recurrent formulations [Katharopoulos et al., 2020, Schlag et al., 2021].45

SSMs and other linear token mixers. More recently, we have witnessed a resurgence of RNNs in46

state-of-the-art industry-size applications such as language modeling. Sparked by the S4 model [Gu47

et al., 2020, 2022], which surpassed Attention-based models on long-range reasoning tasks [Tay48

et al., 2020], we have rapidly seen in the last year a drastic increase in the usage of RNNs in deep49

architectures, albeit in a linear1 form that guarantees both O(L) memory/inference complexity50

and fast computation on GPUs [Martin and Cundy, 2018, Orvieto et al., 2023] while matching or51

surpassing transformers on downstream tasks: a prime example are State-space Models (SSMs)52

such as Mamba(2) [Gu and Dao, 2024, Dao and Gu, 2024], along with variants based on similar53

ambitions [De et al., 2024, Peng et al., 2024, Yang et al., 2024a]. These novel fast recurrent processing54

strategies sparked the interest of many practitioners in the field, leading to novel applications in55

several domains, including vision [Liu et al., 2024b, Liang et al., 2024], audio generation [Goel et al.,56

2022], online learning [Zucchet et al., 2023] and reinforcement learning [Lu et al., 2023].57

Different expressivity? It has been shown [Dao and Gu, 2024, Ali et al., 2024, Sieber et al., 2024],58

that one can put in direct correspondence Attention with SSM processing: due to the linearity of59

SSMs in the hidden state – the main distinction between SSMs and classical nonlinear RNNs [Cirone60

et al., 2024] – it is possible to write down the “attention matrix” corresponding to SSM processing61

at a given input. Yet, such a matrix is highly structured, a feature that boosts speeds at very high62

context lengths [Waleffe et al., 2024] but may hurt optimization due to iterated products involving the63

model parameters [Zucchet and Orvieto, 2024]. On top of this, the recurrent formulation of SSMs64

clearly points to potential memory issues compared to attention on simple yet important tasks such as65

copying [Jelassi et al., 2024] and associative recall [Arora et al., 2023].66

.. or perhaps just harder optimization? Despite empirical results and worst-case bounds [Arora67

et al., 2024] regarding the capabilities of SSM models on simple yet important tasks, it is yet unclear68

if optimization issues, such as the curse of memory or vanishing gradients [Pascanu et al., 2013,69

Zucchet and Orvieto, 2024], confound or understanding of capabilities of new recurrent models. We70

found that this is indeed the case in associative recall [Arora et al., 2023], as we show in Figure 1.71

Figure 1: We show the performance of Attention, Hyena and Mamba using an extensive learning rate
grid search. Differently from attention, the window of suitable learning rates for Mamba and Hyena
is relatively narrow. We also compare our grid search with the one used in Zoology [Arora et al.,
2023] (dashed vertical lines) to highlight how the suitable learning rate can be missed. The results
show the mean and relative max-min errors after 3 runs with different seeds.

Figure 1 points to a crucial confounder when comparing SSM and attention capabilities: while funda-72

mental expressivity issues exist between such model classes, the main driver of poor performance can73

be unsuccessful optimization. In a way, when considering basic prototypical yet challenging tasks,74

transformers are not SSMs mainly because of their optimization dynamics.75

1Modern RNNs such as State-space Models are linear in the hidden-to-hidden state interactions, but have
recurrent formulation that is non-linear in the input, see [Cirone et al., 2024]
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In response to this issue, a potential confounder for future evaluations of new recurrent models, in76

this paper we take a closer look at associative recall and reveal new insights into the fundamental77

distinctions between attention models and recurrent models.78

• The Impact of Optimization on Recurrent Models: We find that learning rate selection plays79

a pivotal role in the performance of recurrent models. More than just influencing performance,80

it determines whether these models can successfully solve the task. Overlooking this factor can81

lead to incorrect conclusion about their capabilities, highlighting the need for careful tuning when82

working with recurrent architectures.83

• Different Scaling Behavior of Depth and Width: Our experiments reveal that these models differ84

in how they benefit from scaling width and depth. Consistent with prior research, recurrent models85

gain the most from increased width, as their reliance on hidden state updates makes a larger one86

beneficial for retaining information. Conversely, we show that a single-layer attention model fails87

to solve the task, while a two-layer version succeeds.88

• Training Dynamics and Induction-Like Phenomena in 1-layer architectures: Expanding on the89

previous insight, we examine the behavior of single-layer models during training. Interestingly,90

even in this setting, attention exhibits a phenomenon reminiscent of induction heads—previously91

observed only in deeper models. We observe a drop in loss that does not correspond to improved92

performance, indicating that the model may struggle to leverage induction heads at this scale. Mean-93

while, recurrent models show smoother training dynamics, and Mamba, in particular, demonstrates94

a steep performance increase similar to induction heads, even in a single-layer setup.95

• Ablation to reduce the gap between Transformers and SSMs: Given the different behavior of the96

two architectures, we make a series of architectural changes to make the Transformer more similar97

to Mamba and viceversa. Our findings suggest that Mamba’s advantages stem from more than just98

its convolutional, gating or architectural module, as its performance remains strong even when99

these components are removed or modified. We also give suggestions on how other architectures,100

can improve the baseline of Mamba in MQAR and its stability.101

2 Background and Related works102

Associative Recall. With the rise of foundation models, deep learning has made significant advances,103

sparking growing interest in evaluating their reasoning capabilities. One key aspect of reasoning is104

the ability to recall previously encountered information. Intuitively, given the input105

“Hakuna Matata means no worries for the rest of your days.106

"Hakuna Matata means ...”107

a well-performing model should predict "no worries" with high likelihood. Building on this idea,108

the synthetic associative recall (AR) task, introduced by [Olsson et al., 2022], gained popularity as109

an efficient reasoning benchmark to assess promising model architectures at a relatively low cost.110

The task is structured as follows: Given a fixed Vocabulary V , each sample consists of a sequence of111

tokens sampled from V representing alternating key-value pairs. Given such a sequence and a key112

that appeared earlier, the model must correctly infer its corresponding value: For example, given the113

input sequence:114

A 6 I 9 C 7 P 1 S 4 D 2

and given the key C −→ ? the model should predict 7.115

A crucial aspect of this task is that the tokens serve interchangeably as keys and values among116

samples—they are drawn from the same vocabulary rather than separate sets. Consequently, the117

model cannot rely on preassigned roles for tokens. Moreover, since token roles and positions vary118

across data points, the model cannot memorize a fixed mapping but must instead infer the correct119

associations dynamically in-context.120

Multi-Query Associtative Recall. Building on previous research [Arora et al., 2023], our experi-121

ments employ a variation of AR known as multi-query associative recall (MQAR). This choice is122

motivated by the fact that standard AR is typically used to evaluate the ability of recurrent models to123

capture long-range dependencies using extremely long sequences—an area where attention-based124

models often struggle due to memory constraints. However, at the scale of our experiments, MQAR125

presents a more challenging and relevant task even with relatively small sequences.126
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There are two key distinctions between MQAR and its standard counterpart, both of which align127

more closely with the characteristics of natural language. First, it introduces a significantly larger128

vocabulary: from the 50 tokens of standard AR to approximately 8, 000 tokens in MQAR. This129

makes the task more representative of real-world language processing where the vocabulary size130

is in the order of hundreds of thousands of words. Second, instead of recalling a single key-value131

pair, MQAR requires the model to retrieve multiple values based on multiple queries. This more132

accurately mirrors the nature of language, where meaning is often derived from groups of words and133

interrelated concepts rather than isolated tokens. For instance, given an input sequence134

A 6 I 9 C 7 P 1 S 4 D 2

and given multiple keys135

C −→ ? A −→ ? D −→ ?

we ask the model to recall the relative values 7, 6 and 2. Notably, if we were to restrict the model to136

retrieving only one key-value pair, the task would reduce to AR. We opted for this variant because137

prior studies have demonstrated that it more effectively highlights the differences between attention-138

based and recurrent models. By incorporating these linguistic properties, multi-query associative139

recall serves as a more insightful benchmark for evaluating model performance. Even if all of our140

analysis are made using multi-query associative recall, throughout this work we will use the terms141

AR and MQAR interchangeably for simplification.142

Induction heads. While investigating the capabilities of transformers in few-shot learning, previous143

work ( [Olsson et al., 2022]) showed the phenomenon of induction heads. The main insight from this144

work was that during training, with transformers with at least 2 layers, a special kind of attention145

heads called “induction heads” is formed, causing a noticeable drop in the loss perplexity, while146

giving a sudden boost in In-context learning performances.147

More formally, induction heads are implemented by a circuit consisting of a pair of attention heads148

in different layers that work together to copy or complete patterns. The first attention head copies149

information from the previous token into each other tokens, making it possible for the second150

attention head to attend to tokens based on what happened before them, rather than their own content.151

Specifically, the second head (the proper "induction head") searches for a previous place in the152

sequence where the present token A occurred and attends to the next token (call it B ), copying it and153

causing the model to be more likely to output B as the next token. That is, the two heads working154

together cause the sequence ...[A][B]...[A] to be more likely completed with [B].155

156

Induction heads are named by analogy to inductive reasoning, where we might infer that if157

A is followed by B earlier in the context, A is more likely to be followed by B again later in the158

same context. Induction heads are capable of crystallizing that inference. They search the context for159

previous instances of the present token, attend to the token which would come next in the pattern160

repeated, and increase its probability in terms of logit. Induction heads attend to tokens that would be161

predicted by basic induction (over the context, rather than over the training data).162

Transformers and SSMs. Let X ∈ RN×d a generic input consisting of N elements in d dimensions.163

Basic state-space models (SSMs) [Gu and Dao, 2024] compute outputs via a recurrence:164

Zi = AiZi−1 +BiXi

Yi = CiZi +DiXi,

where Z0 = 0 and Ai, Bi, Ci, Di are input-dependent matrices. In the S6 block [Gu and Dao, 2024],165

they are parametrized as functions of Xi, yielding a structured recurrence.166

This system admits a an attention formulation [Sieber et al., 2024, Dao and Gu, 2024]: Y = ΦX
S6 ·X ,167

ΦX
S6 =


C0B0 +D0 0 · · · 0
C1A1B0 C1B1 +D1 · · · 0

...
. . . . . .

...
CN

∏N
k=1 AkB0 · · · CNANBN−1 CNBN +DN

 . (1)

Later options such as Mamba2 [Dao and Gu, 2024] and DeltaNet [Yang et al., 2025] also share168

this view, yet their parameter-efficient formulation introduces further state expansion and parameter169

sharing options for efficient heads.170
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Figure 2: Performance of 2-layers models. Results for H3 [Fu et al., 2023], RWKV [Peng et al.,
2023] and Based [Arora et al., 2024] included in App. A.3. We report the official results2 (green
stars) and the replication running the original code of [Arora et al., 2023] (dotted blu line). While
for replication, we used the learning rates grid by Arora et al. [2023], we note here that, due to
high sensitivity to the learning rate (Fig, 1), tuning drastically affects performance. In solid orange,
we provide results with a finer grid (cf. Fig.1). Careful tuning of the learning rate gives a general
improvement in the performance of recurrent models. This becomes especially crucial in Mamba,
where the task becomes solvable at high sequence lengths >> hidden size. The results show the
mean and relative max-min errors for 3 seeds. Attention always solves the task (all curves overlap).

3 Closer Look into AR performance171

Building on previous research, we aim to provide an in-depth analysis of the differences and simi-172

larities between attention and recurrent models through the lens of AR. Prior studies [Arora et al.,173

2023] have shown that transformers are inherently well-suited for solving the MQAR task, achieving174

perfect accuracy regardless of model dimension, sequence length or number of key-value pairs to175

infer. In contrast, it was argued (both theoretically and empirically) that new recurrent models [Peng176

et al., 2023, Nguyen et al., 2024, Gu and Dao, 2024] can only solve MQAR if the hidden dimension177

is roughly equal to the sequence length (see analysis by Jelassi et al. [2024] in a related setting).178

However, a key aspect that has been overlooked in some prior works is the crucial role of optimization179

in recurrent models —particularly, the use of an effective grid search for the choice of learning rate.180

Hypothesis from previous works. Recurrent models update their hidden state (which serves as a181

compressed representation of past information) at each time step, using the current input. Since the182

model only has access to its hidden state and the current input, its ability to recall previous information183

depends on how effectively it compresses past data into this state. With a simplified analysis assuming184

uniform distribution over strings, Jelassi et al. [2024] showed that to successfully copy input strings,185

the hidden size needed grows linearly with the sequence length. In contrast, transformers [Vaswani186

et al., 2017] dynamically access all previously seen inputs through the softmax attention mechanism,187

allowing for the explicit computation of interactions between tokens. This makes the task of recalling188

already seen tokens essentially a lookup table problem when two layers work simultaneously, as189

described in Jelassi et al. [2024], Olsson et al. [2022].190

Results. Compared to previous work, in our experiments, we devoted more attention to tuning the191

learning rates, drastically improving the reported performance for recurrent models (see Fig. 2&1).192

As shown in Figure 2 and extensively in Appendix A.3, a finer grid not only enhances average193

performance across all settings but also proves particularly crucial for the Mamba model. With a more194

suitable learning rate, Mamba [Gu and Dao, 2024], which was previously shown to struggle with195

long sequence lengths, becomes capable of solving MQAR at relatively small hidden model sizes.196

2Mamba was not included in the official work but some experiments are documented in the blog post
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All experimental details for this and the next experiments are in Appendix A.2. This highlights a key197

takeaway for MQAR: the choice of learning rate (and optimization strategy in general) can be decisive198

in assessing whether a recurrent model can solve the task at all. In the case of Mamba, optimization199

choices become a discriminative factor, emphasizing the necessity of careful hyperparameter tuning200

in recurrent models, and further research for improving their high sensitivity.201

To further emphasize the critical role of learning rate selection in training recurrent models, we202

compare the performance of Attention, Hyena and Mamba using the same grid search. Figure 1203

illustrates that attention-based models maintain strong performance across a relatively wide range of204

learning rates. In contrast, Hyena and Mamba exhibit a different behavior: performance remains near205

zero for most learning rates but suddenly reaches near-optimal levels at specific values which may206

not be included in the grid by Arora et al. [2023]. These findings highlight a key distinction between207

attention-based and recurrent models: a sparse learning rate grid search can disproportionately impact208

their training outcomes. This discrepancy can lead to misleading conclusions about the capabilities209

of these models, emphasizing the need for careful tuning.210

4 Effects of width/depth scaling into AR performance211

Figure 3: Performance of 1-layer attention-based (Attention, Based) and recurrent-based (H3,
Hyena, Mamba, RWKV) models on AR. We show how for recurrent models, scaling the width boosts
performances. On the contrary, attention models cannot solve the task anymore as in the 2-layer
setting, and performances are unaffected by the scaling in width. The results show the mean and
relative max-min errors after 3 runs with different seeds.

While our findings in Sec. 3 show that some recurrent models can exhibit improved performance212

on MQAR with proper learning rate tuning, we confirm that a sizeable gap with attention can still213

be observed for some recurrent models at low widths (e.g. Hyena vs. Attention). The experiments214

of Sec. 3 focused on comparisons of 2-layer architectures, at different sequence lengths and model215

widths. This choice stems from prior research [Olsson et al., 2022], where transformers have shown216

peculiar in-context learning capabilities related to the formation of induction head circuits in 2-layer217

models. With the intention of going beyond the setup that is known to show strengths for softmax218

attention, our objective in this section is to explore the effects of scaling in different configurations.219

To achieve this goal, we conducted experiments analogous to Section 3 using single-layer architec-220

tures3. By doing so, we aim to decouple the effects of inter-communication between layers and to221

isolate the impact of each model’s fundamental structure (attention versus recurrence) on MQAR.222

Beyond this, our motivation also comes from the notable connections that have been drawn between223

attention and recurrent models [Dao and Gu, 2024, Ali et al., 2024, Sieber et al., 2024] and on the224

capabilities of transformers [Sanford et al., 2024] – all of which concern 1-layer models. Our results,225

presented in Figure 3, reveal two key insights:226

1. First, for a fixed sequence length, recurrent models always benefit from scaling in width – as227

was happening in 2 layers (Sec. 3). That is, expanding the hidden state dimension enhances their228

performance. This result aligns well with current literature [Jelassi et al., 2024, Orvieto et al.,229

2024]: as already mentioned, at each time step recurrent models store compressed inputs into a230

hidden state, which serves as a condensed representation of all past information. A larger hidden231

dimension facilitates less aggressive compression, allowing the model to retain more information.232

3By single layer in attention and recurrent models we mean a sequence mixer followed by an MLP.
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2. Attention models exhibit a surprisingly different behavior: when constrained to a single layer, they233

fail to solve the task and increasing the hidden dimension does not affect their performance. This234

is in stark contrast to their strong results in 2-layer architectures, where even the smallest model235

was sufficient to solve the task in the hardest setting. Interestingly, in this setting transformers236

are capable on average of recalling one key-value pair in every setting, suggesting a memory size237

issue when only one layer is present as also suggested in previous work [Sanford et al., 2024].238

Figure 4: Scaling models in width and depth (Seq len: 256, KV pairs: 64). Symbols with the same
shape and color represent models of increasing size in the following order: 64, 128, 256, 512, 1024,
and 2048. We show how rather than the number of parameters, is the way these models are scaled that
impacts performance. Specifically, recurrent models benefits from scaling in width, while attention
benefits from scaling in depth.

Our findings highlight a key takeaway from our study: attention and recurrent models exhibit opposite239

scaling behaviors in width and depth. In other words, as shown in Fig. 4, rather than the number of240

parameters, it is the way these models are scaled that has most impact on their performance.241

5 1-layer Training Dynamics and Induction Heads phenomenon242

Figure 5: Training (lower opacity) and Validation dynamics of 1-layer models. We reported within
brackets the smallest width that solves the task, if possible; or otherwise the biggest width we tried (for
attention). Differently from Mamba, Hyena requires the model dimension to exceed the sequence
length. Both exhibit smooth learning dynamics, leading to perfect performance. Attention shows
a loss bump, but without accuracy gains, suggesting an attempt to form induction heads that the
single-layer transformer fails to leverage effectively.

Sec. 4 sparked our curiosity, leading us to explore the single-layer architecture setup further – to243

understand why attention hits a performance ceiling while recurrent models can solve the task. This244

analysis is especially intriguing given the strong connections that have been proposed between245

attentions and Mamba in Ali et al. [2024], Dao and Gu [2024].246

In this section, we analyze the training dynamics of well-tuned Hyena, Attention and Mamba models.247

As illustrated in Fig. 5 we identify two main patterns. First, Hyena (and similarly other non-selective248

recurrent models like H3 and RWKV) exhibits consistently smooth learning dynamics, with a gradual249

and steady improvement that eventually lead to convergence at the solution. Specifically, loss250

reductions align closely with increases in accuracy. Differently, attention accuracy remains largely251
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Table 1: Performance of ablated 1-layer architectures. After making different modifications to the
Mamba and Transformer, we report if the model is capable of solving the MQAR task. Here solving
the task means achieving accuracy ≥ 95 percent with any combination of sequence length 64, 128,2
56, 512 and model dimension 64, 128, 256, 512, 1024, 2048

Model Solves MQAR

Attention ×
Attention + Conv on QKV ✓
Attention + Conv on K ✓
Attention + Conv on V ✓
Attention + Conv on Q ×
Mamba ✓
Mamba w\o conv1d ✓
Mamba w\o gating ✓
S6 + MLP (Mamba as a Transformer) ✓

unchanged throughout training. A similar trend appears in the test loss, which remains relatively252

stable until a sudden bump occurs, after which the test loss settles again. This bump resembles the253

formation of an induction head circuit [Olsson et al., 2022], and to the best of our knowledge has254

previously only been observed during the training of multi-layer transformer architectures. However,255

as opposed to what can observe in 2-layer models, this phase transition in the loss does not correspond256

to an accuracy improvement for attention. Based on previous work [Olsson et al., 2022], we257

hypothesize that during this phase transition, the attention mechanism attempts to form induction258

heads. However, in the single-layer setting, the model lacks the expressivity needed to effectively259

leverage this mechanism for task resolution. Interestingly, the dynamics of Mamba is mixed:260

1. Like single-layer attention models, we report a significant loss bump, reinforcing the connection261

between Mamba and attention mechanisms, as suggested in Ali et al. [2024], Dao and Gu [2024].262

2. However, unlike transformers, Mamba can successfully solve the task even in a single-layer setting263

– provided the learning rate is properly tuned, similarly to other recurrent models.264

Our results highlight a crucial distinction: while attention and recurrent models share some common265

ground, yet distinct inductive biases. Moreover, their performance is in strong interaction with the266

optimization algorithm at hand (in our case, Adam [Kingma, 2014]), as we also saw in Figure 1.267

Understanding these nuances is key to optimally leveraging both architectures, perhaps also towards268

hybrid models [Waleffe et al., 2024, Dao and Gu, 2024].269

6 Are SSMs and Transformers really similar?270

Our results so far highlight key differences between Transformers and SSMs, particularly Mamba, in271

the context of AR. Notably, while Mamba demonstrates greater expressivity—successfully solving272

the task even in a single-layer setting—it presents optimization challenges in terms of learning273

rate stability. In contrast, Transformers exhibit remarkable stability across a wide range of suitable274

learning rates during training in the 2-layer setting. We highlight that each of these layers includes an275

MLP block processing channels.276

To address this discrepancy, we conduct a series of ablation studies aimed at:277

1. Modifying the architectures of both models to better align them (architectures are in appendix278

A.1) and identify the source of Mamba’s superior performance, summarized in Table 1 and279

2. Exploring new architectural variants that promote more stable training dynamics.280

Convolutions. Inspired by [Li et al., 2024], we begin by adapting the attention mechanism281

to resemble Mamba. We incorporate a 1D convolution before the Query,Key and Value matrix282

projections to brings in locality, enabling the model to solve MQAR with just one layer. Interestingly,283

we observe that applying the convolution to either the Key or Value matrix alone is sufficient to284

achieve the same performance gains. These observations suggest that the 1D convolution may be285
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a central factor behind Mamba’s effectiveness. However, we find that even after removing the286

convolution, the model retains the ability to solve the task.287

Backbone ablation. We further modify the Mamba architecture to make it closer to the Transformer288

architecture by: (1) removing the gating mechanism, and (2) replacing the standard Mamba block289

with a sequence mixer (as in S6), followed by an MLP—mirroring the Transformer’s architecture.290

Despite these alterations, Mamba continues to perform well when properly tuned, suggesting a291

notable degree of robustness in the design of its fundamental block.292

Newer architectures. To better understand what contributes to training stability, we also evaluate293

architectural variants designed for improving the Mamba architecture and solve the MQAR task.294

In particular, we test Mamba2 [Dao and Gu, 2024] and DeltaNet [Yang et al., 2024b] as shown295

in Figure 6. While performance of Mamba2 is slightly more stable, Transformer-level robustness296

is only achieved by DeltaNet. A closer look at the DeltaNet update rule reveals that its mixing is297

based on Householder matrices. As such, the off-diagonal terms such as CN

∏N
k=1 AkB0 do not298

necessarily incur in vanishing gradients. Instead, in both Mamba and Mamba2, Ak includes a decay299

rate that induces vanishing gradients and fast decay of off-diagonal terms, as recently pointed out300

by Trockman et al. [2024]. We hypothesize this is the main distinction unlocking stable optimization301

in DeltaNet.302

Figure 6: We show the performance of Mamba, Mamba2 and DeltaNet in the 1-layer setting using
the same learning rate grid search. Here we show how having a bigger hidden state marginally helps
stability, as in Mamba2 and especially in DeltaNet. Results could be show to a maximum of model
dimension of 256 because DeltaNet implementation doesn’t support greather dimensions. The results
show the mean and relative max-min errors after 3 runs with different seeds.

7 Discussion and Conclusions303

In this work, we used MQAR as a benchmark to compare attention and recurrent models at a304

small scale. Our findings shed additional light on how the underlying mechanisms of these models305

influence their performance. Specifically, we showed that recurrent models are highly sensitive306

to optimization, with their performance significantly affected by the choice of learning rate. This307

underscores the need for further research to improve their stability. Additionally, we observed308

contrasting scaling behaviors: recurrent models benefit from the increased width and hidden state309

size, whereas transformers struggle with MQAR in a single-layer configuration. Interestingly, despite310

their poor performance, single-layer transformers exhibit training dynamics resembling the induction311

head phenomenon, previously reported only in multi-layer settings. Instead, Mamba displays similar312

behavior but successfully solves the task. Finally, through the ablations study, we showed how the313

performance of Mamba is robust to specific architectural components such as gating and convolution,314

and how other similar architectures can enhance performance and stability. Our findings suggest315

overlaps between the optimization landscapes of Mamba and Attention, yet with crucial differences316

related to expressivity, to study further. Looking ahead, we think that exploring other synthetic317

reasoning tasks and architectural changes could provide further insights into the mechanisms behind318

these models. Evaluating these areas is an important direction to refine our understanding of modern319

sequence models.320
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A Appendix492

A.1 Modified architectures493

Figure 7: Architecture of Mamba following the architecture of a Transformer given by sequence
mixers interleaved by MLPs

Figure 8: Architecture of Mamba without the conv1d

Figure 9: Architecture of Mamba without the gate
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A.2 Experimental details494

In this section, we describe the experimental setup used throughout our study. Clearly outlining these495

details is crucial for interpreting the results presented in subsequent sections. Our implementation is496

inspired by methodologies from Zoology [Arora et al., 2023].497

Data. The dataset consists of sequences of tokens representing key-value pairs. Tokens are sampled498

from a fixed vocabulary of 8, 192 tokens. Within each sequence, key-value tokens are assigned499

randomly, ensuring that the model cannot learn a static mapping. Consequently, each sample500

is independent, requiring the model to infer the role of tokens in context rather than relying on501

memorization. The synthetic dataset is structured with four specific sequence lengths, each paired502

with a corresponding number of key-value pairs to recall:503

• 64 tokens with 4 key-value pairs;504

• 128 tokens with 8 key-value pairs;505

• 256 tokens with 16 key-value pairs;506

• 512 tokens with 64 key-value pairs.507

For the first three sequence lengths, the ratio of key-value pairs to sequence length is 1 : 16, whereas508

for the longest sequence, the ratio is 1 : 8, making it the most challenging case. For each sequence509

length, a dedicated dataset is created, consisting of 100, 000 training samples and 3, 000 test samples.510

Model evaluation is performed by training each model on a specific sequence length and subsequently511

assessing its performance on that same length.512

Models Our experiments utilize a total of six main models + others used in the ablation studies:513

• Two attention-based models: Attention and Based.514

• Four recurrent models: H3, Hyena, RWKV and Mamba.515

• Other Ablations such as Attention + Convolution, Mamba without specific components etc.516

Each model is tested across six model dimensions: 64, 128, 256, 512, 1024 and 2048. Additionally,517

models are implemented in two configurations: 1-layer and 2-layer. Notably, a “layer” in our context518

refers to the concatenation of two blocks: a sequence mixer (e.g., attention, RWKV, etc.) followed by519

an MLP. Thus, a 1-layer model consists of two blocks, aligning with the terminology used in prior520

work [Arora et al., 2023, Olsson et al., 2022]. Positional information is used only in attention and521

Based.522

Training and Evaluation We used GPU A100 with 80GB of memory in all our experiments.523

We trained for 50 epochs using AdamW as optimizer, weight decay 0.1, warmup duration 10%,524

linear warmup. All the experiments took between 10 minutes and 18 hours based on the model525

architecture, the model dimension and the sequence length. The batch size varied depending on526

the sequence length: 128 for sequence length 512, 256 for sequence length 256 and 512 otherwise.527

Each configuration (combining model type, model dimension, and sequence length) undergoes a528

learning rate sweep to identify the optimal learning rate. The reported accuracy for each configuration529

corresponds to the best performance achieved across the tested learning rates. We want to highlight530

that the accuracy reported should be interpreted as the average percentage of key-value pairs correctly531

labeled. Specifically, achieving 50% accuracy with sequence length 64 and 4 as relative number of532

key-value pairs means that on average the model recalls correctly 2 values given 4 keys. To ensure533

robustness, all experiments are conducted using three random seeds (42, 123, and 777), with results534

reported as the mean and standard deviation across these trials.535

A.3 Full Tables536

4Mamba was not included in the official work but some experiments, with different settings compared to
ours, are documented in the blog post.
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Figure 10: Performance of 2-layers models. We report the official results4 (green stars) and the
replication running the original code of [Arora et al., 2023] (dotted blu line). While for replication,
we used the learning rates grid by Arora et al. [2023], we note here that, due to high sensitivity to
the learning rate (Fig, 1), tuning drastically affects performance. In solid orange, we provide results
with a finer grid (cf. Fig.1). Careful tuning of the learning rate gives a general improvement in the
performance of recurrent models. This becomes especially crucial in Mamba, where the task becomes
solvable at high sequence lengths >> hidden size. The results show the mean and relative max-min
errors for 3 seeds. Attention always solves the task (all curves overlap).
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that is necessary to appreciate the results and make sense of them.684

• The full details can be provided either with the code, in appendix, or as supplemental685

material.686

7. Experiment statistical significance687

Question: Does the paper report error bars suitably and correctly defined or other appropriate688

information about the statistical significance of the experiments?689

Answer: [Yes]690

Justification: All the experiments presented were replicated multiple time with different691

seed to ensure statistical meaningfulness. Results reports relative max-min errors. In our692

specific experiments however, what is important is not the specif value of the performance,693

but rather noticing if the models can (or cannot) solve the task.694

Guidelines:695

• The answer NA means that the paper does not include experiments.696

• The authors should answer "Yes" if the results are accompanied by error bars, confi-697

dence intervals, or statistical significance tests, at least for the experiments that support698

the main claims of the paper.699

• The factors of variability that the error bars are capturing should be clearly stated (for700

example, train/test split, initialization, random drawing of some parameter, or overall701

run with given experimental conditions).702

• The method for calculating the error bars should be explained (closed form formula,703

call to a library function, bootstrap, etc.)704

• The assumptions made should be given (e.g., Normally distributed errors).705

• It should be clear whether the error bar is the standard deviation or the standard error706

of the mean.707

• It is OK to report 1-sigma error bars, but one should state it. The authors should708

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis709

of Normality of errors is not verified.710

• For asymmetric distributions, the authors should be careful not to show in tables or711

figures symmetric error bars that would yield results that are out of range (e.g. negative712

error rates).713

• If error bars are reported in tables or plots, The authors should explain in the text how714

they were calculated and reference the corresponding figures or tables in the text.715
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8. Experiments compute resources716

Question: For each experiment, does the paper provide sufficient information on the com-717

puter resources (type of compute workers, memory, time of execution) needed to reproduce718

the experiments?719

Answer: [Yes]720

Justification: All the specification of experiments are in the Appendix A.2. There are721

specification on the compute used and how long most of the experiments last.722

Guidelines:723

• The answer NA means that the paper does not include experiments.724

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,725

or cloud provider, including relevant memory and storage.726

• The paper should provide the amount of compute required for each of the individual727

experimental runs as well as estimate the total compute.728

• The paper should disclose whether the full research project required more compute729

than the experiments reported in the paper (e.g., preliminary or failed experiments that730

didn’t make it into the paper).731

9. Code of ethics732

Question: Does the research conducted in the paper conform, in every respect, with the733

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?734

Answer: [Yes]735

Justification: The paper respects the NeurIPS Code of Ethics736

Guidelines:737

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.738

• If the authors answer No, they should explain the special circumstances that require a739

deviation from the Code of Ethics.740

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-741

eration due to laws or regulations in their jurisdiction).742

10. Broader impacts743

Question: Does the paper discuss both potential positive societal impacts and negative744

societal impacts of the work performed?745

Answer: [NA]746

Justification: The paper does not have any direct positive or negative societal impacts. The747

paper focuses on comparisons between existing models capabilities and how to properly748

leverage their specific characteristics. Perhaps, the only impact might come from the749

downstream application of such models.750

Guidelines:751

• The answer NA means that there is no societal impact of the work performed.752

• If the authors answer NA or No, they should explain why their work has no societal753

impact or why the paper does not address societal impact.754

• Examples of negative societal impacts include potential malicious or unintended uses755

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations756

(e.g., deployment of technologies that could make decisions that unfairly impact specific757

groups), privacy considerations, and security considerations.758

• The conference expects that many papers will be foundational research and not tied759

to particular applications, let alone deployments. However, if there is a direct path to760

any negative applications, the authors should point it out. For example, it is legitimate761

to point out that an improvement in the quality of generative models could be used to762

generate deepfakes for disinformation. On the other hand, it is not needed to point out763

that a generic algorithm for optimizing neural networks could enable people to train764

models that generate Deepfakes faster.765
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• The authors should consider possible harms that could arise when the technology is766

being used as intended and functioning correctly, harms that could arise when the767

technology is being used as intended but gives incorrect results, and harms following768

from (intentional or unintentional) misuse of the technology.769

• If there are negative societal impacts, the authors could also discuss possible mitigation770

strategies (e.g., gated release of models, providing defenses in addition to attacks,771

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from772

feedback over time, improving the efficiency and accessibility of ML).773

11. Safeguards774

Question: Does the paper describe safeguards that have been put in place for responsible775

release of data or models that have a high risk for misuse (e.g., pretrained language models,776

image generators, or scraped datasets)?777

Answer: [NA]778

Justification: The paper does not use any data or model with high risk for misuse779

Guidelines:780

• The answer NA means that the paper poses no such risks.781

• Released models that have a high risk for misuse or dual-use should be released with782

necessary safeguards to allow for controlled use of the model, for example by requiring783

that users adhere to usage guidelines or restrictions to access the model or implementing784

safety filters.785

• Datasets that have been scraped from the Internet could pose safety risks. The authors786

should describe how they avoided releasing unsafe images.787

• We recognize that providing effective safeguards is challenging, and many papers do788

not require this, but we encourage authors to take this into account and make a best789

faith effort.790

12. Licenses for existing assets791

Question: Are the creators or original owners of assets (e.g., code, data, models), used in792

the paper, properly credited and are the license and terms of use explicitly mentioned and793

properly respected?794

Answer: [Yes]795

Justification: The main results of the paper use the codebase of the paper "Zoology: Measur-796

ing and Improving Recall in Efficient Language Models" which is credited multiple times.797

The code is open source for research purpose798

Guidelines:799

• The answer NA means that the paper does not use existing assets.800

• The authors should cite the original paper that produced the code package or dataset.801

• The authors should state which version of the asset is used and, if possible, include a802

URL.803

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.804

• For scraped data from a particular source (e.g., website), the copyright and terms of805

service of that source should be provided.806

• If assets are released, the license, copyright information, and terms of use in the807

package should be provided. For popular datasets, paperswithcode.com/datasets808

has curated licenses for some datasets. Their licensing guide can help determine the809

license of a dataset.810

• For existing datasets that are re-packaged, both the original license and the license of811

the derived asset (if it has changed) should be provided.812

• If this information is not available online, the authors are encouraged to reach out to813

the asset’s creators.814

13. New assets815

Question: Are new assets introduced in the paper well documented and is the documentation816

provided alongside the assets?817
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Answer: [No]818

Justification: No new assets are introduced in this paper819

Guidelines:820

• The answer NA means that the paper does not release new assets.821

• Researchers should communicate the details of the dataset/code/model as part of their822

submissions via structured templates. This includes details about training, license,823

limitations, etc.824

• The paper should discuss whether and how consent was obtained from people whose825

asset is used.826

• At submission time, remember to anonymize your assets (if applicable). You can either827

create an anonymized URL or include an anonymized zip file.828

14. Crowdsourcing and research with human subjects829

Question: For crowdsourcing experiments and research with human subjects, does the paper830

include the full text of instructions given to participants and screenshots, if applicable, as831

well as details about compensation (if any)?832

Answer: [NA]833

Justification: In this paper there were no human experiments.834

Guidelines:835

• The answer NA means that the paper does not involve crowdsourcing nor research with836

human subjects.837

• Including this information in the supplemental material is fine, but if the main contribu-838

tion of the paper involves human subjects, then as much detail as possible should be839

included in the main paper.840

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,841

or other labor should be paid at least the minimum wage in the country of the data842

collector.843

15. Institutional review board (IRB) approvals or equivalent for research with human844

subjects845

Question: Does the paper describe potential risks incurred by study participants, whether846

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)847

approvals (or an equivalent approval/review based on the requirements of your country or848

institution) were obtained?849

Answer: [NA]850

Justification: In this paper there were no human experiments.851

Guidelines:852

• The answer NA means that the paper does not involve crowdsourcing nor research with853

human subjects.854

• Depending on the country in which research is conducted, IRB approval (or equivalent)855

may be required for any human subjects research. If you obtained IRB approval, you856

should clearly state this in the paper.857

• We recognize that the procedures for this may vary significantly between institutions858

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the859

guidelines for their institution.860

• For initial submissions, do not include any information that would break anonymity (if861

applicable), such as the institution conducting the review.862

16. Declaration of LLM usage863

Question: Does the paper describe the usage of LLMs if it is an important, original, or864

non-standard component of the core methods in this research? Note that if the LLM is used865

only for writing, editing, or formatting purposes and does not impact the core methodology,866

scientific rigorousness, or originality of the research, declaration is not required.867

Answer: [No]868
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Justification: LLMs where used just to edit typos and grammar of part of the text in the869

paper.870

Guidelines:871

• The answer NA means that the core method development in this research does not872

involve LLMs as any important, original, or non-standard components.873

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)874

for what should or should not be described.875
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