
When recalling in-context, Transformers are not SSMs

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 Despite the advantageous subquadratic complexity of modern recurrent deep learning
2 models – such as state-space models (SSMs) – recent studies have highlighted
3 their potential shortcomings compared to transformers on reasoning and memorization
4 tasks. In this paper, we dive deeper into one of such benchmarks: associative
5 recall (AR), which has been shown to correlate well with language modeling
6 performance, and inspect in detail the effects of scaling and optimization issues
7 in recently proposed token mixing strategies. We first demonstrate that, unlike
8 standard transformers, the choice of learning rate plays a critical role in the performance
9 of modern recurrent models: an issue that can severely affect reported
10 performance in previous works and suggests further research is needed to stabilize
11 training. Next, we show that recurrent and attention-based models exhibit contrasting
12 benefits when scaling in width as opposed to depth, with attention being notably
13 unable to solve AR when limited to a single layer. We then further inspect 1-layer
14 transformers, revealing that despite their poor performance, their training dynamics
15 surprisingly resemble the formation of induction heads, a phenomenon previously
16 observed only in their 2-layer counterparts. Finally, through architectural ablations,
17 we study how components affects Transformer and Mamba’s performance and
18 optimization stability.

19

1 Introduction

20 Since early developments [Rumelhart et al., 1986, Elman, 1990], RNNs have driven progress in
21 machine learning techniques for sequential data, with milestones such as Echo-State Networks [Jaeger,
22 2001] the LSTM [Hochreiter and Schmidhuber, 1997] and the GRU [Cho et al., 2014]. However, two
23 problems severely limit the application of RNNs in modern times: first, GPU architectures designed
24 for large matrix multiplications struggle with sequential processing. Secondly, it is widely known
25 that recurrent models are hard to train due to vanishing and exploding gradients issues [Bengio et al.,
26 1994, Hochreiter et al., 2001, Pascanu et al., 2013].

27 **Attention.** These challenges have led to the introduction of a different paradigm: the Attention
28 mechanism, implemented around the Transformer architecture [Vaswani et al., 2017]. Instead of
29 processing inputs sequentially while building up internal memory (RNNs), Attention computes
30 large matrices of pairwise interactions between data points, allowing for modeling direct links
31 between elements in a sequence and thus attenuating the vanishing gradient issue. While Attention,
32 being based on matrix multiplications, is extremely GPU efficient, computing pairwise interactions
33 results in $O(L^2)$ inference and memory complexity, where L denotes the input sequence length. For
34 this reason, techniques such as patching [Dosovitskiy et al., 2021, Pagnoni et al., 2024], gradient
35 checkpointing [Chen et al., 2016], and FlashAttention [Dao et al., 2022, Dao, 2023, Shah et al.,
36 2024] become of paramount importance when training and deploying Attention-based models at
37 scale. Despite this limitation, Transformers successfully powers most state-of-the-art architectures
38 we use today: beyond large language models [Devlin, 2018, Brown et al., 2020, Team et al., 2024],

39 Attention found widespread application in vision [Dosovitskiy et al., 2021, Touvron et al., 2021, Bertasius et al., 2021, Liu et al., 2024a], graph processing [Ma et al., 2023], and genome analysis domains [Dalla-Torre et al., 2024], among others.

42 Nevertheless, the quadratic complexity of Attention has remained a pressing limitation, prompting 43 numerous efforts to develop more efficient approximations [Wang et al., 2020, Choromanski et al., 44 2020, Chen et al., 2021, Lee-Thorp et al., 2022]. Many of these approaches have even revealed 45 connections to recurrent formulations [Katharopoulos et al., 2020, Schlag et al., 2021].

46 **SSMs and other linear token mixers.** More recently, we have witnessed a resurgence of RNNs in 47 state-of-the-art industry-size applications such as language modeling. Sparked by the S4 model [Gu 48 et al., 2020, 2022], which surpassed Attention-based models on long-range reasoning tasks [Tay 49 et al., 2020], we have rapidly seen in the last year a drastic increase in the usage of RNNs in deep 50 architectures, albeit in a linear¹ form that guarantees both $O(L)$ memory/inference complexity 51 and fast computation on GPUs [Martin and Cundy, 2018, Orvieto et al., 2023] while matching or 52 surpassing transformers on downstream tasks: a prime example are State-space Models (SSMs) 53 such as Mamba(2) [Gu and Dao, 2024, Dao and Gu, 2024], along with variants based on similar 54 ambitions [De et al., 2024, Peng et al., 2024, Yang et al., 2024a]. These novel fast recurrent processing 55 strategies sparked the interest of many practitioners in the field, leading to novel applications in 56 several domains, including vision [Liu et al., 2024b, Liang et al., 2024], audio generation [Goel et al., 57 2022], online learning [Zucchet et al., 2023] and reinforcement learning [Lu et al., 2023].

58 **Different expressivity?** It has been shown [Dao and Gu, 2024, Ali et al., 2024, Sieber et al., 2024], 59 that one can put in direct correspondence Attention with SSM processing: due to the linearity of 60 SSMs in the hidden state – the main distinction between SSMs and classical nonlinear RNNs [Cirone 61 et al., 2024] – it is possible to write down the “attention matrix” corresponding to SSM processing 62 at a given input. Yet, such a matrix is highly structured, a feature that boosts speeds at very high 63 context lengths [Waleffe et al., 2024] but may hurt optimization due to iterated products involving the 64 model parameters [Zucchet and Orvieto, 2024]. On top of this, the recurrent formulation of SSMs 65 clearly points to potential memory issues compared to attention on simple yet important tasks such as 66 copying [Jelassi et al., 2024] and associative recall [Arora et al., 2023].

67 **.. or perhaps just harder optimization?** Despite empirical results and worst-case bounds [Arora 68 et al., 2024] regarding the capabilities of SSM models on simple yet important tasks, it is yet unclear 69 if optimization issues, such as the curse of memory or vanishing gradients [Pascanu et al., 2013, 70 Zucchet and Orvieto, 2024], confound or understanding of capabilities of new recurrent models. We 71 found that this is indeed the case in associative recall [Arora et al., 2023], as we show in Figure 1.

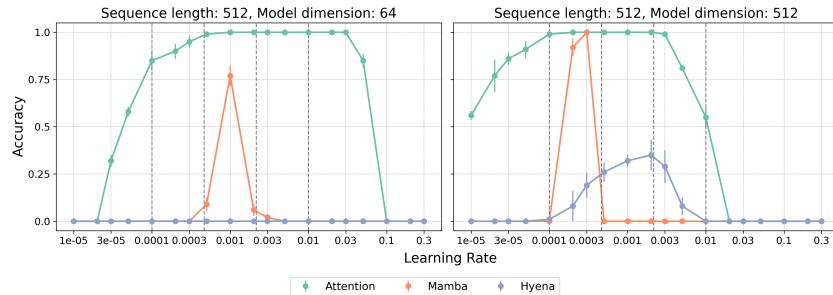


Figure 1: We show the performance of Attention, Hyena and Mamba using an extensive learning rate grid search. Differently from attention, the window of suitable learning rates for Mamba and Hyena is relatively narrow. We also compare our grid search with the one used in Zoology [Arora et al., 2023] (dashed vertical lines) to highlight how the suitable learning rate can be missed. The results show the mean and relative max-min errors after 3 runs with different seeds.

72 Figure 1 points to a crucial confounder when comparing SSM and attention capabilities: while funda- 73 mental expressivity issues exist between such model classes, the main driver of poor performance can 74 be unsuccessful optimization. In a way, when considering basic prototypical yet challenging tasks, 75 **transformers are not SSMs mainly because of their optimization dynamics.**

¹Modern RNNs such as State-space Models are linear in the hidden-to-hidden state interactions, but have recurrent formulation that is non-linear in the input, see [Cirone et al., 2024]

76 In response to this issue, a potential confounder for future evaluations of new recurrent models, in
77 this paper we take a closer look at associative recall and reveal new insights into the fundamental
78 distinctions between attention models and recurrent models.

- 79 • **The Impact of Optimization on Recurrent Models:** We find that learning rate selection plays
80 a pivotal role in the performance of recurrent models. More than just influencing performance,
81 it determines whether these models can successfully solve the task. Overlooking this factor can
82 lead to incorrect conclusion about their capabilities, highlighting the need for careful tuning when
83 working with recurrent architectures.
- 84 • **Different Scaling Behavior of Depth and Width:** Our experiments reveal that these models differ
85 in how they benefit from scaling width and depth. Consistent with prior research, recurrent models
86 gain the most from increased width, as their reliance on hidden state updates makes a larger one
87 beneficial for retaining information. Conversely, we show that a single-layer attention model fails
88 to solve the task, while a two-layer version succeeds.
- 89 • **Training Dynamics and Induction-Like Phenomena in 1-layer architectures:** Expanding on the
90 previous insight, we examine the behavior of single-layer models during training. Interestingly,
91 even in this setting, attention exhibits a phenomenon reminiscent of induction heads—previously
92 observed only in deeper models. We observe a drop in loss that does not correspond to improved
93 performance, indicating that the model may struggle to leverage induction heads at this scale. Mean-
94 while, recurrent models show smoother training dynamics, and Mamba, in particular, demonstrates
95 a steep performance increase similar to induction heads, even in a single-layer setup.
- 96 • **Ablation to reduce the gap between Transformers and SSMs:** Given the different behavior of the
97 two architectures, we make a series of architectural changes to make the Transformer more similar
98 to Mamba and viceversa. Our findings suggest that Mamba’s advantages stem from more than just
99 its convolutional, gating or architectural module, as its performance remains strong even when
100 these components are removed or modified. We also give suggestions on how other architectures,
101 can improve the baseline of Mamba in MQAR and its stability.

102 2 Background and Related works

103 **Associative Recall.** With the rise of foundation models, deep learning has made significant advances,
104 sparking growing interest in evaluating their reasoning capabilities. One key aspect of reasoning is
105 the ability to recall previously encountered information. Intuitively, given the input

106 “**Hakuna Matata means no worries** for the rest of your days.
107 “**Hakuna Matata means ...**”

108 a well-performing model should predict “**no worries**” with high likelihood. Building on this idea,
109 the synthetic associative recall (AR) task, introduced by [Olsson et al., 2022], gained popularity as
110 an efficient reasoning benchmark to assess promising model architectures at a relatively low cost.
111 The task is structured as follows: Given a fixed Vocabulary V , each sample consists of a sequence of
112 tokens sampled from V representing alternating key-value pairs. Given such a sequence and a key
113 that appeared earlier, the model must correctly infer its corresponding value: For example, given the
114 input sequence:

115 $A \ 6 \ I \ 9 \ C \ 7 \ P \ 1 \ S \ 4 \ D \ 2$

116 and given the key $C \rightarrow ?$ the model should predict 7.

117 A crucial aspect of this task is that the tokens serve interchangeably as keys and values among
118 samples—they are drawn from the same vocabulary rather than separate sets. Consequently, the
119 model cannot rely on preassigned roles for tokens. Moreover, since token roles and positions vary
120 across data points, the model cannot memorize a fixed mapping but must instead infer the correct
associations dynamically in-context.

121 **Multi-Query Associative Recall.** Building on previous research [Arora et al., 2023], our experi-
122 ments employ a variation of AR known as multi-query associative recall (MQAR). This choice is
123 motivated by the fact that standard AR is typically used to evaluate the ability of recurrent models to
124 capture long-range dependencies using extremely long sequences—an area where attention-based
125 models often struggle due to memory constraints. However, at the scale of our experiments, MQAR
126 presents a more challenging and relevant task even with relatively small sequences.

127 There are two key distinctions between MQAR and its standard counterpart, both of which align
 128 more closely with the characteristics of natural language. First, it introduces a significantly larger
 129 vocabulary: from the 50 tokens of standard AR to approximately 8,000 tokens in MQAR. This
 130 makes the task more representative of real-world language processing where the vocabulary size
 131 is in the order of hundreds of thousands of words. Second, instead of recalling a single key-value
 132 pair, MQAR requires the model to retrieve multiple values based on multiple queries. This more
 133 accurately mirrors the nature of language, where meaning is often derived from groups of words and
 134 interrelated concepts rather than isolated tokens. For instance, given an input sequence

A 6 I 9 C 7 P 1 S 4 D 2

135 and given multiple keys

$C \rightarrow ?$ $A \rightarrow ?$ $D \rightarrow ?$

136 we ask the model to recall the relative values 7, 6 and 2. Notably, if we were to restrict the model to
 137 retrieving only one key-value pair, the task would reduce to AR. We opted for this variant because
 138 prior studies have demonstrated that it more effectively highlights the differences between attention-
 139 based and recurrent models. By incorporating these linguistic properties, multi-query associative
 140 recall serves as a more insightful benchmark for evaluating model performance. Even if all of our
 141 analysis are made using multi-query associative recall, throughout this work we will use the terms
 142 AR and MQAR interchangeably for simplification.

143 **Induction heads.** While investigating the capabilities of transformers in few-shot learning, previous
 144 work ([Olsson et al., 2022]) showed the phenomenon of induction heads. The main insight from this
 145 work was that during training, with transformers with at least 2 layers, a special kind of attention
 146 heads called “induction heads” is formed, causing a noticeable drop in the loss perplexity, while
 147 giving a sudden boost in In-context learning performances.

148 More formally, induction heads are implemented by a circuit consisting of a pair of attention heads
 149 in different layers that work together to copy or complete patterns. The first attention head copies
 150 information from the previous token into each other tokens, making it possible for the second
 151 attention head to attend to tokens based on what happened before them, rather than their own content.
 152 Specifically, the second head (the proper “induction head”) searches for a previous place in the
 153 sequence where the present token **A** occurred and attends to the next token (call it **B**), copying it and
 154 causing the model to be more likely to output **B** as the next token. That is, the two heads working
 155 together cause the sequence ...[**A**][**B**]...[**A**] to be more likely completed with [**B**].

156
 157 Induction heads are named by analogy to inductive reasoning, where we might infer that if
 158 **A** is followed by **B** earlier in the context, **A** is more likely to be followed by **B** again later in the
 159 same context. Induction heads are capable of crystallizing that inference. They search the context for
 160 previous instances of the present token, attend to the token which would come next in the pattern
 161 repeated, and increase its probability in terms of logit. Induction heads attend to tokens that would be
 162 predicted by basic induction (over the context, rather than over the training data).

163 **Transformers and SSMs.** Let $X \in \mathbb{R}^{N \times d}$ a generic input consisting of N elements in d dimensions.
 164 Basic state-space models (SSMs) [Gu and Dao, 2024] compute outputs via a recurrence:

$$\begin{aligned} Z_i &= A_i Z_{i-1} + B_i X_i \\ Y_i &= C_i Z_i + D_i X_i, \end{aligned}$$

165 where $Z_0 = 0$ and A_i, B_i, C_i, D_i are input-dependent matrices. In the S6 block [Gu and Dao, 2024],
 166 they are parametrized as functions of X_i , yielding a structured recurrence.

167 This system admits a an attention formulation [Sieber et al., 2024, Dao and Gu, 2024]: $Y = \Phi_{S6}^X \cdot X$,

$$\Phi_{S6}^X = \begin{pmatrix} C_0 B_0 + D_0 & 0 & \cdots & 0 \\ C_1 A_1 B_0 & C_1 B_1 + D_1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ C_N \prod_{k=1}^N A_k B_0 & \cdots & C_N A_N B_{N-1} & C_N B_N + D_N \end{pmatrix}. \quad (1)$$

168 Later options such as Mamba2 [Dao and Gu, 2024] and DeltaNet [Yang et al., 2025] also share
 169 this view, yet their parameter-efficient formulation introduces further state expansion and parameter
 170 sharing options for efficient heads.

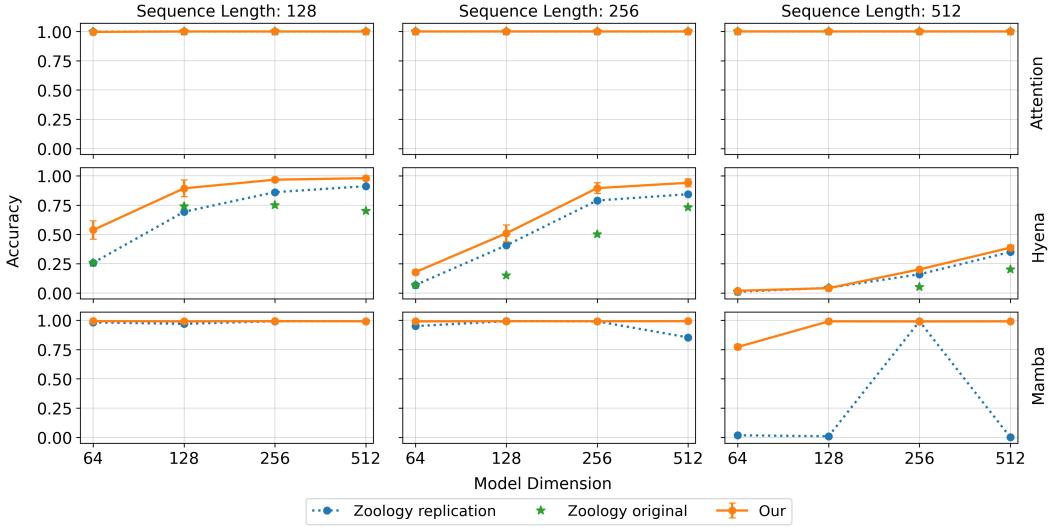


Figure 2: *Performance of 2-layers models. Results for H3 [Fu et al., 2023], RWKV [Peng et al., 2023] and Based [Arora et al., 2024] included in App. A.3. We report the official results² (green stars) and the replication running the original code of [Arora et al., 2023] (dotted blue line). While for replication, we used the learning rates grid by Arora et al. [2023], we note here that, due to high sensitivity to the learning rate (Fig. 1), tuning drastically affects performance. In solid orange, we provide results with a finer grid (cf. Fig. 1). Careful tuning of the learning rate gives a general improvement in the performance of recurrent models. This becomes especially crucial in Mamba, where the task becomes solvable at high sequence lengths \gg hidden size. The results show the mean and relative max-min errors for 3 seeds. Attention always solves the task (all curves overlap).*

171 3 Closer Look into AR performance

172 Building on previous research, we aim to provide an in-depth analysis of the differences and simi-
 173 larities between attention and recurrent models through the lens of AR. Prior studies [Arora et al.,
 174 2023] have shown that transformers are inherently well-suited for solving the MQAR task, achieving
 175 perfect accuracy regardless of model dimension, sequence length or number of key-value pairs to
 176 infer. In contrast, it was argued (both theoretically and empirically) that new recurrent models [Peng
 177 et al., 2023, Nguyen et al., 2024, Gu and Dao, 2024] can only solve MQAR if the hidden dimension
 178 is roughly equal to the sequence length (see analysis by Jelassi et al. [2024] in a related setting).
 179 However, a key aspect that has been **overlooked** in some prior works is the crucial role of optimization
 180 in recurrent models —particularly, the use of an effective grid search for the choice of learning rate.

181 **Hypothesis from previous works.** Recurrent models update their hidden state (which serves as a
 182 compressed representation of past information) at each time step, using the current input. Since the
 183 model only has access to its hidden state and the current input, its ability to recall previous information
 184 depends on how effectively it compresses past data into this state. With a simplified analysis assuming
 185 uniform distribution over strings, Jelassi et al. [2024] showed that to successfully copy input strings,
 186 the hidden size needed grows linearly with the sequence length. In contrast, transformers [Vaswani
 187 et al., 2017] dynamically access all previously seen inputs through the softmax attention mechanism,
 188 allowing for the explicit computation of interactions between tokens. This makes the task of recalling
 189 already seen tokens essentially a lookup table problem when two layers work simultaneously, as
 190 described in Jelassi et al. [2024], Olsson et al. [2022].

191 **Results.** Compared to previous work, in our experiments, we devoted more attention to tuning the
 192 learning rates, drastically improving the reported performance for recurrent models (see Fig. 2&1).
 193 As shown in Figure 2 and extensively in Appendix A.3, a finer grid not only enhances average
 194 performance across all settings but also proves particularly crucial for the Mamba model. With a more
 195 suitable learning rate, Mamba [Gu and Dao, 2024], which was previously shown to struggle with
 196 long sequence lengths, becomes capable of solving MQAR at relatively small hidden model sizes.

²Mamba was not included in the official work but some experiments are documented in the blog post

197 All experimental details for this and the next experiments are in Appendix A.2. This highlights a key
 198 takeaway for MQAR: the choice of learning rate (and optimization strategy in general) can be decisive
 199 in assessing whether a recurrent model can solve the task at all. In the case of Mamba, optimization
 200 choices become a discriminative factor, emphasizing the necessity of careful hyperparameter tuning
 201 in recurrent models, and further research for improving their high sensitivity.

202 To further emphasize the critical role of learning rate selection in training recurrent models, we
 203 compare the performance of Attention, Hyena and Mamba using the same grid search. Figure 1
 204 illustrates that attention-based models maintain strong performance across a relatively wide range of
 205 learning rates. In contrast, Hyena and Mamba exhibit a different behavior: performance remains near
 206 zero for most learning rates but suddenly reaches near-optimal levels at specific values which may
 207 not be included in the grid by Arora et al. [2023]. These findings highlight a key distinction between
 208 attention-based and recurrent models: a sparse learning rate grid search can disproportionately impact
 209 their training outcomes. **This discrepancy can lead to misleading conclusions** about the capabilities
 210 of these models, emphasizing the need for careful tuning.

211 **4 Effects of width/depth scaling into AR performance**

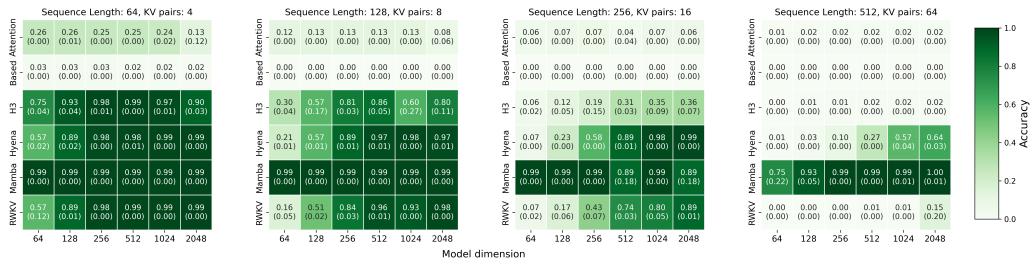


Figure 3: *Performance of 1-layer attention-based (Attention, Based) and recurrent-based (H3, Hyena, Mamba, RWKV) models on AR. We show how for recurrent models, scaling the width boosts performances. On the contrary, attention models cannot solve the task anymore as in the 2-layer setting, and performances are unaffected by the scaling in width. The results show the mean and relative max-min errors after 3 runs with different seeds.*

212 While our findings in Sec. 3 show that some recurrent models can exhibit improved performance
 213 on MQAR with proper learning rate tuning, we confirm that a sizeable gap with attention can still
 214 be observed for some recurrent models at low widths (e.g. Hyena vs. Attention). The experiments
 215 of Sec. 3 focused on comparisons of 2-layer architectures, at different sequence lengths and model
 216 widths. This choice stems from prior research [Olsson et al., 2022], where transformers have shown
 217 peculiar in-context learning capabilities related to the formation of induction head circuits in 2-layer
 218 models. With the intention of going beyond the setup that is known to show strengths for softmax
 219 attention, our objective in this section is to explore the effects of scaling in different configurations.

220 To achieve this goal, we conducted experiments analogous to Section 3 using single-layer architec-
 221 tures³. By doing so, we aim to decouple the effects of inter-communication between layers and to
 222 isolate the impact of each model’s fundamental structure (attention versus recurrence) on MQAR.
 223 Beyond this, our motivation also comes from the notable connections that have been drawn between
 224 attention and recurrent models [Dao and Gu, 2024, Ali et al., 2024, Sieber et al., 2024] and on the
 225 capabilities of transformers [Sanford et al., 2024] – all of which concern 1-layer models. Our results,
 226 presented in Figure 3, reveal two key insights:

227 1. First, for a fixed sequence length, recurrent models always benefit from scaling in width – as
 228 was happening in 2 layers (Sec. 3). That is, expanding the hidden state dimension enhances their
 229 performance. This result aligns well with current literature [Jelassi et al., 2024, Orvieto et al.,
 230 2024]: as already mentioned, at each time step recurrent models store compressed inputs into a
 231 hidden state, which serves as a condensed representation of all past information. A larger hidden
 232 dimension facilitates less aggressive compression, allowing the model to retain more information.

³By single layer in attention and recurrent models we mean a sequence mixer followed by an MLP.

233 2. Attention models exhibit a surprisingly different behavior: when constrained to a single layer, they
 234 fail to solve the task and increasing the hidden dimension does not affect their performance. This
 235 is in stark contrast to their strong results in 2-layer architectures, where even the smallest model
 236 was sufficient to solve the task in the hardest setting. Interestingly, in this setting transformers
 237 are capable on average of recalling one key-value pair in every setting, suggesting a memory size
 238 issue when only one layer is present as also suggested in previous work [Sanford et al., 2024].

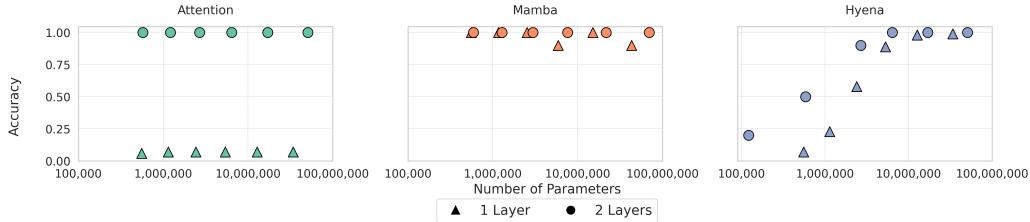


Figure 4: *Scaling models in width and depth (Seq len: 256, KV pairs: 64).* Symbols with the same shape and color represent models of increasing size in the following order: 64, 128, 256, 512, 1024, and 2048. We show how rather than the number of parameters, is the way these models are scaled that impacts performance. Specifically, recurrent models benefits from scaling in width, while attention benefits from scaling in depth.

239 Our findings highlight a key takeaway from our study: attention and recurrent models exhibit opposite
 240 scaling behaviors in width and depth. In other words, as shown in Fig. 4, rather than the number of
 241 parameters, it is the way these models are scaled that has most impact on their performance.

242 5 1-layer Training Dynamics and Induction Heads phenomenon

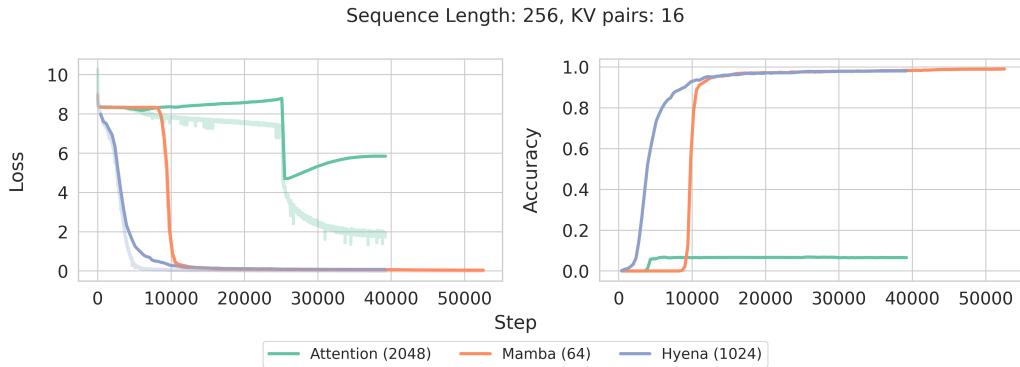


Figure 5: *Training (lower opacity) and Validation dynamics of 1-layer models.* We reported within brackets the smallest width that solves the task, if possible; or otherwise the biggest width we tried (for attention). Differently from Mamba, Hyena requires the model dimension to exceed the sequence length. Both exhibit smooth learning dynamics, leading to perfect performance. Attention shows a loss bump, but without accuracy gains, suggesting an attempt to form induction heads that the single-layer transformer fails to leverage effectively.

243 Sec. 4 sparked our curiosity, leading us to explore the single-layer architecture setup further – to
 244 understand why attention hits a performance ceiling while recurrent models can solve the task. This
 245 analysis is especially intriguing given the strong connections that have been proposed between
 246 attentions and Mamba in Ali et al. [2024], Dao and Gu [2024].

247 In this section, we analyze the training dynamics of well-tuned Hyena, Attention and Mamba models.
 248 As illustrated in Fig. 5 we identify two main patterns. First, Hyena (and similarly other non-selective
 249 recurrent models like H3 and RWKV) exhibits consistently smooth learning dynamics, with a gradual
 250 and steady improvement that eventually lead to convergence at the solution. Specifically, loss
 251 reductions align closely with increases in accuracy. Differently, attention accuracy remains largely

Table 1: *Performance of ablated 1-layer architectures. After making different modifications to the Mamba and Transformer, we report if the model is capable of solving the MQAR task. Here solving the task means achieving accuracy ≥ 95 percent with any combination of sequence length 64, 128, 256, 512 and model dimension 64, 128, 256, 512, 1024, 2048*

Model	Solves MQAR
Attention	✗
Attention + Conv on QKV	✓
Attention + Conv on K	✓
Attention + Conv on V	✓
Attention + Conv on Q	✗
Mamba	✓
Mamba w/o conv1d	✓
Mamba w/o gating	✓
S6 + MLP (Mamba as a Transformer)	✓

unchanged throughout training. A similar trend appears in the test loss, which remains relatively stable until a sudden bump occurs, after which the test loss settles again. This bump resembles the formation of an induction head circuit [Olsson et al., 2022], and to the best of our knowledge has previously only been observed during the training of multi-layer transformer architectures. However, as opposed to what can observe in 2-layer models, this phase transition in the loss does not correspond to an accuracy improvement for attention. Based on previous work [Olsson et al., 2022], we hypothesize that during this phase transition, the attention mechanism *attempts* to form induction heads. However, in the single-layer setting, the model lacks the expressivity needed to effectively leverage this mechanism for task resolution. Interestingly, the dynamics of Mamba is mixed:

1. Like single-layer attention models, we report a significant loss bump, reinforcing the connection between Mamba and attention mechanisms, as suggested in Ali et al. [2024], Dao and Gu [2024].
2. However, unlike transformers, Mamba can successfully solve the task even in a single-layer setting – provided the learning rate is properly tuned, similarly to other recurrent models.

Our results highlight a crucial distinction: while attention and recurrent models share some common ground, yet distinct inductive biases. Moreover, their performance is in strong interaction with the optimization algorithm at hand (in our case, Adam [Kingma, 2014]), as we also saw in Figure 1. Understanding these nuances is key to optimally leveraging both architectures, perhaps also towards hybrid models [Waleffe et al., 2024, Dao and Gu, 2024].

6 Are SSMs and Transformers really similar?

Our results so far highlight key differences between Transformers and SSMs, particularly Mamba, in the context of AR. Notably, while Mamba demonstrates greater expressivity—successfully solving the task even in a single-layer setting—it presents optimization challenges in terms of learning rate stability. In contrast, Transformers exhibit remarkable stability across a wide range of suitable learning rates during training in the 2-layer setting. We highlight that each of these layers includes an MLP block processing channels.

To address this discrepancy, we conduct a series of ablation studies aimed at:

1. Modifying the architectures of both models to better align them (architectures are in appendix A.1) and identify the source of Mamba’s superior performance, summarized in Table 1 and
2. Exploring new architectural variants that promote more stable training dynamics.

Convolutions. Inspired by [Li et al., 2024], we begin by adapting the attention mechanism to resemble Mamba. We incorporate a 1D convolution before the Query, Key and Value matrix projections to brings in locality, enabling the model to solve MQAR with just one layer. Interestingly, we observe that applying the convolution to either the Key or Value matrix alone is sufficient to achieve the same performance gains. These observations suggest that the 1D convolution may be

286 a central factor behind Mamba’s effectiveness. However, we find that even after removing the
 287 convolution, the model retains the ability to solve the task.

288 **Backbone ablation.** We further modify the Mamba architecture to make it closer to the Transformer
 289 architecture by: (1) removing the gating mechanism, and (2) replacing the standard Mamba block
 290 with a sequence mixer (as in S6), followed by an MLP—mirroring the Transformer’s architecture.
 291 Despite these alterations, Mamba continues to perform well when properly tuned, suggesting a
 292 notable degree of robustness in the design of its fundamental block.

293 **Newer architectures.** To better understand what contributes to training stability, we also evaluate
 294 architectural variants designed for improving the Mamba architecture and solve the MQAR task.
 295 In particular, we test Mamba2 [Dao and Gu, 2024] and DeltaNet [Yang et al., 2024b] as shown
 296 in Figure 6. While performance of Mamba2 is slightly more stable, Transformer-level robustness
 297 is only achieved by DeltaNet. A closer look at the DeltaNet update rule reveals that its mixing is
 298 based on Householder matrices. As such, the off-diagonal terms such as $C_N \prod_{k=1}^N A_k B_0$ do not
 299 necessarily incur in vanishing gradients. Instead, in both Mamba and Mamba2, A_k includes a decay
 300 rate that induces vanishing gradients and fast decay of off-diagonal terms, as recently pointed out
 301 by Trockman et al. [2024]. We hypothesize this is the main distinction unlocking stable optimization
 302 in DeltaNet.

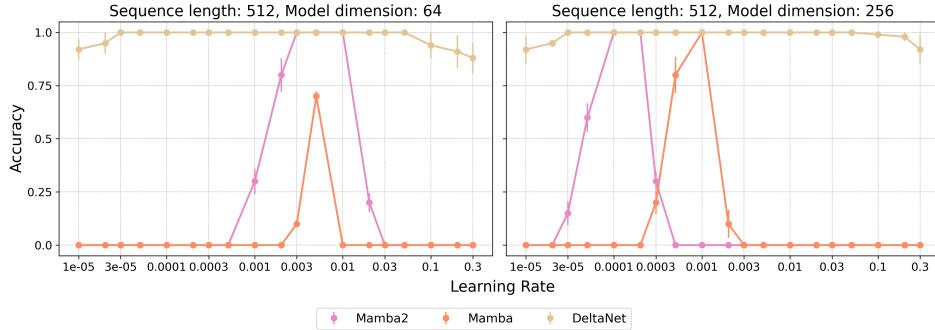


Figure 6: We show the performance of Mamba, Mamba2 and DeltaNet in the 1-layer setting using the same learning rate grid search. Here we show how having a bigger hidden state marginally helps stability, as in Mamba2 and especially in DeltaNet. Results could be shown to a maximum of model dimension of 256 because DeltaNet implementation doesn’t support greater dimensions. The results show the mean and relative max-min errors after 3 runs with different seeds.

303 7 Discussion and Conclusions

304 In this work, we used MQAR as a benchmark to compare attention and recurrent models at a
 305 small scale. Our findings shed additional light on how the underlying mechanisms of these models
 306 influence their performance. Specifically, we showed that recurrent models are highly sensitive
 307 to optimization, with their performance significantly affected by the choice of learning rate. This
 308 underscores the need for further research to improve their stability. Additionally, we observed
 309 contrasting scaling behaviors: recurrent models benefit from the increased width and hidden state
 310 size, whereas transformers struggle with MQAR in a single-layer configuration. Interestingly, despite
 311 their poor performance, single-layer transformers exhibit training dynamics resembling the induction
 312 head phenomenon, previously reported only in multi-layer settings. Instead, Mamba displays similar
 313 behavior but successfully solves the task. Finally, through the ablations study, we showed how the
 314 performance of Mamba is robust to specific architectural components such as gating and convolution,
 315 and how other similar architectures can enhance performance and stability. Our findings suggest
 316 overlaps between the optimization landscapes of Mamba and Attention, yet with crucial differences
 317 related to expressivity, to study further. Looking ahead, we think that exploring other synthetic
 318 reasoning tasks and architectural changes could provide further insights into the mechanisms behind
 319 these models. Evaluating these areas is an important direction to refine our understanding of modern
 320 sequence models.

321 **References**

322 Ameen Ali, Itamar Zimerman, and Lior Wolf. The hidden attention of Mamba models. *arXiv preprint arXiv:2403.01590*, 2024.

324 Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra, and Christopher Re. Zoology: Measuring and improving recall in efficient language models. In *International Conference on Learning Representations*, 2023.

327 Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, James Zou, Atri Rudra, and Christopher Re. Simple linear attention language models balance the recall-throughput tradeoff. In *International Conference on Machine Learning*, 2024.

330 Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient descent is difficult. *IEEE Transactions on Neural Networks*, 1994.

332 Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video understanding? In *ICML*, 2021.

334 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in Neural Information Processing Systems*, 2020.

337 Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost. *arXiv preprint arXiv:1604.06174*, 2016.

339 Yifan Chen, Qi Zeng, Heng Ji, and Yun Yang. Skyformer: Remodel self-attention with Gaussian kernel and Nyström method. *Advances in Neural Information Processing Systems*, 2021.

341 Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for statistical machine translation. In *Empirical Methods in Natural Language Processing*, 2014.

345 Krzysztof Marcin Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention with performers. In *International Conference on Learning Representations*, 2020.

349 Nicola Muca Cirone, Antonio Orvieto, Benjamin Walker, Cristopher Salvi, and Terry Lyons. Theoretical foundations of deep selective state-space models. In *Advances in Neural Information Processing Systems*, 2024.

352 Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez Carranza, Adam Henryk Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Bernardo P de Almeida, Hassan Sirelkhatim, et al. Nucleotide transformer: building and evaluating robust foundation models for human genomics. *Nature Methods*, 2024.

356 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv preprint arXiv:2307.08691*, 2023.

358 Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through structured state space duality. In *International Conference on Machine Learning*, 2024.

360 Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient exact attention with io-awareness. *Advances in Neural Information Processing Systems*, 2022.

363 Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mixing gated linear recurrences with local attention for efficient language models. *arXiv preprint arXiv:2402.19427*, 2024.

367 Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.

369 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 370 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 371 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
 372 In *International Conference on Learning Representations*, 2021.

373 Jeffrey L Elman. Finding structure in time. *Cognitive science*, 1990.

374 Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Re.
 375 Hungry hungry hippos: Towards language modeling with state space models. In *International
 376 Conference on Learning Representations*, 2023.

377 Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It's raw! audio generation with
 378 state-space models. *International Conference on Machine Learning*, 2022.

379 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In
 380 *Conference on Language Modeling*, 2024.

381 Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory with
 382 optimal polynomial projections. In *Advances in Neural Information Processing Systems*, 2020.

383 Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
 384 state spaces. In *International Conference on Learning Representations*, 2022.

385 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 1997.

386 Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, et al. Gradient flow in recurrent nets: the difficulty
 387 of learning long-term dependencies. *A Field Guide to Dynamical Recurrent Neural Networks*,
 388 2001.

389 Herbert Jaeger. The "echo state" approach to analysing and training recurrent neural networks-with
 390 an erratum note. *German National Research Center for Information Technology GMD Technical
 391 Report*, 2001.

392 Samy Jelassi, David Brandfonbrener, Sham M Kakade, et al. Repeat after me: Transformers are
 393 better than state space models at copying. In *International Conference on Machine Learning*, 2024.

394 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
 395 Fast autoregressive transformers with linear attention. In *International Conference on Machine
 396 Learning*. PMLR, 2020.

397 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 398 2014.

399 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing tokens with
 400 fourier transforms. In *North American Chapter of the Association for Computational Linguistics:
 401 Human Language Technologies*, 2022.

402 Mingchen Li, Xuechen Zhang, Yixiao Huang, and Samet Oymak. On the power of convolution
 403 augmented transformer, 2024. URL <https://arxiv.org/abs/2407.05591>.

404 Dingkang Liang, Xin Zhou, Wei Xu, Xingkui Zhu, Zhikang Zou, Xiaoqing Ye, Xiao Tan, and Xiang
 405 Bai. PointMamba: A simple state space model for point cloud analysis. In *Advances in Neural
 406 Information Processing Systems*, 2024.

407 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in
 408 Neural Information Processing Systems*, 2024a.

409 Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, Jianbin
 410 Jiao, and Yunfan Liu. VMamba: Visual state space model. In *Advances in Neural Information
 411 Processing Systems*, 2024b.

412 Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and Feryal
 413 Behbahani. Structured state space models for in-context reinforcement learning. In *Advances in
 414 Neural Information Processing Systems*, 2023.

415 Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates, Philip
416 Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In
417 *International Conference on Machine Learning*. PMLR, 2023.

418 Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length. In
419 *International Conference on Learning Representations*, 2018.

420 Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes,
421 Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna: Long-range
422 genomic sequence modeling at single nucleotide resolution. In *Advances in Neural Information
423 Processing Systems*, 2024.

424 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
425 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
426 *arXiv preprint arXiv:2209.11895*, 2022.

427 Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
428 and Soham De. Resurrecting recurrent neural networks for long sequences. In *International
429 Conference on Machine Learning*, 2023.

430 Antonio Orvieto, Soham De, Caglar Gulcehre, Razvan Pascanu, and Samuel L Smith. Universality
431 of linear recurrences followed by non-linear projections: Finite-width guarantees and benefits of
432 complex eigenvalues. In *International Conference on Machine Learning*, 2024.

433 Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li,
434 Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, et al. Byte latent transformer: Patches
435 scale better than tokens. *arXiv preprint arXiv:2412.09871*, 2024.

436 Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
437 networks. In *International Conference on Machine Learning*, 2013.

438 Bo Peng, Eric Alcaide, Quentin Gregory Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
439 Huanqi Cao, Xin Cheng, Michael Nguyen Chung, Leon Derczynski, Xingjian Du, Matteo Grella,
440 Kranthi Kiran GV, Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong,
441 Bartłomiej Koptyra, Hayden Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi
442 Saito, Guangyu Song, Xiangru Tang, Johan S. Wind, Stanisław Woźniak, Zhenyuan Zhang,
443 Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. RWKV: Reinventing RNNs for the transformer era. In
444 *Findings of the Association for Computational Linguistics*, 2023.

445 Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
446 Cheah, Xingjian Du, Teddy Ferdinand, Haowen Hou, et al. Eagle and Finch: RWKV with matrix-
447 valued states and dynamic recurrence. *arXiv preprint arXiv:2404.05892*, 2024.

448 David E Rumelhart, Paul Smolensky, James L McClelland, and G Hinton. Sequential thought
449 processes in pdp models. *Parallel Distributed Processing: Explorations in the Microstructures of
450 Cognition*, 1986.

451 Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the induction
452 heads task, 2024. URL <https://arxiv.org/abs/2408.14332>.

453 Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
454 programmers. In *International Conference on Machine Learning*, 2021.

455 Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
456 Flashattention-3: Fast and accurate attention with asynchrony and low-precision. In *Advances in
457 Neural Information Processing Systems*, 2024.

458 Jerome Sieber, Carmen Amo Alonso, Alexandre Didier, Melanie Zeilinger, and Antonio Orvieto.
459 Understanding the differences in foundation models: Attention, state space models, and recurrent
460 neural networks. In *Advances in Neural Information Processing Systems*, 2024.

461 Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
462 Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
463 transformers. In *International Conference on Learning Representations*, 2020.

464 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
465 Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
466 understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

467 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
468 Jégou. Training data-efficient image transformers & distillation through attention. In *International
469 conference on machine learning*, 2021.

470 Asher Trockman, Hrayr Harutyunyan, J Zico Kolter, Sanjiv Kumar, and Srinadh Bhojanapalli.
471 Mimetic initialization helps state space models learn to recall. *arXiv preprint arXiv:2410.11135*,
472 2024.

473 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
474 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing
475 Systems*, 2017.

476 Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
477 Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of Mamba-
478 based language models. *arXiv preprint arXiv:2406.07887*, 2024.

479 Sinong Wang, Belinda Z Li, Madiam Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
480 linear complexity. *arXiv preprint arXiv:2006.04768*, 2020.

481 Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
482 transformers with hardware-efficient training. In *International Conference on Machine Learning*,
483 2024a.

484 Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
485 with the delta rule over sequence length. *arXiv preprint arXiv:2406.06484*, 2024b.

486 Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
487 with the delta rule over sequence length, 2025. URL <https://arxiv.org/abs/2406.06484>.

488 Nicolas Zucchet and Antonio Orvieto. Recurrent neural networks: vanishing and exploding gradients
489 are not the end of the story. In *Advances in Neural Information Processing Systems*, 2024.

490 Nicolas Zucchet, Robert Meier, Simon Schug, Asier Mujika, and João Sacramento. Online learning
491 of long-range dependencies. In *Advances in Neural Information Processing Systems*, 2023.

492 **A Appendix**

493 **A.1 Modified architectures**

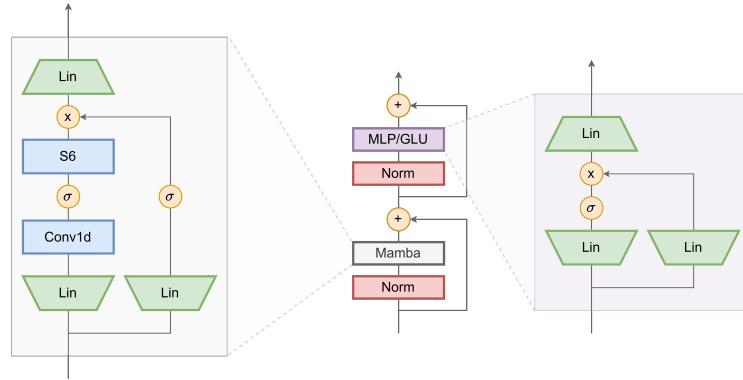


Figure 7: Architecture of Mamba following the architecture of a Transformer given by sequence mixers interleaved by MLPs

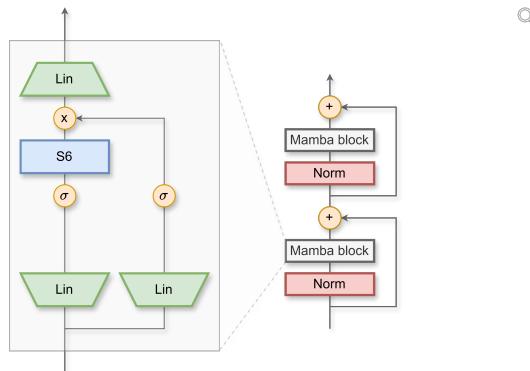


Figure 8: Architecture of Mamba without the conv1d

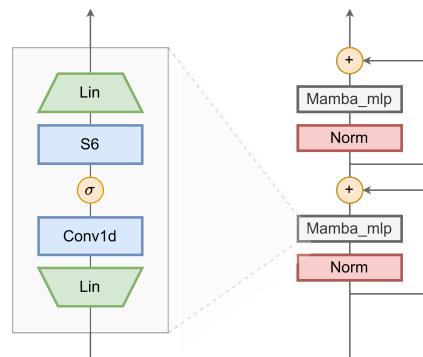


Figure 9: Architecture of Mamba without the gate

494 **A.2 Experimental details**

495 In this section, we describe the experimental setup used throughout our study. Clearly outlining these
496 details is crucial for interpreting the results presented in subsequent sections. Our implementation is
497 inspired by methodologies from Zoology [Arora et al., 2023].

498 **Data.** The dataset consists of sequences of tokens representing key-value pairs. Tokens are sampled
499 from a fixed vocabulary of 8,192 tokens. Within each sequence, key-value tokens are assigned
500 randomly, ensuring that the model cannot learn a static mapping. Consequently, each sample
501 is independent, requiring the model to infer the role of tokens in context rather than relying on
502 memorization. The synthetic dataset is structured with four specific sequence lengths, each paired
503 with a corresponding number of key-value pairs to recall:

504

- 64 tokens with 4 key-value pairs;
- 128 tokens with 8 key-value pairs;
- 256 tokens with 16 key-value pairs;
- 512 tokens with 64 key-value pairs.

508 For the first three sequence lengths, the ratio of key-value pairs to sequence length is 1 : 16, whereas
509 for the longest sequence, the ratio is 1 : 8, making it the most challenging case. For each sequence
510 length, a dedicated dataset is created, consisting of 100,000 training samples and 3,000 test samples.
511 Model evaluation is performed by training each model on a specific sequence length and subsequently
512 assessing its performance on that same length.

513 **Models** Our experiments utilize a total of six main models + others used in the ablation studies:

514

- Two attention-based models: Attention and Based.
- Four recurrent models: H3, Hyena, RWKV and Mamba.
- Other Ablations such as Attention + Convolution, Mamba without specific components etc.

517 Each model is tested across six model dimensions: 64, 128, 256, 512, 1024 and 2048. Additionally,
518 models are implemented in two configurations: 1-layer and 2-layer. Notably, a “layer” in our context
519 refers to the concatenation of two blocks: a sequence mixer (e.g., attention, RWKV, etc.) followed by
520 an MLP. Thus, a 1-layer model consists of two blocks, aligning with the terminology used in prior
521 work [Arora et al., 2023, Olsson et al., 2022]. Positional information is used only in attention and
522 Based.

523 **Training and Evaluation** We used GPU A100 with 80GB of memory in all our experiments.
524 We trained for 50 epochs using AdamW as optimizer, weight decay 0.1, warmup duration 10%,
525 linear warmup. All the experiments took between 10 minutes and 18 hours based on the model
526 architecture, the model dimension and the sequence length. The batch size varied depending on
527 the sequence length: 128 for sequence length 512, 256 for sequence length 256 and 512 otherwise.
528 Each configuration (combining model type, model dimension, and sequence length) undergoes a
529 learning rate sweep to identify the optimal learning rate. The reported accuracy for each configuration
530 corresponds to the best performance achieved across the tested learning rates. We want to highlight
531 that the accuracy reported should be interpreted as the average percentage of key-value pairs correctly
532 labeled. Specifically, achieving 50% accuracy with sequence length 64 and 4 as relative number of
533 key-value pairs means that on average the model recalls correctly 2 values given 4 keys. To ensure
534 robustness, all experiments are conducted using three random seeds (42, 123, and 777), with results
535 reported as the mean and standard deviation across these trials.

536 **A.3 Full Tables**

⁴Mamba was not included in the official work but some experiments, with different settings compared to ours, are documented in the blog post.

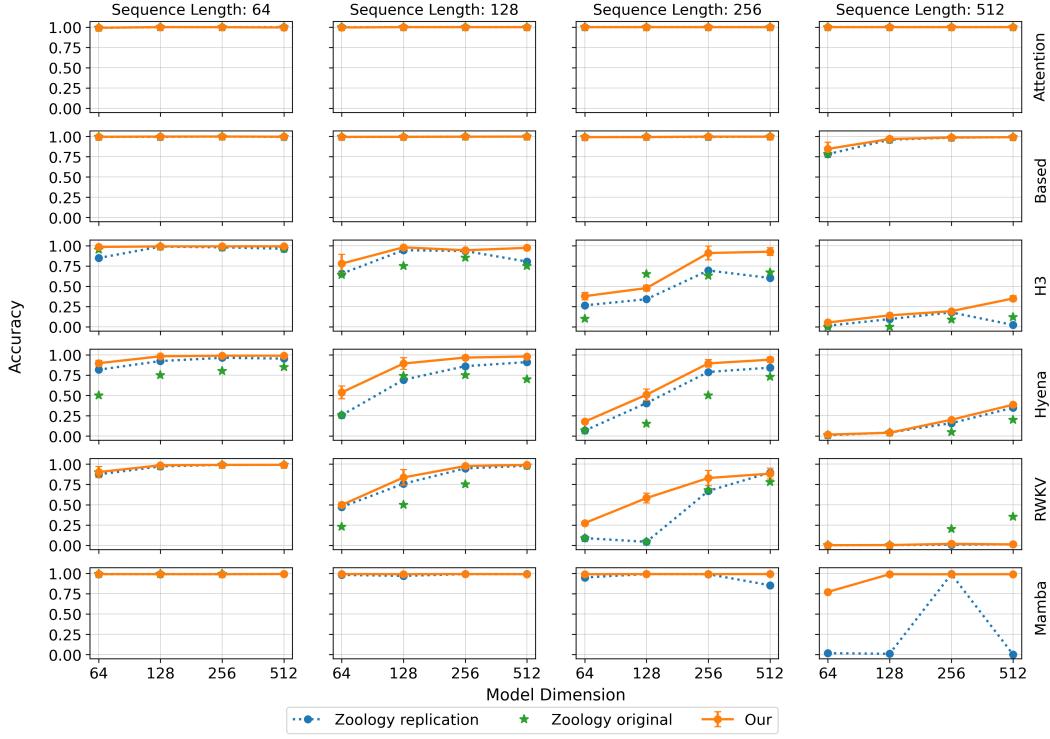


Figure 10: Performance of 2-layers models. We report the official results⁴ (green stars) and the replication running the original code of [Arora et al., 2023] (dotted blue line). While for replication, we used the learning rates grid by Arora et al. [2023], we note here that, due to high sensitivity to the learning rate (Fig. 1), tuning drastically affects performance. In solid orange, we provide results with a finer grid (cf. Fig. 1). Careful tuning of the learning rate gives a general improvement in the performance of recurrent models. This becomes especially crucial in Mamba, where the task becomes solvable at high sequence lengths $>>$ hidden size. The results show the mean and relative max-min errors for 3 seeds. Attention always solves the task (all curves overlap).

537 **NeurIPS Paper Checklist**

538 **1. Claims**

539 Question: Do the main claims made in the abstract and introduction accurately reflect the
 540 paper's contributions and scope?

541 Answer: [Yes]

542 Justification: The paper abstract and introduction reflect the paper contribution and scope
 543 regarding the performance and behaviour of Transformer and Recurrent models in Associ-
 544 ative Recall (In-context task)

545 Guidelines:

- 546 • The answer NA means that the abstract and introduction do not include the claims
 547 made in the paper.
- 548 • The abstract and/or introduction should clearly state the claims made, including the
 549 contributions made in the paper and important assumptions and limitations. A No or
 550 NA answer to this question will not be perceived well by the reviewers.
- 551 • The claims made should match theoretical and experimental results, and reflect how
 552 much the results can be expected to generalize to other settings.
- 553 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
 554 are not attained by the paper.

555 **2. Limitations**

556 Question: Does the paper discuss the limitations of the work performed by the authors?

557 Answer: [Yes]

558 Justification: Our limitations are in section 7

559 Guidelines:

- 560 • The answer NA means that the paper has no limitation while the answer No means that
561 the paper has limitations, but those are not discussed in the paper.
- 562 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 563 • The paper should point out any strong assumptions and how robust the results are to
564 violations of these assumptions (e.g., independence assumptions, noiseless settings,
565 model well-specification, asymptotic approximations only holding locally). The authors
566 should reflect on how these assumptions might be violated in practice and what the
567 implications would be.
- 568 • The authors should reflect on the scope of the claims made, e.g., if the approach was
569 only tested on a few datasets or with a few runs. In general, empirical results often
570 depend on implicit assumptions, which should be articulated.
- 571 • The authors should reflect on the factors that influence the performance of the approach.
572 For example, a facial recognition algorithm may perform poorly when image resolution
573 is low or images are taken in low lighting. Or a speech-to-text system might not be
574 used reliably to provide closed captions for online lectures because it fails to handle
575 technical jargon.
- 576 • The authors should discuss the computational efficiency of the proposed algorithms
577 and how they scale with dataset size.
- 578 • If applicable, the authors should discuss possible limitations of their approach to
579 address problems of privacy and fairness.
- 580 • While the authors might fear that complete honesty about limitations might be used by
581 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
582 limitations that aren't acknowledged in the paper. The authors should use their best
583 judgment and recognize that individual actions in favor of transparency play an impor-
584 tant role in developing norms that preserve the integrity of the community. Reviewers
585 will be specifically instructed to not penalize honesty concerning limitations.

586 3. Theory assumptions and proofs

587 Question: For each theoretical result, does the paper provide the full set of assumptions and
588 a complete (and correct) proof?

589 Answer: [NA]

590 Justification: The paper does not have any theoretical result

591 Guidelines:

- 592 • The answer NA means that the paper does not include theoretical results.
- 593 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
594 referenced.
- 595 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 596 • The proofs can either appear in the main paper or the supplemental material, but if
597 they appear in the supplemental material, the authors are encouraged to provide a short
598 proof sketch to provide intuition.
- 599 • Inversely, any informal proof provided in the core of the paper should be complemented
600 by formal proofs provided in appendix or supplemental material.
- 601 • Theorems and Lemmas that the proof relies upon should be properly referenced.

602 4. Experimental result reproducibility

603 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
604 perimental results of the paper to the extent that it affects the main claims and/or conclusions
605 of the paper (regardless of whether the code and data are provided or not)?

606 Answer: [Yes]

607 Justification: The paper fully disclose all the information needed to reproduce the main
608 results. Following the codebase of "Zoology: Measuring and Improving Recall in Efficient
609 Language Models" and reading our main contribuition is enough to reproduce our result and
610 verify our main claims.

611 Guidelines:

- 612 • The answer NA means that the paper does not include experiments.
- 613 • If the paper includes experiments, a No answer to this question will not be perceived
614 well by the reviewers: Making the paper reproducible is important, regardless of
615 whether the code and data are provided or not.
- 616 • If the contribution is a dataset and/or model, the authors should describe the steps taken
617 to make their results reproducible or verifiable.
- 618 • Depending on the contribution, reproducibility can be accomplished in various ways.
619 For example, if the contribution is a novel architecture, describing the architecture fully
620 might suffice, or if the contribution is a specific model and empirical evaluation, it may
621 be necessary to either make it possible for others to replicate the model with the same
622 dataset, or provide access to the model. In general, releasing code and data is often
623 one good way to accomplish this, but reproducibility can also be provided via detailed
624 instructions for how to replicate the results, access to a hosted model (e.g., in the case
625 of a large language model), releasing of a model checkpoint, or other means that are
626 appropriate to the research performed.
- 627 • While NeurIPS does not require releasing code, the conference does require all submis-
628 sions to provide some reasonable avenue for reproducibility, which may depend on the
629 nature of the contribution. For example
 - 630 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
631 to reproduce that algorithm.
 - 632 (b) If the contribution is primarily a new model architecture, the paper should describe
633 the architecture clearly and fully.
 - 634 (c) If the contribution is a new model (e.g., a large language model), then there should
635 either be a way to access this model for reproducing the results or a way to reproduce
636 the model (e.g., with an open-source dataset or instructions for how to construct
637 the dataset).
 - 638 (d) We recognize that reproducibility may be tricky in some cases, in which case
639 authors are welcome to describe the particular way they provide for reproducibility.
640 In the case of closed-source models, it may be that access to the model is limited in
641 some way (e.g., to registered users), but it should be possible for other researchers
642 to have some path to reproducing or verifying the results.

643 5. Open access to data and code

644 Question: Does the paper provide open access to the data and code, with sufficient instruc-
645 tions to faithfully reproduce the main experimental results, as described in supplemental
646 material?

647 Answer: **[No]**

648 Justification: Even thought the code of the paper is not explicitly present in our work, all our
649 experiments are based on the codebase of the paper "Zoology: Measuring and Improving
650 Recall in Efficient Language Models" which is publicly available and has all the relative
651 instructions for reproducibility.

652 Guidelines:

- 653 • The answer NA means that paper does not include experiments requiring code.
- 654 • Please see the NeurIPS code and data submission guidelines ([https://nips.cc/
655 public/guides/CodeSubmissionPolicy](https://nips.cc/public/guides/CodeSubmissionPolicy)) for more details.
- 656 • While we encourage the release of code and data, we understand that this might not be
657 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
658 including code, unless this is central to the contribution (e.g., for a new open-source
659 benchmark).
- 660 • The instructions should contain the exact command and environment needed to run to
661 reproduce the results. See the NeurIPS code and data submission guidelines ([https://nips.cc/
662 public/guides/CodeSubmissionPolicy](https://nips.cc/public/guides/CodeSubmissionPolicy)) for more details.

663 • The authors should provide instructions on data access and preparation, including how
 664 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 665 • The authors should provide scripts to reproduce all experimental results for the new
 666 proposed method and baselines. If only a subset of experiments are reproducible, they
 667 should state which ones are omitted from the script and why.
 668 • At submission time, to preserve anonymity, the authors should release anonymized
 669 versions (if applicable).
 670 • Providing as much information as possible in supplemental material (appended to the
 671 paper) is recommended, but including URLs to data and code is permitted.

672 **6. Experimental setting/details**

673 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
 674 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
 675 results?

676 Answer: [\[Yes\]](#)

677 Justification: The paper appendix [A.2](#) specify all the training details used in all experiments.
 678 In addition to that, our paper is based on the codebase release by the paper "Zoology:
 679 Measuring and Improving Recall in Efficient Language Models", so all the details can also
 680 be found in that.

681 Guidelines:

682 • The answer NA means that the paper does not include experiments.
 683 • The experimental setting should be presented in the core of the paper to a level of detail
 684 that is necessary to appreciate the results and make sense of them.
 685 • The full details can be provided either with the code, in appendix, or as supplemental
 686 material.

687 **7. Experiment statistical significance**

688 Question: Does the paper report error bars suitably and correctly defined or other appropriate
 689 information about the statistical significance of the experiments?

690 Answer: [\[Yes\]](#)

691 Justification: All the experiments presented were replicated multiple time with different
 692 seed to ensure statistical meaningfulness. Results reports relative max-min errors. In our
 693 specific experiments however, what is important is not the specif value of the performance,
 694 but rather noticing if the models can (or cannot) solve the task.

695 Guidelines:

696 • The answer NA means that the paper does not include experiments.
 697 • The authors should answer "Yes" if the results are accompanied by error bars, confi-
 698 dence intervals, or statistical significance tests, at least for the experiments that support
 699 the main claims of the paper.
 700 • The factors of variability that the error bars are capturing should be clearly stated (for
 701 example, train/test split, initialization, random drawing of some parameter, or overall
 702 run with given experimental conditions).
 703 • The method for calculating the error bars should be explained (closed form formula,
 704 call to a library function, bootstrap, etc.)
 705 • The assumptions made should be given (e.g., Normally distributed errors).
 706 • It should be clear whether the error bar is the standard deviation or the standard error
 707 of the mean.
 708 • It is OK to report 1-sigma error bars, but one should state it. The authors should
 709 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
 710 of Normality of errors is not verified.
 711 • For asymmetric distributions, the authors should be careful not to show in tables or
 712 figures symmetric error bars that would yield results that are out of range (e.g. negative
 713 error rates).
 714 • If error bars are reported in tables or plots, The authors should explain in the text how
 715 they were calculated and reference the corresponding figures or tables in the text.

716 8. **Experiments compute resources**

717 Question: For each experiment, does the paper provide sufficient information on the com-
718 puter resources (type of compute workers, memory, time of execution) needed to reproduce
719 the experiments?

720 Answer: [\[Yes\]](#)

721 Justification: All the specification of experiments are in the Appendix [A.2](#). There are
722 specification on the compute used and how long most of the experiments last.

723 Guidelines:

- 724 • The answer NA means that the paper does not include experiments.
- 725 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
726 or cloud provider, including relevant memory and storage.
- 727 • The paper should provide the amount of compute required for each of the individual
728 experimental runs as well as estimate the total compute.
- 729 • The paper should disclose whether the full research project required more compute
730 than the experiments reported in the paper (e.g., preliminary or failed experiments that
731 didn't make it into the paper).

732 9. **Code of ethics**

733 Question: Does the research conducted in the paper conform, in every respect, with the
734 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

735 Answer: [\[Yes\]](#)

736 Justification: The paper respects the NeurIPS Code of Ethics

737 Guidelines:

- 738 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- 739 • If the authors answer No, they should explain the special circumstances that require a
740 deviation from the Code of Ethics.
- 741 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
742 eration due to laws or regulations in their jurisdiction).

743 10. **Broader impacts**

744 Question: Does the paper discuss both potential positive societal impacts and negative
745 societal impacts of the work performed?

746 Answer: [\[NA\]](#)

747 Justification: The paper does not have any direct positive or negative societal impacts. The
748 paper focuses on comparisons between existing models capabilities and how to properly
749 leverage their specific characteristics. Perhaps, the only impact might come from the
750 downstream application of such models.

751 Guidelines:

- 752 • The answer NA means that there is no societal impact of the work performed.
- 753 • If the authors answer NA or No, they should explain why their work has no societal
754 impact or why the paper does not address societal impact.
- 755 • Examples of negative societal impacts include potential malicious or unintended uses
756 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
757 (e.g., deployment of technologies that could make decisions that unfairly impact specific
758 groups), privacy considerations, and security considerations.
- 759 • The conference expects that many papers will be foundational research and not tied
760 to particular applications, let alone deployments. However, if there is a direct path to
761 any negative applications, the authors should point it out. For example, it is legitimate
762 to point out that an improvement in the quality of generative models could be used to
763 generate deepfakes for disinformation. On the other hand, it is not needed to point out
764 that a generic algorithm for optimizing neural networks could enable people to train
765 models that generate Deepfakes faster.

766 • The authors should consider possible harms that could arise when the technology is
767 being used as intended and functioning correctly, harms that could arise when the
768 technology is being used as intended but gives incorrect results, and harms following
769 from (intentional or unintentional) misuse of the technology.
770 • If there are negative societal impacts, the authors could also discuss possible mitigation
771 strategies (e.g., gated release of models, providing defenses in addition to attacks,
772 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
773 feedback over time, improving the efficiency and accessibility of ML).

774 **11. Safeguards**

775 Question: Does the paper describe safeguards that have been put in place for responsible
776 release of data or models that have a high risk for misuse (e.g., pretrained language models,
777 image generators, or scraped datasets)?

778 Answer: [NA]

779 Justification: The paper does not use any data or model with high risk for misuse

780 Guidelines:

781 • The answer NA means that the paper poses no such risks.
782 • Released models that have a high risk for misuse or dual-use should be released with
783 necessary safeguards to allow for controlled use of the model, for example by requiring
784 that users adhere to usage guidelines or restrictions to access the model or implementing
785 safety filters.
786 • Datasets that have been scraped from the Internet could pose safety risks. The authors
787 should describe how they avoided releasing unsafe images.
788 • We recognize that providing effective safeguards is challenging, and many papers do
789 not require this, but we encourage authors to take this into account and make a best
790 faith effort.

791 **12. Licenses for existing assets**

792 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
793 the paper, properly credited and are the license and terms of use explicitly mentioned and
794 properly respected?

795 Answer: [Yes]

796 Justification: The main results of the paper use the codebase of the paper "Zoology: Measur-
797 ing and Improving Recall in Efficient Language Models" which is credited multiple times.
798 The code is open source for research purpose

799 Guidelines:

800 • The answer NA means that the paper does not use existing assets.
801 • The authors should cite the original paper that produced the code package or dataset.
802 • The authors should state which version of the asset is used and, if possible, include a
803 URL.
804 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
805 • For scraped data from a particular source (e.g., website), the copyright and terms of
806 service of that source should be provided.
807 • If assets are released, the license, copyright information, and terms of use in the
808 package should be provided. For popular datasets, paperswithcode.com/datasets
809 has curated licenses for some datasets. Their licensing guide can help determine the
810 license of a dataset.
811 • For existing datasets that are re-packaged, both the original license and the license of
812 the derived asset (if it has changed) should be provided.
813 • If this information is not available online, the authors are encouraged to reach out to
814 the asset's creators.

815 **13. New assets**

816 Question: Are new assets introduced in the paper well documented and is the documentation
817 provided alongside the assets?

818 Answer: [No]

819 Justification: No new assets are introduced in this paper

820 Guidelines:

821 • The answer NA means that the paper does not release new assets.

822 • Researchers should communicate the details of the dataset/code/model as part of their

823 submissions via structured templates. This includes details about training, license,

824 limitations, etc.

825 • The paper should discuss whether and how consent was obtained from people whose

826 asset is used.

827 • At submission time, remember to anonymize your assets (if applicable). You can either

828 create an anonymized URL or include an anonymized zip file.

829 **14. Crowdsourcing and research with human subjects**

830 Question: For crowdsourcing experiments and research with human subjects, does the paper

831 include the full text of instructions given to participants and screenshots, if applicable, as

832 well as details about compensation (if any)?

833 Answer: [NA]

834 Justification: In this paper there were no human experiments.

835 Guidelines:

836 • The answer NA means that the paper does not involve crowdsourcing nor research with

837 human subjects.

838 • Including this information in the supplemental material is fine, but if the main contribu-

839 tion of the paper involves human subjects, then as much detail as possible should be

840 included in the main paper.

841 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

842 or other labor should be paid at least the minimum wage in the country of the data

843 collector.

844 **15. Institutional review board (IRB) approvals or equivalent for research with human**

845 **subjects**

846 Question: Does the paper describe potential risks incurred by study participants, whether

847 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)

848 approvals (or an equivalent approval/review based on the requirements of your country or

849 institution) were obtained?

850 Answer: [NA]

851 Justification: In this paper there were no human experiments.

852 Guidelines:

853 • The answer NA means that the paper does not involve crowdsourcing nor research with

854 human subjects.

855 • Depending on the country in which research is conducted, IRB approval (or equivalent)

856 may be required for any human subjects research. If you obtained IRB approval, you

857 should clearly state this in the paper.

858 • We recognize that the procedures for this may vary significantly between institutions

859 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the

860 guidelines for their institution.

861 • For initial submissions, do not include any information that would break anonymity (if

862 applicable), such as the institution conducting the review.

863 **16. Declaration of LLM usage**

864 Question: Does the paper describe the usage of LLMs if it is an important, original, or

865 non-standard component of the core methods in this research? Note that if the LLM is used

866 only for writing, editing, or formatting purposes and does not impact the core methodology,

867 scientific rigorosity, or originality of the research, declaration is not required.

868 Answer: [No]

869 Justification: LLMs were used just to edit typos and grammar of part of the text in the
870 paper.

871 Guidelines:

872 • The answer NA means that the core method development in this research does not
873 involve LLMs as any important, original, or non-standard components.

874 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
875 for what should or should not be described.