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Abstract
Missing data problems have many manifestations
across many scientific fields. A fundamental type
of missing data problem arises when samples are
truncated, i.e., samples that lie in a subset of the
support are not observed. Statistical estimation
from truncated samples is a classical problem in
statistics which dates back to Galton, Pearson,
and Fisher. A recent line of work provides the
first efficient estimation algorithms for the param-
eters of a Gaussian distribution (Daskalakis et al.,
2018) and for linear regression with Gaussian
noise (Daskalakis et al., 2019; 2021b; Plevrakis,
2021).

In this paper we generalize these results to log-
concave exponential families. We provide an es-
timation algorithm that shows that extrapolation
is possible for a much larger class of distributions
while it maintains a polynomial sample and time
complexity. Our work also has interesting impli-
cations for learning general log-concave distribu-
tions and sampling given only access to truncated
data.

1. Introduction
In many statistical estimation and inference problems, we
have access to only a limited part of the data that would
be necessary for the classical statistical methods to work,
which motivates the development of statistical methods that
are resilient to missing data (Little & Rubin, 2019). Trun-
cation (Maddala, 1986; Cohen, 2016) is a fundamental and
frequent type of missing data and arises when samples that
lie outside a subset of the support are not observed and their
count is also not observed. Statistical estimation from trun-
cated samples is the focus of the field of truncated statistics,
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which was developed since the beginning of the twentieth
century starting with the work of Galton (Galton, 1897),
Pearson and Lee (Pearson, 1902; Pearson & Lee, 1908),
and Fisher (Fisher, 1931). Truncated statistics is widely
applicable in Econometrics and many other theoretical and
applied fields (Maddala, 1986).

A recent line of work establishes the first sample optimal and
computationally efficient methods for fundamental statisti-
cal estimation problems from truncated samples (Daskalakis
et al., 2018; Kontonis et al., 2019; Daskalakis et al., 2019;
2020a; 2021b; Ilyas et al., 2020; Plevrakis, 2021). All the
aforementioned works though heavily rely on the Gaus-
sianity of the distribution of data or the Gaussianity of the
noise in regression problems. Gaussianity is an idealized
assumption and the question of generalizing truncated statis-
tics beyond Gaussianity has been explored in many existing
works, e.g., (Beg, 1982; Hannon & Dahiya, 1999; Raschke,
2012). The only results in this regime though are for single
dimensional problems and truncations that can be described
as intervals.

In this work we provide statistically and computationally
efficient methods for estimating the parameters of exponen-
tial families from truncated samples. Our results generalize
the recent work of (Daskalakis et al., 2018) and is the first
to provide an estimation algorithm for this problem for a
general class of exponential families and for a general class
of truncation biases.

Exponential families are one of the most influential type
of distribution classes since they include many fundamen-
tal distributions such as normal, exponential, beta, gamma,
chi-squared, and Weibull distributions. They were first in-
troduced by Fisher (Fisher, 1934) and later generalized by
(Darmois, 1935; Koopman, 1936; Pitman, 1936). The esti-
mation of the parameters of exponential families over con-
tinuous domains is the subject of many classical and recent
results; starting from the work of Fisher (Fisher, 1934) until
the recent results of (Kakade et al., 2010; Shah et al., 2021).
This line of work has also found applications in many areas
of statistics including causal inference (Shah et al., 2022).
Our work contributes in this line of research as well since
we show how to estimate exponential families even when
we only have access to truncated samples.
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Main contribution. The best of our knowledge, this work
is the first which develops a computationally and statistically
efficient algorithm for learning from samples truncated to
very general sets S of the form in (Daskalakis et al., 2018)
in high dimensions whose distribution does not rely on
Gaussianity. Our main result is the following.
Informal Theorem 1.1 (See Theorem 3.1 for the formal
statement). Under Assumptions A1, A2, A3, and given
samples n from pSθ∗ , where S is a measurable set to which
we have oracle access, there exists an estimation algorithm
with running time poly(m, k, n) that outputs θ̂ such that
with probability at least 99%, ∥θ̂ − θ∗∥ < Õ

(√
k/n

)
.

Our main result has the following important implications:

▷ We show that our assumptions are satisfied from expo-
nential distributions, Weibull distributions, continuous
Bernoulli, continuous Poisson, Gaussian distributions,
and generalized linear models. Hence, our result im-
plies an efficient method for estimation from truncated
samples for all these distribution classes.

▷ Another interesting corollary of our result is that we
can combine it with the ideas of (Daskalakis et al.,
2021a) and get a general method for learning log-
concave distributions from truncated samples. In par-
ticular, assume that we want to learn from truncated
samples a distribution that can be written in the form
p(x) ∝ exp(−f(x)) where f is a concave function.
Now under mild assumptions, we can replace f(x)
with a finite Taylor approximation, i.e., we have that
f(x) ≊

∑
i aiti(x) for some polynomials ti(x). Then,

using our method we can estimate the parameters ai
and output an estimation of p.

▷ In the context of sampling, the negative log-likelihood
is the score function that is needed to run Langevin
dynamics (e.g., see (Liu et al., 2022; Chewi, 2022)).
Our result also says that we are able to sample from
the original distribution, given that we only observe
truncated samples.

1.1. Related Work

Our most related literature is the recent series of works
on truncated statistics which includes the following re-
sults: estimation of multivariate normal distributions
(Daskalakis et al., 2018), linear regression with Gaus-
sian noise (Daskalakis et al., 2018; Kontonis et al., 2019;
Daskalakis et al., 2019; 2020a; 2021b; Plevrakis, 2021), esti-
mation of product distributions over the hypercube (Fotakis
et al., 2020), non-parametric density estimation (Daskalakis
et al., 2021a). All of these works heavily rely on properties
of the Gaussian distributions, or product distributions over

the hypercube, or their dependence in the number of dimen-
sions is not efficient, e.g., (Daskalakis et al., 2021a). In our
work we identify the properties of exponential families that
are only required to get the efficient estimation results and
we show that linear dependence on the dimension is achiev-
able in settings that are more general than the Gaussian
case.

Another related work is that of (Liu et al., 2022) that solves
parameter estimation of a truncated density given samples
through the score matching technique. To derive a tractable
objective, we need appropriate boundary conditions which
are not satisfied by truncated densities, but (Liu et al., 2022)
instead uses a modified weighted Fisher distance given that
the truncation set S is a Lipschitz domain (a type of open
and connected set). On the other hand, our work assumes no
particular structure about S and hence our results are more
general and applicable in much more complicated settings
for exponential families.

2. Preliminaries
Notation. Lowercase bold letters will denote real-valued
vectors, e.g., x ∈ Rm, and uppercase bold letters will denote
matrices with real values, e.g., A ∈ Rn×m. For a random
vector x ∼ ρ, Cov[x] = Cov[x,x] = E[(x − E[x])(x −
E[x])⊤] is its covariance matrix, and Var(x) is the trace
of the covariance matrix (a scalar value). Depending on
whether it is clear from context, Cov and Var may include
subscripts to indicate the distribution ρ.

Exponential Families. Let x ∈ X ⊆ Rm. We are inter-
ested in a class of densities which have the form,

pθ(x) = h(x) exp(θ⊤T (x)−A(θ)),

where h : Rm 7→ R+ is the base or carrier measure, θ ∈ Θ
with Θ = {θ ∈ Rk : A(θ) < ∞} is the natural param-
eter space, T : Rm 7→ Rk is the sufficient statistic for θ,
and A(θ) = logZ(θ) is the log-partition function, where
Z(θ) =

∫
pθ(x)dx.

A regular exponential family is one where Θ is an open set.
It is minimal if the θ and T (x) are each linearly indepen-
dent. Any non-minimal family can be made minimal by
appropriate reparametrization. In any regular exponential
family, A(θ) is convex. It is strictly convex if the repre-
sentation is minimal. Exponential families have several
nice properties (e.g., see Theorem 1 of (Busa-Fekete et al.,
2019)), among which are that ∇A(θ) = Epθ

[T (x)] and
∇2A(θ) = Covpθ

[T (x)].

Truncated Distributions. Let ρ be a probability distri-
bution on Rm. We represent ρ as a probability density
function with respect to the Lebesgue measure dx on Rm.
Let S ⊆ Rm be such that ρ(S) = α for some α ∈ (0, 1].
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Let ρS := ρ(· | · ∈ S) be the conditional distribution of
x ∼ ρ given that x ∈ S. Concretely, the density of ρS is

ρS(x) =
ρ(x) · 1{x ∈ S}

ρ(S)
.

For exponential families, we have the truncated density
pSθ (x) is:

pSθ (x) =
pθ(x)∫

S
pθ(x)dx

1{x ∈ S}

=
h(x) exp(θ⊤T (x))∫

S
h(x) exp(θ⊤T (x))dx

1{x ∈ S}.

Sub-Exponential Distributions. Although the term
sub-exponential has been overloaded (e.g., (Goldie &
Klüppelberg, 1998) v.s.(Vershynin, 2018)), the definition
we will use describes a class of distributions whose tails
decay at least as fast as an exponential, but with potentially
heavier tails than Gaussians (Vershynin, 2018).

There are several equivalent characterizations of sub-
exponential random variables (e.g., see Prop. 2.7.1 of (Ver-
shynin, 2018)), one of which uses the moment generating
function.

Definition 2.1 (Sub-exponential random variable). A cen-
tered, real-valued random variable X ∈ SE(ν2, β) is sub-
exponential with parameters ν2, β if

E[eλX ] ≤ e
ν2λ2

2 , ∀λ : |λ| < 1/β.

Membership Oracle of a Set. Let S ⊆ Rm. A mem-
bership oracle is an efficient procedure which computes
1{x ∈ S}.

3. Projected Stochastic Gradient Descent
Algorithm

Problem Setup. We are given truncated samples {xi}ni=1,
with each xi ∼ pSθ∗ , where pθ∗(S) = α > 0. Without
knowledge of the truncation set S beyond access to a mem-
bership oracle, can one recover θ∗ and thus pθ∗ efficiently?

We answer this question positively, under the following
assumptions:
Assumption A1 (Strong Convexity, Smoothness of Non-trun-
cated Negative Log-Likelihood over Θ).

λI ⪯ Covz∼pθ
[T (z), T (z)] ⪯ LI ∀θ ∈ Θ,

for some λ, L > 0. Here, we’ve abused notation for Θ
which can be a subset of the entire natural parameter space.
Assumption A2 (Log-Concave Density). The density pθ(x)
is log-concave in x.

Assumption A3 (Sufficient Statistics T (x) is polynomial in
x). T (x) ∈ Rk has components which are polynomial in x,
with degree at most d.

Theorem 3.1 (Main). Given membership oracle access
to a measurable set S whose measure is some constant
α ∈ (0, 1] under an unknown exponential family distri-
bution pθ∗ which satisfies A1, A2, A3, and given samples
x1, . . . ,xn from pθ∗ that are truncated to this set, there
exists an expected polynomial-time algorithm that recovers
an estimate θ̂. That is, for any ϵ > 0 the algorithm

• Uses an expected Õ(k/ϵ2) truncated samples and
queries to the membership oracle,

• Runs in expected poly(m, k, 1/ϵ) time.

• Produces an estimate θ̂ such that with probability at
least 99%,

∥θ̂ − θ∗∥ < ϵ.

In order the solve this problem, we need to define an ob-
jective whose optimum is θ∗ and we need to be able to
recover it uniquely. To use maximum likelihood estimation
(or minimize the negative log-likelihood), we have to be
able to compute gradients which depend on the truncation
set S, which we cannot do directly without more knowledge
about S. However, we can sample unbiased estimates of
the gradient, as long we have non-trivial mass on S at a cur-
rent parameter estimate (otherwise the truncated likelihood
function at that parameter is not well-defined and rejection
sampling would take infinite time). To address all of these
issues, the organization of this section is as follows:

• Section 3.1 establishes that after truncation, the neg-
ative log-likelihood remains strongly convex and
smooth (in θ) over a subset of parameters which have
non-trivial mass on the truncation set.

• In Section 3.2, we show that while we do not know the
truncation set, we can solve the non-truncated MLE
problem with truncated samples to find an initial param-
eter θ0 which assigns non-trivial mass to the truncation
set.

• Then given this θ0, in Section 3.3 we show that we
can construct a set of parameters K which all assign
non-trivial mass to the truncation set (and contains the
true parameter θ∗).

• In Section 3.4, we use results from the previous sec-
tions to prove that we can efficiently recover the true
parameter θ∗ using a stochastic gradient descent proce-
dure minimizing the truncated negative log likelihood,
which projects to the parameter space K.
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3.1. Strong Convexity and Smoothness of Truncated
Negative Log-Likelihood

Without truncation, recovering the true parameter θ∗ for
any parameterized distribution given samples is a classical
problem solved by maximizing the likelihood (or minimiz-
ing its negation). Here, we state the main objective we will
minimize through a stochastic gradient descent procedure
as well as the properties of this objective that will allow us
to recover θ∗. Define:

ℓ(θ) := −Ex∼pS
θ∗

[
log
(
pSθ (x)

)]
∇θℓ(θ) = Ez∼pS

θ
[T (z)]− Ex∼pS

θ∗
[T (x)]

∇2
θℓ(θ) = Covz∼pS

θ
[T (z), T (z)]

Note that since the Hessian is a covariance matrix which
is at least PSD, this objective is always convex in θ. Thus
θ∗ is a minimizer since it satisfies the first-order optimality
condition. (These calculations can be found in Appendix
A.1.) However, if the objective is too flat, we may not
be able to recover θ∗ even after sufficiently reducing the
objective value. For this, we prove that if the original non-
truncated covariance has bounded eigenvalues, the truncated
one does as well under A1, A2, and A3 at parameters which
assign non-trivial mass to S.

Lemma 3.2 (Preservation of Strong Convexity under Trun-
cation). Assume the lower bound in A1, A2, A3. If pθ(S) >
0, then

Covz∼pS
θ
[T (z), T (z)] ⪰ 1

2

(
pθ(S)

4Cd

)2d

λI,

where C is a universal constant guaranteed by Theorem 8
of (Carbery & Wright, 2001) and d is the maximum degree
of T (x). See proof in Appendix A.2 which follows that of
(Daskalakis et al., 2018).

Lemma 3.3 (Preservation of Smoothness under Truncation).
Assume the upper bound in A1. Suppose pθ(S) > 0, then

Covz∼pS
θ
[T (z), T (z)] ⪯ 1

pθ(S)
LI.

See proof in Appendix A.3. The proof is simple and can be
done similarly to the previous lemma.

Thus, we have shown that as long as we optimize over a
parameter space where every θ assigns non-trivial mass to
the truncation set, our objective is both strongly convex and
smooth. The following sections will help us determine and
then construct this set given samples.
Remark 3.4. Lemma 3.2 and the log-likelihood calculations
are direct generalizations of prior work in the Gaussian
case, where we can recover the results of (Daskalakis et al.,
2018) by noting that the re-parameterization of Gaussian
parameters (µ,Σ) as ν = Σ−1µ and T = Σ−1 is the

natural parameterization (up to some constants) of multi-
variate Gaussian distributions in exponential family form.
The sufficient statistics here T (x) = [x,xx⊤] has compo-
nents which are polynomial in x with degree at most 2,
and plugging in d = 2 to Lemma 3.2 recovers Lemma 4
in (Daskalakis et al., 2018). Appendix B includes other
examples beyond Gaussians which satisfy A1, A2, and A3.

3.2. Initialization with Empirical Samples and
Non-truncated MLE

Given samples from the truncated density pSθ∗ , one may first
try to solve the non-truncated empirical MLE problem to
find a parameter θ0 without truncation. In order to under-
stand how good this initial guess is, we need to establish
some relationships between the truncated and non-truncated
density.

Lemma 3.5 (Truncated vs. Non-truncated Mean Sufficient
Statistics for General Densities). Let ρ be a probability
distribution on Rd (not necessarily from an exponential
family). Let S ⊆ Rd with ρ(S) > 0. Then

∥EρS [x]− Eρ[x]∥ ≤

√
1− ρ(S)

ρ(S)
·
√
Varρ(x).

Proof of this lemma and several related quantities for general
truncated densities is in Appendix C.1. In low dimensions,
this variance term may effectively be a constant; however,
in high-dimensional settings this term can grow with dimen-
sion (which is undesirable if we want an efficient algorithm).
Given more assumptions about the density, we can get better
dimension-free bounds which generalize the results from
the Gaussian case.
Claim 1. Let θ ∈ Θ such that θ + 1

βu ∈ Θ for some
β > 0 for all unit vectors u and such that Assumption
A1 holds for pθ from an exponential family. Then X :=
u⊤(T (x)−Ex∼pθ

[T (x)]) is SE(L, β). (Proof provided in
Appendix C.2.)

Lemma 3.6 (Concentration of Empirical vs. True Mean
Sufficient Statistics). Suppose θ∗ satisfies the conditions
of Claim 1 and pθ∗(S) = α > 0. Let T = 1

n

∑n
i=1 T (xi)

be the empirical mean sufficient statistics given our sam-
ples {xi}ni=1 each xi ∼ pSθ∗ . Let ϵS > 0. For n ≥
Ω
(

2β
ϵS

log
(
1
δ

))
, with probability at least 1− δ,

∥T − Epθ∗ [T (x)]∥ ≤ ϵS +O(log 1/α).

See proof in Appendix C.4. At a high level, the truncated
samples can be thought of as O(n/α) samples from the
non-truncated distribution (keeping only those in S), and
each are “not too far” (depending on how much mass the
set S has under the non-truncated distribution) from the
non-truncated mean due to concentration.
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Corollary 3.7 (Truncated vs. Non-truncated Mean Suffi-
cient Statistics). Let θ satisfy the conditions of Claim 1 and
pθ(S) > 0. Then

∥EpS
θ
[T (x)]− Ex∼pθ

[T (x)]∥ ≤ O(log 1/pθ(S)).

The proof follows from the preceding lemma, replacing
α with pθ(S) and taking n → ∞. Compare this to
the Gaussian case (Daskalakis et al., 2018), where the
mean and truncated means were bounded as ∥µ− µS∥ ≤
O(
√
log 1/pθ(S)) and separately the covariances were

bounded as ∥Σ−1/2ΣSΣ
−1/2 − I∥F ≤ O(log 1/pθ(S)).

Once we have bounds on the norm of the difference between
the truncated and non-truncated mean sufficient statistics,
we can bound distance in parameter space. The following
completes this.

Lemma 3.8 (Non-truncated MLE Solution Distance to
θ∗). Let θ0 be such that Epθ0

[T (x)] = T where T =
1
n

∑n
i=1 T (xi) given each xi ∼ pSθ∗ . Let ϵS > 0 and

n > Ω
(

2β
ϵS

log(1/δ)
)

. Then

∥θ0 − θ∗∥ ≤ 1

λ
(O(log 1/α) + ϵS).

Proof. Define ℓ
untr

(θ) := Ex∼pθ0
[− log pθ(x)]. Its gradi-

ent and Hessian calculations can be done similarly to ℓ(θ),
the truncated version, but with S = X the full support of
the distribution.

Since Ez∼pθ∗ [T (z)] − Ex∼pθ0
[T (x)] = ∇ℓ(θ∗)untr is the

gradient of the untruncated negative log-likelihood whose
optimum is at θ0, by A1 this gives

∥∇ℓuntr
(θ∗)−∇ℓuntr

(θ0)︸ ︷︷ ︸
0

∥ ≥ λ∥θ0 − θ∗∥

⇒ ∥θ0 − θ∗∥ ≤ 1

λ
∥∇ℓuntr

(θ∗)∥

where the result follows from the fact that Ez∼pθ0
[T (z)] =

T and ∥Ez∼pθ∗ [T (z)]− T∥ ≤ O(log 1/α+ ϵS).

Generally if ∥Ex∼pθ0
[T (x)]−Ez∼pθ∗ [T (z)]∥ < g(pθ0

(S))
for some function g of pθ0(S) and other constants, then the
parameter distance is bounded as ∥θ0−θ∗∥ ≤ 1

λg(pθ0(S)).

3.3. Parameter Space with Non-Trivial Mass on
Truncation Set

In this section, we will prove lower bounds on the mass
that pθ assigns to the truncation set, given that ∥θ − θ∗∥ is
bounded.

Lemma 3.9 (Lower bound for mass on truncation set un-
der smoothness given parameter distance). Assume A1. Let

θ,θ′ ∈ Θ. Then for two distributions from the same expo-
nential family

pθ(S) ≥ pθ′(S)2 · exp
(
−3L

2
∥θ − θ′∥2

)
.

Proof is provided in Appendix C.3, and only needs smooth-
ness. Thus, we can lower bound the mass that a parameter
θ assigns to S given its distance ∥θ − θ∗∥ from θ∗ which
is assumed to have pθ∗(S) = α.

Corollary 3.10 (Parameter space with non-trivial mass on
truncation set). Given θ0 such that Epθ0

[T (x)] = T , for
T = 1

n

∑n
i=1 T (xi) be the empirical mean sufficient statis-

tics given our samples {xi}ni=1 each xi ∼ pSθ∗ , if we define

K = B

(
θ0,

ϵS +O(log 1/α)
λ

)
∩Θ

then pθ(S) ≥ α2 exp
(
− 6L

λ2 (ϵS +O(log 1/α))2
)

> 0
holds ∀θ ∈ K.

3.4. Analysis of Projected Stochastic Gradient Descent
Algorithm

Now we have all the tools we need to analyze the main algo-
rithm. For ease of notation, define d(α) := ϵS+O(log 1/α).
The following describes the projected stochastic gradient
descent algorithm referenced by Theorem 3.1.

Algorithm 1 Projected SGD Algorithm Given Truncated
Samples

Given {xi}ni=1, each xi ∼ pSθ∗

Initial θ0 ∈ Rk s.t. Ez∼pθ0
[T (z)] = T , where T =

1
n

∑
i T (xi).

for i = 0, . . . , N do
vi = SampleGradient(xi,θi)
θi+1 ← θi − ηvi

Project θi+1 onto K = B(θ0,
d(α)
λ ) ∩Θ.

end for
Return θT

Algorithm 2 SampleGradient
Input: x,θ
while True do

Sample z ∼ pθ
if 1{z ∈ S} via membership oracle then

Return T (z)− T (x)
end if

end while

Given the results from the previous sections, we can now
prove the main result. The analysis is based on that of Chap-
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ter 5 (Theorem 5.7) of (Garrigos & Gower, 2023) which we
modify and state below:

Theorem 3.11 (SGD Convergence). Let f be a λ-strongly
convex function. Let θ∗ ∈ argminθ∈K f(θ). Consider the
sequence {θt}Nt=1 generated by SGD (Algorithm 3) and
{vt}Nt=1 the sequence random vectors satisfying E[vt |
θt] = ∇f(θt) and E[∥vt∥2 | θt] < ρ2 for all t, with a
constant step size η satisfying 0 < η < 1

λ . It follows that
for t ≥ 0,

E∥θt − θ∗∥2 ≤ (1− 2ηλ)t∥θ0 − θ∗∥2 + η

λ
ρ2.

The proof is adapted and reproduced in Appendix D.1 for
completeness. To apply the above theorem we need to take
care of statistical problems:

(i) strong convexity f is a strongly convex function over
K a convex set

(ii) smoothness f is a Lipschitz-smooth function over K

(iii) feasibility of optimal solution θ∗ ∈ K.

(iv) bounded variance step for all t, E[∥vt∥2 | θt] < ρ2

for some ρ2

and algorithmic ones:

(a) initial feasible point efficiently compute an initial fea-
sible point θ0

(b) unbiased gradient estimation efficiently sample an
unbiased estimate of∇f (=∇ℓ)

(c) efficient projection efficiently project to parameter
space K

Statistical problems. Firstly, (iii) is assumed. (i-ii) is ad-
dressed by Lemmas 3.2, 3.3, 3.5, 3.6, 3.8, 3.9. In particular,
we can initialize with θ0 such that ∥θ0 − θ∗∥ ≤ d(α)

λ by
Lemmas 3.5, 3.6, 3.8, with probability at least 1− δ. Given
this θ0, we can construct K = B(θ0,

d(α)
λ ) ∩Θ which has

the property that

∥θ − θ∗∥ ≤ 2

λ
d(α), ∀θ ∈ K.

Thus by Lemma 3.9, we will also have

pθ(S) ≥ α2 exp
(
−6κ

λ
· (d(α))2

)
> 0, ∀θ ∈ K

where κ = L/λ is the condition number. Since we are
projecting to K in which all parameters have non-trivial
mass, our objective remains strongly convex. In particular,
our objective ℓ(θ) has

λSI ⪯ ∇2ℓ(θ) ⪯ LSI, ∀θ ∈ K,

where λS = 1
2

(
α2 exp(−6κ

λ ·(d(α))2)
4Cdeg

)2deg

λ and LS =

exp(6κ
λ ·(d(α))2)
α2 L are some constants which depend on α, λ,

L, and the maximum degree, deg, of the sufficient statistics.
It remains to address (iv), which is done by the following.
Lemma 3.12 (Bounded variance step). Let vi denote the
output of SampleGradient(xi,θi) at any iteration i ∈ [N ].
Provided that ∥ES

pθ
[T (x)]−Epθ

[T (x)]∥ ≤ O(log 1/pθ(S))
for all θ ∈ K,

E[∥vi | θi∥2] ≤ kLS+kL+(1+2κ)2(O(log 1/pθ(S)))2.

See proof in Appendix D.2.

Algorithmic problems. For the algorithmic problems, by
Cor. 3.7 and Lemmas 3.8, 3.6, we can address (a) by solving
the empirical MLE problem with no truncation. Given that
we can efficiently sample from the non-truncated pθ for any
θ, we can sample unbiased gradients via Algorithm 2 with
expected O(1/pθi

(S)) = O
(

exp(6κ·(d(α))2)
α2

)
samples at

each step t to address (b). Point (c) can be done efficiently,
since our parameter space is a simple intersection of Eu-
clidean balls if we choose Θ to be a Euclidean ball that sits
inside the whole parameter space which contains θ∗.

Let D(k, L, λ, α) = k(LS+L)+(1+2κ)2(6κ(d(α))2−2 logα)2

λ2
Sϵ2

.

Putting everything together, to get E∥θN − θ∗∥2 ≤ ϵ2, the
number of iterations and samples should be

N ≥ max

{
D(k, L, λ, α),

1

2

}
log

(
2d(α)

λϵ2

)
,

provided that η = min{λSϵ2

2ρ2 , 1
λS
}, applying Lemma

D.1 to the bound from Theorem 3.11 with A = ρ2

λS
,

C = λS , µ = 2λS , and ρ2 = kLS + kL + (1 +
2κ)2(O(log 1/pθ(S)))2 by Lemma 3.12. Further, Lemma
3.9 guarantees O(log 1/pθ(S)) ≤ O

(
log exp(6κ·(d(α))2)

α2

)
for all θ ∈ K.

In probability, we get P(∥θN − θ∗∥2 ≥ 3ϵ2) ≤ 1/3
by Markov’s inequality. Then we can amplify the prob-
ability of success to 1 − δ by repeating the procedure
from scratch log 1/δ times, as in (Daskalakis et al., 2018).
Given a polynomial time (poly(m, k, 1/ϵ)) algorithm AS to
sample from pθ for all θ, each iteration takes expected
O(1/pθi(S)) = O

(
exp(6κ

λ ·(d(α))2)
α2

)
times the running

time of AS plus the projection step (which is also efficient).
This completes the result of Theorem 3.1.
Remark 3.13. In the Gaussian case, the sample complexity
was given in terms of m, the dimension of the x and was
stated in (Daskalakis et al., 2018) as Õ(m2/ϵ2). For mul-
tivariate Gaussian, the dimension of θ is the dimension of
[x,xx⊤] (vectorized) which is m+m2, thus we can recover
the previous result.



Learning Exponential Families in High Dimensions from Truncated Samples

References
Beg, M. Optimal tests and estimators for truncated expo-

nential families. Metrika, 29(1):103–113, 1982.

Bernoulli, D. Essai d’une nouvelle analyse de la mor-
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A. Proofs and Calculations Regarding the Objective
A.1. The Truncated Negative Expected Log-Likelihood Function

The negative log-likelihood that x ∈ S is a sample of pSθ (x) is

ℓ(θ,x)︸ ︷︷ ︸
− log pS

θ (x)

:= − log h(x)− θ⊤T (x) + log

∫
S

h(x) exp(θ⊤T (x))dx.

Its gradient w.r.t. θ is

∇ℓ(θ,x) = −T (x) +
∫
S
T (x)h(x) exp(θ⊤T (x))dx∫
S
h(x) exp(θ⊤T (x))dx

= −T (x) +
∫
S
T (x)h(x) exp(θ⊤T (x)−A(θ))dx∫
S
h(x) exp(θ⊤T (x)−A(θ))dx

= −T (x) + Ez∼pS
θ
[T (z)]

The Hessian is

∇2ℓ(θ) =
(
∫
S
T (x)T (x)⊤h(x) exp(θ⊤T (x)−A(θ))dx)

(
∫
S
h(x) exp(θ⊤T (x)−A(θ))dx)

−
(
∫
S
T (x)h(x) exp(θ⊤T (x)−A(θ))dx)

(
∫
S
h(x) exp(θ⊤T (x)−A(θ))dx)

·

(
(
∫
S
T (x)h(x) exp(θ⊤T (x)−A(θ))dx)

(
∫
S
h(x) exp(θ⊤T (x)−A(θ))dx)

)⊤

= Covx∼pS
θ
[T (x), T (x)]

We can similarly define the population negative log-likelihood as

ℓ(θ) := Ex∼pS
θ∗

[
− log h(x)− θ⊤T (x)

]
+ log

∫
S

h(x) exp(θ⊤T (x))dx),

∇ℓ(θ) = Ex∼pS
θ∗

[−T (x)] + Ex∼pS
θ
[T (x)] ,

∇2ℓ(θ) = ∇2ℓ(θ)

A.2. Proof of Lemma 3.2

Proof. Define the following quantities:

R∗ = Ex∼pθ

[
(T (x)− Ex∼pθ

[T (x)]) · (T (x)− Ex∼pθ
[T (x)])

⊤
]

R′ = Ex∼pθ

[(
T (x)− Ex∼pS

θ
[T (x)]

)
·
(
T (x)− Ex∼pS

θ
[T (x)]

)⊤]
R = Ex∼pS

θ

[(
T (x)− Ex∼pS

θ
[T (x)]

)
·
(
T (x)− Ex∼pS

θ
[T (x)]

)⊤]
Claim 2. R′ ⪰ R∗. (Proof in Appendix A.4.)

Now, let ξ ∈ Rk with ∥ξ∥22 = 1 arbitrary. Then

ξ⊤R∗ξ = ξ⊤Ex∼pθ

[
(T (x)− Ex∼pθ

[T (x)]) · (T (x)− Ex∼pθ
[T (x)])⊤

]
ξ = Ex∼pθ

[pξ(x)]

ξ⊤R′ξ = Ex∼pθ

[
p′ξ(x)

]
ξ⊤Rξ = Ex∼pS

θ

[
p′ξ(x)

]
where pξ(x), p

′
ξ(x) are polynomials of degree at most 2d whose coefficients depend on ξ (under A3). Furthermore, note

that for any ξ ∈ Rk, pξ(x) ≥ 0 and p′ξ(x) ≥ 0 (due to the rank one matrix inside the expectation being PSD).
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First, since R′ ⪰ R∗ ⇐⇒ ξ⊤R′ξ ≥ ξ⊤R∗ξ, we have

Ez∼pθ

[
p′ξ(z)

]
≥ Ez∼pθ

[
p∗ξ(z)

]
≥ λ.

Now define the set A := {x : p′ξ(x) ≤ γ} for γ =
(

β
4Cd

)2d
λ where pθ(S) = β > 0. Theorem 8 of (Carbery & Wright,

2001) says

pθ(A) ≤ Cqγ1/(2d)(
Ez∼pθ

[
p′ξ(z)

]q/2d)1/q

q=2d
=

2Cdγ1/(2d)Ez∼pθ

[
p′ξ(z)

]︸ ︷︷ ︸
≥λ


1/(2d)

≤ 2Cd · γ1/(2d)

λ1/(2d)
=

β

2
.

Now we can split Ez∼pS
θ

[
p′ξ(z)

]
into the part on S ∩A and S ∩Ac. Note that if pθ(S) = β and pθ(A) ≤ β

2 , this implies

pθ(S ∩Ac) ≥ β
2 as

pθ(S ∩Ac) ≥ pθ(S) + pθ(A
c)− pθ(S ∪Ac) ≥ β +

(
1− β

2

)
− 1 =

β

2
.

Then

Ez∼pS∩A
θ

[
p′ξ(z)

]
+ Ez∼pS∩Ac

θ

[
p′ξ(z)

]
≥ pθ(S ∩A)

pθ(S)
· 0 + pθ(S ∩Ac)

pθ(S)
· γ ≥ 1

2
γ ⇒ Ez∼pS

θ

[
p′ξ(z)

]
≥ 1

2

(
β

4Cd

)2d

λ

and the claim follows.

A.3. Proof of Lemma 3.3

Proof. Similar to the proof of the previous lemma, define the following quantities:

R∗ = Ex∼pθ

[
(T (x)− Ex∼pθ

[T (x)]) · (T (x)− Ex∼pθ
[T (x)])

⊤
]

R′′ = Ex∼pS
θ

[
(T (x)− Ex∼pθ

[T (x)]) · (T (x)− Ex∼pθ
[T (x)])

⊤
]

R = Ex∼pS
θ

[(
T (x)− Ex∼pS

θ
[T (x)]

)
·
(
T (x)− Ex∼pS

θ
[T (x)]

)⊤]
Claim 3. It holds that R′′ ⪰ R. (Similar proof to Claim 2.)

Let ξ ∈ Rk with ∥ξ∥22 = 1 arbitrary. Then

ξ⊤R∗ξ = Ex∼pθ
[fξ(x)]

ξ⊤R′′ξ = Ex∼pS
θ
[fξ(x)]

ξ⊤Rξ = Ex∼pS
θ
[f ′

ξ(x)]

where fξ(x), f
′
ξ(x) are some functions which depend on x and ξ (e.g., polynomials of degree at most 2d under A3). By the

previous claim, we also have
Ex∼pS

θ
[fξ(x)] ≥ Ex∼pS

θ
[f ′

ξ(x)].

Note that

Ex∼pS
θ
[fξ(x)] =

∫
X
pSθ (x) · fξ(x)dx =

∫
X

1

pθ(S)
pθ(x) · fξ(x) · 1{x ∈ S}dx ≤ 1

pθ(S)

∫
pθ(x)fξ(x)dx.︸ ︷︷ ︸
=Ex∼pθ

[fξ(x)]
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Since λI ⪯ R∗ ⪯ LI by A1, it holds that ξ⊤R∗ξ = Ex∼pθ
[fξ(x)] ≤ L, thus the following inequalities hold:

ξ⊤Rξ = Ex∼pS
θ
[f ′

ξ(x)] ≤ Ex∼pS
θ
[fξ(x)] ≤

1

pθ(S)
L.

A.4. Proof of Claim 2

We will prove a general claim which should take care of both claims in Lemmas 3.2 and 3.3.
Claim 4. Let x ∼ ρ be a random vector with mean µ. Let b be another vector such that b ̸= µ. Then

Covx∼ρ[x,x] = Ex∼ρ[(x− µ)(x− µ)⊤] = Ex∼ρ[(x− b)(x− b)⊤]− (b− µ)(b− µ)⊤.

Proof.

E[(x− µ)(x− µ)⊤]

= E[(x− b+ b− µ)(x− b+ b− µ)⊤]

= E[(x− b)(x− b)⊤] + E[(x− b)(b− µ)⊤]︸ ︷︷ ︸
=(−1)·E[(b−µ)(b−µ)⊤]

+ E[(b− µ)(x− b)⊤]︸ ︷︷ ︸
=(−1)·E[(b−µ)(b−µ)⊤]

+E[(b− µ)(b− µ)⊤]︸ ︷︷ ︸
=E[(b−µ)(b−µ)⊤]

= E[(x− b)(x− b)⊤]− E[(b− µ)(b− µ)⊤]

As a corollary, since the second term is a rank-1 matrix (thus PSD), we have that E[(x−b)(x−b)⊤] ⪰ E[(x−µ)(x−µ)⊤].

B. Examples of Other Distributions which Satisfy Assumptions
Example 1 (Exponential Distribution). The exponential distribution density can be written

pλ(x) = λ exp(−λx) = exp(−λx+ log(λ)),

defined on x ∈ R+ which is a convex set and for λ > 0. In natural form, it is

pθ(x) = exp(θx+ log(−θ))),

defined for θ < 0. Note that

• T (x) = x is a polynomial in x.

• This is log-linear in x (so log-concave in x).

• Variance of the sufficient statistic is simply the variance, which is 1/θ2 > 0 for any θ < 0. If we restrict θ in a bounded
set, the negative log-likelihood will be strongly convex and smooth in θ.

Example 2 (Weibull Distribution with known shape k). The Weibull distribution with known shape k > 0 has density

pλ(x) = exp((k − 1) log x+

(
− 1

λk

)
xk + log k − k log λ)

defined on x ∈ R+ and λ > 0. We can re-parameterize this in terms of θ = − 1
λk with θ < 0 as

pθ(x) = xk−1 exp(θ · xk + log k + log(−θ)).

Then

• T (x) = xk is polynomial in x.
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• pθ(x) is log-concave in x if k > 1 (where recall x ∈ R+ and θ < 0).

• The variance of the sufficient statistic can also be found by taking the second derivative of A(θ) = − log k − log(−θ)
w.r.t. θ, which is also 1/θ2 > 0.

Example 3 (Continuous Bernoulli). The continuous Bernoulli density (Loaiza-Ganem & Cunningham, 2019) can be written

pλ(x) = exp

(
log

λ

1− λ
− log

1− 2λ

(1− λ) log 1−λ
λ

)

with support x ∈ [0, 1] and λ ∈ (0, 1). We can re-parameterize this in terms of θ = log λ
1−λ with θ ∈ [0,∞) so

pθ(x) = exp

(
θx− log

eθ − 1

θ

)
.

Then

• T (x) = x is polynomial in x.

• pθ(x) is log-linear in x (so log-concave).

• The variance of sufficient statistic is simply the variance again, which is given by

Var(X) =

{
1/12 if λ = 1/2
(λ−1)λ
(1−2λ)2 + 1

(2tanh−1(1−2λ))2
otherwise

This is strictly positive and bounded for all values of λ (thus all values of θ).

Example 4 (Continuous Poisson). A continuous version of the Poisson distribution (although there can be others (Ilienko,
2013)) can be written

pλ(x) =
1

Z(λ)

e−λλx

Γ(x+ 1)

with support x ∈ [0,∞) and λ ∈ (0,∞). We can write this with θ = log λ so

pθ(x) =
1

Γ(x+ 1)
exp(θx−A(θ)).

Then

• T (x) = x is polynomial in x.

• pθ(x) is log-concave in x for x ∈ R+.

• In λ parameters, the mean of this distribution is λ through usual calculations (e.g., similar to those of the Gamma
distribution). Note: we can absorb the e−λ term into the partition function.

E[X] =
1

Z(λ)

∫ ∞

0

xλx

Γ(x+ 1)
dx

=
1

Z(λ)

∫ ∞

0

xλx

x · Γ(x)
dx Γ(x+ 1) = x · Γ(x)

=
λ

Z(λ)

∫ ∞

1

λx−1

Γ(x)
dx Partition function, change var. z = x− 1

= λ

Similarly, we should be able to show the variance is λ as usual. In θ space, this means the variance is exp(θ) for θ ∈ R
which is always positive. Again, we can make it bounded by restricting θ to some set.
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Example 5 (Multivariate Gaussian). The multivariate Gaussian also satisfies all of these properties. Recall that the sufficient
statistics of the multivariate Gaussian has

• T (x) = [x,xx⊤] is a polynomial in the components of x with degree at most 2 (where the xx⊤ term can be thought
of as the vector after standard vectorization).

• The multivariate Gaussian density is strongly log-concave.

• The covariance matrix (of the sufficient statistics) has a complicated form, which the authors of (Daskalakis et al.,
2018) have analyzed the lower bound for, e.g., in their Claims 1 and 2. As before, we can restrict our parameter space
to ensure upper bounds.

Example 6 (Generalized Linear Models). This example is the same as the one given in (Kakade et al., 2010) for generalized
linear models. It is restated here for completeness.

Consider when we have some covariance, response pair (X,Y ) drawn from some distribution D. Suppose that we have a
family of distributions P (· | θ;X) such that, for each X , it is an exponential family with sufficient statistic ty,X

P (y | θ;X) = h(y) exp (⟨θ, ty,X⟩ −A(θ,X)) .

We can consider a one-dimensional exponential family qν with parameterization ν = ⟨θ,X⟩, then

P (y | θ;X) = h(y) exp (y⟨θ,X⟩ − logZ(⟨θ,X⟩))

where we see that ty,X = yX and the log partition function A(θ,X) = logZ(⟨θ,X⟩). When qν is Bernoulli family or unit
variance Gaussian family, this corresponds to logistic regression or least squares regression, respectively.

We can appropriately generalize this to beyond linear models (e.g., polynomials) provided that we can keep the distribution
log-concave.

Comment on A3. We mentioned in the main paper that this assumption combined with log-concavity provides the
anti-concentration property that we need for Lemma 3.2. We assume it for simplicity of exposition, but it should be noted
that as long as we have the type of anti-concentration property to control how much the covariance can shrink under
truncation, we do not necessarily need T (x) to be polynomial. However, we’ve provided examples of exponential families
which already satisfy this above (and there are potentially more which can be addressed by this framework that do not have
polynomial sufficient statistics but nonetheless exhibit similar anti-concentration properties).

C. Proofs Relating Truncated and Non-Truncated Quantities
C.1. General Truncated Densities

Let ρ be a probability distribution on Rd. Let S ⊆ Rd be such that ρ(S) = α for some α ∈ (0, 1]. Let ρS := ρ(· | · ∈ S) be
the conditional distribution of x ∼ ρ given that x ∈ S.

ρS(x) =
ρ(x) · 1{x ∈ S}

ρ(S)
.

Note that the relative density is

ρS(x)

ρ(x)
=

1{x ∈ S}
ρ(S)

.

Then we can compute that the Rényi divergence is a constant for any order 1 ≤ q ≤ ∞.
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KL(ρS∥ρ) = EρS

[
log

ρS

ρ

]
= EρS

[
log

1

ρ(S)

]
= log

1

α
.

χ2(ρS∥ρ) = EρS

[
ρS

ρ

]
− 1 =

1

ρ(S)
− 1 =

1

α
− 1.

Rq(ρ
S∥ρ) = 1

q − 1
logEρS

[(
ρS

ρ

)q−1
]
=

1

q − 1
log

1

ρ(S)q−1
= log

1

ρ(S)
= log

1

α
.

R∞(ρS∥ρ) = log sup
x

ρS(x)

ρ(x)
= log

1

ρ(S)
= log

1

α
.

Note R2(ρ
S∥ρ) = log(1 + χ2(ρS∥ρ)).

We recall the following general estimates.

Lemma C.1. For any probability distributions ρ, π (such that the quantities below are finite):

1. ∥Eρ[x]− Eπ[x]∥ ≤
√
χ2(ρ∥π) ·

√
Varπ(x).

2. |Eρ[∥x∥2]− Eπ[∥x∥2]| ≤
√
χ2(ρ∥π) ·

√
Eπ[∥x∥4].

3. |Varρ(x)−Varπ(x)| ≤
√

(χ2(ρ∥π) + 1)2 − 1 ·
√
2Eπ[∥x− Eπ[x]∥4].

Proof. The first two claims are immediate by Cauchy-Schwarz. For the third one, recall we can write

Varρ(x) =
1

2
Eρ⊗2 [∥x− y∥2].

Then by applying part (1) to ρ⊗2 and (ρS)⊗2, we get

|Varρ(x)−Varπ(x)| ≤
1

2

√
χ2(ρ⊗2∥π⊗2) ·

√
Eπ⊗2 [∥x− y∥4]

=
1

2

√
(χ2(ρ∥π) + 1)2 − 1 ·

√
2Eπ[∥x− Eπ[x]∥4] + 6Eπ[∥x− Eπ[x]∥2]2

≤ 1

2

√
(χ2(ρ∥π) + 1)2 − 1 ·

√
8Eπ[∥x− Eπ[x]∥4].

For our application, we have the following. Given a probability distribution ρ on Rd, we let µ(ρ) = Eρ[x] be its mean, and
for k ∈ N,

Mk(ρ) := Eρ[∥x− µ(ρ)∥k]1/k.

So for example we have M2(ρ) =
√
Varρ(x). We also have Mk(ρ) ≤Mℓ(ρ) if k ≤ ℓ.

Lemma C.2. Let ρ be a probability distribution on Rd. Let S ⊆ Rd with ρ(S) = α ∈ (0, 1]. Then

1. ∥EρS [x]− Eρ[x]∥ ≤
√

1−α
α ·

√
Varρ(x).

2. |VarρS (x)−Varρ(x)| ≤
√

2(1−α2)

α M4(ρ)
2.

In particular, if α ∈ (0, 1] is such that 1
α2 ≤ 1 + c2M2(ρ)

4

2M4(ρ)4
for some 0 ≤ c < 1, then

VarρS (x) ≥ (1− c)Varρ(x).
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Note that the constraint on α above implies 1
α2 ≤ 3

2 , so α ≥
√

2/3. But if M2(ρ)≪M4(ρ), then 1− α will be very small.

Recall also that under some conditions, e.g. if ρ is log-concave, then we have the reverse bound that

M2(ρ) ≥ C2,4M4(ρ)

for a universal constant C2,4, so the constraint above is not too restrictive, as it allows 1− α of constant size.

C.2. Exponential Families with Strongly Convex and Smooth Log-Partition Functions are Sub-Exponential

Let θ ∈ Θ such that θ + 1
βu ∈ Θ for some β > 0 for all unit vectors u and such that Assumption A1 holds for pθ. Then

X := u⊤(T (x)− Ex∼pθ
[T (x)]) is SE(L, β).

Proof. WLOG, consider pθ in the transformed space x 7→ T (x) so that

pθ(t) = h(t) exp(θ⊤t−A(θ))dt,

where θ ∈ Θ and A(θ) = log(Z(θ)) = log
(∫

T (X )
h(t) exp(θ⊤t)dt

)
is the log-partition function. Note that ∇2A(θ) =

Covt∼pθ(t)[t] = Covx∼pθ(x)[T (x)], and by A1, A(θ) is a λ-strongly convex and L-smooth function in θ.

To show that pθ(t) is sub-exponential with parameters (ν2, β) we need to show that its moment generating function satisfies
E[eγu⊤(t−µ)] ≤ eγ

2ν2/2, where µ = Epθ
[t], u is a unit vector, for |γ| < 1/β.

E[eγu
⊤(t−µ)] =

∫ (
eγu

⊤t−γu⊤µ
)
h(t)eθ

⊤t−A(θ)dt

=
exp(−γu⊤µ)

Z(θ)

∫
h(t) exp((γu+ θ)⊤t)dt

=
Z(γu+ θ)

Z(θ)
· exp(−γu⊤µ)

The inequality we need to show is equivalent to proving

E[eγu
⊤(t−µ)] ≤ eγ

2ν2/2

⇐⇒ Z(γu+ θ)

Z(θ)
· e−γu⊤µ ≤ eγ

2ν2/2

⇐⇒ Z(γu+ θ)

Z(θ)
≤ eγu

⊤µ · eγ
2ν2/2

⇐⇒ A(γu+ θ)−A(θ) ≤ γu⊤µ+
γ2ν2

2

Since A(θ) is L-smooth, we have that

A(γu+ θ)−A(θ) ≤ ⟨∇A(θ)︸ ︷︷ ︸
=µ

, γu⟩+ L

2
∥γu∥2 = γu⊤µ+

γ2L

2

where we’ve used the property of exponential families that the gradient of the log partition function is the mean sufficient
statistic. Now we can see that the appropriate parameter for ν2 is L and γ must be small enough so that γu+ θ ∈ Θ, i.e.,
|γ| < 1

β for some β > 0. This is possible if θ is bounded away from the boundary of Θ.

Remark C.3. In the above, we only needed to use that pθ is an exponential family distribution and that its log-partition
function A(θ) is smooth. It is also possible to show that pθ has exponentially decreasing tails (in quantities involving x
rather than T (x)) if it is log-concave in x (assumption A2), e.g., by (Saumard & Wellner, 2014).
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C.3. Proof of Lemma 3.9

Let pθ(x) = h(x) exp(⟨θ, T (x)⟩ −A(θ)) and A : Θ→ R is the log-partition function:

A(θ) =

∫
X
h(x) exp(⟨θ, T (x)⟩)dx.

Lemma C.4. For any q > 1, θ,θ′ ∈ Θ:

Epθ

[(
pθ′

pθ

)q]
= exp

(
(q − 1)A(θ)− qA(θ′) +A

(
qθ′ − (q − 1)θ

))
.

Proof.

Epθ

[(
pθ′

pθ

)q]
=

∫
X
h(x) exp (⟨θ, T (x)⟩ −A(θ)) · exp

(
q⟨θ′ − θ, T (x)⟩ − qA(θ′) + qA(θ)

)
dx

= exp
(
(q − 1)A(θ)− qA(θ′) +A

(
qθ′ − (q − 1)θ

))
.

Lemma C.5. Assume A is convex and L-smooth on Θ. For any S ⊆ X , and θ,θ′ ∈ Θ:

pθ(S) ≥ pθ′(S)2 · exp
(
−3L

2
∥θ − θ′∥2

)
.

Proof. By Cauchy-Schwarz,

pθ′(S)2 = Epθ

[
pθ′

pθ
1S

]2
≤ pθ(S) · Epθ

[(
pθ′

pθ

)2
]

= pθ(S) · exp
(
A(θ)− 2A(θ′) +A

(
2θ′ − θ

))
.

Since A is convex and L-smooth,

A(θ) ≤ A(θ′) + ⟨∇A(θ),θ − θ′⟩

A(2θ′ − θ) ≤ A(θ′) + ⟨∇A(θ′),θ′ − θ⟩+ L

2
∥θ′ − θ∥2

Therefore,

A(θ)− 2A(θ′) +A
(
2θ′ − θ

)
≤ ⟨∇A(θ′)−∇A(θ),θ′ − θ⟩+ L

2
∥θ′ − θ∥2

≤ 3L

2
∥θ′ − θ∥2.

Compare this to the Gaussian case (e.g., see H.8 of (Plevrakis, 2021)) where this was pθ(S) ≥
α
2 exp

(
−r ·

√
2 log 1/α− 1

2r
2
)

for ∥θ − θ′∥ < r.



Learning Exponential Families in High Dimensions from Truncated Samples

C.4. Proof of Lemma 3.6

Let T = 1
n

∑n
i=1 T (xi) be the empirical mean sufficient statistics given our samples {xi}ni=1 each xi ∼ pSθ∗ .

Let ϵS > 0. For n ≥ Ω
(

2β
ϵS

log
(
1
δ

))
,

∥T − Epθ∗ [T (x)]∥ ≤ ϵS +O(log 1/α)

with probability at least 1− δ.

Proof. Let µ∗ = Ex∼pS
θ∗
[T (x)] and ν∗ = Ex∼pθ∗ [T (x)].

For any event A, we have that

PpS
θ∗
[A] =

∫
1{ω ∈ A}dpSθ∗(ω) =

1

α

∫
1{ω ∈ A}1{ω ∈ S}dpθ∗(ω) ≤ 1

α
Ppθ∗ [A]

and for the product measure with n independent components PΠi∈[n]p
S
θ∗
[A] ≤

(
1
α

)n PΠi∈[n]pθ∗ [A]. So we can bound the
probability of events on pSθ∗ with those on pθ∗ . In particular, by Claim 1 and by the composition property of independent
sub-exponential random variables, we have that

Ppθ∗

(
1

n

∣∣∣∣∣u⊤

(∑
i

T (xi)− ν∗

)∣∣∣∣∣ ≥ t

)
≤ exp

(
− nt

2β

)
for any unit vector u

⇒Ppθ∗

(∥∥∥∥∥ 1n∑
i

T (xi)− ν∗

∥∥∥∥∥ ≥ t

)
≤ exp

(
− nt

2β

)
.

To translate this to the probability of the same event on pSθ∗ , note that(
1

α

)n

exp

(
− nt

2β

)
≤ δ ⇐⇒ exp

(
n ·
(
log 1/α− t

2β

))
≤ δ

which holds when t = 2β
(
log 1/α+ 1

n log 1/δ
)
. Thus for n > 2β

ϵS
log 1/δ samples from the truncated pSθ∗ we have that

with probability at least 1− δ, the quantity ∥T − ν∗∥ ≤ 2β(log 1/α) + ϵS .

D. Additional Proofs for Algorithm Analysis

Algorithm 3 Stochastic Gradient Descent
Initialize some θ0 ∈ K.
for iteration t = 1, 2, . . . , T do

Compute vt such that E[vt | θt] = ∇f(θt)

θ̃t+1 ← θt − ηvt

θ̃t+1 = ΠK(θ̃t+1) (Project onto K)
end for
Return θT

D.1. SGD Algorithm and its Analysis

Although the setting of Theorem 5.7 of (Garrigos & Gower, 2023) is when the objective is a sum of many functions, the
proof and its result can be easily adapted to our setting.
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Theorem. Let f be a λ-strongly convex function. Let θ∗ ∈ argminθ∈K f(θ). Consider the sequence {θt}Nt=1 generated
by SGD (Algorithm 3) and {vt}Nt=1 the sequence random vectors satisfying E[vt | θt] = ∇f(θt) and E[∥vt∥2 | θt] < ρ2

for all t, with a constant step size η satisfying 0 < η < 1
λ . It follows that for t ≥ 0,

E∥θt − θ∗∥2 ≤ (1− 2ηλ)t∥θ0 − θ∗∥2 + η

λ
ρ2.

Proof. At any iteration i,

θ̃i+1 = θi − ηvi

θ̃i+1 − θ∗ = θi − θ∗ − ηvi (1)

∥θ̃i+1 − θ∗∥2 = ∥θi − θ∗∥2 − 2η⟨vi,θi − θ∗⟩+ η2∥vi∥2

where the last line comes from multiplying the line (1) with the transpose of the same equation on either side. After projecting
to the set K to obtain θi+1 = argminθ∈K ∥θ̃i+1−θ∥2 and given that θ∗ ∈ K, we have that ∥θ̃i+1−θ∗∥2 ≥ ∥θi+1−θ∗∥2,
so

∥θi+1 − θ∗∥2 ≤ ∥θi − θ∗∥2 − 2η⟨vi,θi − θ∗⟩+ η2∥vi∥2 (2)

Now summing (2) over all i, we have

0 ≤
N∑
i=0

∥θi − θ∗∥2 − ∥θi+1 − θ∗∥2︸ ︷︷ ︸
telescoping

−2η⟨vi,θi − θ∗⟩+ η2∥vi∥2

= ∥θ0 − θ∗∥2 − ∥θT − θ∗∥2 −
T−1∑
i=0

2η⟨vi,θi − θ∗⟩+ η2∥vi∥2

⇒ ∥θT − θ∗∥2 ≤ ∥θ0 − θ∗∥2 −
T−1∑
i=0

2η⟨vi,θi − θ∗⟩+ η2∥vi∥2

Fixing θi in the ith iteration and taking the conditional expectation in (2) gives

E[∥θi+1 − θ∗∥2 | θi] ≤ ∥θi − θ∗∥2 − 2η⟨∇f(θi),θi − θ∗⟩+ η2E[∥vt∥2 | θi]

≤ (1− 2ηλ)∥θi − θ∗∥2 + η2E[∥vt∥2 | θi]

where the last line is due to strong convexity, ⟨∇f(θi),θi − θ∗⟩ ≥ λ∥θi − θ∗∥2. By taking iterated expectations and
recursively applying the above, we get that

E[∥θT − θ∗∥2] ≤ (1− 2ηλ)T ∥θ0 − θ∗∥2 + η2ρ2
T−1∑
i=0

(1− 2ηλ)i

≤ (1− 2ηλ)T ∥θ0 − θ∗∥2 + η2
1

ηλ
ρ2

= (1− 2ηλ)T ∥θ0 − θ∗∥2 + η

λ
ρ2

where in the second line we used that
∑T−1

i=0 (1− 2ηλ)i = 1−(1−2ηλ)T

1−(1−2ηλ) < 2
2ηλ provided η < 1/λ.

We can derive the complexity (number of iterations) to get E[∥θT − θ∥2] < ϵ using the following Lemma from (Garrigos &
Gower, 2023).

Lemma D.1 (Lemma A.2 of (Garrigos & Gower, 2023)). Consider the recurrence given by

αk ≤ (1− ηµ)tα0 +Aη,
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where µ > 0, and A,C ≥ 0 are given constants and η < 1/C. If

η = min

{
ϵ

2A
,
1

C

}
then

t ≥ max

{
1

ϵ

2A

µ
,
C

µ

}
log

(
2α0

ϵ

)
⇒ αk ≤ ϵ.

Note that to get bounds on ∥θT − θ∗∥ rather than ∥θT − θ∗∥2, we can solve the number of iterations we need to get ϵ2 on
the right hand side, and we will get the number of iterations for ∥θT − θ∗∥ < ϵ. Then the resulting complexity bounds will
replace 1/ϵ with 1/ϵ2.

D.2. Proof of Lemma 3.12

Lemma D.2 (Bounded variance step). Let vi denote the output of SampleGradient(xi,θi) at any iteration i ∈ [N ]. Provided
that ∥ES

pθ
[T (x)]− Epθ

[T (x)]∥ ≤ O(log 1/pθ(S)) for all θ ∈ K,

E[∥vi | θi∥2] ≤ kLS + kL+ (1 + 2κ)2(O(log 1/pθ(S))2.

Proof. At any iteration i (arbitrary),

E[∥vi∥2 | θi] = E(z,x)∼pS
θi

⊗pS
θ∗

[
∥T (z)− T (x)∥2

]
= E(z,x)∼pS

θi
⊗pS

θ∗

[
∥T (z)∥2 − 2⟨T (z), T (x)⟩+ ∥T (x)∥2

]
= Tr (Cov[T (z)]) + (E[∥T (z)∥])2 + Tr (Cov[T (x)]) + (E[∥T (x)∥])2 − 2⟨E[T (z)],E[T (x)]⟩
= Tr (Cov[T (z)]) + Tr (Cov[T (x)]) + ∥EpS

θi

[T (z)]− EpS
θ∗
[T (x)]∥2

≤ kLS + kL+ (1 + 2κ)2(O(log 1/pθ(S)))2

In the last step, we’ve used the fact that

∥EpS
θi

[T (z)]− EpS
θ∗
[T (x)]∥ ≤ ∥EpS

θi

[T (z)]− Epθi
[T (z)]∥+ ∥Epθi

[T (z)]− EpS
θ∗
[T (z)]∥

= ∥EpS
θi

[T (z)]− Epθi
[T (z)]∥+ ∥Epθi

[T (z)]− Epθ0
[T (z)]∥

≤ O(log 1/α) + (2L/λ)O(log 1/α)

by assumption, smoothness, Cor. 3.7 and Lemma 3.8.


