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When recalling in-context, Transformers are not SSMs
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Abstract

Despite the advantageous subquadratic complexity of modern recurrent deep learn-
ing models — such as state-space models (SSMs) — recent studies have highlighted
their potential shortcomings compared to transformers on reasoning and memoriza-
tion tasks. In this paper, we dive deeper into one of such benchmarks: associative
recall (AR), which has been shown to correlate well with language modeling
performance, and inspect in detail the effects of scaling and optimization issues
in recently proposed token mixing strategies. We first demonstrate that, unlike
standard transformers, the choice of learning rate plays a critical role in the per-
formance of modern recurrent models: an issue that can severely affect reported
performance in previous works and suggests further research is needed to stabilize
training. Next, we show that recurrent and attention-based models exhibit contrast-
ing benefits when scaling in width as opposed to depth, with attention being notably
unable to solve AR when limited to a single layer. We then further inspect 1-layer
transformers, revealing that despite their poor performance, their training dynamics
surprisingly resemble the formation of induction heads, a phenomenon previously
observed only in their 2-layer counterparts. Finally, through architectural ablations,
we study how components affects Transformer and Mamba’s performance and
optimization stability.

1 Introduction

Since early developments [Rumelhart et al., 1986, Elman, 1990], RNNs have driven progress in
machine learning techniques for sequential data, with milestones such as Echo-State Networks [Jaeger,
2001] the LSTM [Hochreiter and Schmidhuber, 1997] and the GRU [Cho et al., 2014]. However, two
problems severely limit the application of RNNs in modern times: first, GPU architectures designed
for large matrix multiplications struggle with sequential processing. Secondly, it is widely known
that recurrent models are hard to train due to vanishing and exploding gradients issues [Bengio et al.,
1994, Hochreiter et al., 2001, Pascanu et al., 2013].

Attention. These challenges have led to the introduction of a different paradigm: the Attention
mechanism, implemented around the Transformer architecture [Vaswani et al., 2017]. Instead of
processing inputs sequentially while building up internal memory (RNNs), Attention computes
large matrices of pairwise interactions between data points, allowing for modeling direct links
between elements in a sequence and thus attenuating the vanishing gradient issue. While Attention,
being based on matrix multiplications, is extremely GPU efficient, computing pairwise interactions
results in O(L?) inference and memory complexity, where L denotes the input sequence length. For
this reason, techniques such as patching [Dosovitskiy et al., 2021, Pagnoni et al., 2024], gradient
checkpointing [Chen et al., 2016], and FlashAttention [Dao et al., 2022, Dao, 2023, Shah et al.,
2024] become of paramount importance when training and deploying Attention-based models at
scale. Despite this limitation, Transformers successfully powers most state-of-the-art architectures
we use today: beyond large language models [Devlin, 2018, Brown et al., 2020, Team et al., 2024],
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Attention found widespread application in vision [Dosovitskiy et al., 2021, Touvron et al., 2021,
Bertasius et al., 2021, Liu et al., 2024a], graph processing [Ma et al., 2023], and genome analysis
domains [Dalla-Torre et al., 2024], among others.

Nevertheless, the quadratic complexity of Attention has remained a pressing limitation, prompting
numerous efforts to develop more efficient approximations [Wang et al., 2020, Choromanski et al.,
2020, Chen et al., 2021, Lee-Thorp et al., 2022]. Many of these approaches have even revealed
connections to recurrent formulations [Katharopoulos et al., 2020, Schlag et al., 2021].

SSMs and other linear token mixers. More recently, we have witnessed a resurgence of RNNs in
state-of-the-art industry-size applications such as language modeling. Sparked by the S4 model [Gu
et al., 2020, 2022], which surpassed Attention-based models on long-range reasoning tasks [Tay
et al., 2020], we have rapidly seen in the last year a drastic increase in the usage of RNNs in deep
architectures, albeit in a linear' form that guarantees both O(L) memory/inference complexity
and fast computation on GPUs [Martin and Cundy, 2018, Orvieto et al., 2023] while matching or
surpassing transformers on downstream tasks: a prime example are State-space Models (SSMs)
such as Mamba(2) [Gu and Dao, 2024, Dao and Gu, 2024], along with variants based on similar
ambitions [De et al., 2024, Peng et al., 2024, Yang et al., 2024a]. These novel fast recurrent processing
strategies sparked the interest of many practitioners in the field, leading to novel applications in
several domains, including vision [Liu et al., 2024b, Liang et al., 2024], audio generation [Goel et al.,
2022], online learning [Zucchet et al., 2023] and reinforcement learning [Lu et al., 2023].

Different expressivity? It has been shown [Dao and Gu, 2024, Ali et al., 2024, Sieber et al., 2024],
that one can put in direct correspondence Attention with SSM processing: due to the linearity of
SSMs in the hidden state — the main distinction between SSMs and classical nonlinear RNNs [Cirone
et al., 2024] — it is possible to write down the “attention matrix” corresponding to SSM processing
at a given input. Yet, such a matrix is highly structured, a feature that boosts speeds at very high
context lengths [Waleffe et al., 2024] but may hurt optimization due to iterated products involving the
model parameters [Zucchet and Orvieto, 2024]. On top of this, the recurrent formulation of SSMs
clearly points to potential memory issues compared to attention on simple yet important tasks such as
copying [Jelassi et al., 2024] and associative recall [Arora et al., 2023].

.. or perhaps just harder optimization? Despite empirical results and worst-case bounds [Arora
et al., 2024] regarding the capabilities of SSM models on simple yet important tasks, it is yet unclear
if optimization issues, such as the curse of memory or vanishing gradients [Pascanu et al., 2013,
Zucchet and Orvieto, 2024], confound or understanding of capabilities of new recurrent models. We
found that this is indeed the case in associative recall [Arora et al., 2023], as we show in Figure 1.
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Figure 1: We show the performance of Attention, Hyena and Mamba using an extensive learning rate
grid search. Differently from attention, the window of suitable learning rates for Mamba and Hyena
is relatively narrow. We also compare our grid search with the one used in Zoology [Arora et al.,
2023] (dashed vertical lines) to highlight how the suitable learning rate can be missed. The results
show the mean and relative max-min errors after 3 runs with different seeds.

Figure 1 points to a crucial confounder when comparing SSM and attention capabilities: while funda-
mental expressivity issues exist between such model classes, the main driver of poor performance can
be unsuccessful optimization. In a way, when considering basic prototypical yet challenging tasks,
transformers are not SSMs mainly because of their optimization dynamics.

"Modern RNNs such as State-space Models are linear in the hidden-to-hidden state interactions, but have
recurrent formulation that is non-linear in the input, see [Cirone et al., 2024]
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In response to this issue, a potential confounder for future evaluations of new recurrent models, in
this paper we take a closer look at associative recall and reveal new insights into the fundamental
distinctions between attention models and recurrent models.

* The Impact of Optimization on Recurrent Models: We find that learning rate selection plays
a pivotal role in the performance of recurrent models. More than just influencing performance,
it determines whether these models can successfully solve the task. Overlooking this factor can
lead to incorrect conclusion about their capabilities, highlighting the need for careful tuning when
working with recurrent architectures.

* Different Scaling Behavior of Depth and Width: Our experiments reveal that these models differ
in how they benefit from scaling width and depth. Consistent with prior research, recurrent models
gain the most from increased width, as their reliance on hidden state updates makes a larger one
beneficial for retaining information. Conversely, we show that a single-layer attention model fails
to solve the task, while a two-layer version succeeds.

* Training Dynamics and Induction-Like Phenomena in 1-layer architectures: Expanding on the
previous insight, we examine the behavior of single-layer models during training. Interestingly,
even in this setting, attention exhibits a phenomenon reminiscent of induction heads—previously
observed only in deeper models. We observe a drop in loss that does not correspond to improved
performance, indicating that the model may struggle to leverage induction heads at this scale. Mean-
while, recurrent models show smoother training dynamics, and Mamba, in particular, demonstrates
a steep performance increase similar to induction heads, even in a single-layer setup.

 Ablation to reduce the gap between Transformers and SSMs: Given the different behavior of the
two architectures, we make a series of architectural changes to make the Transformer more similar
to Mamba and viceversa. Our findings suggest that Mamba’s advantages stem from more than just
its convolutional, gating or architectural module, as its performance remains strong even when
these components are removed or modified. We also give suggestions on how other architectures,
can improve the baseline of Mamba in MQAR and its stability.

2 Background and Related works

Associative Recall. With the rise of foundation models, deep learning has made significant advances,
sparking growing interest in evaluating their reasoning capabilities. One key aspect of reasoning is
the ability to recall previously encountered information. Intuitively, given the input

“Hakuna Matata means no worries for the rest of your days.
"Hakuna Matata means ...

a well-performing model should predict ''no worries'' with high likelihood. Building on this idea,
the synthetic associative recall (AR) task, introduced by [Olsson et al., 2022], gained popularity as
an efficient reasoning benchmark to assess promising model architectures at a relatively low cost.
The task is structured as follows: Given a fixed Vocabulary V', each sample consists of a sequence of
tokens sampled from V' representing alternating key-value pairs. Given such a sequence and a key
that appeared earlier, the model must correctly infer its corresponding value: For example, given the
input sequence:
A6I19CT7P1S540D2

and given the key C' — 7 the model should predict 7.

A crucial aspect of this task is that the tokens serve interchangeably as keys and values among
samples—they are drawn from the same vocabulary rather than separate sets. Consequently, the
model cannot rely on preassigned roles for tokens. Moreover, since token roles and positions vary
across data points, the model cannot memorize a fixed mapping but must instead infer the correct
associations dynamically in-context.

Multi-Query Associtative Recall. Building on previous research [Arora et al., 2023], our experi-
ments employ a variation of AR known as multi-query associative recall (MQAR). This choice is
motivated by the fact that standard AR is typically used to evaluate the ability of recurrent models to
capture long-range dependencies using extremely long sequences—an area where attention-based
models often struggle due to memory constraints. However, at the scale of our experiments, MQAR
presents a more challenging and relevant task even with relatively small sequences.
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There are two key distinctions between MQAR and its standard counterpart, both of which align
more closely with the characteristics of natural language. First, it introduces a significantly larger
vocabulary: from the 50 tokens of standard AR to approximately 8,000 tokens in MQAR. This
makes the task more representative of real-world language processing where the vocabulary size
is in the order of hundreds of thousands of words. Second, instead of recalling a single key-value
pair, MQAR requires the model to retrieve multiple values based on multiple queries. This more
accurately mirrors the nature of language, where meaning is often derived from groups of words and
interrelated concepts rather than isolated tokens. For instance, given an input sequence

A619CT7TP1S5S4D2

and given multiple keys
C—>7A—-17D—7

we ask the model to recall the relative values 7, 6 and 2. Notably, if we were to restrict the model to
retrieving only one key-value pair, the task would reduce to AR. We opted for this variant because
prior studies have demonstrated that it more effectively highlights the differences between attention-
based and recurrent models. By incorporating these linguistic properties, multi-query associative
recall serves as a more insightful benchmark for evaluating model performance. Even if all of our
analysis are made using multi-query associative recall, throughout this work we will use the terms
AR and MQAR interchangeably for simplification.

Induction heads. While investigating the capabilities of transformers in few-shot learning, previous
work ( [Olsson et al., 2022]) showed the phenomenon of induction heads. The main insight from this
work was that during training, with transformers with at least 2 layers, a special kind of attention
heads called “induction heads” is formed, causing a noticeable drop in the loss perplexity, while
giving a sudden boost in In-context learning performances.

More formally, induction heads are implemented by a circuit consisting of a pair of attention heads
in different layers that work together to copy or complete patterns. The first attention head copies
information from the previous token into each other tokens, making it possible for the second
attention head to attend to tokens based on what happened before them, rather than their own content.
Specifically, the second head (the proper "induction head") searches for a previous place in the
sequence where the present token A occurred and attends to the next token (call it B ), copying it and
causing the model to be more likely to output B as the next token. That is, the two heads working
together cause the sequence ...[A][B]...[A] to be more likely completed with [B].

Induction heads are named by analogy to inductive reasoning, where we might infer that if
A is followed by B earlier in the context, A is more likely to be followed by B again later in the
same context. Induction heads are capable of crystallizing that inference. They search the context for
previous instances of the present token, attend to the token which would come next in the pattern
repeated, and increase its probability in terms of logit. Induction heads attend to tokens that would be
predicted by basic induction (over the context, rather than over the training data).

Transformers and SSMs. Let X € RV*? a generic input consisting of N elements in d dimensions.
Basic state-space models (SSMs) [Gu and Dao, 2024] compute outputs via a recurrence:

Zy =AiZi1 + B X;
Yi=CiZi + D X,

where Zy = 0 and A;, B;, C;, D; are input-dependent matrices. In the S6 block [Gu and Dao, 2024],
they are parametrized as functions of X, yielding a structured recurrence.

This system admits a an attention formulation [Sieber et al., 2024, Dao and Gu, 2024]: ¥ = <I>§g - X,

CoBy + Dy 0 cee 0
C1A1By C1B1 + D, 0
cI)é% = : .. .. : &)
Cn H;Igvzl ArBy i CnvANBn_1 CnBn+ Dy

Later options such as Mamba2 [Dao and Gu, 2024] and DeltaNet [Yang et al., 2025] also share
this view, yet their parameter-efficient formulation introduces further state expansion and parameter
sharing options for efficient heads.
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Figure 2: Performance of 2-layers models. Results for H3 [Fu et al., 2023], RWKV [Peng et al.,
2023] and Based [Arora et al., 2024] included in App. A.3. We report the official results’ (green
stars) and the replication running the original code of [Arora et al., 2023] (dotted blu line). While
for replication, we used the learning rates grid by Arora et al. [2023], we note here that, due to
high sensitivity to the learning rate (Fig, 1), tuning drastically affects performance. In ,
we provide results with a finer grid (cf. Fig.1). Careful tuning of the learning rate gives a general
improvement in the performance of recurrent models. This becomes especially crucial in Mamba,
where the task becomes solvable at high sequence lengths >> hidden size. The results show the
mean and relative max-min errors for 3 seeds. Attention always solves the task (all curves overlap).

3 Closer Look into AR performance

Building on previous research, we aim to provide an in-depth analysis of the differences and simi-
larities between attention and recurrent models through the lens of AR. Prior studies [Arora et al.,
2023] have shown that transformers are inherently well-suited for solving the MQAR task, achieving
perfect accuracy regardless of model dimension, sequence length or number of key-value pairs to
infer. In contrast, it was argued (both theoretically and empirically) that new recurrent models [Peng
etal., 2023, Nguyen et al., 2024, Gu and Dao, 2024] can only solve MQAR if the hidden dimension
is roughly equal to the sequence length (see analysis by Jelassi et al. [2024] in a related setting).
However, a key aspect that has been overlooked in some prior works is the crucial role of optimization
in recurrent models —particularly, the use of an effective grid search for the choice of learning rate.

Hypothesis from previous works. Recurrent models update their hidden state (which serves as a
compressed representation of past information) at each time step, using the current input. Since the
model only has access to its hidden state and the current input, its ability to recall previous information
depends on how effectively it compresses past data into this state. With a simplified analysis assuming
uniform distribution over strings, Jelassi et al. [2024] showed that to successfully copy input strings,
the hidden size needed grows linearly with the sequence length. In contrast, transformers [Vaswani
et al., 2017] dynamically access all previously seen inputs through the softmax attention mechanism,
allowing for the explicit computation of interactions between tokens. This makes the task of recalling
already seen tokens essentially a lookup table problem when two layers work simultaneously, as
described in Jelassi et al. [2024], Olsson et al. [2022].

Results. Compared to previous work, in our experiments, we devoted more attention to tuning the
learning rates, drastically improving the reported performance for recurrent models (see Fig. 2&1).
As shown in Figure 2 and extensively in Appendix A.3, a finer grid not only enhances average
performance across all settings but also proves particularly crucial for the Mamba model. With a more
suitable learning rate, Mamba [Gu and Dao, 2024], which was previously shown to struggle with
long sequence lengths, becomes capable of solving MQAR at relatively small hidden model sizes.

2Mamba was not included in the official work but some experiments are documented in the blog post
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All experimental details for this and the next experiments are in Appendix A.2. This highlights a key
takeaway for MQAR: the choice of learning rate (and optimization strategy in general) can be decisive
in assessing whether a recurrent model can solve the task at all. In the case of Mamba, optimization
choices become a discriminative factor, emphasizing the necessity of careful hyperparameter tuning
in recurrent models, and further research for improving their high sensitivity.

To further emphasize the critical role of learning rate selection in training recurrent models, we
compare the performance of Attention, Hyena and Mamba using the same grid search. Figure |
illustrates that attention-based models maintain strong performance across a relatively wide range of
learning rates. In contrast, Hyena and Mamba exhibit a different behavior: performance remains near
zero for most learning rates but suddenly reaches near-optimal levels at specific values which may
not be included in the grid by Arora et al. [2023]. These findings highlight a key distinction between
attention-based and recurrent models: a sparse learning rate grid search can disproportionately impact
their training outcomes. This discrepancy can lead to misleading conclusions about the capabilities
of these models, emphasizing the need for careful tuning.

4 Effects of width/depth scaling into AR performance

Sequence Length: 64, KV pairs: 4 Sequence Length: 128, KV pairs: 8 Sequence Length: 256, KV pairs: 16 Sequence Length: 512, KV pairs: 64
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Figure 3: Performance of 1-layer attention-based (Attention, Based) and recurrent-based (H3,
Hyena, Mamba, RWKV) models on AR. We show how for recurrent models, scaling the width boosts
performances. On the contrary, attention models cannot solve the task anymore as in the 2-layer
setting, and performances are unaffected by the scaling in width. The results show the mean and
relative max-min errors after 3 runs with different seeds.

While our findings in Sec. 3 show that some recurrent models can exhibit improved performance
on MQAR with proper learning rate tuning, we confirm that a sizeable gap with attention can still
be observed for some recurrent models at low widths (e.g. Hyena vs. Attention). The experiments
of Sec. 3 focused on comparisons of 2-layer architectures, at different sequence lengths and model
widths. This choice stems from prior research [Olsson et al., 2022], where transformers have shown
peculiar in-context learning capabilities related to the formation of induction head circuits in 2-layer
models. With the intention of going beyond the setup that is known to show strengths for softmax
attention, our objective in this section is to explore the effects of scaling in different configurations.

To achieve this goal, we conducted experiments analogous to Section 3 using single-layer architec-
tures’. By doing so, we aim to decouple the effects of inter-communication between layers and to
isolate the impact of each model’s fundamental structure (attention versus recurrence) on MQAR.
Beyond this, our motivation also comes from the notable connections that have been drawn between
attention and recurrent models [Dao and Gu, 2024, Ali et al., 2024, Sieber et al., 2024] and on the
capabilities of transformers [Sanford et al., 2024] — all of which concern 1-layer models. Our results,
presented in Figure 3, reveal two key insights:

1. First, for a fixed sequence length, recurrent models always benefit from scaling in width — as
was happening in 2 layers (Sec. 3). That is, expanding the hidden state dimension enhances their
performance. This result aligns well with current literature [Jelassi et al., 2024, Orvieto et al.,
2024]: as already mentioned, at each time step recurrent models store compressed inputs into a
hidden state, which serves as a condensed representation of all past information. A larger hidden
dimension facilitates less aggressive compression, allowing the model to retain more information.

3By single layer in attention and recurrent models we mean a sequence mixer followed by an MLP.
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2. Attention models exhibit a surprisingly different behavior: when constrained to a single layer, they
fail to solve the task and increasing the hidden dimension does not affect their performance. This
is in stark contrast to their strong results in 2-layer architectures, where even the smallest model
was sufficient to solve the task in the hardest setting. Interestingly, in this setting transformers
are capable on average of recalling one key-value pair in every setting, suggesting a memory size
issue when only one layer is present as also suggested in previous work [Sanford et al., 2024].
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Figure 4: Scaling models in width and depth (Seq len: 256, KV pairs: 64). Symbols with the same
shape and color represent models of increasing size in the following order: 64, 128, 256, 512, 1024,
and 2048. We show how rather than the number of parameters, is the way these models are scaled that
impacts performance. Specifically, recurrent models benefits from scaling in width, while attention
benefits from scaling in depth.

Our findings highlight a key takeaway from our study: attention and recurrent models exhibit opposite
scaling behaviors in width and depth. In other words, as shown in Fig. 4, rather than the number of
parameters, it is the way these models are scaled that has most impact on their performance.

5 1-layer Training Dynamics and Induction Heads phenomenon

Sequence Length: 256, KV pairs: 16
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Figure 5: Training (lower opacity) and Validation dynamics of I1-layer models. We reported within
brackets the smallest width that solves the task, if possible; or otherwise the biggest width we tried (for
attention). Differently from Mamba, Hyena requires the model dimension to exceed the sequence
length. Both exhibit smooth learning dynamics, leading to perfect performance. Attention shows
a loss bump, but without accuracy gains, suggesting an attempt to form induction heads that the
single-layer transformer fails to leverage effectively.

Sec. 4 sparked our curiosity, leading us to explore the single-layer architecture setup further — to
understand why attention hits a performance ceiling while recurrent models can solve the task. This
analysis is especially intriguing given the strong connections that have been proposed between
attentions and Mamba in Ali et al. [2024], Dao and Gu [2024].

In this section, we analyze the training dynamics of well-tuned Hyena, Attention and Mamba models.
As illustrated in Fig. 5 we identify two main patterns. First, Hyena (and similarly other non-selective
recurrent models like H3 and RWKYV) exhibits consistently smooth learning dynamics, with a gradual
and steady improvement that eventually lead to convergence at the solution. Specifically, loss
reductions align closely with increases in accuracy. Differently, attention accuracy remains largely
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Table 1: Performance of ablated 1-layer architectures. After making different modifications to the
Mamba and Transformer, we report if the model is capable of solving the MOAR task. Here solving
the task means achieving accuracy > 95 percent with any combination of sequence length 64, 128,2
56, 512 and model dimension 64, 128, 256, 512, 1024, 2048

Model Solves MQAR

Attention

Attention + Conv on QKV

Attention + Conv on K

Attention + Conv on V

Attention + Conv on Q

Mamba

Mamba w\o convld

Mamba w\o gating

S6 + MLP (Mamba as a Transformer)

LARNAX CAAX

unchanged throughout training. A similar trend appears in the test loss, which remains relatively
stable until a sudden bump occurs, after which the test loss settles again. This bump resembles the
formation of an induction head circuit [Olsson et al., 2022], and to the best of our knowledge has
previously only been observed during the training of multi-layer transformer architectures. However,
as opposed to what can observe in 2-layer models, this phase transition in the loss does not correspond
to an accuracy improvement for attention. Based on previous work [Olsson et al., 2022], we
hypothesize that during this phase transition, the attention mechanism attempts to form induction
heads. However, in the single-layer setting, the model lacks the expressivity needed to effectively
leverage this mechanism for task resolution. Interestingly, the dynamics of Mamba is mixed:

1. Like single-layer attention models, we report a significant loss bump, reinforcing the connection
between Mamba and attention mechanisms, as suggested in Ali et al. [2024], Dao and Gu [2024].

2. However, unlike transformers, Mamba can successfully solve the task even in a single-layer setting
— provided the learning rate is properly tuned, similarly to other recurrent models.

Our results highlight a crucial distinction: while attention and recurrent models share some common
ground, yet distinct inductive biases. Moreover, their performance is in strong interaction with the
optimization algorithm at hand (in our case, Adam [Kingma, 2014]), as we also saw in Figure 1.
Understanding these nuances is key to optimally leveraging both architectures, perhaps also towards
hybrid models [Waleffe et al., 2024, Dao and Gu, 2024].

6 Are SSMs and Transformers really similar?

Our results so far highlight key differences between Transformers and SSMs, particularly Mamba, in
the context of AR. Notably, while Mamba demonstrates greater expressivity—successfully solving
the task even in a single-layer setting—it presents optimization challenges in terms of learning
rate stability. In contrast, Transformers exhibit remarkable stability across a wide range of suitable
learning rates during training in the 2-layer setting. We highlight that each of these layers includes an
MLP block processing channels.

To address this discrepancy, we conduct a series of ablation studies aimed at:

1. Modifying the architectures of both models to better align them (architectures are in appendix
A.1) and identify the source of Mamba’s superior performance, summarized in Table | and

2. Exploring new architectural variants that promote more stable training dynamics.

Convolutions. Inspired by [Li et al., 2024], we begin by adapting the attention mechanism
to resemble Mamba. We incorporate a 1D convolution before the Query,Key and Value matrix
projections to brings in locality, enabling the model to solve MQAR with just one layer. Interestingly,
we observe that applying the convolution to either the Key or Value matrix alone is sufficient to
achieve the same performance gains. These observations suggest that the 1D convolution may be
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a central factor behind Mamba’s effectiveness. However, we find that even after removing the
convolution, the model retains the ability to solve the task.

Backbone ablation. We further modify the Mamba architecture to make it closer to the Transformer
architecture by: (1) removing the gating mechanism, and (2) replacing the standard Mamba block
with a sequence mixer (as in S6), followed by an MLP—mirroring the Transformer’s architecture.
Despite these alterations, Mamba continues to perform well when properly tuned, suggesting a
notable degree of robustness in the design of its fundamental block.

Newer architectures. To better understand what contributes to training stability, we also evaluate
architectural variants designed for improving the Mamba architecture and solve the MQAR task.
In particular, we test Mamba2 [Dao and Gu, 2024] and DeltaNet [Yang et al., 2024b] as shown
in Figure 6. While performance of Mamba?2 is slightly more stable, Transformer-level robustness
is only achieved by DeltaNet. A closer look at the DeltaNet update rule reveals that its mixing is
based on Householder matrices. As such, the off-diagonal terms such as Cy chvzl Ar By do not
necessarily incur in vanishing gradients. Instead, in both Mamba and Mamba2, Ay, includes a decay
rate that induces vanishing gradients and fast decay of off-diagonal terms, as recently pointed out
by Trockman et al. [2024]. We hypothesize this is the main distinction unlocking stable optimization
in DeltaNet.

Sequence length: 512, Model dimension: 64 Sequence length: 512, Model dimension: 256

Accuracy
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Figure 6: We show the performance of Mamba, Mamba?2 and DeltaNet in the 1-layer setting using
the same learning rate grid search. Here we show how having a bigger hidden state marginally helps
stability, as in Mamba2 and especially in DeltaNet. Results could be show to a maximum of model
dimension of 256 because DeltaNet implementation doesn’t support greather dimensions. The results
show the mean and relative max-min errors after 3 runs with different seeds.

7 Discussion and Conclusions

In this work, we used MQAR as a benchmark to compare attention and recurrent models at a
small scale. Our findings shed additional light on how the underlying mechanisms of these models
influence their performance. Specifically, we showed that recurrent models are highly sensitive
to optimization, with their performance significantly affected by the choice of learning rate. This
underscores the need for further research to improve their stability. Additionally, we observed
contrasting scaling behaviors: recurrent models benefit from the increased width and hidden state
size, whereas transformers struggle with MQAR in a single-layer configuration. Interestingly, despite
their poor performance, single-layer transformers exhibit training dynamics resembling the induction
head phenomenon, previously reported only in multi-layer settings. Instead, Mamba displays similar
behavior but successfully solves the task. Finally, through the ablations study, we showed how the
performance of Mamba is robust to specific architectural components such as gating and convolution,
and how other similar architectures can enhance performance and stability. Our findings suggest
overlaps between the optimization landscapes of Mamba and Attention, yet with crucial differences
related to expressivity, to study further. Looking ahead, we think that exploring other synthetic
reasoning tasks and architectural changes could provide further insights into the mechanisms behind
these models. Evaluating these areas is an important direction to refine our understanding of modern
sequence models.
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A.2 Experimental details

In this section, we describe the experimental setup used throughout our study. Clearly outlining these
details is crucial for interpreting the results presented in subsequent sections. Our implementation is
inspired by methodologies from Zoology [Arora et al., 2023].

Data. The dataset consists of sequences of tokens representing key-value pairs. Tokens are sampled
from a fixed vocabulary of 8,192 tokens. Within each sequence, key-value tokens are assigned
randomly, ensuring that the model cannot learn a static mapping. Consequently, each sample
is independent, requiring the model to infer the role of tokens in context rather than relying on
memorization. The synthetic dataset is structured with four specific sequence lengths, each paired
with a corresponding number of key-value pairs to recall:

* 64 tokens with 4 key-value pairs;

* 128 tokens with 8 key-value pairs;
* 256 tokens with 16 key-value pairs;
* 512 tokens with 64 key-value pairs.

For the first three sequence lengths, the ratio of key-value pairs to sequence length is 1 : 16, whereas
for the longest sequence, the ratio is 1 : 8, making it the most challenging case. For each sequence
length, a dedicated dataset is created, consisting of 100, 000 training samples and 3, 000 test samples.
Model evaluation is performed by training each model on a specific sequence length and subsequently
assessing its performance on that same length.

Models Our experiments utilize a total of six main models + others used in the ablation studies:

e Two attention-based models: Attention and Based.
* Four recurrent models: H3, Hyena, RWKYV and Mamba.
* Other Ablations such as Attention + Convolution, Mamba without specific components etc.

Each model is tested across six model dimensions: 64, 128, 256, 512, 1024 and 2048. Additionally,
models are implemented in two configurations: 1-layer and 2-layer. Notably, a “layer” in our context
refers to the concatenation of two blocks: a sequence mixer (e.g., attention, RWKY, etc.) followed by
an MLP. Thus, a 1-layer model consists of two blocks, aligning with the terminology used in prior
work [Arora et al., 2023, Olsson et al., 2022]. Positional information is used only in attention and
Based.

Training and Evaluation We used GPU A100 with 80GB of memory in all our experiments.
We trained for 50 epochs using AdamW as optimizer, weight decay 0.1, warmup duration 10%,
linear warmup. All the experiments took between 10 minutes and 18 hours based on the model
architecture, the model dimension and the sequence length. The batch size varied depending on
the sequence length: 128 for sequence length 512, 256 for sequence length 256 and 512 otherwise.
Each configuration (combining model type, model dimension, and sequence length) undergoes a
learning rate sweep to identify the optimal learning rate. The reported accuracy for each configuration
corresponds to the best performance achieved across the tested learning rates. We want to highlight
that the accuracy reported should be interpreted as the average percentage of key-value pairs correctly
labeled. Specifically, achieving 50% accuracy with sequence length 64 and 4 as relative number of
key-value pairs means that on average the model recalls correctly 2 values given 4 keys. To ensure
robustness, all experiments are conducted using three random seeds (42, 123, and 777), with results
reported as the mean and standard deviation across these trials.

A.3 Full Tables

“Mamba was not included in the official work but some experiments, with different settings compared to
ours, are documented in the blog post.
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replication running the original code of [Arora et al., 2023] (dotted blu line). While for replication,

we used the learning rates grid by Arora et al. [2023 ], we note here that, due to high sensitivity to
, we provide results

the learning rate (Fig, 1), tuning drastically affects performance. In

with a finer grid (cf. Fig.1). Careful tuning of the learning rate gives a general improvement in the
performance of recurrent models. This becomes especially crucial in Mamba, where the task becomes
solvable at high sequence lengths >> hidden size. The results show the mean and relative max-min

errors for 3 seeds. Attention always solves the task (all curves overlap).
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not have any theoretical result

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions

of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: The paper fully disclose all the information needed to reproduce the main
results. Following the codebase of "Zoology: Measuring and Improving Recall in Efficient
Language Models" and reading our main contribuition is enough to reproduce our result and
verify our main claims.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Even thought the code of the paper is not explicitly present in our work, all our
experiments are based on the codebase of the paper "Zoology: Measuring and Improving
Recall in Efficient Language Models" which is publicly available and has all the relative
instructions for reproducibility.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper appendix A.2 specify all the training details used in all experiments.
In addition to that, our paper is based on the codebase release by the paper "Zoology:
Measuring and Improving Recall in Efficient Language Models", so all the details can also
be found in that.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the experiments presented were replicated multiple time with different
seed to ensure statistical meaningfulness. Results reports relative max-min errors. In our
specific experiments however, what is important is not the specif value of the performance,
but rather noticing if the models can (or cannot) solve the task.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8.

10.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All the specification of experiments are in the Appendix A.2. There are
specification on the compute used and how long most of the experiments last.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper respects the NeurIPS Code of Ethics
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper does not have any direct positive or negative societal impacts. The
paper focuses on comparisons between existing models capabilities and how to properly
leverage their specific characteristics. Perhaps, the only impact might come from the
downstream application of such models.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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11.

12.

13.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not use any data or model with high risk for misuse
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The main results of the paper use the codebase of the paper "Zoology: Measur-

ing and Improving Recall in Efficient Language Models" which is credited multiple times.
The code is open source for research purpose

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

21


paperswithcode.com/datasets

818

819

820

821

822
823
824
825
826

827

829

830
831
832

833

834

835

836

837

838
839
840
841
842
843

844
845

846
847
848
849

850

851

852

853

854

855
856
857
858
859
860
861
862

863

864
865
866
867

868

14.

15.

16.

Answer:
Justification: No new assets are introduced in this paper
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: In this paper there were no human experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: In this paper there were no human experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
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Justification: LL.Ms where used just to edit typos and grammar of part of the text in the
paper.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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