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Abstract

Language agents have shown promising adapt-001
ability in dynamic environments to perform002
complex tasks. However, despite the versatile003
knowledge embedded in large language mod-004
els, these agents still fall short when it comes to005
tasks that require planning. We introduce STEP,006
a novel framework designed to efficiently learn007
from previous experiences to enhance the plan-008
ning capabilities of language agents in future009
steps. Concretely, STEP functions through four010
interconnected components. First, the Planner011
takes on the task, breaks it down into subtasks012
and provides relevant insights. Then the Execu-013
tor generates action candidates, while the Eval-014
uator ensures the actions align with learned015
rules from previous experiences. Lastly, Mem-016
ory stores experiences to inform future deci-017
sions. In the ScienceWorld (Wang et al., 2022)018
benchmark, our results show that STEP con-019
sistently outperforms state-of-the-art models,020
achieving an overall score of 67.4 and success-021
fully completing 12 out of 18 tasks. These find-022
ings highlight STEP’s potential as a framework023
for enhancing planning capabilities in language024
agents, paving the way for more sophisticated025
task-solving in dynamic environments. 1026

“You don’t have to see the whole staircase, just027

take the first step.” – Martin Luther King Jr.028

1 Introduction029

Autonomous agents that incorporate Large Lan-030

guage Models (LLMs) as integral cognitive sys-031

tems (Sumers et al., 2023) have demonstrated sig-032

nificant capabilities in addressing a diverse range033

of interactive tasks e.g., mathematical problems034

(Cobbe et al., 2021; Hendrycks et al., 2021), pro-035

gramming challenges (Zhuo et al., 2024; Jimenez036

et al., 2024), and logical reasoning (Tafjord et al.,037

2021; Saparov and He, 2023). Nonetheless, their038

1Our code and data will be available with publications.

performance tends to diminish in dynamic scenar- 039

ios, such as Web navigation (Zhou et al., 2024b; 040

Yao et al., 2023a) and Open-ended environments 041

(Wang et al., 2022; Shridhar et al., 2021), which 042

require robust reasoning capabilities of the agents. 043

A key contributing factor to language agents’ 044

efficiency in long tasks is the notion of memory 045

(Sumers et al., 2023). The recent approaches (Ma- 046

jumder et al., 2023; Zhao et al., 2023a) guided the 047

agent to store reflections on their experience of 048

solving a task (Shinn et al., 2023) in memory, and 049

then to retrieve these to improve future attempts 050

(Yao et al., 2023c). The use of verbal refinements 051

rather than updating model parameters, these tech- 052

niques are more flexible than conventional Rein- 053

forcement Learning (RL) methods. However, this 054

memory module often lacks a retrieval mechanism. 055

Additionally, complex tasks that cannot be solved 056

in a single attempt also require effective planning 057

and goal decomposition mechanisms (we will ex- 058

plain this in more detail later in this paper). 059

In this paper, we take a close look at the memory 060

utilization and planning capabilities of the language 061

agent. More concretely, we propose STEP - a novel 062

framework for Stepwise Planning which consists 063

of a Planner, an Executor, and an Evaluator. Upon 064

receiving a task from the environment, the Plan- 065

ner decomposes it into manageable subtasks and 066

retrieves relevant information from the Memory. 067

After receiving messages, the Executor then gen- 068

erates action candidates, which are subsequently 069

evaluated by the Evaluator (Madaan et al., 2023). 070

Once an action is approved and sent back to the 071

environment, the agent receives an observation and 072

determines whether the subtask requires refinement. 073

After completing an episode, the agent generates 074

learning insights (Majumder et al., 2023), which 075

are stored in the Memory for future attempts. A 076

key aspect is that the Planner not only breaks down 077

tasks but also dynamically distils relevant insights 078

from previous attempts to enhance the current task 079
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trace. This iterative process maximizes the effi-080

ciency of the memory system, ensuring continuous081

learning and adaptation.082

We evaluate STEP within ScienceWorld (Wang083

et al., 2022) - a dynamic, text-based environment084

designed to simulate complex scientific tasks. Our085

results demonstrate that STEP consistently outper-086

forms state-of-the-art (SOTA) models, achieving087

an overall score of 67.4. The model successfully088

completes 12 out of 18 tasks, ranking first in 11089

tasks.090

2 Planning with Language Agents091

Language agents are designed to interpret and ex-092

ecute tasks through natural language interaction093

(Sumers et al., 2023). A critical aspect of their094

functionality is planning, which involves decom-095

posing complex tasks into manageable subtasks,096

executing actions iteratively, and refining strategies097

based on feedback. This structured approach is098

essential for achieving accuracy, leveraging prior099

experience, and adapting to complex environments.100

However, language agents encounter significant101

limitations in logical reasoning, a fundamental re-102

quirement for effective planning (Liu et al., 2023b;103

Wan et al., 2024). These agents are inherently prob-104

abilistic systems designed to predict text sequences105

rather than execute formal logic or computation.106

Their autoregressive nature, which generates out-107

puts token-by-token based on prior context, further108

constrains their ability to prioritize logical valid-109

ity over coherence (Arkoudas, 2023). As a result,110

they exhibit difficulties in handling tasks that de-111

mand precise reasoning and planning, particularly112

in out-of-distribution or computationally complex113

situations.114

For a broader background please see Ap-115

pendix A. Here we provide a brief overview of116

existing works on planning with language agents.117

Recent research has explored the use of LLMs as118

planners in various approaches.119

LLM+P (Liu et al., 2023a) and LLM-DP (Dagan120

et al., 2023) utilize LLMs to translate natural lan-121

guage descriptions into the Planning Domain Defi-122

nition Language (PDDL), enabling classical plan-123

ners to derive solutions. While symbolic reason-124

ing guarantees finding optimal solutions, it often125

requires significant human effort for language con-126

version (Huang et al., 2024), and the assumption of127

perfect observation of all object states may not hold128

in dynamic environments. Given the numerous tra-129

Figure 1: Planning methods. (LEFT) plan-from-the-
start. (RIGHT) plan-on-the-go.

jectories available to achieve a goal, work on ex- 130

panding multi-plans in tree structures has been ex- 131

plored. Tree of Thoughts (ToT) (Yao et al., 2023b), 132

which employs conventional BFS/DFS for opti- 133

mal pathfinding, RAP (Hao et al., 2023) and LLM- 134

MCTS (Zhao et al., 2023b) leverage the Monte 135

Carlo Tree Search (MCTS) algorithm for search- 136

ing. However, these methods are computationally 137

exhaustive, and using LLMs as a world model to 138

evaluate plans becomes impractical, particularly in 139

complex, open-ended environments. 140

SOTAs in LLM suggest a different planning 141

method, where instead of tuning the model’s pa- 142

rameters (Schuster et al., 2022; Lin et al., 2023), 143

adjusting the prompts proves advantageous. Two 144

primary schools of thought in planning are “plan- 145

from-the-start” and “plan-on-the-go” (see Figure 146

1). A representative of the former, Plan-and-Solve 147

(Wang et al., 2023b), builds on Zero-shot Chain 148

of Thought (CoT) (Kojima et al., 2023) by transi- 149

tioning from “Let’s think step-by-step” to “Let’s 150

first make a plan” and “Let’s carry out the plan”. 151

While this pre-planning strategy offers a straight- 152

forward approach of solving task (Shen et al., 2023; 153

Singh et al., 2022), it heavily relies on accurate de- 154

composition problems into simpler subproblems at 155

once (Zhou et al., 2023). Moreover, predefining a 156

plan before interacting with the environment can 157

result in unrealistic subtasks, requiring adjustments 158

during deployment. 159

In contrast, “plan-on-the-go” methods perform 160

better in dynamic environments, where subtasks are 161

revealed one by one during the deploying process. 162

This approach allows agents to improve through 163
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Figure 2: The architecture of STEP. (1) Planner receives the task and generates achievable subtasks and relevant
insights, (2) Executor creates action candidates based on the generated subtasks and insights, (3) Evaluator assesses
these action candidates for their alignment, and (4) Memory stores the experience for future use.

feedback-driven retries, without external supervi-164

sion. ReAct (Yao et al., 2023c) interleaves actions165

and thoughts for robust planning, while Reflexion166

(Shinn et al., 2023) adds a verbal reflection after167

each attempt, showing the self-learning capability168

of language agents. Building on this, the CLIN169

(Majumder et al., 2023) model introduces a new170

type of insight called causal abstractions, which171

determine whether “X is necessary for Y”. At each172

step, the agent accesses a lengthy memory log to173

determine its next action. While experiments show174

good adaptability, accessing the entire memory at175

once may cause the agent to incorrectly prioritize176

subtasks and risk confusion or overlook key in-177

sights. This lack of a transfer learning mechanism178

(Zhao et al., 2023a) limits its ability to fully lever-179

age learning across different tasks or environments.180

Building on the CLIN model, we introduce STEP181

which can maintain task order while leveraging dis-182

tilled in-context insights from memory, ensuring183

more accuracy in task execution.184

The question of whether language agents can185

serve as effective planners remains a prominent186

topic in the Generative AI field. Despite the notable187

advancements in language agents, Kambhampati188

et al. (2024) argue that LLMs cannot independently189

perform planning tasks. Their auto-regressive na-190

ture limits LLMs from generating fully executable191

plans or conducting self-verification, which is es-192

sential for reasoning and planning. Instead, the au-193

thors propose the LLM-Modulo framework, where 194

LLMs contribute by generating candidate plans, 195

while external verifiers refine and validate these 196

plans for accuracy. We agree with this perspective, 197

acknowledging that language agents cannot act as 198

autonomous planners. However, they can serve as 199

stepwise planners, iteratively learning through trial 200

and error. By adapting based on feedback from the 201

external environment, language agents can refine 202

their decision-making process and improve over 203

time, enhancing their planning capabilities within 204

a controlled framework. 205

3 Stepwise Planning Language Agent 206

We evaluate our model in simulated text-based en- 207

vironments, represented as a partially observable 208

Markov decision process (POMDP). The agents are 209

required to perform sequential actions to accom- 210

plish a specific task M . Our setup allows an agent 211

to attempt a task multiple times, ranging from 1 212

to K. Each attempt k consists of multiple trials 213

(i.e. episodes), and each trial T comprises a total 214

of t steps. At each step, after issuing an action, the 215

agent receives feedback on environmental changes 216

through observations o and rewards r, indicating 217

its performance. After each trial, we enable the 218

agent to make a reflection, generating and storing 219

learning insights in memory for future trials. Dur- 220

ing the deployment process, STEP consists of three 221

components: Planner, Executor, and Evaluator. At 222
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Algorithm 1 Planning with STEP
1: Task: M , Memory: S, St
2: for k ∈ 1, · · · ,K do
3: Initialize Trial T , t. s′ = rule(Sk−1)
4: while t < max. total steps or task not complete do
5: if done then
6: m, s = Planner(M,St, Sk−1, a<t, o<t, q)
7: q.append(m)
8: else
9: m, s = Planner(M,St,m, Sk−1, a<t, o<t)

10: end if
11: t0 = t
12: while t < max. sub steps + t0 or not done do
13: gt, at = Executor(m, s, a<t, o<t, f)
14: f, done = Evaluator(m, s′, a≤t, o<t)
15: if not f then
16: rt, ot = Simulator(T<t, at)
17: T<t+1 = T<t + (rt, at, ot, gt)
18: end if
19: end while
20: end while
21: Final reward rk = rt
22: Sk, St = Memory-Generator(S<k, St, Tk, rk)
23: end for

the end of each trial, STEP updates its Memory to223

facilitate continued learning (See Figure 2).224

Planner is the strategic component of the frame-225

work, responsible for breaking down the current226

task into manageable subtasks, leveraging a frozen227

LLM (a model with fixed parameters) to assist in228

generating the next steps (Algorithm 1. lines 5-10).229

At step t, the Planner receives the main task M , the230

suggested strategy St from the past, and the history231

of the current trial (a sequence of actions and ob-232

servations: {a1, o1, a2, o2, . . . , at, ot}). Based on233

the status of the previous subtask m, the Planner234

either refines it or derives a new subtask with the235

list of successful subtasks q to advance the agent236

toward the main task. Additionally, the Planner237

also retrieves relevant insights s from the learning238

summary of the previous attempt Sk−1, which pre-239

vents agent access to irrelevant information and240

focusing on the subtask itself (Zhao et al., 2023a).241

Executor is the language agent’s implementer,242

tasked with generating appropriate actions to exe-243

cute the objectives set by the Planner (Algorithm 1.244

line 13). Following the ReAct concept, the Execu-245

tor is required to derive the next rationale gt and246

action at given the current subtask m and relevant247

insight s from the Planner. Another modification248

from the CLIN model is that while the Executor249

is still provided with the sequence of actions and250

observations, it no longer receives the rationales251

of previous actions. This is because, at different252

steps, the Executor may have a different subtask m, 253

leading to a different motivation for actions. This 254

setup enhances the module’s purpose in task per- 255

formance, while the Planner is the sole component 256

managing the overall task flow, the Executor has 257

access only to its current subtask. Thus, within 258

the Executor, subtasks are converted into concrete 259

actions that can interact with the environment. 260

Evaluator serves as a quality control mecha- 261

nism, assessing the action generated by the Execu- 262

tor before they are executed in the environment 263

(Algorithm 1. lines 12-19). While it has been 264

argued that relying solely on internal knowledge 265

for refinement may reduce the performance of lan- 266

guage agents (Kambhampati et al., 2024; Gou et al., 267

2024a; Valmeekam et al., 2023), our Evaluator 268

does not select the best action candidate based on 269

its own judgment (Madaan et al., 2023). Instead of 270

evaluating the alignment between the action can- 271

didate and the task, it focuses on how well the 272

action aligns with the rules s′ (e.g. “X does NOT 273

contribute to Y”) from Sk−1. While the dynamic 274

nature of the environment makes it nearly impos- 275

sible to construct a world model upfront in “plan- 276

from-the-start” approaches, the “plan-on-the-go” 277

strategy takes advantage of this flexibility. After 278

exploring the environment, the Executor resembles 279

as simplified world model, which assesses the ac- 280

tion candidates. Based on these assessments, the 281

Evaluator either sends a feedback f to the Execu- 282

tor for refinement or approves it for execution. It 283

also monitors the completion status of subtasks, is- 284

suing refinement requests when necessary to avoid 285

exhaustive exploration. 286

Finally, Memory serves as a critical component 287

in ensuring the agent’s continual learning process 288

(Gou et al., 2024b; Shinn et al., 2023; Zhou et al., 289

2024a) (Algorithm 1. line 22). The Memory is 290

structured into two primary components: the list 291

of insights Sk (which is inherited from CLIN) and 292

the suggested strategy St. At the end of each trial 293

k, the agent reflects on its performance Tk based 294

on final reward rk, generates new strategy St, and 295

updates Sk from previous trials S<k. The notion of 296

insights is well-established in recent research and 297

can encompass pairs of actions and observations 298

(Schuster et al., 2022), causal verbal reflections 299

(Shinn et al., 2023), or human feedback (Ouyang 300

et al., 2022). In this work, we adopt the causal ab- 301

straction framework proposed by Majumder et al. 302

(2023), which evaluates how action X influences 303

action Y . This relationship can yield useful in- 304
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sights, such as “X is necessary for Y ,” or identify305

errors, such as “X may not contribute to Y .”306

Although these insights are valuable for guid-307

ing the agent’s execution process, a large informa-308

tion may impair retrieval performance, leading the309

agent to deviate from the intended task sequence.310

To mitigate this issue and maintain system effi-311

ciency, the Planner is provided with a suggested312

strategy St from the most recent trial, enabling it to313

accurately determine the next subtask and forward314

relevant insights to the Executor.315

4 Experiments316

4.1 Experimental Setup317

Task Environment. To assess STEP, we chose318

ScienceWorld (Wang et al., 2022) 2, a text-based319

interactive environment that simulates elementary320

science tasks across 10 interconnected locations, in-321

cluding settings like a living room, workshop, and322

art studio. The environment features 200 object323

types, such as devices, substances, plants, and ani-324

mals, and allows for 25 high-level actions (see Ap-325

pendix B for details on action space). When com-326

bined with objects, this results in approximately327

200,000 possible action-object combinations per328

step. The environment is dynamically populated329

with various object arrangements to prevent memo-330

rization and promote adaptability. Agents are chal-331

lenged to perform scientifically reasoned actions,332

such as testing electrical conductivity or observing333

biological life stages. Tasks in ScienceWorld vary334

in complexity, with short tasks requiring fewer than335

37 steps to complete, while longer tasks require336

more than 37 steps.337

Evaluation Protocol. Agents are evaluated based338

on their ability to complete tasks, with positive339

scores ranging from 0 to 100. Each task is di-340

vided into required steps and optional sub-goals341

that guide the agent toward the final objective. Per-342

formance is primarily measured by how well the343

agent completes these goals, often requiring it to344

“focus on” the correct object to progress. Critical345

mistakes, such as focusing on unapproved objects,346

result in a penalty of -100 and cause the task to347

reset. In the failure event, the highest positive score348

achieved before the mistake is recorded to reflect349

the agent’s progress. Otherwise, the final score of350

each runtime is used, whether the agent success-351

fully completes the task or reaches the maximum352

2https://sciworld.apps.allenai.org/explore

Figure 3: Performance example of STEP in Long and
Short Tasks.

step limit per task. 353

Baselines agents. In addition to the baseline 354

methods evaluated in the ScienceWorld paper, 355

which included three RL agents - DRRN (He et al., 356

2016), KGA2C (Ammanabrolu and Hausknecht, 357

2020), and CALM (Schuster et al., 2022) - as well 358

as experiments derived by Lin et al. (2023) in- 359

volving three generative language agents - SayCan 360

(Ahn et al., 2022), ReAct (Yao et al., 2023c), and 361

Reflexion (Shinn et al., 2023) - we also incorporate 362

the CLIN ADAPT version (Majumder et al., 2023). 363

For further details, please refer to Appendix A. 364

Configurations. We use gpt-4o-mini as the 365

base language model for running both CLIN and 366

STEP. Tasks include 9 short tasks (denoted as S) 367

and 9 long tasks (denoted as L). For short tasks, 368

the maximum step limit is set to 37, while for long 369

tasks it is 70. Each task run consists of 5 episodes, 370

where the first episode represents the agent having 371

no prior knowledge of the environment, and the 372

final episode occurs after the agent has learned and 373

updated its memory to adapt to the task. The high- 374

est score achieved across these episodes is taken as 375

the score for the current runtime. 376

4.2 Main Results 377

Figure 3 presents the model’s performance for a 378

short task Temp1 and a long task Boil. The solid 379

lines represent average rewards while the shaded 380

areas capture the variability in performance. Inher- 381

ited from CLIN, STEP demonstrates strong perfor- 382

mance. For the short task, the model shows rapid 383

improvement, reaching an average reward close 384

to 60 within approximately 30 steps, with a no- 385

ticeable reduction in variability. In contrast, the 386

long task presents slower improvement, with the 387

model’s average reward gradually increasing and 388
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RL Agents Generative Language Agents

Task Type DRRN KGA2C CALM SayCan ReAct Reflexion CLIN* STEP

Temp1 S 6.6 6.0 1.0 26.4 7.2 5.9 9.0 63.0
Temp2 S 5.5 11.0 1.0 8.0 6.1 28.6 83.3 62.7
Pick&Place1 S 15.0 18.0 10.0 22.9 26.7 64.9 100.0 100.0
Pick&Place2 S 21.7 16.0 10.0 20.9 53.3 16.4 69.3 100.0
Chemistry1 S 15.8 17.0 3.0 47.8 51.0 70.4 55.3 61.0
Chemistry2 S 26.7 19.0 6.0 39.3 58.9 70.7 100.0 100.0
Lifespan1 S 50.0 43.0 6.0 80.0 60.0 100.0 100.0 100.0
Lifespan2 S 50.0 32.0 10.0 67.5 67.5 84.4 100.0 100.0
Biology1 S 8.0 10.0 0.0 16.0 8.0 8.0 28.0 32.2
Boil L 3.5 0.0 0.0 33.1 3.5 4.2 4.0 21.5
Freeze L 0.0 4.0 0.0 3.9 7.8 7.8 32.3 50.9
GrowPlant L 8.0 6.0 2.0 9.9 9.1 7.3 30.3 71.5
GrowFruit L 14.3 11.0 4.0 13.9 18.6 13.0 19.3 14.0
Biology2 L 21.0 5.0 4.0 20.9 27.7 2.6 59.3 46.5
Force L 10.0 4.0 0.0 21.9 40.5 50.6 73.3 80.0
Friction L 10.0 4.0 3.0 32.3 44.0 100.0 56.7 73.3
Genetics1 L 16.8 11.0 2.0 67.5 25.7 50.9 69.8 84.2
Genetics2 L 17.0 11.0 2.0 59.5 16.8 23.7 39.0 51.8

S 22.1 19.1 5.2 36.5 37.6 49.9 71.7 79.9
L 11.2 6.2 1.9 29.2 21.5 29.2 42.7 54.9
All 16.7 12.7 3.6 32.9 29.6 39.4 57.2 67.4

Table 1: Comparison of STEP with baselines in ScienceWorld environment. *We use the same backbone LLM,
gpt-4o-mini, for both CLIN and STEP experiments for fairness. Type S and L denote short and long tasks,
respectively.

peaking around 20 after 50 steps, showing higher389

variability throughout. This suggests that the model390

adapts more efficiently and stably in the short task391

while facing greater difficulty and inconsistency in392

the longer task. See Appendix C for a sample from393

STEP task solving.394

Next, we will compare STEP with other state-395

of-the-art (SOTA) agents, as shown in Figure 6 of396

Appendix A. In particular, we will conduct further397

experiments to compare it with CLIN, the prede-398

cessor of STEP, to evaluate performance improve-399

ments.400

4.2.1 STEP outperform SOTA Agents401

Table 1 compares the performance of various402

agents across 18 tasks in the ScienceWorld envi-403

ronment. The results highlight the superior perfor-404

mance of LLM-based methods (Generative Lan-405

guage Agents) over conventional RL agents due406

to their advanced generalization abilities, though407

they come with higher deployment costs. Among408

the RL agents, DRRN achieves the highest overall409

score of 16.7, which is still significantly lower than410

the scores of all the generative language agents,411

with the lowest among them being ReAct at 29.6.412

Reflexion demonstrates a strong capability by uti-413

lizing episodic memory to retain learning insights414

across trials, showing more than a 10-point im- 415

provement over SayCan and ReAct in short tasks. 416

Building upon Reflexion’s memory-based advan- 417

tages, CLIN benefits from causal abstraction in- 418

sights, which significantly boosts its performance 419

to a 57.2 overall score, demonstrating its effective- 420

ness in both task types. 421

Notably, STEP consistently outperforms all 422

SOTA models across both short and long tasks, 423

achieving 67.4 points overall. In short tasks, STEP 424

achieves an impressive 79.9, representing an 11.4% 425

increase over its predecessor. In long tasks, STEP 426

further demonstrates its ability to handle more com- 427

plex challenges, with a score of 54.9, marking a 428

28.6% improvement over CLIN. Analyzing indi- 429

vidual tasks, STEP ranks first in 11 out of 18 tasks, 430

clearly showcasing its dominant performance. For 431

example, in the short task Temp1, STEP signifi- 432

cantly boosts the second highest score from Say- 433

Can’s 26.4 to an impressive 63.0. In the long task 434

GrowPlant, it doubles the score of 30.3 in CLIN to 435

71.5. This substantial leap in performance across 436

individual tasks emphasizes STEP’s capacity to 437

generalize well and adapt to a wide range of envi- 438

ronments. 439
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Figure 4: Task performance comparison between STEP and CLIN.

4.2.2 STEP outperforms CLIN in continual440

learning441

Next, we compare the performance between STEP442

and CLIN across all tasks (see Figure 4), reporting443

the best traces while excluding false-positive cases444

where the agent unintentionally “cheats” the task445

(e.g. in the Friction task, the agent might randomly446

focus on an inclined plane and complete the task447

by chance, without adhering to the intended ex-448

perimental procedure). In short tasks, both CLIN449

and STEP exhibit strong performance, as indicated450

by the prominent yellow regions for tasks such as451

Pick&Place, Chemistry and Lifespan. However, a452

key difference arises in Temp1, where CLIN strug-453

gles, achieving only 10 points overall. In contrast,454

STEP shows a gradual progression, steadily achiev-455

ing subgoals and eventually reaching nearly 90456

points. This demonstrates STEP’s capability to457

break down tasks and make incremental progress,458

where CLIN appears to fall short.459

The performance gap widens further in long460

tasks, where STEP consistently outperforms CLIN.461

CLIN shows difficulties in tasks such as Boil,462

Freeze, and GrowPlant, marked by darker shades463

in the heatmap, indicating poorer performance.464

STEP, on the other hand, demonstrates significant465

improvements in these complex tasks, with more466

yellow regions, suggesting higher scores and bet-467

ter task completion. A potential explanation for468

this distinction is that CLIN completes all tasks469

within 30 steps, as shown by the cutoff in its470

heatmap, suggesting faster but possibly incomplete471

learning. Conversely, STEP continues learning be-472

yond that, which allows it to achieve superior over- 473

all performance and higher scores, particularly in 474

tasks where CLIN has plateaued. For example, in 475

Freeze, while CLIN initially learns quickly, achiev- 476

ing around 80 points within the first 14 steps, it 477

subsequently halts progress or becomes stuck in a 478

loop. In contrast, after experiencing stagnation up 479

to 15 steps without any improvement, STEP rapidly 480

peaks at the 27th and successfully completes the 481

task at the 36th step. This suggests that STEP has a 482

greater capacity for long-term learning and task im- 483

provement, particularly in more complex scenarios, 484

where CLIN’s performance tends to stall. 485

STEP w/o Planner
Task ∆avg score (↓) %succ. rate (↓)

S 10.9 11.1
L 11.0 22.2

All 10.9 16.7

Table 2: Average performance reduction without the
Planner on short (S), long (L), and combined (All) tasks.

4.2.3 The importance of Planner 486

Ablation experiment. To evaluate the necessity 487

of the Planner component, we conducted ablation 488

experiments on STEP by removing the Planner and 489

retaining only the Executor, Evaluator, and Mem- 490

ory modules (see Figure 2). In this configuration, 491

the Executor directly receives tasks from the envi- 492

ronment and retrieves information from Memory 493

without any distillation or task refinement. More- 494

over, the absence of the Planner eliminates the 495

7



(a) (b)

Figure 5: (a) Comparison of STEP, STEP w/o Planner and CLIN in Temp1. (b) Planner and Executor interaction.

refinement of subtasks that are typically performed496

by the Evaluator.497

As presented in Table 2, the results demonstrate498

a significant drop in performance. Specifically, the499

removal of the Planner leads to a reduction in the500

average score by 10.9 points in short tasks and 11.0501

points in long tasks. Furthermore, the success rate502

decreases by 11.1% for short tasks and 22.2% for503

long tasks, culminating in an overall decline of504

10.9 points in average score and 16.7% in success505

rate across all tasks. Notably, the average score of506

the STEP w/o Planner model is approximately the507

same as that of CLIN, with both achieving around508

57 points overall. This result was expected, as509

the ablation model lacks the critical Planner com-510

ponent, making it architecturally similar to CLIN.511

These findings also suggest that the addition of the512

Evaluator (which CLIN does not include) does not513

significantly enhance performance in the absence514

of the Planner.515

A qualitative example. Figure 5a illustrates the516

optimal strategies employed by STEP, STEP w/o517

Planner, and CLIN during Task Temp1, where the518

agent must measure the temperature of an unknown519

substance B. Although the location of substance B520

is known (in the living room), the agent must first521

locate a hidden thermometer. Without a planner,522

both CLIN and STEP w/o Planner instinctively523

head to the living room to interact with substance524

B, resulting in a -100 point penalty for skipping525

the necessary step of finding the thermometer. As526

reflected in the graph, this mistake leads to early527

termination for both models—CLIN is cut off at528

step 8 and STEP w/o Planner at step 14—with their529

rewards stagnating below 15 points due to incorrect530

task execution.531

In contrast, STEP with Planner adheres to the532

correct task order. The Planner isolates the subtask 533

of finding the thermometer, ensuring the Executor 534

focuses solely on the immediate task without being 535

distracted by the known location of substance B 536

(see Figure 5b). This isolation prevents the Execu- 537

tor from prematurely interacting with substance B 538

and helps STEP avoid penalties. As reflected in 539

the graph, STEP continues to progress smoothly, 540

with its reward rapidly increasing and reaching a 541

maximum of 90. 542

Additionally, we observed that without the Plan- 543

ner, the performance of the other models does not 544

improve, even when Memory correctly suggests the 545

location of the thermometer (in the kitchen). The 546

situation worsens when the models receive hints 547

related to substance B, such as “going to the living 548

room is necessary to find substance B” or “focusing 549

on substance B may contribute to the task.” With- 550

out the high-level task distillation and guidance 551

provided by the Planner, these models are unable 552

to effectively leverage the usefulness of informa- 553

tion. This further underscores the Planner’s critical 554

role in task decomposition and knowledge distilla- 555

tion, ensuring the agent follows the task order. 556

5 Conclusion 557

We present STEP, a simple yet effective framework 558

that leverages LLM as a stepwise planner. STEP 559

enhances memory utilization and task sequence 560

recognition, achieving state-of-the-art performance 561

in the ScienceWorld benchmark. By showcasing 562

the potential of STEP, our research contributes to 563

the ongoing exploration and development of lan- 564

guage agents as planners. 565
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6 Limitations566

Poor subtask generation. The agent can easily567

deviate from the intended task if the initial sub-568

task goes off track. The Executor relies entirely569

on the Planner’s guidance, while the Planner de-570

pends on the Executor’s exploration to understand571

the environment. This interdependency can lead572

to significant problems if the Planner generates573

an irrelevant subtask. In task Biology, the agent574

is required to “focus on the 3 life stages of the575

wolf”. Instead of guiding the agent to find a wolf576

outside the house, the Planner incorrectly decides577

that painting a representation of a wolf is a valid578

solution: “Since I am in an art studio, I can use579

the paint to create representations of the wolf’s life580

stages.” The Planner then directs the Executor to581

gather materials, mix colors, and attempt to draw582

the wolf.583

Once the Planner locks onto an incorrect high-584

level subtask, it becomes increasingly difficult for585

the agent to revise its approach. As a result, it falls586

into a repetitive loop of failure, with the Executor587

never leaving the house to discover the real wolf.588

The only potential way to break this loop is through589

a refinement mechanism; however, in this case, the590

mechanism fails to detect the irrelevance of the sub-591

task and continues allowing the agent to explore the592

painting activity. Instead of exploring horizontally,593

the agent dives vertically into the wrong path.594

Poor strategy generation. After each trial, a595

strategy is generated to inform future agents of596

the latest successful traces. Whether provided with597

a list of completed subtasks or a full action trace,598

the model struggles to eliminate unnecessary ele-599

ments. For instance, in the Force task, where the600

agent must “determine which of the two inclined601

planes has the steepest angle”, the agent first needs602

to locate the inclined planes in the workshop. After603

extensive exploration—navigating to the art studio,604

hallway, outside, and then back to the hallway—the605

agent finally finds the workshop and continues with606

the task. However, at the end of the episode, the607

agent fails to eliminate redundant looping traces,608

such as repeatedly moving to the hallway with-609

out gaining useful information, and instead groups610

these actions into the vague category of“Exploring611

the environment.”612

Balancing strategy abstraction presents sig-613

nificant challenges. Strategies that are too de-614

tailed closely resemble action traces, causing future615

agents to simply replicate past actions without con-616

sidering variations in context. In contrast, overly 617

abstract strategies result in unachievable goals, as 618

they lack the necessary steps for effective task com- 619

pletion. To mitigate this, our approach attempts 620

to retain actions that gain rewards from the en- 621

vironment, then prompt LLMs to identify which 622

remaining actions are essential, before abstracting 623

the new action trace. However, this method is still 624

far from optimal and highlights a gap for future 625

research. 626
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sions, and receiving feedback in the form of re- 880

wards to maximize long-term success (Ghasemi 881

et al., 2024). We provide a brief review of three 882

works used in our experiment section as baselines: 883

DRRN (Deep Reinforcement Relevance Net- 884

work) (He et al., 2016) is designed to handle state 885

and action spaces, represented in natural language 886

format. Instead of using raw text, DRRN uses sepa- 887
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and possible actions into embedding vectors. Sub- 889

sequently, it combines them to approximate the 890

optimal action which maximizes the reward. This 891
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approach allows the agent to better understand and892

navigate environments with high-dimensional, un-893

structured data, showing that it captures meaning894

instead of memorizing text strings.895

CALM (Contextual Action Language Model)896

(Schuster et al., 2022) is trained on human game-897

play to learn linguistic patterns and common ac-898

tions, allowing it to generate a set of action candi-899

dates for each state. These candidates are then900

passed to a DRRN agent for re-ranking based901

on game rewards. By integrating human-like ac-902

tion prediction through a language model with re-903

inforcement learning for assessment, CALM en-904

hances the agent’s ability to navigate and interact905

in complex text-based environments, including un-906

familiar situations.907

KG-A2C (Knowledge Graph Advantage Actor908

Critic) (Ammanabrolu and Hausknecht, 2020) en-909

hances the agent’s decision-making by construct-910

ing a dynamic knowledge graph during exploration.911

By leveraging the OpenIE technique (Angeli et al.,912

2015), it maps relationships between objects, lo-913

cations, and actions, and dynamically updates this914

graph. KG-A2C helps the agent prune irrelevant915

actions and focus on the most relevant ones, im-916

proving navigation and decision-making in com-917

plex environments.918

A.2 Language Agents919

A language agent is an AI system designed for in-920

teraction with the external world and understanding921

natural language, extending the abilities of large922

language models (LLMs) by incorporating memory923

mechanisms and related action capabilities (Sumers924

et al., 2023).925

A.2.1 Memory926

Memory plays a critical role in language agents, as927

it enables them to store, retrieve, and process infor-928

mation over time. Sumers et al. (2023) categorized929

memory into short-term and long-term modules in-930

cluding episodic memory, semantic memory and931

procedural memory. Short-term memory (working932

memory) holds active information, such as observa-933

tions from the environment or retrieved knowledge934

from long-term memory (Kang et al., 2024), neces-935

sary for immediate processing. As its name implies,936

working memory serves as a central hub, providing937

queries to the LLM, translating responses into ac-938

tionable steps, and linking long-term memory with939

the current state for cohesive processing.940

Episodic memory records the experiences and941

events the agent has encountered. Like traditional 942

reinforcement learning, where agents adjust their 943

policy based solely on rewards, episodic memory 944

improves learning by enabling more refined un- 945

derstanding and strategic planning, leveraging past 946

successes and failures (Ouyang et al., 2022; Shinn 947

et al., 2023; Gou et al., 2024b). Semantic mem- 948

ory holds factual information about the world and 949

the agent’s identity, capabilities, and task context, 950

acting like a system prompt. For instance, SayCan 951

(Ahn et al., 2022) understands it controls a “physi- 952

cal robot” to execute real-world tasks described 953

in natural language, while CRITIC (Gou et al., 954

2024a) knows its role is to handle free-form ques- 955

tion answering or mathematical problems, with 956

the ability to use tools like code interpreters and 957

calculators to verify and refine solutions. Procedu- 958

ral memory comprises the LLM’s internal weights 959

and predefined code. Unlike the flexible nature 960

of software-based episodic or semantic memory, 961

procedural memory functions like hardware, re- 962

quiring precise design to initialize the agent, where 963

any error could lead to bugs or unintended behav- 964

ior. While some language agents, such as LOGIPT 965

(Feng et al., 2023) and ToRA (Gou et al., 2024b), 966

exhibit procedural learning, this usually occurs dur- 967

ing fine-tuning phase, not in deployment. 968

To interact with the memory system, language 969

agents use human-like internal actions - retrieval, 970

learning, and reasoning. Retrieval actions move 971

data from long-term to short-term memory, pro- 972

viding the agent with relevant information to han- 973

dle tasks. This can be done by directly querying 974

the LLM to retrieve insights based on the current 975

context (Zhao et al., 2023a) or using a key-value 976

method where the key relates to the common in 977

state and the value provides guidance (Fu et al., 978

2024). Learning actions process observations and 979

feedback from working memory, encoding them 980

into long-term memory to enable continuous learn- 981

ing. For example, VOYAGER (Wang et al., 2023a), 982

a Minecraft agent, retrieves skills from episodic 983

memory, generates executable code, and stores new 984

skills gained from interaction with the environment 985

back into long-term memory. Reasoning actions 986

are more complex, involving reading from and writ- 987

ing to working memory. The LLM integrates the 988

task, retrieved insight, probable solutions, and feed- 989

back from humans (Christiano et al., 2023; Ouyang 990

et al., 2022), self-reflection (Madaan et al., 2023; 991

Shinn et al., 2023; Majumder et al., 2023) or exter- 992

nal tools (Gou et al., 2024a). If the solution does 993
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Figure 6: Comparison of STEP with SOTA.

not meet the specified constraints, the LLM refines994

it iteratively.995

A.2.2 State-of-the-art Language Agents996

With the rise of LLMs, there has been a growing997

body of work around embodied language agents.998

SayCan (Ahn et al., 2022), developed by999

Robotics at Google, integrates LLMs with physical1000

robots to execute real-world tasks based on natural1001

language instructions. Viewing a physical robot1002

as an embodied agent, SayCan itself functions as1003

a language agent, bridging the gap between natu-1004

ral language processing and real-world interaction.1005

While CALM uses DRRN to rerank action can-1006

didates, SayCan employs the temporal-difference1007

(TD) RL method to train its value function. This1008

allows SayCan to evaluate the feasibility of sug-1009

gested actions by accounting for both the current1010

state of the embodied agent and the environment,1011

leading to a more grounded decision-making pro-1012

cess. By combining LLMs’ semantic knowledge1013

with a contextual understanding of real-world con-1014

straints, SayCan efficiently adapts to dynamic envi-1015

ronments.1016

ReAct (Yao et al., 2023c) is a simple yet ro-1017

bust technique that integrates reasoning and action1018

generation within language models. Unlike con-1019

ventional approaches that separate reasoning and1020

action phases, ReAct interleaves these processes,1021

enabling language models to reason before exe-1022

cuting actions and adapt dynamically to evolving1023

circumstances. Through the use of reasoning traces,1024

ReAct formulates plans, manages exceptions, and1025

employs actions to acquire additional information1026

from external sources. This integrated approach1027

helps maintain task progress while reducing er-1028

ror propagation and hallucinations. ReAct can1029

apply to a wide range of tasks, including question-1030

answering, fact verification, and other interactive1031

decision-making scenarios. 1032

Reflexion (Shinn et al., 2023) is a framework de- 1033

signed to enhance language agents by enabling self- 1034

reflection on past actions and outcomes. Rather 1035

than relying on traditional reinforcement learning 1036

methods that update model parameters, Reflexion 1037

enhances agents through verbal feedback, using lin- 1038

guistic reflection to guide future decisions. While 1039

prior models retain feedback only for a single rea- 1040

soning step (Madaan et al., 2023; Gou et al., 2024a; 1041

Yao et al., 2023c), Reflexion stores feedback in 1042

an episodic memory buffer, allowing agents to uti- 1043

lize past experiences for more effective decision- 1044

making in subsequent tasks. This episodic memory 1045

facilitates iterative learning, helping agents avoid 1046

repeating errors and continuously refine their strate- 1047

gies. Through iterative self-reflection, Reflexion 1048

allows agents to adapt rapidly without the need for 1049

extensive retraining, making it a flexible approach 1050

for improving performance in complex real-world 1051

applications. 1052

CLIN (Continual Learning from Interactions) 1053

(Majumder et al., 2023) is a language-based agent 1054

framework designed to enhance agents’ adaptabil- 1055

ity by enabling continual learning through dynamic 1056

memory updates. Leveraging from Reflexion, 1057

CLIN continually refines its memory with causal 1058

abstraction insights derived from interactions with 1059

the environment. This persistent episodic mem- 1060

ory enables the agent to reflect on previous trials 1061

and incorporate those insights into future decision- 1062

making, allowing for rapid adaptation to new en- 1063

vironments and tasks without requiring parameter 1064

updates. Moreover, with the use of meta-memory, 1065

CLIN generalizes its knowledge across multiple 1066

tasks and environments, allowing the agent to trans- 1067

fer insights to solve entirely new tasks in differ- 1068

ent settings. In this paper, we refer to the CLIN 1069

ADAPT version, which focuses on rapid adapta- 1070

tion in the same task, same environment. 1071

B ScienceWorld Tasks Action Space 1072

The ScienceWorld action space is reported in Ta- 1073

ble 3. 1074

C Example of STEP trajectory for a task 1075

We present a sample of task trajectory for STEP in 1076

Figure 7. 1077
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Action Description

open/close OBJ open/close a container
de/activate OBJ activate/deactivate a device
connect OBJ to OBJ connect electrical components
disconnect OBJ disconnect electrical components
use OBJ [on OBJ] use a device/item
look around describe the current room
look at OBJ describe an object in detail
look in OBJ describe a container’s contents
read OBJ read a note or book
move OBJ to OBJ move an object to a container
pick up OBJ move an object to the inventory
put down OBJ drop an inventory item
pour OBJ into OBJ pour a liquid into a container
dunk OBJ into OBJ dunk a container into a liquid
mix OBJ chemically mix a container
go to LOC move to a new location
teleport to LOC * teleport to a specific room
eat OBJ eat a food
flush OBJ flush a toilet
focus on OBJ signal intent on a task object
wait [DURATION] take no action for some duration
task describe current task
inventory list agent’s inventory

Table 3: The 25 actions in the action space of SCIENCE-
WORLD. Actions can take up to two parameters, refer-
encing objects the action should interact with. * signifies
that the teleport action is only available to agents in a
simplified mode.
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Task Description: Your task is to measure the melting point of lead, which is located around the kitchen. First,
focus on the thermometer. Next, focus on the lead. If the melting point of lead is above 50.0 degrees celsius,
focus on the red box. If the melting point of lead is below 50.0 degrees celsius, focus on the green box. The
boxes are located around the kitchen.

> look around
This room is called the art studio. In it, you see:

the agent
a substance called air
a large cupboard. The large cupboard door is closed.
a table. On the table is: a bowl (containing nothing).
a wood cup (containing blue paint)
a wood cup (containing red paint)
a wood cup (containing yellow paint)

You also see:
A door to the hallway (that is open)

> go hallway
You move to the hallway.

> go greenhouse
You move to the greenhouse.

> look around
This room is called the greenhouse. In it, you see:

the agent
a substance called air
a bee hive. The bee hive door is closed.
a jug (containing nothing)
a shovel
a sink , which is turned off. In the sink is: nothing.

You also see:
A door to the hallway (that is open)
A door to the outside (that is open)

> go outside
You move to the outside.

> go kitchen
You move to the kitchen.

> focus on thermometer
You focus on the thermometer.

> pick up cup containing lead
You move the plastic cup to the inventory.

> focus on lead
You focus on the lead.

> focus on thermometer
You focus on the thermometer.

> look at thermometer
a thermometer , currently reading a temperature of 10 degrees celsius

> look around
This room is called the kitchen. In it, you see:

the agent
a substance called air
a chair. On the chair is: nothing.

...
a table. On the table is: a glass cup (containing nothing).
a thermometer , currently reading a temperature of 10 degrees celsius

You also see:
A door to the bathroom (that is open)
A door to the hallway (that is open)
A door to the outside (that is open)

> focus on lead
You focus on the lead.

> focus on red box
You focus on the red box. (Task Completed !)

Figure 7: Example of task Temp2 trajectory with STEP.
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