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Abstract
The empirical emergence of neural collapse—a surprising symmetry in the feature representations of
the training data in the penultimate layer of deep neural networks—has spurred a line of theoretical
research aimed at its understanding. However, existing work either focuses on data-agnostic models
or it remains limited to multi-layer perceptrons. We fill both these gaps by analyzing modern
architectures in a data-aware regime: we prove that global optima of deep regularized transformers
and residual networks (ResNets) with LayerNorm trained with cross entropy or mean squared error
loss are approximately collapsed, and the approximation gets tighter as the depth grows. More
generally, we formally reduce any end-to-end large-depth ResNet or transformer training into an
equivalent unconstrained features model, thus justifying its wide use in the literature even beyond
data-agnostic settings. Our theoretical results are supported by experiments on computer vision and
language datasets showing that, as the depth grows, neural collapse indeed becomes more prominent.

1. Introduction

In 2020, Papyan et al. [40] discovered a surprising geometric structure in learned representations
of deep neural networks (DNNs) at convergence dubbed “neural collapse” (NC). It concerns the
representations of the training samples in the last layer of the network: the feature vectors of the
samples from the same class converge to the respective class-mean (NC1); the class-means form a
simplex equiangular tight frame (ETF), maximizing the pairwise angles (NC2); finally, the class-
means align with the rows of the weight matrix of the last layer (NC3). Similar structures were
also subsequently discovered for class-imbalanced classification [48], regression [1] and language
modeling [59], demonstrating that neural collapse is ubiquitous when training deep models.

To understand the emergence of NC, Mixon et al. [39] introduced the “unconstrained features
model” (UFM). In the UFM, one assumes the features of the last layer to be free variables and
optimizes over them together with the weight matrix of the last layer. Using the UFM, the optimality
of the NC has been proven, as well as its emergence during gradient descent training in various
settings, see Section 2. However, the UFM has since been criticized [22] for being too simplistic
and data-agnostic. However, UFM-free results so far cover shallow (up to three layers) networks
[19, 26, 58] or come with strong assumptions [3, 22, 41, 43, 55, 61] (see Section 2). Moreover, with
the exception of [55], all works only focus on multi-layer perceptrons (MLPs). However, NC is
equally relevant in modern architectures, such as ResNets ([17]) or transformers ([51]) [55, 59].

In this work, we fill both mentioned gaps at once. First, we are the first to theoretically analyze
NC in ResNets with LayerNorm and transformers. Second, our results prove end-to-end approximate
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optimality of NC in training with weight regularization. This has only ever been done for MLPs with
deep linear heads in [22]. To be more precise, our contributions are summarized below.

For ResNets and transformers with one linear layer per MLP block and constant regularization
strength, we prove that NC is the asymptotically optimal solution as the number of blocks goes
to infinity. All global optima in deep-enough networks must be approximately collapsed and the
distance from perfect collapse is non-asymptotically upper-bounded in terms of the depth. These
results hold for both CE and MSE losses, under minimal assumptions on the data. We support these
findings by experiments on computer vision datasets with ResNets and vision transformers, showing
that the amount of collapse increases with the depth of the architecture, as predicted by our theory.

More generally, we provide a formal connection between deep ResNets/transformers and uncon-
strained features models: we prove that, as these architectures become deeper, their global optima
converge to those of an equivalent UFM. This result holds for a wide class of continuous losses and
justifies the use of UFM for the analysis of NC.

2. Related work

Related work on the UFM is reviewed in Appendix A. In the end-to-end training regime, conditions
on data that make NC feasible in the shallow case are identified in [19]. Two-layer networks are
considered in [26], which uses NTK theory and other kernel methods to conclude that NC in this
regime is rather restricted. To the contrary, in the mean-field regime, positive results about NC1
are given in [58] for certain three-layer networks. In the deep case, convergence to NC is studied
in [22, 41, 43, 61]. However, a block-structured empirical NTK is assumed in [43], and symmetric
quasi-interpolation is required in [41, 61]. The former does not justify this assumption, while the
latter requires an unusual weight regularization and interpolators with a given norm. Wide networks
are considered in [22], which proves the emergence of NC1 requiring at least the last two layers to
be linear (and even deeper linear heads for NC2 and NC3).

Closer to the scope of the current work, NC is studied in ResNets in [55]. Two main claims
are proved: the monotonicity of NC1-NC2 metrics across layers of ResNets, and a negative result
about collapse in a variant of UFM similar to the one considered in [50]. However, the monotonicity
is proved under the strong assumption that the data evolves across layers on a geodesic, which is
not possible in general since one can construct configurations where samples from different classes
would collide. Moreover, the UFM taken into account is based on a heuristic derivation (a link
between representation cost and transport cost of the features) that does not hold exactly in practice.

3. Preliminaries

Notation. We study two different data formats and architectures. For ResNets, the input data
and one-hot labels are X0 ∈ Rd0×N and Y ∈ RK×N , where d0 is the input dimension, N the
number of samples and K the number of classes; whereas for transformers it is X0 ∈ RN×V×C

and Y ∈ RN×K×C , where C is the context length (number of tokens in the prompt) and V the
vocabulary size (number of distinct tokens). We use xki to indicate the i-th sample of the k-th
class. For transformers, a sample corresponds to the position of each individual token and, thus, xki
corresponds to a token position labeled as class k, with samples ordered arbitrarily. We assume a
class-balanced setting with n samples per class.
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ResNets and transformers. Let id(·) be the identity mapping, σ be the ReLU and LN the LayerNorm
that subtracts the mean of each vector of the last dimension of the input tensor by its own mean and
then normalizes it by its own standard deviation.

Definition 1 An L-block ResNet with LayerNorm and one linear layer per block (L-RN1), and an
L-block transformer with one linear layer per attention sub-block and MLP sub-block (L-T11) with
intermediate dimension d are defined as

fθ(Z) = linL ◦LNL ◦BL−1 ◦ · · · ◦ B1 ◦Embed(Z). (1)

Here, Z is a vector for the ResNet and a matrix for the transformer, and linL(Z) = WLZ is the
last layer; Embed(Z) = WeZ + Wp (Embed(Z) = W0X0 + b0) is the embedding layer of the
transformer (ResNet) with We being the token embedding and Wp the positional embedding (W0, b0
being the embedding linear layer). For the transformer, Bl = MLPl ◦LNl,2 ◦ATTNl ◦LNl,1 . Such
block consists of the normalization layers LNl,1,LNl,2, the MLP MLPl(Z) = Z + σ(WlZ + bl)
and the single-head attention (the matrix M is the causal mask)

ATTNl(Z) = Z +WV OZAl(Z), Al(Z) = softmax(M + ZTWQKZ/
√
d). (2)

For the ResNet, Bl = (id+σ◦ linl)◦LN . Denote by θ the collection of all learnable parameters. De-
note X1 = Embed(X0); Xl+1 = Bl(Xl) for l ∈ {1, . . . , L−1}; fθ(X0) = XL+1 := WL LN(XL)
the intermediate representations of the training data stored in a matrix (or tensor) form.

Neural collapse metrics and generalized unconstrained features model (GUFM). Let hθ(·) be
the output of the penultimate layer. We denote by xki the i-th sample of the k-th class. We define
µk := 1

n

∑n
i=1 xki as the class-means in the l-th layer and µG := 1

K

∑K
k=1 µk as the global mean.

Let ΣW := 1
N

∑K,n
k,i=1(xk,i − µk)(xk,i − µk)

T and ΣB := 1
K

∑K
k=1(µk − µG)(µk − µG)

T be the
within- and between-class variability matrices, and let EK = IK − 1K1TK be the un-rotated ETF
matrix.

Definition 2 Any pair (W,X) of matrices s.t. W has at least as many columns as rows, X has
N = Kn columns and they can multiply as WX has the following NC metrics:

• NC1(W,X) = tr(ΣW )
tr(ΣB) , i.e., the ratio of within- and between-class variability.

• NC2A(W,X) =
min
c≥0

∥WWT−cEK∥F

∥WWT ∥F
, i.e. the distance of WW T from the closest (scaled) ETF.

• NC2B(W,X) =
min
c≥0

∥WWT−cIK∥F

∥WWT ∥F
, i.e. the distance of WW T from the closest (scaled) identity.

• NC3(W,X) = 1− 1
N

∑K,n
k,i=1 cos(xki,Wk:), i.e., one minus the average cosine similarity between

the samples and the corresponding row of W.

A model is said to exhibit NC if all metrics are 0 and approximate NC if all metrics are close to
zero. NC2A is defined for CE loss or MSE loss with unregularized bias in the last layer, and NC2B
is defined for MSE loss with bias-free last layer. We consider the following optimization problem:

min
θ

L(fθ(X), Y ) +
λ

2

∥∥θ̄∥∥2 , (3)
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where λ > 0, θ̄ is the subset of parameters that excludes biases and the parameters in embedding
layers (We,Wp,W0), and L ≥ 0 is a continuous loss. Let LCE,LMSE be CE and MSE loss, and
LL(θ) be the loss of the L-RN1 or L-T11 architecture (depending on the context) with parameters
θ. We denote by L∗

L the optimal such loss value and by ML
ϵ := {θ : LL(θ) ≤ L∗

L + ϵ} the set
of parameters ϵ-close to the optimum. We denote by M̃L the set of all pairs (WL, hθ(X)) s.t. θ
(including WL) is in ML

0 . In our analysis, we reduce the end-to-end problem (3) into a simpler UFM:

Definition 3 Given a continuous loss L ≥ 0 and an equivalence relation R on {1, . . . , N}, the
generalized unconstrained features model (GUFM) refers to the following optimization problem:

min
W,X

L(WX,Y ) +
λ

2
∥WL∥2F , (4)

s.t. ∥xi∥ =
√
d, xTi 1d = 0, for i ∈ {1, . . . , N},

xi = xj , for i, j ∈ {1, . . . , N}, i ∼R j,

where W ∈ RK×d, X = [x1, . . . , xN ] ∈ Rd×N and Y ∈ RK×N . Let LGUFM(W,X) be the loss of
the feasible pair (W,X) under this model, L∗

GUFM the optimal such loss and MGUFM
ϵ := {(W,X) ∈

M : LGUFM(W,X) ≤ L∗
GUFM + ϵ}, with M the set of feasible solutions.

The constraint xTi 1d = 0 is due to the LayerNorm just before the last layer in ResNets and
transformers. This is w.l.o.g. for CE/MSE loss, for which the optimum is zero-mean. The equivalence
relation accounts for potential hard constraints from the input data where we may have identical
samples or contexts that may or may not be in the same class. Again, for CE/MSE loss this is w.l.o.g.,
given that all identical contexts are always labeled with the same class.

4. Main results

Denote as distmax(A,B) = supx∈A dist(x,B) for any sets A,B.

Theorem 4 Let the architecture be L-RN1 or L-T11. Assume the inner dimension of the L-Tx1
(L-RN1) is at least 2V + 2 (4). Consider the optimization problem (3) with λ independent of the
number of layers and its corresponding GUFM (4) with the same loss L and the equivalence relation
defined by pairs of samples (contexts for transformers) in X that coincide. If L∗

GUFM > 0, then

lim sup
L−→∞

distmax(M̃L\MGUFM
0 ,MGUFM

0 ) = 0. (5)

This result provides a reduction of the end-to-end training objective of a deep-enough architecture
to a GUFM using the same loss. This has two important implications. First, it shows that optimal
deep ResNets and transformers can represent the optimal solution of the corresponding GUFM
problem. As formalized in Corollary 5, this gives a precise characterization of the structure of
feature representations in the last layer at the global optimum – the first result of this sort for modern
architectures beyond MLPs. Second, it provides a theoretical justification for using the UFM to
explain the emergence of NC, showing that the UFM does not oversimplify the problem even when
dealing with ResNets and transformers. The proof constructs a sequence of candidate solutions
whose representations converge to NC, while the regularization of intermediate layers converges to
zero. Global optima must thus converge to represent the optimal GUFM loss and thus also optimal
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Figure 1: log10 of NC1, NC2 and NC3 metrics respectively in the left, middle and right column, as
a function of L for L-RN1, L−T11. Top: MNIST; Bottom: CIFAR10.

GUFM solutions. The complete argument is in Appendix F, with additional notation deferred to
Appendix B. We highlight that Theorem 4 holds for any continuous loss. By considering CE or MSE
for which the global optima of the corresponding GUFMs are collapsed by Lemma 9 in Appendix C,
the emergence of collapse in ResNets and transformers is readily obtained.

Corollary 5 Let the architecture be L-RN1 or L-T11. For L-RN1 assume all training samples in
X to be unique. For L-Tx1, assume the labels Y to be uniquely determined by the context, i.e., two
identical contexts in two different input sequences will be assigned the same label. Using CE or MSE
loss, all global optima of the optimization problem (3) exhibit approximate neural collapse which
gets tighter as L increases.

We discuss the non-asymptotic rate of convergence, a language modeling setting and deep neural
collapse in Appendix D. Our strategy can be applied to a rather general class of architectures: we
consider architectures with two linear layers per MLP block in Appendix E, as well as pre-LN type
ResNets, pre-LN type transformers and vision transformers in Appendix G.

5. Experimental results

Our theoretical results suggest an improvement of the NC metrics at the global optima as the depth
increases. To empirically verify this effect at moderate depths and for solutions found by SGD, we
train ResNets and transformers on MNIST [28] and CIFAR10 [30]. Figure 1 shows the three NC
metrics at convergence, as a function of the depth of the architecture. The results are in agreement
with the theory developed in Section 4: across different architectures, NC metrics improve with
depth, even when the solutions are obtained via SGD. Furthermore, for large-enough depth, the plots
roughly follow a log-linear trend, especially for ResNets. This suggests a polynomial dependence
between NC metrics and depth L, which is also consistent with our theory, see the remark on the rate
of convergence in Appendix D.
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Appendix A. Additional related work

Relevance of NC. The NC phenomenon raised significant interest in the machine learning commu-
nity from both theoreticians and practitioners, due to its high relevance in both areas. Theoreticians
use it to improve generalization understanding [11, 56, 61] both in-distribution and in transfer learn-
ing, OOD detection [14], imbalanced learning understanding [64], theory of feature learning [27, 37],
robustness [44], as well as representation learning itself [2, 4, 10, 38, 54]. In practice, neural collapse
has implications on transfer learning [5, 31, 52], OOD detection [35, 60, 62], compression [25],
performance improvement [8, 52] and other aspects [32, 33, 67].

Unconstrained features model (UFM). First introduced in [9, 39], the UFM has been widely
analyzed in the literature. The optimality of NC in the UFM has been proved for CE loss [29, 36, 57],
MSE loss [65] and other losses [66]. A line of work [7, 9, 18, 48] has focused on the class-imbalanced
setting, formulating a generalized NC geometry and proving its optimality. The loss landscape of the
UFM was shown to be benign in [23, 65, 68], and the emergence of NC in the UFM through gradient
descent training was proved in [15, 23, 39, 53]. Several extensions of the UFM to non-standard
settings have been considered, including GNNs [27], large number of classes [24], unconstrained
features regressed to the input data [50] and regression [1]. Recently, the UFM has been used to
describe a form of NC in language modeling, where each context (sample) can be followed by
multiple continuations, making the labels effectively stochastic [47, 63]. NC has been considered
also for more layers following empirical observations [10, 16, 21, 42] and accordingly, UFM was
generalized to multiple linear layers in [6, 13, 34], two non-linear layers in [49] and multiple
non-linear layers in [12, 45, 46].

Appendix B. Extended notations

Here we provide an extended version of the notations, covering a wider range of architectures and
denoting a wider class of objects, which will be necessary for our proofs and additional results.

We study two different data formats and architectures. For ResNets, the input data and one-hot
labels are X0 ∈ Rd0×N and Y ∈ RK×N , where d0 is the input dimension, N the number of samples
and K the number of classes. For transformers, the input data and one-hot labels are X0 ∈ RN×V×C

and Y ∈ RN×K×C , where C is the context length (number of tokens in the prompt) and V the
vocabulary size (number of distinct tokens). We take C = 1 when the third dimension of X0, Y
is not used. If we index a matrix with three abstract indices, the last one is implicitly equal to 1.
We assume a class-balanced setting, i.e., NC = Kn, where n is the number of samples per class.
Unless stated otherwise, we use xki to indicate the i-th sample of the k-th class. For transformers, a
sample corresponds to the position of each individual token and, thus, xki corresponds to a token
position labeled as class k, with samples ordered arbitrarily. For additional notation regarding vision
transformers, see Appendix G.

ResNets and transformers. Let σ denote the ReLU function. Denote by LN(·) the output of a
normalization layer that first subtracts the mean of each column of the input from itself and then
divides each column by its standard deviation (if the input is a vector, it returns the normalized vector;
if the input is a matrix or tensor, it returns the matrix or tensor with centered and normalized columns
of the inner-most dimension matrices). Define also id(·) as the identity mapping.
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Definition 6 An L-block ResNet with LayerNorm and one linear layer per block (later referred to
as L-RN1) is defined as

fθ = linL ◦LN ◦(id+σ◦ linL−1)◦LN ◦(id+σ◦ linL−2)◦· · ·◦LN ◦(id+σ◦ lin1)◦LN ◦ lin0, (6)

where linl(x) = Wlx+ bl for all l ∈ {0, . . . , L} and θ is the collection of all learnable parameters.
We denote as X1 = LN(W0X0 + b0), Xl+1 = LN(Xl + σ(WlXl + bl)) (l ∈ {1, . . . , L − 1}),
fθ(X0) = XL+1 := WLXL the intermediate representations of the training data stored in a matrix
form. We assume that all intermediate representations Xl (l ∈ {1, . . . , L}) are of dimension d.
Analogously, L-RN2 denotes a ResNet with two linear layers per block defined as

fθ = linL ◦LN ◦(id+ linL−1,2 ◦σ ◦ linL−1,1) ◦ · · · ◦ LN ◦(id+ lin1,2 ◦σ ◦ lin1,1) ◦ LN ◦ lin0, (7)

with X1 = LN(W0X0 + b0), Xl+1 = LN(Xl +Wl,2σ(Wl,1Xl + bl,1) + bl,2) (l ∈ {1, . . . , L− 1})
and fθ(X0) = XL+1 := WLXL.

Definition 7 An L-block transformer with one or two linear layers in the attention sub-block and
one or two layers in the MLP sub-block (later referred to as L-T11, L-T12, L-T21, L-T22 based on
the number of linear layers in attention and MLP sub-blocks, respectively) is defined as

fθ(Z) = linL+1 ◦LNL+1 ◦BL ◦ · · · ◦ B1 ◦Embed(Z). (8)

Here, linL+1(Z) = WL+1Z + bL+1 is the last layer (bL+1 is a matrix with the same number of
columns as Z that are all identical); Embed(Z) = WeZ + Wp is the embedding layer with We

being the token embedding and Wp (having the same shape as WeZ) the positional embedding; and
the l-th block is given by

Bl = MLPl ◦LNl,2 ◦ATTNl ◦LNl,1 . (9)

Such block consists of the normalization layers LNl,1,LNl,2, the MLP

MLPl(Z) = Z + σ(WlZ + bl), or MLPl(Z) = Z +Wl,2σ(Wl,1Z + bl,1) + bl,2, (10)

respectively for the architecture L-Tx1 and L-Tx2, and the single-head attention

ATTNl(Z) = Z +WV OZAl(Z), Al(Z) = softmax(M + ZTWQKZ/
√
d),

or ATTNl(Z) = Z +WOWV ZAl(Z), Al(Z) = softmax(M + ZTW T
KWQZ/

√
d),

(11)

respectively for the architecture L-T1x and L-T2x. The matrix M is the masking matrix whose
entries are −∞ on the lower triangle and 0 on the upper triangle and the diagonal.

Regardless of the model, let hθ(·) be the output of the corresponding architecture before the last
layer, i.e., the feature on which neural collapse is defined. We denote by xlki the i-th sample of the
k-th class in the l-th layer.

13



NEURAL COLLAPSE IN RESNETS AND TRANSFORMERS

Appendix C. GUFM-relevant results

We start with a lemma showing that nearly-optimal solutions of the GUFM problem above must
necessarily be close to the global optima.

Lemma 8 We have

lim sup
ϵ−→0

distmax(MGUFM
ϵ \MGUFM

0 ,MGUFM
0 ) = 0. (12)

The proof is deferred to Appendix F. Next, we focus on CE and MSE loss, showing that the
optima of the corresponding GUFMs (denoted by UFM-CE and UFM-MSE) exhibit NC.

Lemma 9 Assume that only the samples within the same class are in relation R. Then, the
global optima MUFM-CE

0 and MUFM-MSE
0 are all perfectly collapsed, i.e., for all (W,X) ∈ MUFM-CE

0 ,
NC1(W,X) = NC2A(W,X) = NC3(W,X) = 0 and for all (W,X) ∈ MUFM-MSE

0 , NC1(W,X) =
NC2B(W,X) = NC3(W,X) = 0. Conversely, for any feasible pair (W,X) s.t. NC1(W,X) =
NC2A(W,X) = NC3(W,X) = 0, there exists a unique scalar c s.t. (cW,X) ∈ MUFM-CE

0 ; and
for any feasible pair (W,X) s.t. NC1(W,X) = NC2B(W,X) = NC3(W,X) = 0, there exists a
unique scalar c s.t. (cW,X) ∈ MUFM-MSE

0 .

The proof is deferred to Appendix F. For the CE loss, it is based on an adaptation of the results
in [68]. For the MSE loss, we compute the global optima by lower-bounding the loss, solving the
problem for the lower-bound and showing that the loss and its lower-bound agree at these optima.

Appendix D. Additional discussions related to main results

Rate of convergence. While the results are stated asymptotically for simplicity, one can readily
recover a convergence rate of the global optimum to NC from the argument. In particular, since the
total regularization of the layers scales as L−1, the global optima can only be suboptimal w.r.t. the
GUFM objective with the same scaling. Then, assuming a differentiable loss (e.g., CE or MSE), the
distance from the optima scales as the inverse of the power in the Taylor approximation of the loss at
the global optima in the flattest direction, up to logarithmic factors that come from making a finer
approximation. Now, for the CE loss, the leading term is quadratic: by using the chain rule, the slope
of CE at the optimum is non-zero, and the sum of exponentials of dot-products between X,W is
quadratic as we approach the ETF. Thus, the convergence in distance is Õ(L−1/2), where Õ omits
logarithmic factors. For the MSE loss we compute by error analysis in the proof of Lemma 9 that the
convergence rate is also Õ(L−1/2).

Language modeling. When considering the transformer architecture, we require the labels to be
unique given a specific context. While this is a realistic assumption in vision or language classification
tasks (e.g., sentiment analysis, harmful content classification, spam detection), it does not apply
to language pretraining, where a single context may have many different continuations. In fact,
in the setting of non-unique continuations, neural collapse is not to be expected, and the optimal
structure was discussed [47, 63] by using a form of UFM. We remark that Theorem 4 shows that the
optimal solutions identified in these works are exhibited by transformers, as long as they satisfy the
conditions in (4). This is the case, for instance, in some symmetric settings, see Proposition 2 in [63]
with a slight modification in the underlying UFM (the authors consider weight decay instead of norm
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constraints on the features), where the optimal limiting solution is indeed collapse. In non-symmetric
cases, while NC is not expected to be optimal (as in the case with class imbalance [48]), transformers
still represent the optimal zero-mean solution of the underlying UFM, whatever that is. This allows
future work to focus on solving the application-relevant UFM in the corresponding setting and then
use Theorem 4 to conclude that the solutions are globally optimal end-to-end.

Deep neural collapse. Although our theory focuses on last-layer geometry, the analysis sheds
some light on the collapse in the earlier layers as well. In particular, one can readily obtain that any
finite number of layers at the end of the network converges to neural collapse (with the exception
of NC3 which has a different formulation for multi-layer collapse). Note that adding a residual
connection (as in ResNets and transformers) resolves the inconsistency of deep UFMs pointed out
in [46], where it is shown that the global optima of the deep UFM in the multi-class setting do not
exhibit neural collapse. In fact, the optimal solution of a deep UFM with residual connections is
obtained by simply copying the shallow UFM in the first layer and setting all remaining layers to 0.
We also remark that, from the argument of Theorem 4, it follows that the global optima of the last L̃
layers of the network (L̃ being a constant independent of L) converge to the global optima of the
corresponding deep GUFM with residual connections and depth L̃.

In contrast, understanding the emergence of neural collapse for a small, but constant fraction
of the final layers of the network appears to require a different approach. Intuitively, if the network
starts processing all samples at once from some layer onwards (which is expected to improve the
loss w.r.t. our construction), then the collapse is progressive and occurs to some extent already in a
constant fraction of the final layers, see also the discussion in [55].

Appendix E. Deep double-layer architectures are collapsed at the global optimum
with vanishing regularization

Let us now consider ResNets with two linear layers per block and transformers with two linear layers
per MLP sub-block (the number of matrices in the attention sub-block does not affect the result).
Then, we show that neural collapse is globally optimal, provided that the regularization strength in
all layers except the last one decreases with the depth L.

Theorem 10 Let the architecture be L-RN2 or L-Tx2 for x ∈ {1, 2}. Assume the inner dimension of
the L-Tx1 is at least 2V +2 and the inner dimension of L-RN1 is at least 4. Consider the optimization
problem

min
θ

L(fθ(X), Y ) +
λL

2
∥WL∥2F +

λ(L)

2

∥∥θ̄∥∥2 , (13)

where λL is a regularization on the weight matrix of the last layer that does not depend on L and
λ(L) is a depth-dependent regularization s.t. λ(L) = o(log(L)−1). Consider the corresponding
GUFM with regularization λL. If L∗

GUFM > 0, then

lim sup
L−→∞

distmax(M̃L\MGUFM
0 ,MGUFM

0 ) = 0. (14)

The reason why the regularization is required to be vanishing can be intuitively seen through a
1D example. Assume we want to represent a penultimate feature of size exp(a) with input 1 with
a L-RN2 with inner dimension 1 and without LayerNorm. If x denotes a shared weight across all
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residual layers, the output of the residual block will be (1 + x2)L. In order to ensure that (1 + x2)L

converges to exp(a) as L → ∞, one needs to pick x =
√
a√
L

, which implies that the sum of squares∑L
l=1

(√a√
L

)2 is of constant order w.r.t. L. A similar example would also work with ResNets with
LayerNorms in a setting which is at least bi-dimensional. In fact, the requirement on vanishing
regularization is necessary for the statement to be true, and the result also cannot hold if both λ(L)
and λL are vanishing. An additional discussion on this point, together with a concrete dataset for
which collapse cannot be reached, are provided in Appendix H. Understanding the structure of
the optimal representations for double-layer architectures in the regime of constant regularization
represents an exciting future direction.

The proof of Theorem 10 is similar to that of Theorem 4. In particular, the first layers of the
blocks are defined in the same way, and the second layers are set to act as a projection matrix on the
space spanned by the output of the first layer, which has rank 1. Furthermore, the scalings of these
layers are split in identical square roots of the scaling of the original layer. Thus, the sum over the
squared Frobenius norms is constant w.r.t. L, which requires λ(L) to vanish in L. The detailed proof
is deferred to Appendix F. We conclude this appendix by stating the approximate optimality of NC
in the global optima of double-layer architectures under CE or MSE loss.

Corollary 11 Let the architecture be L-RN2 or L-Tx2 for x ∈ {1, 2}. Assume the training data
(X,Y ) satisfies the assumptions of Corollary 5. Using CE or MSE loss, all global optima of the
optimization problem (13) exhibit approximate neural collapse which gets tighter as L increases.

Appendix F. Deferred proofs

Proof of Lemma 8. Assume by contradiction there exists a sequence (Xn,Wn)
∞
n=1 of points such

that
lim

n−→∞
LGUFM(Wn, Xn) = L∗

GUFM,

but lim sup
n−→∞

dist((Wn, Xn),MGUFM
0 ) = c > 0. Then, since the feasible set of GUFM is compact

(for W, take a large-enough ball around 0 that must contain the global optimum), we can choose
a subsequence (Xnk

,Wnk
)∞k=1 having an accumulation point (W̄ , X̄) in the feasible set and s.t.

dist((W̄ , X̄),MGUFM
0 ) > 0 (first picking a subsequence for which the limsup above is realized

and only choosing a subsequence with accumulation point from this subsequence; then using the
continuity of the distance to conclude). From the continuity of the loss function, it must follow
LGUFM(W̄ , X̄) = L∗

GUFM, which also implies (W̄ , X̄) ∈ MGUFM
0 . However, this is a contradiction

because the distance of this point from MGUFM
0 is both 0 and bigger than 0. ■

Proof of Lemma 9. For both losses, we will relax the problem and ignore the constraints coming
from the equivalence relation R. Then, we prove that NC1 holds in all of these cases, which grants
equivalence between the relaxed and original problem.

For the CE loss, we apply Theorem 3.1 of [68]. In particular, from this theorem it follows that the
optimal solutions of the regularized UFM-CE (not a-priori equivalent to (4) because of the feature
constraint) exhibit neural collapse. From their proof, it is also clear that not only does the ratio
between the sizes of the optimal wk and xki only depend on the ratio of the regularization terms, but
also that the absolute size of these vectors is an increasing function of the regularization strength,
with the limit as λ −→ ∞ being infinity. Therefore, let us pick λW from the paper to be λ in (4),
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while we find λH s.t. the optimal solutions of the problem in [68] have norm
√
d. Then, the global

optima of the regularized UFM-CE are exactly those of the UFM-CE we consider in (4).
To see the last statement, assume by contradiction that there is a global optimum of the problem

in (4) which is not a global optimum of the regularized UFM-CE. Then, we can plug this solution
into the regularized UFM-CE. Since it is not a global optimum, there exists a solution with strictly
lower loss, and this optimum is guaranteed to have unit norm features. By plugging this optimum
into (4), we must obtain a loss that is better than the optimal one, since the objectives are equivalent
in this case. This leads to a contradiction. Similar arguments give that there cannot exist a global
optimum of the regularized UFM-CE which is not a global optimum of (4), thus proving the desired
equivalence.

For the MSE loss, we perform a direct computation which includes a perturbation analysis. To
simplify the loss landscape, we start by defining a lower bound on the UFM-MSE loss, which we
will analyze first. Denote

LUFM-MSE :=
1

2N

K,n∑
k,i=1

(wT
k xki − 1)2 +

λ

2
∥W∥2F (15)

and MUFM-MSE
ϵ the corresponding near-optimal set. Note that (15) is separable in the index k, thus

we are facing K identical, independent optimization problems. We will now do a series of partial
conditional optimizations and comment on the cost of deviating from these conditional optima.
First, conditioning on any wk (corresponding to the k-th row of W ), we can almost exactly specify
the optimal values of xki for any i. In particular, if ∥wk∥ ≤ d−

1
2 , then the optimal solution is

xki =
√
d · wk/ ∥wk∥ . If ∥wk∥ > d−

1
2 , then the optimal solution is any vector on a hypersphere

such that wT
k xki = 1. In the former case, for each xki, a deviation from the optimal value of the

dot-product wT
k xki =

√
d ∥wk∥ results in a quadratic increase in the loss around the optimal point

(the cosine function has zero linear term in the Taylor expansion and non-zero quadratic term) or
quartic if ∥wk∥ = d−

1
2 (because the loss at optimum would be 0 and being itself a quadratic function,

the effects would multiply). In the case ∥wk∥ > d−
1
2 , the loss increase around the optimum is again

quadratic. Therefore, in all cases the maximum allowed deviation from the optimum given an extra
loss of ϵ is at most O(ϵ1/4) and, thus, goes to 0 as ϵ goes to zero.

Now, denote z ≡ ∥wk∥ . The loss of the k-th group only depends on z and xki, but plugging-in
the optimal value after solving for xki we arrive at a single-dimensional objective that only depends
on z:

1

2K
(1− z

√
d)max(1− z

√
d, 0) +

λ

2
z2.

From the form of this optimization problem, it is clear that the unique global optimum is reached on
(0, d−

1
2 ). The solution is simply 1√

d(1+λK)
. First, we note that, for fixed λ,K, this solution is strictly

smaller than d−
1
2 with non-zero margin. Second, any deviation from this optimal solution will result

in a quadratic increase in the loss function, therefore for a fixed extra loss of ϵ, the maximum allowed
deviation of ∥zk∥ from its optimal value is O(ϵ1/2), which also goes to 0 with ϵ going to 0. Moreover,
since its optimal value (and also maximum allowed deviation for ϵ small-enough) is strictly smaller
than d−

1
2 , we know that the optimal value of the xki is indeed

√
d · wk/ ∥wk∥ and the maximum

allowed deviation is also O(ϵ1/2).
The function value in (15) cannot be optimized any further, thus we know what MUFM-MSE

0 is. In
particular, the solutions in MUFM-MSE

0 must satisfy the NC1 and NC3 properties. Now, if the global
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optima of (4) with MSE loss and (15) are equal, then MUFM-MSE
0 ⊂ MUFM-MSE

0 and thus the optimal
solutions of (4) with MSE loss must also satisfy the NC1 and NC3 criteria from the lemma statement.

To show that the global optima are equal and to argue about NC2, we turn back to the original
problem (4) with MSE loss. Since we know that the optimal solutions agree, we can focus directly on
MUFM-MSE

0 . After plugging any optimal solution of (15) into LUFM-MSE, we see that the regularization
part is constant, so we are left with optimizing the fit part. Analyzing the loss incurred by xki on
position l ̸= k we see that it is (wT

l xki)
2 = (wT

l wk)
2d(1+λK)2. Summing this over all indices and

samples (using the symmetries) we see that the total loss is proportional to the Frobenius norm of
the off-diagonal elements of WW T . Therefore, a lower-bound on the loss is 0, which is achievable
provided W has at least as many columns as rows, as assumed in the lemma. Let us simply choose
W to be a scaled orthogonal matrix, and note that the loss cannot be optimized any further. Thus, we
see that L∗

UFM-MSE = L∗
UFM-MSE and the solutions of (4) with MSE must satisfy NC2. Any deviation

of W from an orthogonal matrix will result in an increase in the loss which is at least quartic: given a
fixed extra loss of ϵ, the solution in MUFM-MSE

ϵ must be O(ϵ1/4) close to an orthogonal matrix.
Finally, the converse statements also readily follow from the above computations. ■

Proof of Theorem 4. We first discuss how to deal with the equivalence relation R. The argument
is identical whether we take individual samples if all samples are distinct, or we treat the equivalence
classes as individual samples. Thus, for simplicity of notation we assume, without loss of generality,
that the samples are all distinct.

We start with the proof for the L-RN1 model. Notice that LL,1(θ) = LGUFM(WL, XL) +
λ
2

∑L−1
l=1 ∥Wl∥2F . The goal is to show L∗

GUFM = lim
L−→∞

L∗
L,1. In that case, LGUFM(WL, XL) must

converge to L∗
GUFM. Therefore, (WL, XL) induced by θ ∈ ML,1

0 must also belong to MGUFM
ϵ for ϵ

arbitrarily small, which evoking Lemma 8 guarantees the convergence as defined in (5).
Note that we can represent a one-block-deeper ResNet that perfectly copies the original ResNet

by simply adding an identity block with zero weight matrices/biases and residual connection left
untouched. Thus, L∗

L,1 is non-increasing in L and it suffices to prove the limit for any sequence of
L’s going to infinity. We will prove it by explicitly constructing a sequence of L-RN1 ResNets s.t.
their losses converge to L∗

GUFM as L → ∞.
Pick any (WL, XL) ∈ MGUFM

0 and relabel H := XL. Thus, hki is the feature representation
of the sample ki in the penultimate layer. Define H̄ as the matrix of unique points hki, and let us
index them with a single index as h̄j . Denote the number of these unique points as K̄. If we write
j(ki) we mean the index j such that h̄j = hki. Before starting the construction, we need to define
a key data-dependent quantity. First, take X1 = LN(W0X0 + b0) for b0 and W0 sampled from a
continuous distribution. Since points in X0 are all disjoint, this property holds also for X1 with
probability 1. Moreover, with probability zero, any sample in X1 is identical to hki for any of the
vectors in H . For simplicity, we will refer to X1 and its samples as X and drop the index. Fix an
ordering of the points xki as the lexicographical ordering of (k, i). For each (k, i) find a smooth
oriented curve Gki connecting xki with hki on the set of feasible points (

√
d norm hypersphere with

zero-sum entries) such that all of the following holds:

1. The curvature of Gki defined as the Lipschitz constant of the unit-norm oriented tangent
function Tki is bounded by B.

2. For all (l, j) > (k, i), max
x∈Gki

xTljx ≤ d(1−m) for some m > 0, i.e., all the subsequent points

xlj are far enough from the curve Gki.
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3. There is precisely one point x̄ki ∈ Gki such that x̄Tkihki = d(1− cm), where c > 1 is chosen
large enough. Denote Ḡki as the set of points on Gki between xki and x̄ki. Then, we assume
that, for all (l, j) < (k, i), max

x∈Ḡk,i,y∈Gl,j\Ḡl,j

xT y ≤ d(1−m).

4. The length of Gki is no more than 2π
√
d.

5. m is chosen small enough s.t. 10cm ≤ (d− max
j(ki)̸=j(lp)

h̄Tj(ki)h̄j(lp))/d.

It is clear that a construction satisfying these properties exists, since the constants B, c,m are
chosen with respect to X,H and the number of points we consider is finite. We also note that this
requires the inner dimension of the representations to be at least 4 since this would not be possible
on a 2D circle.

The idea of the construction is as follows. Take L large enough and divide the layers into
N + K̄ + 1 blocks. The first N blocks are of the same number of layers L1, and the depth of the last
one will be specified later. Each of the first N blocks of layers will focus on a single sample, while
not changing the representation of the other samples at all. The goal of the ki-th block is to only
move the ki-th sample on its curve towards hki, until it hits x̄ki. Then, the K̄ next blocks of depth
L2 will move all the samples corresponding to the same j(ki) at once, ever closer to their respective
h̄j(ki) vectors. Finally, the very last block which consists of the very last layer will simply be chosen
as the optimal WL corresponding to H.

We will now construct explicitly all the layers. Denote by W l
ki, b

l
ki the parameters of the l-th layer

of the ki-th block and define xlki to be the feature representation of the ki-th sample as an input to that

layer. Consider a sphere with center xlki and radius αl
kim

√
d

2
√

d+m2/4
, where αl

ki is a small-enough number

whose role will be clear soon. Since this sphere is small enough and Gki has bounded curvature, there
exists exactly one point x̃l+1

ki on the intersection between Gki and the considered sphere which is

closer to hki as xlki. Denote dlki =
x̃l+1
ki −xl

ki

∥x̃l+1
ki −xl

ki∥
=

x̃l+1
ki −xl

ki

αl
ki

m
√
d

2
√

d+m2/4

. The weights are constructed as follows:

W l
ki = αl

ki

1+ m
2 d

l
ki√

d+m2/4

(xlki)
T

√
d

, (16)

blki = −
(
1− m

2

) αl
ki

√
d√

d+m2/4
1,

if (xlki)
Thki ≤ d(1 − cm), otherwise W l

ki = 0; blki = 0. The αl
ki is an optimizable parameter

and since the form above is also W ’s SVD, it is its singular value. Thus, σ(W l
kix

l
ki + blki) =

αl
kim

√
d

2
√

d+m2/4
(1 + dlki), while σ(W l

kix
l
st + blki) = 0 for any (s, t) ̸= (k, i) thanks to our margin

definition. Therefore, before xki hits its final destination, we have

xl+1
ki = LN

(
xlki +

αl
kim

√
d

2
√

d+m2/4
(1+ dlki)

)
=

√
d

(
xlki +

αl
kim

√
d

2
√

d+m2/4
dlki

)
∥∥∥∥xlki + αl

kim
√
d

2
√

d+m2/4
dlki

∥∥∥∥ = x̃l+1
ki .

From this, it is clear that xki is moving along and on the curve, while the other samples stay stationary.
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It remains to compute how fast xki travels along the geodesic with this construction. To this end,
denote βl

ki := ∢(xlki, x̄ki) as the spherical angle between xlki and x̄ki. Let ∆βl
ik := βl+1

ki − βl
ki, i.e.,

the angle shift of xlki in the l-th layer of the ki-th block. Using simple trigonometry we can compute:

∆βl
ik = 2arcsin

(
αl
kim

2
√

d+m2/4

)
≥ m

4
√
d
αl
ki,

where the inequality holds for αl
ki small enough.

Therefore, it suffices to choose L and L1 large enough and set αl
ki =

4
√
dβl

ki
L1m

if (xlki)
Thki ≤

d(1− cm) and 0 otherwise. In this way, the total regularization cost of the layers in the first N blocks
can be upper bounded as

λ

2

K,n,L1∑
k,i,l

∥∥∥W l
ki

∥∥∥2
F
≤ 32dπ2λN

L1m2
.

We see that this cost goes to 0 as L1 goes to infinity.
After N blocks, all the samples now lie within the c-multiple of margin ((xL1

ki )
Thki ≥ d(1−cm))

of their respective optimal hki features. The goal of each of the K̄ blocks is to move the corresponding
samples in the j-th group all together ever closer to these final vectors. Since this time the construction
will be equivalent for all the samples within one group, we will refer to these samples simply as a
single j-th sample in the l-th layer of the respective block, using the notation xlj . We define all layers
in the j-th block as follows:

W l
j = αl

j

1+ cmh̄j∥∥1+ cmh̄j
∥∥ h̄Tj√

d
,

blj = − (1− 2cm)
αl
j

√
d∥∥1+ cmh̄j
∥∥1,

where again αl
j is an optimizable parameter. By similar computations as above, the above construction

makes sure that σ(W l
jx

l
j + blj) =

αl
j

∥1+cmh̄j∥((h̄
T
j x

l
j − d+ 2cmd)1+ cmh̄Tj x

l
j h̄j) while σ(W l

jx
l
i +

blj) = 0 for i ̸= j. After subtracting the mean in the layer norm we are adding
αl
jcmh̄T

j xl
j

∥1+mh̄j∥ h̄j , which is

at least a
αl
jcm

2
√
d

multiple of h̄j . Denote βl
j = ∢(xlj , h̄j) and ∆βl

j = βl+1
j − βl

j .

Using trigonometry again, we get:

∆βl
j ≥ arctan

(
αl
jcm sin(βl

j)

2
√
d(1 + αl

jcm cos(βl
j)/(2

√
d))

)
≥

αl
jcm sin(βl

j)

4
√
d(1 + αl

jcm cos(βl
j)/(2

√
d))

≥
αl
jcmβl

j

16
√
d

,

where all inequalities hold from basic properties of trigonometric functions for small-enough angles.

Thus, the angular shift is lower bounded as follows: ∆βl
r ≥

αl
jcmβl

j

16
√
d
. If we choose αj = αl

j constant

across layers, we get βL2
j ≤

(
1− αjcm

16
√
d

)L2

β0
j .

20



NEURAL COLLAPSE IN RESNETS AND TRANSFORMERS

We will choose αj =
16

√
d log(L2)
cmL2

. Then, the total regularization of the layers in the penultimate
blocks is upper bounded as follows:

λ

2

L2,K̄∑
l,j=1

∥∥∥W l
j

∥∥∥2
F
≤ 27Ndλ log(L2)

2

m2L2
.

This goes to zero linearly up to poly-log factors as L2 goes to infinity. Finally, we have that the
final positions xL2

ki of the samples converge fast to their optimal counterparts hki with L. To see this,

plugging our choice of αj into βL2
j ≤

(
1− αjcm

16
√
d

)L2

β0
j we get βL2

j ≤
(
1− log(L2)

L2

)L2

β0
j ≤ 2β0

r
L2

,

so the samples converge linearly to their optimal positions as L1, L2 −→ ∞. From the continuity
of the fit part of the loss, we see that the total loss of this construction indeed converges to L∗

GUFM
of the corresponding GUFM problem. Therefore, our upper bound on the loss of globally optimal
solutions converges to L∗

GUFM and evoking Lemma 8 we know that a (WL, XL) optimal for (3) is
nearly optimal for (4) and thus exhibits the required convergence.

Next, we continue with the proof for L-Tx1. Notice that, if we can ensure after the end of the
first block that all the different contexts have different representations and that two representations
of different contexts don’t lie on a line with some of the final positions hki, then by setting all the
weights in attention layers of the subsequent blocks to 0, the rest of the transformer becomes a
ResNet with LayerNorm and we can apply an identical construction as in the L-RN1 part to conclude.
The only caveat (except making sure that the margin is positive) is that, since the total regularization
loss of the construction for L-RN1 goes to 0 with L going to infinity, we must make sure that the
same is true for the first block. However, as we will see, this will make the margin m a function of
L that slowly goes to 0. To compensate for this, we will need to set the layers in the subsequent
blocks accordingly bigger, and we will make sure that the margin goes to 0 slowly enough so that
this adjustment will not qualitatively change the results. Another issue we have to deal with is that
if the norm of the WQK matrix has to go to 0, the attention weights must necessarily converge to
uniform. Thus, our construction must withstand this burden.

We will start with the construction of the embedding matrices. The embedding matrix We ∈
Rd×d0 will just lift the dimension to the inner-dimension of the transformer dl ≥ 2V + 2, i.e., the
v-th column of We is ev in dl-dimensional space. Then, the (C − i)-th column of Wp ∈ Rd×C will
be a · e2V+1 + b · e2V+2, where a, b > 0 are the unique solutions of the following two equations:
a+ b = −1 and a2+ b2 = 22(i+1)− 1. Thus, after the embedding layer, the sum of the entries of the
entire embedding is 0 and after the first normalization layer, the j-th token at the (C − i)-th position
will have

√
d2−(i+1) on its j-th entry and the only other non-zero entries will be at positions 2V + 1

and 2V + 2.
Let us construct the first block. Here, all MLP layers will be set to 0 so that they have zero

effect. Moreover, due to the constraints discussed above, attention matrices WK ,WQ or WQK will
also be set to zero. Finally, the value and output matrices will be set as WV = WO =

√
γ(L)A or

WV O = γ(L)A, where A shifts all entries from the range 1, . . . , V to the range V + 1, . . . , 2V, and
γ(L) is a decreasing function converging to 0 at infinity that will be defined later. This ensures that
the representations before and after attention are summed in the residual connection on different
positions, which will be technically convenient later. Since the attention matrices are identically zero,
the attention weights corresponding to the c-th token will just be uniform 1/c for all the tokens up
to this one. Therefore, the representation of the c-th token after the attention layer and before the
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residual connection is the γ(L)-multiple of the average of all the representations of the previous
tokens and itself from an input to the first block shifted by V positions.

We now show that two different contexts must necessarily have different representations, which
gives that the margin after block 1 is non-zero. If we compare two samples (contexts) with different
context lengths, then they will necessarily have different numbers of distinguishable summands
(i.e. various negative powers of 2, divided by the sample’s context length) present in the entries
between (V + 1)-th and 2V -th. Since there is a different number of summands, there must exist at
least one entry where the number of summands disagree, and the numbers in this entry must have
different numbers of ones in their binary representation, which guarantees that samples with different
context lengths must have different representations. Furthermore, two samples with the same context
length but different contexts will be divided by the same averaging number, but then they can be
distinguished since the map from contexts to representations (without dividing by the context length)
is injective due to the uniqueness of the binary representation of the summands.

Therefore, all non-identical contexts have different representations and, in addition, the previous
argument also shows that every pair of representations of two different contexts is linearly indepen-
dent. This remains true after the residual connection. If we choose γ(L) small enough for all L, then
the original encodings of the current token will not mix up with the much smaller summands from
the attention layer. The relative size of all the summands stays the same also after normalization
and the MLP block has no effect, so all different contexts have different representations after the
first layer. The only issue we could face is that the representations end up coinciding with one
of the hki’s. To avoid this, WO or WV O can implement a tiny rotation. Since the number of tiny
rotations is uncountably infinite, there is at least one for which there is no intersection. Let

√
dm̃

be the minimal distance between representations of any two samples after the attention mixing,
before the multiplication by value and output matrices and before the residual connection. Note that
m̃ is positive and independent of X,Y, L, because the different contexts are all pairwise linearly
independent. Then, after the multiplication by the value and output matrices, such distance will be
γ(L)

√
dm̃. For small enough γ(L), the worst-case addition in the residual connection corresponds

to the case in which the two samples with the same latest token also realize the margin minimum.
However, if γ(L) ≤ 0.1, then the difference of the samples after the residual connection and after
the normalization is at least equal to the distance between the representations on positions V + 1 to
2V, which is at least γ(L)

√
dm̃. Thus, this is the minimum pairwise distance of the data after the

first attention block.
Next, we can apply the construction for L-RN1 if we set all the remaining attention layers to

zeros, since then the remainder of the network will be functionally equivalent to L-RN1. The only
remaining issue is that the margin after the first layer is a function γ(L) of the total number of
layers. To choose a good scaling of γ(L), we need to consider the elements of the construction for
L-RN1 that depend on the margin, which is the sum of the Frobenius norms of the layers in the
first N + K̄ blocks. This is upper-bounded by 32π2λNd

L1m2 + 128Ndλ log(L2)2

m2L2
. Therefore, if we choose

γ(L) = Θ(L
1/4
1 ) = Θ(L

1/4
2 ), then both the sum of Frobenius norms of the layers in first N layer

blocks, as well as the Frobenius norms of WV ,WO or WV O in the first block of the transformer will
go to 0 as L1, L2 −→ ∞. This concludes the proof. ■

Proof of Corollary 5. This is a straightforward combination of Lemma 9 and Theorem 4 once we
use that identical contexts for transformers are only labeled by one class, which allows to directly
apply the lemma. ■
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Proof of Theorem 10. The proof follows that of Theorem 4. The only difference is that the

construction of the weight matrices changes so that W l,1
ki and bl,1ki have

√
αl
ki in place of αl

ki. The

second layers’ weight matrices W l,2
ki are defined as

√
αl
ki-multiples of the projection matrix on the

span of the output of the first sub-layer on sample xlki, so that the total mapping will be identical to
the single-layer construction. Using analogous computations as above, we get:

λ(L)

2

K,n,L1∑
k,i,l

∥∥∥W l,1
ki

∥∥∥2
F
+
∥∥∥W l,2

ki

∥∥∥2
F
≤ 16

√
dπλ(L)N

m
,

and for the second part of the blocks we get:

λ

2

L2,K̄∑
l,j=1

∥∥∥W l,1
j

∥∥∥2
F
+
∥∥∥W l,2

j

∥∥∥2
F
≤ 16N

√
d log(L2)λ(L)

m
.

In order for the sum of these two components to go to zero, we need λ(L) = o(log(L2)
−1) and we

can choose L1 = Θ(L2). The rest of the proof is identical to that of Theorem 4. ■

Proof of Corollary 11. This is a straightforward combination of Lemma 9 and Theorem 10 once
we use that identical contexts for transformers are only labeled by one class, which allows to directly
apply the lemma. ■

Appendix G. Alternative architectures

G.1. Vision transformers

For vision transformers, the data is tensor-like X0 ∈ RN×d0×C , where C now denotes the number
of patches and d0 is the dimension of the patch. However, the labels remain two-dimensional
Y ∈ RN×K . What is considered as a sample depends on how labels are produced in the transformer.
The simplest option (w.r.t. the rest of our paper) is to generate the prediction on the last patch of
the sequence, keeping the causal mask. This will, however, change the definition of “samples” and
the NC metrics, since we only need to focus on the last patch. Therefore, samples will only be
considered as the last patch, and the NC metrics will only be defined over the representations of the
last patches. Similarly, the equivalent DUFM will also correspond to the last patches.

Theorem 4 and 10 and, thus, also Corollary 5 and 11 hold for vision transformers too, as long as
we do the following changes to the proof of Theorem 4 (the other statements are adjustable trivially
once this is established).

Necessary adjustments to the proof. Together with the uniqueness of the labeling function, we
will also assume that the samples are taken from a continuous distribution (which is reasonable in
the vision domain). This guarantees that the feature representations of the final patches are unique
also after the first transformer block, as the event that averages over patches of two different samples
coincide has zero probability. The rest of the proof is similar to that of Theorem 4, but the subsequent
MLP layers only focus on the movement of the last patches’ representations and the movement of
the other patches is irrelevant.
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G.2. Pre-LN ResNets and transformers

Unlike the post-LN ResNets (Definition 6) and transformers (Definition 7), the pre-LN architectures
apply the LayerNorm directly before the attention and/or linear layers, but only within the residual
connection, leaving the main residual stream untouched. While this potentially makes the features at
initialization grow linearly with depth, it makes for more stable gradients thanks to the direct residual
path, avoiding LayerNorms that can serve as error propagation channels. This significantly simplifies
the training dynamics and therefore the pre-LN transformers are currently being predominantly used.
For this reason, we fully define the pre-LN architectures here and then discuss in sufficient amount
of detail how to adjust the proof for this setting, since the results are qualitatively the same.

Definition 12 An L-block pre-LN ResNet with LayerNorm and one linear layer per block (later
referred to as pre-L-RN1) is defined as

fθ = linL ◦LN ◦(id+σ◦linL−1 ◦LN)◦(id+σ◦linL−2 ◦LN)◦· · ·◦(id+σ◦lin1 ◦LN)◦LN ◦ lin0,
(17)

where linl(x) = Wlx+ bl for all l ∈ {0, . . . , L} and θ is the collection of all learnable parameters.
We denote as X1 = LN(W0X0 + b0), Xl+1 = Xl + σ(Wl LN(Xl) + bl) (l ∈ {1, . . . , L − 1}),
fθ(X0) = XL+1 := WL LN(XL) the intermediate representations of the training data stored in a
matrix form. We assume that all intermediate representations Xl (l ∈ {1, . . . , L}) are of dimension
d. Analogously, L-RN2 denotes a ResNet with two linear layers per block defined as

fθ = linL ◦LN ◦(id+ linL−1,2 ◦σ ◦ linL−1,1 ◦LN) ◦ · · · ◦ (id+ lin1,2 ◦σ ◦ lin1,1 ◦LN) ◦LN ◦ lin0,
(18)

with X1 = LN(W0X0 + b0), Xl+1 = Xl +Wl,2σ(Wl,1 LN(Xl) + bl,1) + bl,2 (l ∈ {1, . . . , L− 1})
and fθ(X0) = XL+1 := WL LN(XL).

Definition 13 An L-block pre-LN transformer with one or two linear layers in the attention sub-
block and one or two layers in the MLP sub-block (later referred to as pre-L-T11, pre-L-T12,
pre-L-T21, pre-L-T22 based on the number of linear layers in attention and MLP sub-blocks,
respectively) is defined as

fθ(Z) = linL+1 ◦LNL+1 ◦BL ◦ · · · ◦ B1 ◦LN0 ◦Embed(Z). (19)

Here, linL+1(Z) = WL+1Z + bL+1 is the last layer (bL+1 is a matrix with the same number of
columns as Z that are all identical); Embed(Z) = WeZ + Wp is the embedding layer with We

being the token embedding and Wp (having the same shape as WeZ) the positional embedding; and
the l-th block is given by

Bl = (id+MLPl ◦LNl,2) ◦ (id+ATTNl ◦LNl,1). (20)

Such block consists of the normalization layers LNl,1,LNl,2, the MLP

MLPl(Z) = σ(WlZ + bl), or MLPl(Z) = Wl,2σ(Wl,1Z + bl,1) + bl,2, (21)

respectively for the architecture pre-L-Tx1 and pre-L-Tx2, and the single-head attention

ATTNl(Z) = WV OZAl(Z), Al(Z) = softmax(M + ZTWQKZ/
√
d),

or ATTNl(Z) = WOWV ZAl(Z), Al(Z) = softmax(M + ZTW T
KWQZ/

√
d),

(22)

respectively for the architecture pre-L-T1x and pre-L-T2x. The matrix M is the masking matrix
whose entries are −∞ on the lower triangle and 0 on the upper triangle and the diagonal.
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We note that the first LayerNorm right after embedding layer, which might not be used in practice
often, is introduced for technical convenience but does not change the results qualitatively. Theorem 4
and 10 and, thus, also Corollary 5 and 11 hold for pre-LN architectures too, as long as we do the
following changes to the proof of Theorem 4 (the other statements are adjustable trivially once this is
established).

Necessary adaptations to the proof. This architecture has the disadvantage that it does not
immediately absorb deviations from the zero-sum sphere and therefore, technically, the single linear
layer architectures can only add non-negative changes to the residual stream. However, we argue that
an almost identical construction to the one in proof of Theorem 4 works here as well. Note that the
construction from this proof, see (16):

W l
ki = αl

ki

1+ m
2 d

l
ki√

d+m2/4

(xlki)
T

√
d

,

blki = −
(
1− m

2

) αl
ki

√
d√

d+m2/4
1,

will result in a shift in xki that can be written as αl
kim

√
d

2
√

d+m2/4
(1+ dlki) and the 1 will not get absorbed

in the residual stream, but is orthogonal to the zero-sum component of the movement of xki and it
will get absorbed in the next LayerNorm within the next residual stream. This allows us to copy the
entire first part of the post-LN proof by mimicking the trajectories of the unit ball, while adding the

constant amount of αl
kim

√
d

2
√

d+m2/4
−multiple of all-ones vector in each round. Therefore, after the first

N blocks, the projections of all the samples on the zero-sum hyperplane are identical to those in
the post-LN proof. Each sample, however, has a different component in the direction of the all-one
vector. This will, however, be absorbed by the last LayerNorm. Moreover, by triangle inequality, the
margin of the trajectories in this extended space is at least as big as the margin of the trajectories
on the zero-mean ball. The construction for the next K̃ blocks works by the same reasoning as
well. Thus, after these layers, the projections of the samples on the zero-sum ball are identical to the
post-LN proof and the last LayerNorm will absorb the component along the all-ones vector.

As for the transformers, although after the first block the samples are not centered and do not all
have norm

√
d, after applying the LayerNorm in the first subsequent MLP block, they will all be

distinct (except the ones with identical contexts). Therefore, we define the same trajectories as in the
ResNet construction with the centered and normalized features, but we will perform an equivalent
movement on the zero-mean ball with the radius equal to the norm of the projection of the particular
sample onto the zero-mean hyperplane, while ignoring the all-ones component completely. As a
result, each sample moves on its own cylinder, a projection to the zero-mean hyperplane following the
trajectories on the normalized zero-mean ball, while moving arbitrarily along the all-ones direction.
As before, a triangle inequality guarantees that the margin defined on the zero-mean normalized ball
is not violated in the wider space during this process. The only caveat is that, if the norm of the ball
along which a sample is traveling is larger than that of the

√
d-normed ball, we need to upscale αl

ki

by that ratio. Note that the size of the vector after the first block is upper bounded independently of
the number of layers, therefore such an upscaling will only multiply the cost of weight matrices by a
constant. The rest of the argument follows that of the adaptation for pre-LN ResNets.
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Appendix H. Two linear layers per block with non-vanishing or uniform weight decay

Here, we intuitively describe why the NC metrics in general do not approach the perfect NC in
architectures with two linear layers per residual block as the depth goes to infinity, if the regularization
is non-vanishing or vanishes uniformly across all layers. The key is the simple inequality ∥AB∥F ≤
∥A∥F ∥B∥F . We can interpret these matrices as features, weight matrices and the change on the
features added to the residual. In particular, in a ResNet with a single linear layer per block we
have ∥∆Xl∥F ≤ ∥Wl∥F ∥Xl∥F (∆Xl is the outcome of the residual branch added back to residual
stream) and, importantly, this inequality can be made equality in some cases. Even if the inequality
does not hold as an equality, we still have that, for fixed Wl, Xl, if ∆Xl = σ(WlXl) ̸= 0, then due
to homogeneity c∆Xl = (cWl)Xl. This makes the total change Wl makes to Xl scale linearly with
c, but its cost is quadratic. Therefore, if the directional derivative of the loss w.r.t. ∆Xl at layer l is
strictly positive, then there exists c > 0 for which cWl will make an improvement against Wl = 0.
However, if two linear layers are involved, we have

∥∆Xl∥F ≤ ∥Wl,2σ(Wl,1Xl)∥F ≤
√
N/4

(
∥Wl,1∥2F + ∥Wl,2∥2F

)
.

Therefore, any change to the features will scale linearly with the regularization cost of the matrices
that were responsible for this change. In this case, the opposite to the previous statement holds: if the
directional derivative of the loss w.r.t. ∆Xl is small enough, then for small c, the c-scaling of weight
matrices will necessarily worsen the loss compared to doing nothing.

As we have seen in the proof of Lemma 9 for the MSE loss (but this also holds for the CE
loss), an O(ϵ)-sized perturbation around the global optimum of neural collapse causes only an O(ϵ2)
increase in the loss. Furthermore, the derivative is zero at NC and locally Lipschitz around that point,
which implies that the size of the derivative is O(ϵ). For any input dataset X that is not yet collapsed,
if the points WL, XL in the set of global optima M̃L,2 did approach NC in the limit, we could, by
contradiction, take an optimum that is ϵ-close to NC (for a sufficiently small ϵ) and zero-out all the
last layers that were responsible for moving the samples by a total amount of Θ(ϵ) shift (this would
need care in a rigorous proof because of the possible discontinuity of the layer-to-feature mapping).
The change in the fit part of the loss would be O(ϵ2), but thanks to the above inequality, the total
regularization cost saved by this would be Ω(ϵ), so the loss would improve and we would arrive at a
contradiction.

The above argument holds for constant regularization λ. However, even if the regularization was
vanishing, but it was the same for WL and for the rest of the network, the NC would still not be
approached. To see this for MSE loss, consider a perturbed perfect scenario where the input data is
X = IK ⊗1Tn +E and E is a perturbation matrix of size Θ(ϵ). X is already ϵ-close to NC. To move
X Θ(ϵ) closer to NC, we need Θ(λLϵ) cost in terms of the weight matrices. Let us now compute the
improvement in the corresponding GUFM objective that results from doing so. The DUFM objective
with MSE is 1

2N ∥WXL − Y ∥2F + λL
2 ∥W∥2F . If we simplify the problem to just fitting a single row

of W (the optimization problem is separable, so this is w.l.o.g.), we have a simple ridge regression
solution for w. In particular

w∗ = (nIK + λLIK +O(ϵ))−1(IK ⊗ 1Tn +O(ϵ))y.

Therefore, the distance from the unperturbed fit (nIK + λLIK)−1(IK ⊗ 1Tn )y is itself O(ϵ) and
plugging this in the loss, we see that the change in the loss function is O(λLϵ

2) which, for sufficiently
small ϵ, is less than the price in terms of weight regularization.
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Figure 2: log10 of NC1, NC2 and NC3 metrics respectively in the left, middle and right column, as
a function of L. Top: pre-LN L-T11 on IMDB; Bottom: L-RN2 on MNIST with constant
λ = 0.0025 and λ = 0.005L−1.

Appendix I. Additional experimental results and details

We train ResNets and transformers on MNIST [28], CIFAR10 [30] and IMDB [20] with increasing
depths in {2, 3, 5, 8, 13, 21, 34}. The hidden dimension is 64, the learning rate 0.005 for vision
and 0.001 for language and the regularization 0.005 for architectures having one linear layer per
block and 0.005/L for architectures having two linear layers per block. Each setting is trained for 5
different random seeds for 5000 epochs on CE loss, the results are averaged, and the error bars at one
standard deviation are reported. We use pre-LN transformers for language experiments and, due to
training instabilities, only report the runs which converged by the end of the training.

In Figure 2, we provide additional experimental results. In particular, the top row considers the
pre-LN L-T11 trained on the IMDB dataset, while the bottom row considers the L-RN2 with both
constant 0.0025 and variable 0.005/L weight decay. The results and the message are consistent with
those of Section 5. We can also see that constant regularization in L-RN2 does not bring almost any
improvement in NC metrics or even worsens them, in contrast with scaling the weight decay as 1/L.
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