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Abstract

Learning in the brain is poorly understood and learning rules that respect biological
constraints, yet yield deep hierarchical representations, are still unknown. Here,
we propose a learning rule that takes inspiration from neuroscience and recent
advances in self-supervised deep learning. Learning minimizes a simple layer-
specific loss function and does not need to back-propagate error signals within or
between layers. Instead, weight updates follow a local, Hebbian, learning rule that
only depends on pre- and post-synaptic neuronal activity, predictive dendritic input
and widely broadcasted modulation factors which are identical for large groups
of neurons. The learning rule applies contrastive predictive learning to a causal,
biological setting using saccades (i.e. rapid shifts in gaze direction). We find that
networks trained with this self-supervised and local rule build deep hierarchical
representations of images, speech and video.

1 Introduction

Synaptic connection strengths in the brain are thought to change according to ‘Hebbian’ plasticity
rules [Hebb, 1949]. Such rules are local and depend only on the recent state of the pre- and post-
synaptic neurons [Sjöström et al., 2001, Caporale and Dan, 2008, Markram et al., 2011], potentially
modulated by a third factor related to reward, attention or other high-level signals [Kuśmierz et al.,
2017, Gerstner et al., 2018]. Therefore, one appealing hypothesis is that representation learning in
sensory cortices emerges from local and unsupervised plasticity rules.

Following a common definition in the field [Fukushima, 1988, Riesenhuber and Poggio, 1999,
LeCun, 2012, Lillicrap et al., 2020], a hierarchical representation (i) builds higher-level features
out of lower-level ones, and (ii) provides more useful features in higher layers. Now there seems
to be a substantial gap between the rich hierarchical representations observed in the cortex and the
representations emerging from local plasticity rules implementing principal/independent component
analysis [Oja, 1982, Hyvärinen and Oja, 1998], sparse coding [Olshausen and Field, 1997, Rozell
et al., 2008] or slow-feature analysis [Földiák, 1991, Wiskott and Sejnowski, 2002, Sprekeler et al.,
2007]. Hebbian rules seem to struggle especially when ‘stacked’, i.e. when asked to learn deep,
hierarchical representations.
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This performance gap is puzzling because there are learning rules, relying on back-propagation (BP),
that can build hierarchical representations similar to those found in visual cortex [Yamins et al., 2014,
Zhuang et al., 2021]. Although some progress towards biologically plausible implementations of
back-propagation has been made [Lillicrap et al., 2016, Guerguiev et al., 2017, Sacramento et al.,
2018, Payeur et al., 2021], most models rely either on a neuron-specific error signal that needs to
be transmitted by a separate error network [Crick, 1989, Amit, 2019, Kunin et al., 2020], or time-
multiplexing feedforward and error signals [Lillicrap et al., 2020, Payeur et al., 2021]. Algorithms
like contrastive divergence [Hinton, 2002], contrastive Hebbian learning [Xie and Seung, 2003]
or equilibrium propagation [Scellier and Bengio, 2017] use local activity exclusively to calculate
updates, but they require to wait for convergence to an equilibrium which is not appropriate for online
learning from quickly varying inputs.

The present paper demonstrates that deep representations can emerge from a local, biologically
plausible and unsupervised learning rule, by integrating two important insights from neuroscience:
First, we focus on self-supervised learning from temporal data – as opposed to supervised learning
from labelled examples – because this comes closest to natural data, perceived by real biological
agents, and because the temporal structure of natural stimuli is a rich source of information. In
particular, we exploit the self-awareness of typical, self-generated changes of gaze direction (‘sac-
cades’) to distinguish input from a moving object during fixation from input arriving after a saccade
towards a new object. In our plasticity rule, a global factor modulates plasticity, depending on the
presence or absence of such saccades. Although we do not model the precise circuit that computes
this global factor, we see it related to global, saccade-specific signals from motor areas, combined
with surprise or prediction error, as in other models of synaptic plasticity [Angela and Dayan, 2005,
Nassar et al., 2012, Heilbron and Meyniel, 2019, Liakoni, 2021]. Second, we notice that electrical
signals stemming from segregated apical dendrites can modulate synaptic plasticity in biological
neurons [Körding and König, 2001, Major et al., 2013], enabling context-dependent plasticity.

Algorithmically, our approach takes inspiration from deep self-supervised learning algorithms that
seek to contrast, cluster or predict stimuli in the context of BP [Van den Oord et al., 2018, Caron
et al., 2018, Zhuang et al., 2019, Löwe et al., 2019]. Interestingly, Löwe et al. [2019] demonstrated
that such methods even work if end-to-end BP is partially interrupted. We build upon this body of
work and suggest the Contrastive, Local And Predictive Plasticity (CLAPP) model which avoids BP
completely, yet still builds hierarchical representations.2

2 Main goals and related work

In this paper, we propose a local plasticity rule that learns deep representations. To describe our
model of synaptic plasticity, we represent a cortical area by the layer l of a deep neural network.
The neural activity of this layer at time t is represented by the vector zt,l = ⇢(at,l), where ⇢ is a
non-linearity and at,l = W lzt,l�1 is the vector of the respective summed inputs to the neurons
through their basal dendrites W l (the bias is absorbed into W l). To simplify notation, we write the
pre-synaptic input as xt,l = zt,l�1 and we only specify the layer index l when it is necessary.

Our plasticity rule exploits the fact that the temporal structure of natural inputs affects representation
learning [Li and DiCarlo, 2008]. Specifically, we consider a scenario where an agent first perceives
a moving object at time t (e.g. a flying eagle in Figure 1 a), and then spontaneously decides to
change gaze direction towards another moving object at time t + �t (e.g. saccade towards the
elephant in Figure 1 a). We further assume that the visual pathway is ‘self-aware’ of saccades due to
saccade-specific modulation of processing [Ross et al., 2001].

In line with classical models of synaptic plasticity, we assume that weight changes follow biologically
plausible, Hebbian, learning rules [Hebb, 1949, Markram et al., 2011] which are local in space and
time: updates �W

t
ji of a synapse, connecting neurons i and j, can only depend on the current activity

of the pre-synaptic and post-synaptic neurons at time t, or slightly earlier at time t � �t, and one or
several widely broadcasted modulating factors [Urbanczik and Senn, 2009, Gerstner et al., 2018].

Furthermore, we allow the activity of another neuron k to influence the weight update �Wji, as long
as there is an explicit connection W

pred
jk from k to j. The idea is to overcome the representational

limitations of classical Hebbian learning by including dendritic inputs, which are thought to predict
2Our code is available at https://github.com/EPFL-LCN/pub-illing2021-neurips
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Figure 1: Contrastive, local and predictive plasticity (CLAPP). a Perceiving a moving object (e.g.
an eagle) at times t and t + �t leads to neural responses in the visual cortex. After a gaze change
(‘saccade’), a different object (elephant) is seen. b (zoom) At each time step, pyramidal neurons
integrate input activity at the basal dendrites (matrix W l of feedforward weights) and pass on their
response to downstream areas (W l+1). At any point in time, neurons predict future neural responses
through recurrent connections W pred. These inputs target the apical dendrites and modulate ongoing
synaptic plasticity through ‘predictive’ updates. Information about a saccade is transmitted by a
broadcast signal triggered at the moment of saccade initiation, which leads to ‘contrastive’ updates.
As no external supervision or reward signals are provided, learning is self-supervised and local
in time and space (‘Hebbian’). c Algorithmically, an encoder network (Enc) produces a ‘context’
representation ct at time t. Given ct, CLAPP tries to predict the encoding of the future input zt+�t.
In case of a gaze change between t and t + �t, CLAPP seeks to keep the prediction as different as
possible from the encoding of the upcoming contrastive sample.

the future somatic activity [Körding and König, 2001, Urbanczik and Senn, 2014] and take part in the
plasticity of the post-synaptic neuron [Larkum et al., 1999, Dudman et al., 2007, Major et al., 2013].
Hence we assume that each neuron j in a layer l may receive dendritic inputs (W predct,l)j coming
either from the layer above (ct,l = zt,l+1) or from lateral connections in the same layer (ct,l = zt,l).

For algorithmic reasons, that we detail in section 3, we assume that the dendritic input (W predct,l)j
influences the weight updates �Wji of the post-synaptic neuron j, but not its activity z

t
j . This

assumption is justified by neuroscientific findings that the inputs to basal and apical dendrites affect
the neural activity and plasticity in different ways [Larkum et al., 1999, Dudman et al., 2007, Major
et al., 2013, Urbanczik and Senn, 2014]. In general, we do not rule out influence of dendritic activity
on somatic activity in later processing phases, but see this beyond the scope of the current work.

Given these insights from neuroscience, we gather the essential factors that influence synaptic
plasticity in the following learning rule prototype:

�Wji / modulators| {z }
broadcast factors

· (W predct1)j| {z }
dendritic prediction

· postt2j · pret2
i| {z }

local-activity

. (1)

The modulating broadcast factors are the same for large groups of neurons, for example all neurons
in the same area, or even all neurons in the whole network. postt2j and pret2

i are functions of the pre-
and post- synaptic activities. At this point, we do not specify the exact timing between t1 and t2, as
this will be determined by our algorithm in section 3.

Related work Many recent models of synaptic plasticity fit an apparently similar learning rule
prototype [Lillicrap et al., 2016, Nøkland, 2016, Roelfsema and Holtmaat, 2018, Nøkland and Eidnes,
2019, Lillicrap et al., 2020, Pozzi et al., 2020] if we interpret the top-down signals emerging from the
BP algorithm as the dendritic signal. However, top-down error signals in BP are not directly related
to the activity ct of the neurons in the main network during processing of sensory input. Rather, they
require a separate linear network mirroring the initial network and feeding back error signals (see
Figure 2 a and Lillicrap et al. [2020]), or involved time-multiplexing of feedforward and error signals
in the main network [Lillicrap et al., 2020, Payeur et al., 2021]. Our model is fundamentally different,
because in our case, the dendritic signal onto neuron j is strictly (W predct)j which is a weighted
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sum of the main network activity and there is no need of a (linear) feedback network transmitting
exact error values across many layers.

Moreover, we show in simulations in section 4, that the dendritic signal does not have to come from
a layer above but that the prediction fed to layer l may come from the same layer. This shows that
our learning rule works even in the complete absence of downward signaling from l + 1 to l. This
last point is a significant difference to other methods that also calculate updates using only activities
of the main network, but require tuned top-down connections to propagate signals downwards in
the network hierarchy [Kunin et al., 2020], such as methods in the difference target propagation
family [Lee et al., 2015, Bartunov et al., 2018, Golkar et al., 2020], contrastive divergence [Hinton,
2002] and equilibrium propagation [Scellier and Bengio, 2017]. Furthermore, the latter two require
convergence to an equilibrium state for each input [Laborieux et al., 2021]. Our model does not
require this convergence because it uses the recurrent dendritic signal (W predct)j only for synaptic
plasticity and not for inference.

Most previous learning rules which include global modulating factors interpret it as a reward predic-
tion error [Schultz et al., 1997, Gerstner et al., 2018, Pozzi et al., 2020]. In this paper, we address
self-supervised learning and view global modulating factors as broadcasting signals, modeling the
self-awareness that something has changed in the stimulus (e.g. because of a saccade). Hence, the
main function of the broadcast factor in our model is to identify contrastive inputs, which avoids
a common pitfall for self-supervised learning models: ‘trivial’ or ‘collapsed’ solutions, where the
model produces a constant output, which is easily predictable, but useless for downstream tasks. In
vision, we use a broadcast factor to model the strong, saccade-specific activity patterns identified
throughout the visual pathway [Kowler et al., 1995, Leopold and Logothetis, 1998, Ross et al., 2001,
McFarland et al., 2015]. In other sensory pathways, like audition, this broadcast factor may model
attention signals arising when changing focus on a new input source [Fritz et al., 2007], cross-modal
input indicating a change in head or gaze direction, or signal/speaker-identity inferred from blind
source separation, which can be done on low-level representation with biologically plausible learning
rules [Hyvärinen and Oja, 1997, Ziehe and Müller, 1998, Molgedey and Schuster, 1994]. Our learning
rule further requires this global factor to predict the absence or presence of a gaze change, hence
conveying a change prediction error rather than classical reward prediction error. Here, we do not
model the precise circuitry computing this factor in the brain, however, we speculate that a population
of neurons could express such a scalar factor e.g. through burst-driven multiplexing of activity, see
Payeur et al. [2021] and Appendix C.

Our theory takes inspiration from the substantial progress seen in unsupervised machine learning in
recent years and specifically from contrastive predictive coding (CPC) [Van den Oord et al., 2018].
CPC trains a network (called encoder) to make predictions of its own responses to future inputs,
while keeping this prediction as different as possible to its responses to fake inputs (contrasting).
A key feature of CPC is that predicting and contrasting happens in latent space, i.e. on the output
representation of the encoder network. This avoids modeling a generative model for perfect recon-
struction of the input and all its details (e.g. green, spiky). Instead the model is forced to focus on
extracting high-level information (e.g. cactus). In our notation, CPC evaluates a prediction W predct

such that a score function u
⌧
t = z⌧>W predct becomes larger for the true future ⌧ = t + �t (referred

to as positive sample) than for any other vector zt0
taken at arbitrary time points t

0 elsewhere in the
entire training set (referred to as negative samples in CPC). This means, that the prediction should
align with the future activity zt+�t but not with the negative samples. Van den Oord et al. [2018]
formalizes this as a softmax cross-entropy classification, which leads to the traditional CPC loss:

Lt
CPC = � log

expu
t+�t
tP

⌧2T expu
⌧
t

, (2)

where T =
�
t
t+�t

, t
0
1 . . . t

0
N

 
comprises the positive sample and N negative samples. The learned

model parameters are the elements of the matrix W pred, as well as the weights of the encoder network.
The loss function Lt

CPC is then minimized by stochastic gradient descent on these parameters using
BP. Amongst numerous recent variants of contrastive learning [He et al., 2019, Chen et al., 2020,
Xiong et al., 2020], we focus here on CPC [Van den Oord et al., 2018], for which a more local variant,
Greedy InfoMax, was recently proposed by Löwe et al. [2019].

Greedy InfoMax (GIM) [Löwe et al., 2019] is a variant of CPC which makes a step towards local,
BP-free learning: the main idea is to split the encoder network into a few gradient-isolated modules
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Figure 2: Comparison of weight updates a Networks trained with back-propagation (BP) or Feedback
Alignment (FA)-like methods require separate error networks (red) for computing weight updates. b
Layer-wise GIM, with one layer per gradient-isolated module, does not transmit error signals across
layers (i.e. modules) but requires (1) the transmission of information other than the network activity
(red) and (2) a perfect replay of negative samples. Thus, the resulting update computation needs a
separate loss network and cannot be interpreted as a local learning rule. c Contrastive Local and
Predictive Plasticity (CLAPP) calculates updates using locally and temporally available information:
pre- and post-synaptic activity and predictive recurrent input onto the apical dendrite W predct��t.
Global broadcasting factors �t modulate plasticity depending on the presence or absence of a saccade.

to avoid back-propagation between these modules. As the authors mention in their conclusion, “the
biological plausibility of GIM is limited by the use of negative samples and within-module back-
propagation”. This within-module back-propagation still requires a separate feedback network to
propagate prediction errors (Figure 2 a), but can be avoided in the most extreme version of GIM,
where each gradient-isolated module contains a single layer (layer-wise GIM). However, the gradients
of layer-wise GIM, derived from Equation 2, still cannot be interpreted as synaptic plasticity rules
because the gradient computation requires (1) the transmission of information other than the network
activity (see Figure 2 b), and (2) perfect memory to replay the negative samples zt0

, as mentioned
in the above quote (see Appendix A for details). Overall it is not clear how this weight update of
layer-wise GIM could be implemented with realistic neuronal circuits. Our CLAPP rule solves the
above mentioned implausibilities and allows a truly local implementation in space and time.

3 Derivation of the CLAPP rule: contrastive, local and predictive plasticity

We now suggest a simpler contrastive learning algorithm which solves the issues encountered with
layer-wise GIM and for which a gradient descent update is naturally compatible with the learning rule
prototype from Equation 1. The most essential difference compared to CPC or GIM is, that we do
not require the network to simultaneously access the true future activity zt+�t and recall (or imagine)
the network activity zt0

seen at some other time. Rather, we consider the naturalistic time-flow
illustrated in Figure 1 a, where an agent fixates on a moving animal for a while and then changes gaze
spontaneously. In this way, the prediction W predct is expected to be meaningful during fixation,
but inappropriate right after a saccade. In our simulations, we model this by feeding the network
with subsequent frames from the same sample (e.g. different views of an eagle), and then abruptly
changing to frames from another sample (e.g. different views of an elephant).

We note that the future activity zt+�t and the context ct are always taken from the main feedforward
encoder network. We focus on the case where the context stems from the same layer as the future
activity (ct,l = zt,l), however, the model allows for the more general case, where the context stems
from another layer (e.g. the layer above ct,l = zt,l+1).

Derivation of the CLAPP rule from a self-supervised learning principle Rather than using a
global loss function for multi-class classification to separate the true future from multiple negative
samples, as in CPC, we consider here a binary classification problem at every layer l: we interpret the
score function u

t+�t,l
t = zt+�t,l>W pred,lct,l as the layer’s ‘guess’ whether the agent performed a

fixation or a saccade. In Appendix C, we discuss how u
t+�t,l
t could be (approximately) computed

in real neuronal circuits. In short, every neuron i has access to its ‘own’ dendritic prediction
ẑ

t,l
i =

P
j W

pred,l
ij c

t,l
j of somatic activity [Urbanczik and Senn, 2014], and the product z

t+�t,l
i ẑ

t,l
i
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can be seen as a coincidence detector of dendritic and somatic activity, communicated by specific
burst signals [Larkum et al., 1999]. These burst signals allow time-multiplexed communication
[Payeur et al., 2021] of the products z

t+�t,l
i ẑ

t,l
i of many neurons, which can then be summed by an

interneuron representing u
t+�t,l
t .

As mentioned in section 2, information about the presence or absence of a saccade between two time
points is available in the visual processing stream and is modeled here by the variable y

t = �1 and
y

t = +1, respectively. We interpret y
t as the label of a binary classification problem, characterized

by the Hinge loss, and define the CLAPP loss at layer l as:

Lt,l
CLAPP = max

⇣
0, 1 � y

t · u
t+�t,l
t

⌘
with

⇢
y

t = +1 for fixation
y

t = �1 for saccade (3)

We now derive the gradients of Equation 3 with respect to the feedforward weights and show that
gradient descent on this loss function is compatible with the learning rule prototype suggested in
Equation 1. Note that CLAPP optimises Equation 3 for each layer l independently, without any
gradient flow between layers. That being said, the following derivation is the same for every layer l,
which is why we omit the layer index l from here on.

Since we chose to formalize the binary classification with a Hinge loss, the gradient vanishes when
the classification is already correct: high score u

t+�t
t > 1 during fixation (yt = +1), or a low score

u
t+�t
t < �1 after a saccade (yt = �1). Otherwise, it is �ru

t+�t
t during a fixation or ru

t+�t
t after a

saccade. In the ‘predicted layer’ z, i.e. the target of the prediction, let Wji denote the feedforward
weight from neuron i in the previous layer (with activity x

t
i) to neuron j, with summed input a

t
j and

activity z
t
j . Similarly, in the ‘predicting layer’ c, i.e. the source of the prediction, let W

c
kl denote

the feedforward weight between the neuron l in the previous layer (with activity x
c,t
l ) and neuron k,

with summed input a
c,t
k and activity c

t
k. Therefore, ·c as an upper index refers to the context layer,

whereas c as a full-size letter refers to the respective neuronal activity. We then find the gradients
with respect to these weights as:

@Lt
CLAPP

@Wji
= ±(W predct)j ⇢

0(at+�t
j ) x

t+�t
i (4)

@Lt
CLAPP

@W
c
km

= ±(W pred>zt+�t)k ⇢
0(ac,t

k ) x
c,t
m , (5)

where the sign is negative during fixation and positive after a saccade. To change these equations into
online weight updates, we consider the gradient descent update delayed by �t, such that �W

t
ji =

�⌘
@Lt��t

CLAP P
@Wji

, where ⌘ is the learning rate. Let us define a modulating factor �t = y
t · H

t, where
y

t = ±1 is a network-wide broadcast signal (self-awareness) indicating a saccade (�1) or a fixation
(+1) and H

t 2 {0, ⌘} is a layer-wide broadcast signal indicating whether the saccade or fixation was
correctly classified as such. In this way, Equation 4 becomes a weight update which follows strictly
the ideal learning rule prototype from Equation 1:

�W
t
ji = �t|{z}

broadcast factors

· (W predct��t)j| {z }
dendritic prediction

· ⇢
0(at

j)x
t
i| {z }

local activity

. (6)

For the updates of the connections onto the neuron c
t
k, which emits the prediction rather than

receiving it, our theory in Equation 5 requires the opposite temporal order and the transmission of
the information in the opposite direction: from zt back to ct. Since connections in the brain are
unidirectional [Lillicrap et al., 2016], we introduce another matrix W retro which replaces W pred>

in the final weight update. Given the inverse temporal order, we interpret W retrozt as a retrodiction
rather than a prediction. In Appendix C, we show that using W retro minimises a loss function of the
same form as Equation 3, and empirically performs as well as using W pred>. The resulting weight
update satisfies the learning rule prototype from Equation 1, as it can be written:

�W
c,t
km = �t|{z}

broadcast factors

· (W retrozt)k| {z }
dendritic retrodiction

· ⇢0(ac,t��t
k )xc,t��t

m| {z }
local activity

. (7)
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Figure 3: Hierarchical representations learned by CLAPP. a Red boxes in STL-10 images indicate
patches that best activate a specific neuron (rows) in a network trained with CLAPP. Layer 1 extracts
simple features like gratings or uniform patches, higher layers extract richer features like parts of
objects. b 2-dimensional t-SNE projection of neuronal activities at different layers unveils increasing
representational structure in higher layers (every dot represents one input image). Note that CLAPP
has not seen any class labels during training.

In the (standard) case, where context and predicted activity are from the same layer (ct,l = zt,l), W
and W c are the same weights and the updates Equation 6 and Equation 7 are added up linearly.

The prediction and retrodiction weights, W pred and W retro, respectively, are also plastic. By
deriving the gradients of Lt

CLAPP with respect to W pred, we find an even simpler Hebbian learning
rule for these weights:

�W
pred
jk = �W

retro
kj = �t|{z}

broadcast factors

· z
t
j · c

t��t
k| {z }

pre and post

, (8)

where neuron k in the predicting layer c is pre-synaptic (post-synaptic) and neuron j in the predicted
layer z is post-synaptic (pre-synaptic) for the prediction weights W

pred
jk (retrodiction weights W

retro
kj ).

Note that the update rules for W
pred
jk and W

retro
kj are reciprocal, a method that leads to mirrored

connections, given small enough initialisation [Burbank, 2015, Amit, 2019, Pozzi et al., 2020].

We emphasize that all information needed to calculate the above CLAPP updates (Equations 6 – 8) is
spatially and temporally available, either as neuronal activity at time t, or as traces of recent activity
(t � �t) [Gerstner et al., 2018]. In order to implement Equation 6, the dendritic prediction has to
be retained during �t. However, we argue that dendritic activity can outlast (50-100 ms) somatic
neuronal activity (2-10 ms) [Major et al., 2013], which makes predictive input from several time steps
in the past (t � �t) available at time t.

Generalizations While the above derivation considers fully-connected feedforward networks, we
apply analogous learning rules to convolutional neural networks (CNN) and recurrent neural networks
(RNN). Analyzing the biological plausibility of the standard spatial weight sharing and spatial
MeanPooling operations in CNNs is beyond the scope of the current work. Furthermore, we discuss
in Appendix C, that MaxPooling can be interpreted as a simple model of lateral inhibition and that
gradient flow through such layers is compatibility with the learning rule prototype in Equation 1.

To obtain local learning rules even for RNNs, we combine CLAPP with the e-prop theory [Bellec
et al., 2020], which provides a biologically plausible alternative to BP through time: gradients can
be propagated forward in time through the intrinsic neural dynamics of a neuron using eligibility
traces. The propagation of gradients across recurrently connected units is forbidden and disabled.
This yields biologically plausible updates in GRU units, as explained in Appendix C.

4 Empirical results

Building hierarchical representations We first demonstrate numerically, that CLAPP yields deep
hierarchical representations, despite using a local plasticity rule compatible with Equation 1. We
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report here the results for ct,l = zt,l, i.e. the dendritic prediction in Equation 1 is generated from
lateral connections and the representations in the same layer. We note, however, that we obtained
qualitatively similar results with ct,l = zt,l+1 (i.e. the dendritic prediction is generated from one
layer above), suggesting that top-down signaling is neither necessary for, nor incompatible with, our
algorithm (also see Appendix C).

We first consider the STL-10 image dataset [Coates et al., 2011]. To simulate a time dimension in
these static images, we follow Hénaff et al. [2019] and Löwe et al. [2019]: each image is split into
16 ⇥ 16 patches and the patches are viewed one after the other in a vertical order (one time step is
one patch). Other hyper-parameters and data-augmentation are taken from Löwe et al. [2019], see
Appendix B. We then train a 6-layer VGG-like [Simonyan and Zisserman, 2015] encoder (VGG-6)
using the CLAPP rule (Equations 6 – 8). Training is performed on the unlabelled part of the STL-10
dataset for 300 epochs. We use 4 GPUs (NVIDIA Tesla V100-SXM2 32 GB) for data-parallel
training, resulting in a simulation time of around 4 days per run.

In order to study how neuronal selectivity changes over layers, we select neurons randomly and show
image patches which best activate these neurons the most (rows in Figure 3 a). As expected for a
visual hierarchy, first-layer neurons (first column in Figure 3 a) are selective to horizontal or vertical
gratings, or homogeneous colors. In the third layer of the network (second column), neurons start to
be selective to more semantic features like grass, or parts of vehicles. Neurons in the last layer (third
column) are selective to specific object parts (e.g. a wheel touching the road). The same analysis for
a random, untrained encoder does not reveal a clear hierarchy across layers, see Appendix C.

To get a qualitative idea of the learned representation manifold, we use the non-linear dimension
reduction technique t-SNE [Van der Maaten and Hinton, 2008] to visualise the encodings of the
(labeled) STL-10 test set in Figure 3 b. We see that the representation in the first layer is mostly
unrelated to the underlying class. In the third and sixth layers’ representation, a coherent clustering
emerges, yielding an almost perfect separation between furry animals and vehicles. This clustered
representation is remarkable since the network has never seen class labels, and was never instructed
to separate classes, during CLAPP training The representation of the same architecture, but without
training (Random init.), shows that a convolutional architecture alone does not yield semantic features.

To produce a more quantitative measurement of the quality of learned representations, we follow the
methodology of Van den Oord et al. [2018] and Löwe et al. [2019]: we freeze the trained encoder
weights and train a linear classifier to recognize the class labels from each individual layer (Figure 4).
As expected for a deep representation, the classification accuracy increases monotonically with the
layer number and only saturates at layers 5 and 6. The accuracies obtained with layer-wise GIM
are almost indistinguishable from those obtained with CLAPP. It is only at the last two layers, that
layer-wise GIM performs slightly better than CLAPP; yet GIM has multiple biologically implausible
features that are removed by CLAPP. As a further benchmark, we also plot the accuracies obtained
with an encoder trained with greedy supervised training. This method trains each layer independently
using a supervised classifier at each layer, without BP between layers, which results in an almost
local update (see Löwe et al. [2019] and Appendix B). We find that accuracy is overall lower and
saturates already at layer 4. On this dataset, with many more unlabelled than labelled images, greedy
supervised accuracy is almost 10% below the accuracy obtained with CLAPP. Again, we see that a
convolutional architecture alone does not yield hierarchical representations, as performance decreases
at higher layers for a fixed random encoder.

Comparing CPC and CLAPP Since CLAPP can be seen as a simplification of CPC (or GIM) we
study four algorithmic differences between CPC and CLAPP individually. They are: (1) Gradients in
CLAPP (layer-wise GIM) cannot flow from a layer to the next one, as opposed to BP in CPC, (2)
CLAPP performs a binary comparison (fixation vs. saccade) with the Hinge loss, whereas CPC does
multi-class classification with the cross entropy loss, (3) CLAPP processes a single input at a time,
whereas CPC uses many positive and negative samples synchronously, and (4) we introduced W retro

to avoid the weight transport problem in W pred.

We first study features (1) and (2) but relax constraints (3) and (4). That means, in this paragraph,
we allow a fixation and N = 16 synchronous saccades and set W retro = W pred,>. We refer to
Hinge Loss CPC as the algorithm minimizing the CLAPP loss (Equation 3) but using end-to-end BP.
CLAPP-s (for synchronous) applies the Hinge Loss to every layer, but with gradients blocked between
layer. We find that the difference between the CPC loss and Hinge Loss CPC is less than 1%, see

8



Figure 4: CLAPP stacks well: representations
after stacking up to 5 layers increase perfor-
mance of a linear classifier on STL-10, despite
the local learning rule (blue and orange lines),
while performance decreases for convolutional
network with weights fixed at random initial-
isation (dotted). Greedy supervised training
(see Appendix B) also stacks, but already sat-
urates at layer 4 and shows overall lower per-
formance. Direct linear classification on image
pixels (black star) and CPC performance after
6 layers (gray star) serve as upper and lower
performance bounds, respectively.

Table 1. In contrast, additional blocking of gradients between layers causes a performance drop of
almost 5% for both loss functions. We investigate how gradient blocking influences performance with
a series of simulations, splitting the 6 layers of the network into two or three gradient isolated modules,
exploring the transition from Hinge Loss CPC to CLAPP-s. Performance drops monotonously but
not catastrophically, as the number of gradient blocks increases (Table 1).

CLAPP’s temporal locality allows the interpretation that an agent alternates between fixations and
saccades, rather than perfect recall and synchronous processing of negative samples, as required by
CPC. To study the effect of temporal locality, we apply features (2) and (3) and relax the constraints
(1) and (4). The algorithm combining temporal locality and the CLAPP loss function is referred to
as time-local Hinge Loss CPC. We find that the temporal locality constraint decreases accuracy by
1.2% compared to Hinge Loss CPC. The last feature introduced for biological plausibility is using
the matrix W retro and we observe almost no difference in classification accuracy with this alternative
(the accuracy decreases by 0.1%). Conversely, omitting the update in Equation 7 entirely, i.e. setting
the retrodiction W retro = 0, compromises accuracy by 2% compared to vanilla Hinge Loss CPC.

When combining all features (1) to (4), we find that the fully local CLAPP learning rule leads to
an accuracy of 73.6% at layer 5. We conclude from the analysis above, that the feature with the
biggest impact on performance is (1): blocking the gradients between each layer. However, despite
the performance drop caused by blocking the gradients, CLAPP still stacks well and leverages the
depth of the network (Figure 4). All other features (2) - (4), introduced to derive a weight update
compatible with our prototype (Equation 1), only caused a minor performance loss.

Applying CLAPP to speech and video We now demonstrate that CLAPP is applicable to other
modalities like the LibriSpeech dataset of spoken speech [Panayotov et al., 2015] and the UCF-101
dataset containing short videos of human actions [Soomro et al., 2012]. When applying CLAPP to
auditory signals, we do not explicitly model the contrasting mechanism (saccades in the vision task;
see discussion in section 2 for the auditory pathway) and hence consider the application of CLAPP
as benchmark application, rather than a neuroscientifically exact study. To increase computational
efficiency, we study CLAPP-s on speech and video. Based on the image experiments, we expect
similar results for CLAPP, given enough time to converge. We use the same performance criteria as
for the image experiments and summarize our results in Table 1, for details see Appendix B.

For the audio example, we use the same architecture as Van den Oord et al. [2018] and Löwe et al.
[2019]: multiple temporal 1d-convolution layers and one recurrent GRU layer on top. As in the
feedforward case, CLAPP still optimises the objective of Equation 3. For the 1d-convolution layers,
the context ct is computed as for the image task, for the last layer, ct is the output of the recurrent
GRU layer. We compare the performance of the algorithms on phoneme classification (41 classes)
using labels provided by Van den Oord et al. [2018]. In this setting, layer-wise training lowers
performance by only 0.4% for layer-wise GIM, and by 1.1% for CLAPP-s. Implemented as such,
CLAPP-s still relies on BP through time (BPTT) to train the GRU layer. Using CLAPP-s with
biologically plausible e-prop [Bellec et al., 2020], instead of non-local BPTT, reduces performance by
only 3.1 %, whereas omitting the GRU layer compromises performance by 9.3 %, see Appendix C.

Applying CLAPP to videos is especially interesting because their temporal sequence of images
perfectly fits the scenario of Figure 1 a. In this setting, we take inspiration from Han et al. [2019],
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Table 1: CLAPP performs best among methods that are local in space and time. Linear classification
test accuracy [%] on STL-10, phone classification on LibriSpeech, and video human action recognition
on UCF-101 using features from the encoder trained with different methods. On STL-10, performance
degrades gracefully with the number of gradient-isolated modules in the VGG-6 encoder (at fixed
number of encoder layers). Greedy supervised training uses BP in auxiliary classifier networks
(‘almost’ local in space). For LibriSpeech, BP through time is used (can be avoided, see Appendix C).
Values with * are taken from Löwe et al. [2019]. For simulation details, see Appendix B.

Method local in . . . STL-10 LibriSpeech UCF-101space? time?
Chance performance 10.0 2.4 0.99
Random init. 3 3 21.8 27.7* 30.5
MFCC 3 3 - 39.7* -
Greedy supervised (3) 3 66.3 73.4* -
Supervised 7 3 73.2 77.7* 51.5
CPC 7 7 81.1 64.3 35.7
Layer-wise GIM 7 7 75.6 63.9 41.2
Hinge Loss CPC (ours) 7 7 80.3 62.8 36.1
CLAPP-s (2 modules of 3 layers) 7 7 77.6 - -
CLAPP-s (3 modules of 2 layers) 7 7 77.4 - -
CLAPP-s (ours) 3 7 75.0 61.7 41.6
time-local Hinge Loss CPC (ours) 7 3 79.1 - -
CLAPP (ours) 3 3 73.6 - -

and use a VGG-like stack of 2D and 3D convolutions to process video frames over time. On this task
(101 classes), we found layer-wise GIM and CLAPP-s to achieve higher downstream classification
accuracy than their end-to-end counterparts CPC and Hinge Loss CPC (see Table 1), in line with the
findings on STL-10 in Löwe et al. [2019]. On the other hand, we found that CLAPP-s requires more
negative samples (i.e. more simultaneous comparisons of positive and negative samples) on videos
than on STL-10 and LibriSpeech. Under the constraint of temporal locality in fully local CLAPP, this
leads to prohibitively long convergence times in the current setup. However, since CLAPP linearly
combines updates stemming from multiple negative and positive samples, we eventually expect the
same final performance, if we run the online CLAPP algorithm for a sufficiently long time.

5 Discussion

We introduced CLAPP, a self-supervised and biologically plausible learning rule that yields deep
hierarchical representations in neural networks. CLAPP integrates neuroscientific evidence on the
dendritic morphology of neurons and takes the temporal structure of natural data into account.
Algorithmically, CLAPP minimises a layer-wise contrastive predictive loss function and stacks well
on different task domains like images, speech and video – despite the locality in space and time.

While the performance loss due to layer-wise training is a limitation of the current model, the stacking
property is preserved and preliminary results suggest improved versions that stack even better (e.g.
using adaptive encoding patch sizes). Note that CLAPP models self-supervised learning of cortical
hierarchies and does not provide a general credit assignment method, such as BP. However, the
representation learned with CLAPP could serve as an initialisation for transfer learning, where the
encoder is fine-tuned later with standard BP. Alternatively, fine-tuning could even start already during
CLAPP training. CLAPP in its current form is data- and compute-intensive, however, it runs on
unlabelled data with quasi infinite supply, and is eligible for neuromorphic hardware, which could
decrease energy consumption dramatically [Wunderlich et al., 2019].

Classical predictive coding models alter neural activity at inference time, e.g. by cancelling predicted
future activity [Rao and Ballard, 1999, Keller and Mrsic-Flogel, 2018]. Here, we suggest a different,
perhaps complementary, role of predictive coding in synaptic plasticity, where dendritic activity
predicts future neural activity, but directly enters the learning rule [Körding and König, 2001,
Urbanczik and Senn, 2014]. CLAPP currently does not model certain features of biological neurons,
e.g. spiking activity or long range feedback, and requires neurons to transmit signals with precise
value and timing. We plan to address these topics in future work.
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