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Abstract
Counterfactual learning to rank (CLTR) can be risky and, in various

circumstances, can produce sub-optimal models that hurt perfor-

mance when deployed. Safe CLTR was introduced to mitigate these

risks when using inverse propensity scoring to correct for position

bias. However, the existing safety measure for CLTR is not applica-

ble to state-of-the-art CLTR methods, cannot handle trust bias, and

relies on specific assumptions about user behavior.

Our contributions are two-fold. First, we generalize the existing

safe CLTR approach to make it applicable to state-of-the-art doubly

robust CLTR and trust bias. Second, we propose a novel approach,

proximal ranking policy optimization (PRPO), that provides safety

in deployment without assumptions about user behavior. PRPO

removes incentives for learning ranking behavior that is too dis-

similar to a safe ranking model. Thereby, PRPO imposes a limit

on how much learned models can degrade performance metrics,

without relying on any specific user assumptions. Our experiments

show that both our novel safe doubly robust method and PRPO pro-

vide higher performance than the existing safe inverse propensity

scoring approach. However, in unexpected circumstances, the safe

doubly robust approach can become unsafe and bring detrimental

performance. In contrast, PRPO always maintains safety, even in

maximally adversarial situations. By avoiding assumptions, PRPO

is the first method with unconditional safety in deployment that

translates to robust safety for real-world applications.
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1 Introduction
Counterfactual learning to rank (CLTR) [11, 20, 24, 46] concerns
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the optimization of ranking systems based on user interaction data

using learning to rank (LTR) methods [22]. A main advantage of

CLTR is that it does not require manual relevance labels, which

are costly to produce [6, 34] and often do not align with actual

user preferences [39]. Nevertheless, CLTR also brings significant

challenges since user interactions only provide a heavily biased

form of implicit feedback [11]. User clicks are affected by many

different factors, for example, the position at which an item is

displayed in a ranking [8, 47]. Thus, click frequencies provide a

biased indication of relevance, that is often more representative of

how an item was displayed than actual user preferences [2, 46].

To correct for this bias, early CLTR applied inverse propensity

scoring (IPS), which weights clicks inversely to the estimated ef-

fect of position bias [20, 46]. Later work expanded this approach

to correct for other forms of bias, e.g., item-selection bias [29, 32]

and trust bias [2, 45], and more advanced doubly robust (DR) esti-

mation [28]. Using these methods, standard CLTR aims to create

an unbiased estimate of relevance (or user preference) from click

frequencies. In other words, their goal is to output an estimate per

document with an expected value that is equal to their relevance.

However, unbiased estimates of CLTR have their limitations.

Firstly, they assume a model of user behavior and require an accu-

rate estimate of this model. If the assumedmodel is incorrect [29, 45]

or its estimated parameters are inaccurate [20, 28], then their un-

biasedness is not guaranteed. Secondly, even when unbiased, the

estimates are subject to variance [27]. As a result, the actual esti-

mated values are often erroneous, especially when the available data

is sparse [14, 28]. Accordingly, unbiased CLTR does not guarantee

that the ranking models it produces have optimal performance [27].

Safe counterfactual learning to rank. There are risks involved
in applying CLTR in practice. In particular, there is a substantial

risk that a learned ranking model is deployed that degrades per-

formance compared to the previous production system [14, 16, 31].

This can have negative consequences to important business metrics,

making CLTR less attractive to practitioners. To remedy this issue,

a safe CLTR approach was proposed by Gupta et al. [14]. Their

approach builds on IPS-based CLTR and adds exposure-based risk

regularization, which keeps the learned model from deviating too

much from a given safe model. Thereby, under the assumption of a

position-biased user model, the safe CLTR approach can guarantee

an upper bound on the probability of the model being worse than

the safe model.

Limitations of the current safe CLTR method. Whilst safe

CLTR is an important contribution to the field, it has two severe

limitations – both are addressed by this work. Firstly, the existing

approach is only applicable to IPS estimation, which is no longer
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the state-of-the-art in the field [11], and it assumes a rank-based po-

sition bias model [8, 46], the most basic user behavior model in the

field. Secondly, because its guarantees rely on assumptions about

user behavior, it can only provide a conditional notion of safety.

Moreover, since user behavior can be extremely heterogeneous, it

is unclear whether a practitioner could even determine whether

the safety guarantees would apply to their application.

Main contributions. Our first contribution addresses the mis-

match between the existing safe CLTR approach and recent ad-

vances in CLTR. We propose a novel generalization of the exposure-

based regularization term that provides safety guarantees for both

IPS and DR estimation, also under more complex models of user

behavior that cover both position and trust bias. Our experimental

results show that our novel method reaches higher levels of perfor-

mance significantly faster, while avoiding any notable decreases of

performance. This is especially beneficial since DR is known to have

detrimental performance when very little data is available [28].

Our second contribution provides an unconditional notion of

safety. We take inspiration from advances in reinforcement learning

(RL) [21, 35, 41, 49, 50] and propose the novel proximal ranking
policy optimization (PRPO) method. PRPO removes incentives for

LTR methods to rank documents too much higher than a given

safe ranking model would. Thereby, PRPO imposes a limit on the

performance difference between a learned model and a safe model,

in terms of standard ranking metrics. Importantly, PRPO is easily

applicable to any gradient-descent-based LTR method, and makes

no assumptions about user behavior. In our experiments, PRPO

prevents any notable decrease in performance even under extremely

adversarial circumstances, where other methods fail. Therefore, we

believe PRPO is the first unconditionally safe LTR method.

Together, our contributions bring important advances to the

theory of safe CLTR, by proposing a significant generalization of

the existing approach with theoretical guarantees, and the practical

appeal of CLTR, with the first robustly safe LTR method: PRPO. All

source code to reproduce our experimental results is available at:

https://github.com/shashankg7/cikm-safeultr.

2 Related Work
Counterfactual learning to rank. Joachims et al. [20] introduced

the first method for CLTR, a LTR specific adaptation of IPS from

the bandit literature [12, 13, 15, 19, 38, 42] to correct for position

bias. They weight each user interaction according to the inverse

of its examination probability, i.e., its inverse propensity, during

learning to correct for the position bias in the logged data. This

weighting will remove the effect of position bias from the final rank-

ing policy. Oosterhuis and de Rijke [29] extended this method for

the top-𝐾 ranking setting with item-selection bias, where any item

placed outside the top-𝐾 positions gets zero exposure probability,

i.e., an extreme form of position bias. They proposed a policy-aware

propensity estimator, where the propensity weights used in IPS are

conditioned on the logging policy used to collect the data.

Agarwal et al. [2] introduced an extension of IPS, known as

Bayes-IPS, to correct for trust bias, an extension of position-bias,

with false-positive clicks at the higher ranks, because of the users’

trust in the search engine. Vardasbi et al. [45] proved that Bayes-IPS

cannot correct for trust bias and introduced an affine-correction

method and unbiased estimator. Oosterhuis and de Rijke [30] com-

bined the affine-correction with a policy-aware propensity estima-

tor to correct for trust bias and item-selection bias simultaneously.

Recently, Oosterhuis [28] introduced a DR-estimator for CLTR,

which combines the existing IPS-estimator with a regression model

to overcome some of the challenges with the IPS-estimator. The

proposed DR-estimator corrects for item-selection and trust biases,

with lower variance and improved sample complexity.

Safe policy learning from user interactions. In the context

of offline evaluation for contextual bandits, Thomas et al. [43] in-

troduced a high-confidence off-policy evaluation framework. A

confidence interval is defined around the empirical off-policy es-

timates, and there is a high probability that the true utility can be

found in the interval. Jagerman et al. [16] extended this framework

for safe deployment in the contextual bandit learning setup. The

authors introduce a safe exploration algorithm (SEA) method that

selects with high confidence between a safe behavior policy and the

newly learned policy. In the context of LTR, Oosterhuis and de Rijke

[31] introduced the generalization and specialization (GENSPEC)

method, which safely selects between a feature-based and tabular

LTR model. For off-policy learning, Swaminathan and Joachims

[42] introduced a counterfactual risk minimization (CRM) frame-

work for the contextual bandit setup. They modify the IPS objective

for bandits to include a regularization term, which explicitly con-

trols for the variance of the IPS-estimator during learning, thereby

overcoming some of the problems with the high-variance of IPS.

Wu and Wang [52] extended the CRM framework by using a risk
regularization, which penalizes mismatches in the action proba-

bilities under the new policy and the behavior policy. Gupta et al.

[14] made this general safe deployment framework effective in the

LTR setting. They proposed an exposure-based risk regularization

method where the difference in the document exposure distribution

under the new and logging policies is penalized. When click data

is limited, risk regularization ensures that the performance of the

new policy is similar to the logging policy, ensuring safety.

To the best of our knowledge, the method proposed by Gupta

et al. [14] is the only method for safe policy learning in the LTR

setting. While it guarantees safe ranking policy optimization, it has

two main limitations: (i) It is only applicable to the IPS estimator;

and (ii) under the position-based click model assumption, the most

basic click model in the CLTR literature [11, 20, 24].

Proximal policy optimization. In the broader context of RL,

proximal policy optimization (PPO) was introduced as a policy gra-

dient method for training RL agents to maximize long-term re-

wards [21, 35, 41, 49, 50]. PPO clips the importance sampling ratio

of action probability under the new policy and the current behavior

policy, and thereby, it prevents the new policy to deviate from the

behavior policy by more than a certain margin. PPO is not directly

applicable to LTR, for the same reasons that the CRM framework is

not: the combinatorial action space of LTR leads to extremely small

propensities that PPO cannot effectively manage [14].

3 Background
3.1 Learning to rank
The goal in LTR is to find a ranking policy (𝜋 ) that optimizes a

given ranking metric [22]. Formally, given a set of documents (𝐷),
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a distribution of queries 𝑄 , and the true relevance function (𝑃 (𝑅 =

1 | 𝑑)), LTR aims to maximize the following utility function:

𝑈 (𝜋) =
∑︁
𝑞∈𝑄

𝑃 (𝑞 | 𝑄)
∑︁
𝑑∈𝐷

𝜔 (𝑑 | 𝜋) 𝑃 (𝑅 = 1 | 𝑑), (1)

where 𝜔 (𝑑 | 𝜋) is the weight of the document for a given policy 𝜋 .

The weight can be set accordingly to optimize for a given ranking

objective, for example, setting the weight to:

𝜔DCG (𝑑 | 𝑞, 𝜋) = E𝑦∼𝜋 ( · |𝑞)
[
(log

2
(rank(𝑑 | 𝑦) + 1))−1

]
, (2)

optimizes discounted cumulative gain (DCG) [17]. For this paper,

we aim to optimize the expected number of clicks, so we set the

weight accordingly [14, 28, 53].

3.2 Assumptions about user click behavior
The optimization of the true utility function (Eq. 1) requires access

to the document relevance (𝑃 (𝑅 = 1 | 𝑑)). In the CLTR setting,

the relevances of documents are not available, and instead, click

interaction data is used to estimate them [20, 24, 46]. However,

naively using clicks to optimize a ranking system can lead to sub-

optimal ranking policies, as clicks are a biased indicator of rele-

vance [7, 8, 18, 20]. CLTRwork with theoretical guarantees starts by

assuming amodel of user behavior. The earliest CLTRworks [20, 46]

assume a basic model originally proposed by Craswell et al. [8]:

Assumption 3.1 (The rank-based position bias model). The proba-

bility of a click on document 𝑑 at position 𝑘 is the product of the

rank-based examination probability and document relevance:

𝑃 (𝐶 = 1 | 𝑑, 𝑘) = 𝑃 (𝐸 = 1 | 𝑘)𝑃 (𝑅 = 1 | 𝑑) = 𝛼𝑘𝑃 (𝑅 = 1 | 𝑑) . (3)

Later work has proposed more complex user models to build on [11].

Relevant to our work is the model proposed by Agarwal et al. [2],

and its re-formulation by Vardasbi et al. [45]; it is a generalization

of the above model to include a form of trust bias:

Assumption 3.2 (The trust bias model). The probability of a click

on document 𝑑 at position 𝑘 is an affine transformation of the

relevance probability of 𝑑 in the form:

𝑃 (𝐶 = 1 | 𝑑, 𝑘) = 𝛼𝑘𝑃 (𝑅 = 1 | 𝑑) + 𝛽𝑘 , (4)

where ∀𝑘, 𝛼𝑘 ∈ [0, 1] ∧ 𝛽𝑘 ∈ [0, 1] ∧ (𝛼𝑘 + 𝛽𝑘 ) ∈ [0, 1].

Whilst it is named after trust bias, this model actually captures

three forms of bias that were traditionally categorized separately:

rank-based position bias, item-selection bias, and trust bias. Posi-

tion bias was originally approached as the probability that a user

would examine an item, which would decrease at lower positions

in the ranking [8, 20, 46, 47]. In the trust bias model, this effect

can be captured by decreasing 𝛼𝑘 + 𝛽𝑘 as 𝑘 increases. Additionally,

with ∀𝑘, 𝛽𝑘 = 0, the trust bias model is equivalent to the rank-based

position bias model. Item-selection bias refers to users being un-

able to see documents outside a top-𝐾 , where they receive zero

probability of being examined or interacted with [29]. This can be

captured by the trust bias model by setting 𝛼𝑘 +𝛽𝑘 = 0when 𝑘 > 𝐾 .

Lastly, the key characteristic of trust bias is that users are more

likely to click on non-relevant items when they are near the top

of the ranking [2]. This can be captured by the model by making

𝛽𝑘 larger as 𝑘 decreases [45]. Thereby, the trust bias model is in

fact a generalization of most of the user models assumed by ear-

lier work [11, 30]. The following works all assume models that fit

Assumption 3.2: [1, 2, 14, 28–32, 45–47].

3.3 Counterfactual learning to rank
This section details the policy-aware inverse propensity scoring (IPS)
estimator proposed by Oosterhuis and de Rijke [29] and the doubly
robust (DR) estimator by Oosterhuis [28].

First, letD be a set of logged interaction data:D =
{
𝑞𝑖 , 𝑦𝑖 , 𝑐𝑖

}𝑁
𝑖=1

,

where each of the 𝑁 interactions consists of a query 𝑞𝑖 , a displayed

ranking 𝑦𝑖 , and click feedback 𝑐𝑖 (𝑑) ∈ {0, 1} that indicates whether
the user clicked on the document 𝑑 or not. Both policies use propen-

sities that are the expected 𝛼 values for each document:

𝜌0 (𝑑 | 𝑞𝑖 , 𝜋0) = E𝑦∼𝜋0 (𝑞𝑖 )
[
𝛼𝑘 (𝑑)

]
= 𝜌𝑖,0 (𝑑) . (5)

Similarly, to keep our notation short, we also use 𝜔 (𝑑 | 𝑞𝑖 , 𝜋) =

𝜔𝑖 (𝑑). Next, the policy-aware IPS estimator is defined as:

𝑈IPS (𝜋) =
1

𝑁

𝑁∑︁
𝑖=1

∑︁
𝑑∈𝐷

𝜔𝑖 (𝑑)
𝜌𝑖,0 (𝑑)

𝑐𝑖 (𝑑) . (6)

Oosterhuis and de Rijke [29] prove that under the rank-based posi-

tion bias model (Assumption 3.1) and when ∀(𝑖, 𝑑), 𝜌𝑖,0 (𝑑) > 0, this

estimator is unbiased: E[𝑈IPS (𝜋)] = 𝑈 (𝜋).
The DR estimator improves over the policy-aware IPS estimator

in terms of assuming the more general trust bias model (Assump-

tion 3.2) and having lower variance. Oosterhuis [28] proposes the

usage of the following 𝜔 values for the policy 𝜋 :

𝜔 (𝑑 | 𝑞𝑖 , 𝜋) = E𝑦∼𝜋 (𝑞𝑖 )
[
𝛼𝑘 (𝑑) + 𝛽𝑘 (𝑑)

]
= 𝜔𝑖 (𝑑), (7)

since with these values 𝑈 (Eq. 1) becomes the number of expected

clicks on relevant items under the trust bias model; 𝑈 = (𝛼𝑘 +
𝛽𝑘 )𝑃 (𝑅 = 1 | 𝑑, 𝑞) = 𝑃 (𝐶 = 1, 𝑅 = 1 | 𝑘,𝑑, 𝑞). We follow this

approach and define the 𝜔 values for the logging policy 𝜋0 as:

𝜔0 (𝑑 | 𝑞𝑖 , 𝜋0) = E𝑦∼𝜋0 (𝑞𝑖 )
[
𝛼𝑘 (𝑑) + 𝛽𝑘 (𝑑)

]
= 𝜔𝑖,0 (𝑑) . (8)

The DR estimator uses predicted relevances in its estimation, i.e.,

using predictions from a regression model. Let 𝑅𝑖 (𝑑) ≈ 𝑃 (𝑅 = 1 |
𝑑, 𝑞𝑖 ) indicate a predicted relevance; then the utility according to

these predictions is:

𝑈DM (𝜋) = 1

𝑁

𝑁∑︁
𝑖=1

∑︁
𝑑∈𝐷

𝜔𝑖 (𝑑)𝑅𝑖 (𝑑). (9)

The DR estimator starts with this predicted utility and adds an

IPS-based correction to remove its bias:

𝑈DR (𝜋) = (10)

𝑈DM (𝜋) + 1

𝑁

𝑁∑︁
𝑖=1

∑︁
𝑑∈𝐷

𝜔𝑖 (𝑑)
𝜌𝑖,0 (𝑑)

(
𝑐𝑖 (𝑑) − 𝛼𝑘𝑖 (𝑑)𝑅𝑖 (𝑑) − 𝛽𝑘𝑖 (𝑑)

)
.

Thereby, the corrections of the IPS part of the DR estimator will be

smaller if the predicted relevances are more accurate. Oosterhuis

[28] proves that under the assumption of the trust bias model (As-

sumption 3.2), the DR estimator is unbiased when ∀(𝑖, 𝑑), 𝜌𝑖,0 (𝑑) >
0 ∨ 𝑅𝑖 (𝑑) = 𝑃 (𝑅 = 1 | 𝑑, 𝑞𝑖 ) and has less variance if 0 ≤ 𝑅𝑖 (𝑑) ≤
2𝑃 (𝑅 = 1 | 𝑑, 𝑞𝑖 ). They also show that the DR estimator needs less

data to reach the same level of ranking performance as IPS, with

especially large improvements when applied to top-𝐾 rankings [28].
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3.4 Safety in counterfactual learning to rank
IPS-based CLTR methods, despite their unbiasedness and consis-

tency, suffer from the problem of high-variance [11, 20, 28]. Specif-

ically, if the logged click data is limited, training an IPS-based

method can lead to an unreliable and unsafe ranking policy [14].

The problem of safe policy learning is well-studied in the bandit liter-
ature [16, 42, 43, 52]. Swaminathan and Joachims [42] proposed the

first risk-aware off-policy learning method for bandits, with their

risk term quantified as the variance of the IPS-estimator. Wu and

Wang [52] proposed an alternative method for risk-aware off-policy

learning, where the risk is quantified using a Renyi divergence be-

tween the action distribution of the new policy and the logging

policy [37]. Thus, both consider it a risk for the new policy to be

too dissimilar to the logging policy, which is presumed safe. Whilst

effective at standard bandit problems, these risk-aware methods are

not effective for ranking tasks due to their enormous combinatorial

action spaces and correspondingly small propensities.

As a solution for CLTR, Gupta et al. [14] introduced a risk-aware

CLTR approach that uses divergence based on the exposure distri-

butions of policies. They first introduce normalized propensities:

𝜌 ′(𝑑) = 𝜌/𝑍 , with a normalization factor 𝑍 based on 𝐾 :

𝑍 =
∑︁
𝑑∈𝐷

𝜌 (𝑑) =
∑︁
𝑑∈𝐷
E𝑦∼𝜋

[
𝛼𝑘 (𝑑)

]
= E𝑦∼𝜋

[
𝐾∑︁
𝑘=1

𝛼𝑘 (𝑑)

]
=

𝐾∑︁
𝑘=1

𝛼𝑘 . (11)

Since 𝜌 ′(𝑑) ∈ [0, 1] and ∑
𝑑 𝜌

′(𝑑) = 1, they can be treated as a

probability distribution that indicates how exposure is spread over

documents. Gupta et al. [14] use Renyi divergence to quantify how

dissimilar the new policy is from the logging policy:

𝑑2 (𝜌 ∥ 𝜌0) = E𝑞

[∑︁
𝑑

(
𝜌 ′(𝑑)
𝜌 ′
0
(𝑑)

)
2

𝜌 ′
0
(𝑑)

]
, (12)

with the corresponding empirical estimate based on the log data

(D) defined as:

ˆ𝑑2 (𝜌 ∥ 𝜌0) =
1

𝑁

𝑁∑︁
𝑖=1

∑︁
𝑑

(
𝜌 ′
𝑖
(𝑑)

𝜌 ′
𝑖,0
(𝑑)

)
2

𝜌 ′𝑖,0 (𝑑) . (13)

Based on this divergence term, they propose the following risk-

aware CLTR objective, with parameter 𝛿 :

max

𝜋
𝑈IPS (𝜋) −

√︂
𝑍

𝑁

(
1 − 𝛿
𝛿

)
ˆ𝑑2 (𝜌 ∥ 𝜌0) . (14)

Thereby, the existing safe CLTR approach penalizes the optimiza-

tion procedure from learning ranking behavior that is too dissimilar

from the logging policy in terms of the distribution of exposure.

The weight of this penalty decreases as the number of datapoints

𝑁 increases, thus it maintains the same point of convergence as

standard IPS. Yet, initially when little data is available and the effect

of variance is the greatest, it forces the learned policy to be very

similar to the safe logging policy. Gupta et al. [14] prove that their

objective bounds the real utility with a probability of 1 − 𝛿 :

𝑃

(
𝑈 (𝜋) ≥ 𝑈IPS (𝜋)−

√︂
𝑍

𝑁

(
1 − 𝛿
𝛿

)
𝑑2 (𝜌 ∥ 𝜌0)

)
≥ 1 − 𝛿. (15)

However, their proof of safety relies on the rank-based position

bias model (Assumption 3.1) and their approach is limited to the

basic IPS estimator for CLTR.

3.5 Proximal policy optimization
In the more general reinforcement learning (RL) field, proximal
policy optimization (PPO) was introduced as a method to restrict a

new policy 𝜋 from deviating too much from a previously rolled-out

policy 𝜋0 [40, 41]. In contrast with the earlier discussed methods,

PPO does not make use of a divergence term but uses a simple

clipping operation in its optimization objective. Let 𝑠 indicate a

state, 𝑎 an action and 𝑅 a reward function, the PPO loss is:

𝑈 𝑃𝑃𝑂(𝑠, 𝑎, 𝜋, 𝜋0) = E
[
min

(
𝜋 (𝑎 | 𝑠)
𝜋0 (𝑎 | 𝑠)

𝑅(𝑎 | 𝑠), 𝑔
(
𝜖, 𝑅(𝑎 | 𝑠)

) )]
, (16)

where 𝑔 creates a clipping threshold based on the sign of 𝑅(𝑎 | 𝑠):

𝑔(𝜖, 𝑅(𝑎 | 𝑠)) =
{
(1 + 𝜖) 𝑅(𝑎 | 𝑠) if 𝑅(𝑎 | 𝑠) ≥ 0,

(1 − 𝜖) 𝑅(𝑎 | 𝑠) otherwise.
(17)

The clipping operation removes incentives for the optimization to

let 𝜋 deviate too much from 𝜋0, since there are no further increases

in𝑈 𝑃𝑃𝑂 when 𝜋 (𝑎 | 𝑠) > (1+𝜖)𝜋0 (𝑎 | 𝑠) or 𝜋 (𝑎 | 𝑠) < (1−𝜖)𝜋0 (𝑎 | 𝑠),
depending on the sign of𝑅(𝑎 | 𝑠). Similar to the previously discussed

general methods, PPO is not effective when directly applied to the

CLTR setting due to the combinatorial action space and correspond-

ing extremely small propensities (for most 𝑎 and 𝑠: 𝜋0 (𝑎 | 𝑠) ≃ 0).

4 Extending Safety to Advanced CLTR
In this section, we introduce our first contribution: our extension

of the safe CLTR method to address trust bias and DR estimation.

4.1 Method: Safe doubly-robust CLTR
For the safe DR CLTR method, we extend the generalization bound

from the existing IPS estimator and position bias [14, Eq. 26] to the

DR estimator and trust bias.

Theorem 4.1. Given the true utility 𝑈 (𝜋) (Eq. 1) and its exposure-
based DR estimate 𝑈DR (𝜋) (Eq. 10) of the ranking policy 𝜋 with the
logging policy 𝜋0 and the metric weights 𝜔 and 𝜔0 (Eq. 7 and 8),
assuming the trust bias click model (Assumption 3.2), the following
generalization bound holds with probability 1 − 𝛿 :

𝑃

(
𝑈 (𝜋) ≥𝑈DR (𝜋)−

(
1+max

𝑘

𝛽𝑘

𝛼𝑘

)√︂
2𝑍

𝑁

(
1 − 𝛿
𝛿

)
𝑑2 (𝜔 ∥𝜔0)

)
≥ 1−𝛿.

Proof. For a proof, we refer to the appendix (Theorem A.1). □

Given the novel generalization bound from Theorem 4.1, we define

the safe DR CLTR objective as follows:

max

𝜋
𝑈DR (𝜋) −

(
1 +max

𝑘

𝛽𝑘

𝛼𝑘

)√︂
2𝑍

𝑁

(
1 − 𝛿
𝛿

)
ˆ𝑑2 (𝜔 ∥𝜔0), (18)

where
ˆ𝑑2 (𝜔 ∥𝜔0) is defined analogously to Eq. 13. The objective

optimizes the lower-bound on the true utility function, through a

linear combination of the empirical DR estimator (𝑈DR (𝜋)) and the
empirical risk regularization term (

ˆ𝑑2 (𝜔 ∥𝜔0)). In a setting where

click data is limited, our safe DR objective will weight the risk

regularization term higher, and as a result, the objective ensures

that the new policy stays close to the safe logging policy. When a

sufficiently high volume of click data is collected, and thus we have

higher confidence in the DR estimate, the objective falls back to its

DR objective counterpart.
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For the choice of the ranking policy (𝜋 ), we propose to optimize

a stochastic ranking policy 𝜋 with a gradient descent-based method.

For the gradient calculation, we refer to previous work [14, 28, 53].

Conditions for safe DR CLTR. Finally, we note that besides the
explicit assumption that user behavior follows the trust bias model

(Assumption 3.2), there is also an important implicit assumption in

this approach. Namely, the approach assumes that the bias parame-

ters (i.e., 𝛼 and 𝛽) are known, a common assumption in the CLTR

literature [24, 28]. However, in practice, either of these assumptions

could not hold, i.e., user behavior could not follow the trust bias

model, or a model’s bias parameters could be wrongly estimated.

Additionally, in adversarial settings where clicks are intentionally

misleading or incorrectly logged [5, 23, 36], the user behavior as-

sumptions do not hold, and, the generalization bound of our DR

CLTR is not guaranteed to hold. Thus, whilst it is an important ad-

vancement over the existing safe CLTR method [14], our approach

is limited to only providing a conditional form of safety.

5 Method: Proximal Ranking Policy
Optimization (PRPO)

Inspired by the limitations of the method introduced in Section 4

and the PPO method from the RL field (Section 2), we propose the

first unconditionally safe CLTR method: proximal ranking policy
optimization (PRPO). Our novel PRPO method is designed for prac-

tical safety by making no assumptions about user behavior. Thereby,
it provides the most robust safety guarantees for CLTR yet.

For safety, instead of relying on a high-confidence bound (e.g.,

Eq. 14 and 18), PRPO guarantees safety by removing the incentive

for the new policy to rank documents too much higher than the

safe logging policy. This is achieved by directly clipping the ratio

of the metric weights for a given query 𝑞𝑖 under the new policy

𝜔𝑖 (𝑑), and the logging policy (𝜔𝑖,0 (𝑑)), i.e., 𝜔𝑖 (𝑑)
𝜔𝑖,0 (𝑑) to be bounded in

a fixed predefined range: [𝜖−, 𝜖+]. As a result, the PRPO objective

provides no incentive for the new policy to produce weights 𝜔𝑖 (𝑑)
outside of the range: 𝜖− · 𝜔𝑖,0 (𝑑) ≤ 𝜔𝑖 (𝑑) ≤ 𝜖+ · 𝜔𝑖,0 (𝑑).

Before defining the PRPO objective, we first introduce a term

𝑟 (𝑑 |𝑞) that represents an unbiased DR relevance estimate, weighted

by 𝜔0, for a single document-query pair (cf. Eq. 10):

𝑟 (𝑑 |𝑞) =

𝜔0 (𝑑 |𝑞)𝑅(𝑑 |𝑞) +
𝜔0 (𝑑 |𝑞)
𝜌0 (𝑑 |𝑞)

∑︁
𝑖∈D:𝑞𝑖=𝑞

(
𝑐𝑖 (𝑑) − 𝛼𝑘𝑖 (𝑑)𝑅(𝑑 |𝑞) − 𝛽𝑘𝑖 (𝑑)

)
. (19)

For the sake of brevity, we drop 𝜋 and 𝜋0 from the notation when

their corresponding value is clear from the context. This enables

us to reformulate the DR estimator around the ratios between the

metric weights 𝜔 and 𝜔0 (cf. Eq. 10):

𝑈DR (𝜋) =
∑︁

𝑞,𝑑 ∈D

𝜔 (𝑑 | 𝑞)
𝜔0 (𝑑 | 𝑞) 𝑟 (𝑑 | 𝑞). (20)

Before defining the proposed PRPO objective, we first define the

following clipping function:

𝑓 (𝑥, 𝜖−, 𝜖+, 𝑟 ) =
{
min(𝑥, 𝜖+) · 𝑟 𝑟 ≥ 0,

max(𝑥, 𝜖−) · 𝑟 otherwise.
(21)

Given the reformulated DR estimator (Eq. 20), and the clipping
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0.4
0.6
0.8
1.0
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1.6
1.8
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0.4

Original Rank 2 Original Rank 4 Original Rank 6 Original Rank 8

Figure 1: Weight ratios in the clipped PRPO objective (solid
lines) and the unclipped counterparts (dashed lines), as doc-
uments are moved from four different original ranks. Left:
positive relevance, 𝑟 = 1; right: negative relevance, 𝑟 = −1; x-
axis: new rank for document; y-axis: unclipped weight ratios
(dashed lines), 𝑟 · 𝜔𝑖 (𝑑)/𝜔𝑖,0 (𝑑); and clipped PRPO weight ra-
tios (solid lines), 𝑓

(
𝜔𝑖 (𝑑)/𝜔𝑖,0 (𝑑), 𝜖− = 1.15−1, 𝜖+ = 1.15, 𝑟 = ±1

)
.

DCG metric weights used: 𝜔𝑖 (𝑑) = log
2
(rank(𝑑 | 𝑞𝑖 , 𝜋) + 1)−1.

function (Eq. 21), the PRPO objective can be defined as follows:

𝑈PRPO (𝜋) =
∑︁

𝑞,𝑑∈D
𝑓

(
𝜔 (𝑑 | 𝑞)
𝜔0 (𝑑 | 𝑞) , 𝜖−, 𝜖+, 𝑟 (𝑑 | 𝑞)

)
. (22)

Fig. 1 visualizes the effect the clipping of PRPO has on the opti-

mization incentives. We see how the clipped and unclipped weight

ratios progress as documents are placed on different ranks. The

unclipped weights keep increasing as documents are moved to the

top of the ranking, when 𝑟 > 1, or to the bottom, when 𝑟 < 1.

Consequently, optimization with unclipped weight ratios aims to

place these documents at the absolute top or bottom positions. Con-

versely, the clipped weights do not increase beyond their clipping

threshold, which for most document is reached before being placed

at the very top or bottom position. As a result, optimization with

clipped weight ratios will not push these documents beyond these

points in the ranking. For example, when 𝑟 > 0, we see that there

is no incentive to place a document at higher than rank 6, if it was

placed at rank 8 by the logging policy. Similarly, placement higher

than rank 4 leads to no gain if the original rank was 6, and higher

than rank 3 leads to no improvement gain from an original rank

of 4. Vice versa, when 𝑟 < 0, each document has a rank, where

placing it lower than that rank brings no increase in clipped weight

ratio. Importantly, this behavior only depends on the metric and

the logging policy; PRPO makes no further assumptions.
Whilst the clipping of PRPO is intuitive, we can prove that it

provides the following formal form of unconditional safety:

Theorem 5.1. Let 𝑞 be a query, 𝜔 be metric weights, 𝑦0 be a logging
policy ranking, and𝑦∗ (𝜖−, 𝜖+) be the ranking that optimizes the PRPO
objective in Eq. 22. Assume that ∀𝑑, ∈ D, 𝑟 (𝑑 | 𝑞) ≠ 0. Then, for any
Δ ∈ R≥0, there exist values for 𝜖− and 𝜖+ that guarantee that the
difference between the utility of 𝑦0 and 𝑦∗ (𝜖−, 𝜖+) is bounded by Δ:

∀Δ∈ R≥0, ∃𝜖−∈ R≥0, 𝜖+∈ R≥0; |𝑈 (𝑦0)−𝑈 (𝑦∗ (𝜖−, 𝜖+)) | ≤ Δ. (23)

Proof. A proof is given in Appendix A.2. □

Adaptive clipping. Theorem 5.1 describes a very robust sense of

safety, as it shows PRPO can be used to prevent any given decrease

in performance without assumptions. However, it also reveals that
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this safety comes at a cost; PRPO prevents both decreases and in-

creases of performance. This is very common in safety approaches,

as there is a generally a tradeoff between risks and rewards [14].

Existing safety methods, such as the safe CLTR approach of Sec-

tion 4, generally, loosen their safety measures as more data becomes

available, and the risk is expected to have decreased [43].

We propose a similar strategy for PRPO through adaptive clip-

ping, where the effect of clipping decreases as the number of data-

points 𝑁 increases. Specifically, we suggest using a monotonically

decreasing 𝛿 (𝑁 ) function such that lim𝑁→∞ 𝛿 (𝑁 ) = 0. The 𝜖 pa-

rameters can then be obtained through the following transforma-

tion: 𝜖− = 𝛿 (𝑁 ) and 𝜖+ = 1

𝛿 (𝑁 ) . This leads to a clipping range

of [𝛿 (𝑁 ), 1

𝛿 (𝑁 ) ], and in the limit: lim𝑁→∞, it becomes: [0,∞]. In
other words, as more data is gathered, the effect of PRPO clipping

eventually disappears, and the original objective is recovered. The

exact choice of 𝛿 (𝑁 ) determines how quickly this happens.

Gradient ascent with PRPO and possible extensions. Finally,
we consider how the PRPO objective should be optimized. This

turns out to be very straightforward when we look at its gradient.

The clipping function 𝑓 (Eq. 21) has a simpler gradient involving

an indicator function on whether 𝑥 is inside the bounded range:

∇𝑥 𝑓 (𝑥, 𝜖−, 𝜖+, 𝑟 ) = 1
[
(𝑟 > 0∧ 𝑥 ≤ 𝜖+) ∨ (𝑟 < 0∧ 𝑥 ≥ 𝜖−)

]
𝑟 . (24)

Applying the chain rule to the PRPO objective (Eq. 22) reveals:

∇𝜋𝑈PRPO (𝜋)=
∑︁

𝑞,𝑑∈D

[
∇𝜋

𝜔 (𝑑 |𝑞)
𝜔0 (𝑑 |𝑞)

]
︸        ︷︷        ︸

grad. for single doc.

∇𝜋 𝑓
(
𝜔 (𝑑 |𝑞)
𝜔0 (𝑑 |𝑞)

, 𝜖−, 𝜖+, 𝑟 (𝑑 |𝑞)
)

︸                             ︷︷                             ︸
indicator reward function

.

Thus, the gradient of PRPO simply takes the importance weighted

metric gradient per document, and multiplies it with the indicator

function and reward. As a result, PRPO is simple to combine with ex-

isting LTR algorithms, especially ones that use policy-gradients [51],

such as PL-Rank [25, 26] or StochasticRank [44]. For methods in

the family of LambdaRank [3, 4, 48], it is a matter of replacing the

|Δ𝐷𝐶𝐺 | term with an equivalent for the PRPO bounded metric.

Lastly, we note that whilst we introduced PRPO for DR estima-

tion, it can be extended to virtually any relevance estimation by

choosing a different 𝑟 ; e.g., one can easily adapt it for IPS [20, 30],

or relevance estimates from a click model [7], etc. In this sense, we

argue PRPO can be seen as a framework for robust safety in LTR.

6 Experimental Setup
For our experiments, we follow the semi-synthetic experimental

setup that is prevalent in the CLTR literature [14, 28, 31, 45]. We

make use of the three largest publicly available LTR datasets: Ya-

hoo!Webscope [6], MSLR-WEB30k [33], and Istella [9]. The datasets

consist of queries, a preselected list of documents per query, query-

document feature vectors, and manually-graded relevance judg-

ments for each query-document pair.

Following [14, 28, 45], we train a production ranker on a 3%

fraction of the training queries and their corresponding relevance

judgments. The goal is to simulate a real-world setting where a

ranker trained on manual judgments is deployed in production and

is used to collect click logs. The collected click logs can then be

used for LTR. We assume the production ranker is safe, given that

it would serve live traffic in a real-world setup.

We simulate a top-𝐾 ranking setup [29] where only 𝐾 = 5 docu-

ments are displayed to the user for a given query, and any document

beyond that gets zero exposure. To get the relevance probability, we

apply the following transformation: 𝑃 (𝑅 = 1 | 𝑞, 𝑑) = 0.25 ·𝑟𝑒𝑙 (𝑞, 𝑑),
where 𝑟𝑒𝑙 (𝑞, 𝑑) ∈ {0, 1, 2, 3, 4} is the relevance judgment for the

given query-document pair. We generate clicks based on the trust

bias click model (Assumption 3.2):

𝑃 (𝐶 = 1 | 𝑞, 𝑑, 𝑘) = 𝛼𝑘𝑃 (𝑅 = 1 | 𝑞, 𝑑) + 𝛽𝑘 . (25)

The trust bias parameters are set based on the empirical observation

in [2]: 𝛼 = [0.35, 0.53, 0.55, 0.54, 0.52], and 𝛽 = [0.65, 0.26, 0.15, 0.11,
0.08]. For CLTR training, we only use the training and validation

clicks generated via the click simulation process (Eq. 25). To test

the robustness of the safe CLTR methods in a setting where the

click model assumptions do not hold, we simulate an adversarial
click model, where the user clicks on the irrelevant document with

a high probability and on a relevant document with a low click

probability. We define the adversarial click model as:

𝑃 (𝐶 = 1 | 𝑞, 𝑑, 𝑘) = 1 − (𝛼𝑘𝑃 (𝑅 = 1 | 𝑞, 𝑑) + 𝛽𝑘 ) . (26)

Thereby, we simulate a maximally adversarial user who clicks on

documents with a click probability that is inversely correlated with

the assumed trust bias model (Assumption 3.2).

Further, we assume that the logging propensities have to be

estimated. For the logging propensities 𝜌0, and the logging metric

weights (𝜔0), we use a simple Monte-Carlo estimate [14]:

𝜌0 (𝑑) =
1

𝑁

𝑁∑︁
𝑖=1:𝑦𝑖∼𝜋0
𝛼𝑘𝑖 (𝑑) , �̂�0 (𝑑) =

1

𝑁

𝑁∑︁
𝑖=1:𝑦𝑖∼𝜋0

(
𝛼𝑘𝑖 (𝑑) + 𝛽𝑘𝑖 (𝑑)

)
. (27)

For the learned policies (𝜋 ), we optimize Plackett-Luce (PL) ranking

models [25] using the REINFORCE policy-gradient method [14, 53].

We perform clipping on the logging propensities (Eq. 5) only for the

training clicks and not for the validation set. Following previous

work, we set the clipping parameter to 10/
√
𝑁 [14, 30]. We do

not apply the clipping operation for the logging metric weights

(Eq. 8). To prevent overfitting, we apply early stopping based on

the validation clicks. For variance reduction, we follow [14, 53] and

use the average reward per query as a control-variate.

As our evaluationmetric, we compute the NDCG@5metric using

the relevance judgments on the test split of each dataset [17]. Finally,

the following methods are included in our comparisons: (i) IPS. The
IPS estimator with affine correction [30, 45] for CLTRwith trust bias

(Eq. 6). (ii)Doubly Robust. The DR estimator for CLTRwith trust bias

(Eq. 10). This is the most important baseline for this work, given

that the DR estimator is the state-of-the-art CLTR method [28].

(iii) Safe DR. Our proposed safe DR CLTR method (Eq. 18), which

relies on the trust bias assumption (Assumption 3.2). (iv) PRPO. Our
proposed proximal ranking policy optimization (PRPO) method for

safe DR CLTR (Eq. 22). (v) Skyline. LTR method trained on the true

relevance labels. Given that it is trained on the real relevance signal,

the skyline performance is the upper bound on any CLTR methods

performance.

7 Results and Discussion
Comparision with baseline methods. Fig. 2 presents the main

results with different CLTR estimators with varying amounts of

simulated click data. Amongst the baselines, we see that the DR
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Figure 2: Performance in terms of NDCG@5 of the IPS, DR and proposed safe DR (𝛿 = 0.95) and PRPO (𝛿 (𝑁 ) = 100

𝑁
) methods for

CLTR. The results are presented varying size of training data (𝑁 ), with number of simulated queries varying from 10
2 to 10

9.
Results are averaged over 10 runs; the shaded areas indicate 80% prediction intervals.
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Figure 3: Performance of the safe DR and PRPO with varying safety parameter (𝛿). Top row: sensitivity analysis of PRPO with
varying clipping parameter (𝛿) over varying dataset sizes 𝑁 . Bottom row: sensitivity analysis for the safe DR method with
varying safety confidence parameter (𝛿). Results are averaged over 10 runs; shaded areas indicate 80% prediction intervals.

estimator converges to the skyline much faster than the IPS esti-

mator. The IPS estimator fails to reach the optimal performance

even after training on 10
9
clicks, suggesting that it suffers from a

high-variance problem. This aligns with the findings in [28]. As to

safety, when the click data is limited (𝑁 < 10
5
), the DR estimator

performs much worse than the logging policy, i.e., it exhibits unsafe

behavior, which can lead to a negative user experience if deployed

online. A likely explanation is that when click data is limited, the

regression estimates (𝑅(𝑑), Eq. 10) have high errors, resulting in a

large performance degradation, compared to IPS.

Our proposed safety methods, safe DR and PRPO, reach the per-

formance of the logging policy within ∼500 queries on all datasets.

For the safe DR method, we set the confidence parameter 𝛿 = 0.95.

For the PRPO method, we set 𝛿 (𝑁 ) = 100

𝑁
. On the MSLR and the

ISTELLA dataset, we see that PRPO reaches logging policy perfor-

mancewith almost 10
3
fewer queries than the DRmethod. Thus, our

proposed methods, safe DR and PRPO, can be safely deployed, and

avoid the initial period of bad performance of DR, whilst providing

the same state-of-the-art performance at convergence.

Sensitivity analysis of the safety parameter. To understand

the tradeoff between safety and utility, we performed a sensitivity

analysis by varying the safety parameter (𝛿) for the safe DR method

and PRPO. The top row of Fig. 3 shows us the performance of the

PRPO method with different choices of the clipping parameter 𝛿

as a function of dataset size (𝑁 ). We report results with the setting

of the 𝛿 parameter, which results in different clipping widths. For

the setting 𝛿 = 0.01
𝑁

and 𝛿 = 100

𝑁
, the clipping range width grows

linearly with the dataset size 𝑁 . Hence, the resulting policy is safer

at the start but converges to the DR estimator when 𝑁 increases.

With 𝛿 = 0.01
𝑁

, the clipping range is wider at the start. As a result, it

is more unsafe than when 𝛿 = 100

𝑁
, which is the safest amongst all.

For the case where the range grows logarithmically (𝛿 = 1

log(𝑁 ) ),
the method is more conservative throughout, i.e., it is closer to the

logging policy since the clipping window grows only logarithmi-

cally with 𝑁 . For the extreme case where the clipping range is a

constant (𝛿 = 1), PRPO avoids any change w.r.t. the logging policy,

and as a result, it sticks closely to the logging policy.

The bottom row of Fig. 3 shows the performance of the safe

DR method with varying confidence parameter values (𝛿). Due

to the nature of the generalization bound (Eq. 18), the confidence

parameter is restricted to: 0 ≤ 𝛿 ≤ 1. We vary the confidence

parameters in the range 𝛿 ∈ {0.01, 0.1, 0.45, 0.95}. We note that a
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Figure 4: Performance of the proposed safe DR and PRPO with the adversarial click model. Top: sensitivity analysis results for
the PRPO method with varying clipping parameter (𝛿). Bottom: sensitivity analysis for the safe DR method with varying safety
confidence parameter (𝛿). Results are averaged over 10 independent runs; the shaded areas indicate 80% prediction intervals.

lower 𝛿 value results in higher safety, and vice-versa. Until 𝑁 < 10
5
,

there is no noticeable difference in performance. For the Yahoo!

Webscope dataset, almost all settings result in a similar performance.

For theMSLR and ISTELLA datasets, when𝑁 < 10
5
, a lower 𝛿 value

results in a more conservative policy, i.e., a policy closer to the

logging policy. However, the performance difference with different

setups is less drastic than with the PRPO method. Thus, we note

that the safe DR method is less flexible in comparison to PRPO.

Therefore, compared to our safe DR method, we conclude that

our PRPO method provides practitioners with greater flexibility

and control when deciding between safety and utility.

Robustness analysis using an adversarial click model. To
verify our initial claim that our proposed PRPO method provides

safety guarantees unconditionally, we report results with clicks sim-

ulated via the adversarial click model (Eq. 26). With the adversarial

click setup, the initial user behavior assumptions (Assumption 3.2)

do not hold. The top row of Fig. 4 shows the performance of the

PRPO method with different safety parameters when applied to

the data collected via the adversarial click model. We vary the 𝛿

parameter for PRPO in the range {0.25, 0.5, 0.65, 1.0}, e.g., 𝛿 = 0.5

results in 𝜖− = 0.5 and 𝜖+ = 2. With the constant clipping range

(𝛿 = 1), we notice that after ∼400 queries, the PRPO methods per-

formance never drops below the safe logging policy performance.

For greater values of 𝛿 , there are drops in performance but they

are all bounded. For the Yahoo! Webscope dataset, the maximum

drop in the performance is ∼12%; for the MSLR30K dataset, the

maximum performance drop is ∼10%; and finally, for the Istella

dataset, the maximum drop is ∼20%. Clearly, these observations
show that PRPO provides robust safety guarantees, that are reliable

even when user behavior assumptions are wrong.

In contrast, the generalization bound of our safe DR method

(Theorem 4.1) holds only when the user behavior assumptions

are true. This is not the case in the bottom row of Fig. 4, which

shows the performance of the safe DRmethod under the adversarial

click model. Even with the setting where the safety parameters

have a high weight (𝛿 = 0.01), as the click data size increases, the

performance drops drastically. Regardless of the exact choice of 𝛿 ,

the effect of the regularization of safe DR disappears as 𝑁 grows,

thus in this adversarial setting, it is only a matter of time before

the performance of safe DR degrades dramatically.

8 Conclusion
In this paper, we have introduced the first safe CLTR method that

uses state-of-the-art DR estimation and corrects trust bias. This

is a significant extension of the existing safety method for CLTR

that was restricted to position bias and IPS estimation. However,

in spite of the importance of this extended safe CLTR approach,

it heavily relies on user behavior assumptions. We argue that this

means it only provides a conditional concept of safety, that may not

apply to real-world settings. To address this limitation, we have

made a second contribution: the proximal ranking policy optimiza-
tion (PRPO) method. PRPO is the first LTR method that provides

unconditional safety, that is applicable regardless of user behavior.
It does so by removing incentives to stray too far away from a

safe ranking policy. Our experimental results show that even in

the extreme case of adversarial user behavior PRPO results in safe

ranking behavior, unlike existing safe CLTR approaches.

PRPO easily works with existing LTR algorithms and relevance

estimation techniques. We believe it provides a flexible and generic

framework that enables practitioners to apply the state-of-the-art

CLTR method with strong and robust safety guarantees. Future

work may apply the proposed safety methods to exposure-based

ranking fairness [25, 53] and to safe online LTR [30].
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A Appendix: Extended Safety Proof
Lemma A.1. Under the trust bias click model (Assumption 3.2), and
given the trust bias parameter 𝛼𝑘 , 𝛽𝑘 , the regression model estimates
𝑅𝑑 and click indicator 𝑐 (𝑑), the following holds:

Cov𝑦,𝑐

[
𝑐 (𝑑) − 𝛽𝑘 (𝑑) , 𝛼𝑘 (𝑑)𝑅𝑑

]
≥ 0. (28)

Proof. The covariance term can be rewritten as:

Cov𝑦,𝑐

[
𝑐 (𝑑) − 𝛽𝑘 (𝑑) , 𝛼𝑘 (𝑑)𝑅𝑑

]
= E𝑦,𝑐

[
(𝑐 (𝑑) − 𝛽𝑘 (𝑑) )𝛼𝑘 (𝑑)𝑅𝑑

]
− E𝑦,𝑐

[
𝑐 (𝑑) − 𝛽𝑘 (𝑑)

]
E𝑦

[
𝛼𝑘 (𝑑)𝑅𝑑

]
= 𝑅𝑑

(
E𝑦,𝑐

[
𝑐 (𝑑)𝛼𝑘 (𝑑)

]
− E𝑦

[
𝛽𝑘 (𝑑)𝛼𝑘 (𝑑)

]
− 𝑅𝑑 𝜌0 (𝑑)2

)
, (29)

where use 𝜌0 (𝑑) = E𝑦,𝑐
[
𝛼𝑘 (𝑑)

]
andE𝑦,𝑐

[
(𝑐𝑖 (𝑑) − 𝛽𝑘𝑖 (𝑑) )/𝜌0 (𝑑)

]
=

𝑅𝑑 [28]. Expanding the first expectation term in the expression:

E
𝑦,𝑐

[
𝑐 (𝑑)𝛼𝑘 (𝑑)

]
=

∑︁
𝑦∈𝜋0

𝜋0 (𝑦)𝛼𝑘 (𝑑)𝑃 (𝐶 = 1 | 𝑑,𝑦) =
∑︁
𝑦∈𝜋0

𝜋0 (𝑦)𝛼𝑘 (𝑑)

·
(
𝛼𝑘 (𝑑)𝑅𝑑 + 𝛽𝑘 (𝑑)

)
= 𝑅𝑑E𝑦

[
𝛼2
𝑘 (𝑑)

]
+ E𝑦

[
𝛼𝑘 (𝑑)𝛽𝑘 (𝑑)

]
, (30)

where we substitute click model equation 𝑃 (𝐶 = 1 | 𝑑,𝑦) (Eq. 10).
Substituting it back in Eq. 29, we get:

Cov𝑦,𝑐

[
𝑐 (𝑑) − 𝛽𝑘 (𝑑) , 𝛼𝑘 (𝑑)𝑅𝑑

]
= 𝑅𝑑E𝑦

[
𝛼2
𝑘 (𝑑)

]
− 𝑅𝑑 E𝑦

[
𝛼𝑘 (𝑑)

]
2

𝑅𝑑

(
E𝑦

[
𝛼2
𝑘 (𝑑)

]
− E𝑦

[
𝛼𝑘 (𝑑)

]
2

)
= 𝑅𝑑Var𝑦 [𝛼𝑘 (𝑑)] ≥ 0. □

A.1 Proof of Theorem 4.1
Proof. As per Cantelli’s inequality [10], the following inequality

must hold with probability 1 − 𝛿 :

𝑈 (𝜋) ≥ 𝑈DR (𝜋) −
√︂

1 − 𝛿
𝛿

Var𝑞,𝑦,𝑐

[
𝑈DR (𝜋)

]
. (31)

Following a similar approach as previous works [14, 52], we look

for an upper-bound on the variance of the DR estimator. From the

definition of𝑈DR (𝜋) (Eq. 10), the variance of the DR estimator can

be expressed as the variance of the second term:

Var

𝑦,𝑐

[
𝑈DR (𝜋)

]
=

1

𝑁
Var

𝑦,𝑐

[∑︁
𝑑∈𝐷

𝜔 (𝑑)
𝜌0 (𝑑)

(
𝑐 (𝑑)−𝛼𝑘 (𝑑)𝑅(𝑑)−𝛽𝑘 (𝑑)

) ]
. (32)

Using Assumption 3.2 and assuming that document examinations

are independent from each other [14], we rewrite further:

𝑁 · Var
𝑦,𝑐

[
𝑈DR (𝜋)

]
=

∑︁
𝑑∈𝐷𝑞

Var

𝑦,𝑐

[
𝜔 (𝑑)
𝜌0 (𝑑)

(
𝑐 (𝑑) − 𝛼𝑘 (𝑑)𝑅(𝑑) − 𝛽𝑘 (𝑑)

) ]
=

∑︁
𝑑∈𝐷𝑞

(
𝜔 (𝑑)
𝜌0 (𝑑)

)
2

Var

𝑦,𝑐

[
𝑐 (𝑑) − 𝛽𝑘 (𝑑) − 𝛼𝑘 (𝑑)𝑅(𝑑)

]
.

(33)

The total variance can be split into the following:

Var𝑦,𝑐

[
𝑐 (𝑑) − 𝛽𝑘 (𝑑) − 𝛼𝑘 (𝑑)𝑅𝑖 (𝑑)

]
= Var𝑦,𝑐

[
𝛼𝑘 (𝑑)𝑅(𝑑)

]
(34)

+ Var𝑦,𝑐

[
𝑐 (𝑑) − 𝛽𝑘 (𝑑)

]
− 2Cov𝑦,𝑐

[
𝑐 (𝑑) − 𝛽𝑘 (𝑑) , 𝛼𝑘 (𝑑)𝑅(𝑑)

]
.

Using Lemma A.1, we upper-bound the total variance term to:

Var𝑦,𝑐

[
𝑐 (𝑑) − 𝛽𝑘 (𝑑) − 𝛼𝑘 (𝑑)𝑅(𝑑)

]
≤ Var𝑦,𝑐

[
𝛼𝑘 (𝑑)𝑅(𝑑)

]
+ Var𝑦,𝑐

[
𝑐 (𝑑) − 𝛽𝑘 (𝑑)

]
. (35)

Next, we consider the two variance terms separately; with the

variance of the first term following:

Var

𝑦,𝑐

[
𝛼𝑘 (𝑑)𝑅(𝑑)

]
= Var

𝑦,𝑐

[
𝛼𝑘 (𝑑)

]
𝑅(𝑑)2 ≤ E𝑦,𝑐

[
𝛼2
𝑘 (𝑑)

]
≤ E𝑦

[
𝛼𝑘 (𝑑)

]
.

where we make use of the fact that 𝑅2
𝑑
≤ 1, and 𝛼 ∈ [0, 1] → 𝛼2

𝑘
≤

𝛼𝑘 . Next, we consider the second term:

Var𝑦,𝑐

[
𝑐 (𝑑) − 𝛽𝑘 (𝑑)

]
≤ E𝑦,𝑐

[ (
𝑐 (𝑑) − 𝛽𝑘 (𝑑)

)
2

]
(36)

= E𝑦,𝑐

[
𝑐 (𝑑)2 + 𝛽2

𝑘 (𝑑) − 2𝑐 (𝑑)𝛽𝑘 (𝑑)
]
≤ E𝑦,𝑐 [𝑐 (𝑑)] + E𝑦

[
𝛽𝑘 (𝑑)

]
,

since 𝑐 (𝑑)2 = 𝑐 (𝑑), 𝛽2
𝑘
≤ 𝛽𝑘 , and E𝑦,𝑐

[
𝑐 (𝑑)𝛽𝑘 (𝑑)

]
≥ 0. Substituting

the click probabilities with Eq. 4, we get:

E𝑦,𝑐 [𝑐 (𝑑)] + E𝑦,𝑐 [𝛽𝑘 (𝑑) ] = E𝑦,𝑐 [𝛼𝑘 (𝑑) ]𝑃 (𝑅 = 1| 𝑑) + 2E𝑦,𝑐 [𝛽𝑘 (𝑑) ]
≤ E𝑦

[
𝛼𝑘 (𝑑)

]
+ 2E𝑦 [𝛽𝑘 (𝑑) ], (37)

where we use the fact that 𝑃 (𝑅 = 1 | 𝑑) ≤ 1. Putting together the

bounds on both parts of Eq. 35, we have:

Var𝑦,𝑐

[
𝑐 (𝑑) − 𝛽𝑘 (𝑑) − 𝛼𝑘 (𝑑)𝑅(𝑑)

]
≤ 2𝜔0 (𝑑), (38)

where 𝜔0 (𝑑) = E𝑦
[
𝛼𝑘 (𝑑)

]
+ E𝑦

[
𝛽𝑘 (𝑑)

]
. Substituting the final vari-

ance upper bound in Eq. 33, we get:

Var

𝑦,𝑐

[∑︁
𝑑∈𝐷

𝜔 (𝑑)
𝜌0 (𝑑)

(
𝑐 (𝑑) − 𝛼𝑘 (𝑑)𝑅(𝑑) − 𝛽𝑘 (𝑑)

) ]
≤ 2

∑︁
𝑑∈𝐷𝑞

(
𝜔 (𝑑)
𝜌0 (𝑑)

)
2

𝜔0 (𝑑)

= 2

∑︁
𝑑∈𝐷𝑞

(
𝜔 (𝑑)
𝜔0 (𝑑)

)
2

𝜔0 (𝑑)
(
𝜔0 (𝑑)
𝜌0 (𝑑)

)
2

, (39)

where we multiply and divide by 𝜔0 (𝑑)2 in the third step. Finally,

we make use of the fact:
𝜔0 (𝑑)
𝜌0 (𝑑) ≤ max𝜋0

𝜔0 (𝑑)
𝜌0 (𝑑) ≤ 1 +max𝑘

𝛽𝑘
𝛼𝑘

, and

put everything back together:

𝑁 · Var𝑦,𝑐
[
𝑈DR (𝜋)

]
≤ 2𝑍

(
1 +max

𝑘

𝛽𝑘

𝛼𝑘

)
2 ∑︁
𝑑∈𝐷𝑞

(
𝜔 ′(𝑑)
𝜔 ′
0
(𝑑)

)
2

𝜔 ′
0
(𝑑)

= 2𝑍

(
1 +max

𝑘

𝛽𝑘

𝛼𝑘

)
2

𝑑2 (𝜔 ∥𝜔0). (40)

where 𝑑2 (𝜔 ∥𝜔0) is the Renyi divergence between the normalized

expected exposure 𝜔 ′(𝑑) and 𝜔 ′
0
(𝑑) (cf. Eq. 13). Substituting this

into the upper-bound on variance in Eq. 31 completes the proof. □

A.2 Proof of Theorem 5.1
Proof. Given a logging policy ranking 𝑦0, a user defined metric

weight 𝜔 , and non-zero 𝑟 (𝑑 | 𝑞), for the choice of the clipping

parameters 𝜖− = 𝜖+ = 1, the ranking 𝑦∗ (𝜖−, 𝜖+) that maximizes the

PRPO objective (Eq. 22) will be the same as the logging ranking

𝑦0, i.e. 𝑦
∗ (𝜖−, 𝜖+) = 𝑦0. This is trivial to prove since any change in

ranking can only lead in a decrease in the clipped ratio weights, and

thus, a decrease in the PRPO objective. Therefore, 𝑦∗ (𝜖− = 1, 𝜖+ =

1) = 𝑦0 when 𝜖− = 𝜖+ = 1. Accordingly: |𝑈 (𝑦0) −𝑈 (𝑦∗ (𝜖− = 1, 𝜖+ =

1)) | = 0 directly implies Eq. 23. This completes our proof. □

Whilst the above proof is performed through the extreme case

where 𝜖− = 𝜖+ = 1 and the optimal ranking has the same utility as

the logging policy ranking, other choices of 𝜖− and 𝜖+ bound the

difference in utility to a lesser degree and allow for more deviation.

As our experimental results show, the power of PRPO is that it gives

practitioners direct control over this maximum deviation.
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