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Abstract: The semantics of the environment, such as the terrain types and prop-
erties, reveal important information for legged robots to adjust their behaviors. In
this work, we present a framework that uses semantic information from RGB im-
ages to adjust the speeds and gaits for quadrupedal robots, such that the robot can
traverse through complex offroad terrains. Due to the lack of high-fidelity offroad
simulation, our framework needs to be trained directly in the real world, which
brings unique challenges in sample efficiency and safety. To ensure sample effi-
ciency, we pre-train the perception model on an off-road driving dataset. To avoid
the risks of real-world policy exploration, we leverage human demonstration to
train a speed policy that selects a desired forward speed from camera images. For
maximum stability, we pair the speed policy with a gait selector, which selects
a robust locomotion gait for each forward speed. Using only 40 minutes of hu-
man demonstration data, our framework learns to adjust the speed and gait of the
robot based on perceived terrain semantics and enables the robot to walk over 6km
safely and efficiently.

Keywords: Legged Locomotion, Semantic Perception, Imitation Learning, Hier-
archical Control

1 Introduction

To operate in complex offroad environments, it is crucial for quadrupedal robots to adapt their mo-
tion based on the perception of the terrain ahead. When encountering new terrains, the robot needs
to identify changes in key terrain properties, such as friction and deformability, and respond with the
appropriate locomotion strategy to maintain a reasonable forward speed without incurring failures.
In many cases, information about such terrain properties is more easily inferred from a terrain’s
semantic class (e.g. grass, mud, asphalt, etc.) instead of its geometric shape (e.g. slope angle,
smoothness) [1, 2]. However, recent works in perceptive locomotion [3, 4, 5, 6, 7, 8, 9] mostly focus
on the geometric aspect of the terrain, and do not make use of such semantic information.

In this work, we present a framework for quadrupedal robots to adapt locomotion behaviors based
on perceived terrain semantics. The central challenge in learning such a semantic-aware locomotion
controller is the high cost of data collection. On the one hand, while simulation has become an effec-
tive data source for many robot learning tasks, modeling the complex contact dynamics accurately
and rendering photorealistic offroad terrains is not yet possible in simulation. On the other hand,
data collection in the real world is time-consuming and requires significant human labor. Moreover,
the robot needs to remain safe during the data collection process, as any robot failure can cause
significant damage to the hardware and surrounding environment. Therefore, it is difficult to use
standard reinforcement learning methods for this task.

Our framework addresses all concerns above, and learns semantics-aware locomotion skills directly
in the real world. To reduce the amount of data required, we pre-train a semantic segmentation
network on an off-road driving dataset and extract a semantic embedding from the model for further
fine-tuning. To avoid policy exploration in real-world environments, we collect speed choices from
human demonstrations and train the policy using imitation learning [10]. Additionally, inspired
by previous results on the relationship between speed and gait in animals [11] and legged robots
[12, 13], we pair the speed policy with a gait selector to further improve the robot’s stability. With



the pre-trained image embedding, the imitation learning setup, and the gait selector, our framework
learns semantics-aware locomotion skills directly in the real world safely and efficiently.

We deploy our framework on an A1 quadrupedal robot from Unitree [14]. Using only 40 minutes
of human demonstration data, our framework learns semantics-aware locomotion skills that can
be directly deployed for offroad missions. The learned skill policy inspects the environment and
selects a fast and robust locomotion skill for each terrain, from slow and cautious stepping on heavy
pebbles to fast and active running on flat asphalts. The learned framework generalizes well and
operates without failure on a number of trails not seen during training (over 6km in total). Moreover,
our framework outperforms the manufacturer’s default controller in terms of speed and safety. We
further conduct ablation studies to justify the important design choices.

The technical contributions of this paper include the following:

1. We develop a hierarchical framework that adapts locomotion skills from terrain semantics.
2. We propose a safe and data-efficient method to train our framework directly in the real

world, which only requires 40 minutes of human demonstration data.
3. We evaluate the trained framework on multiple trails spanning 6km with different terrain

types, where the robot reached high speed and walked without failures.

2 Related Works

Perception for Legged Robots Creating a perceptive locomotion controller is a critical step to en-
able legged robots to walk in offroad, unstructured environments. Most importantly, it allows robots
to detect and react to terrain changes proactively before contact. Many prior works have focused on
understanding terrain geometry from perceptive sensors [15, 16, 3, 7, 6]. However, such information
can be insufficient as it does not reveal important terrain properties such as deformability or contact
friction [8, 9, 17, 18]. To ameliorate this, recent works proposed to update this geometric under-
standing of terrain with proprioceptive information [8, 9, 17]. However, these methods sacrifice
proactivity, as the update cannot happen until after the robot has stepped on the terrain.

Another approach is to infer the terrain properties from its semantics [19, 20, 21, 22] so that the robot
can detect changes in terrain property before contact, and select its locomotion strategies proactively.
Recently, Suryamurthy et al. [23] trained models to predict terrain class and roughness and used the
prediction to modulate the height and navigational path of a wheel-leg hybrid robot in an indoor
environment. Our framework uses a similar semantics-based approach in the perception module and
extends the result to off-road environments with a wide variety of terrains by adapting both the speed
and gait of the robot.

Terrain Traversability Estimation The goal of our perception module is to assess the traversabil-
ity of the terrain ahead of the robot. Researchers have proposed a number of approaches to estimate
traversability from perception data, including manually designed [24], learned from self-exploration
[16, 25], or learned from human demonstration [26]. While learning-based approaches provide
more flexibility, they usually require large amounts of data, which is difficult to collect in the real
world. As a result, most approaches rely on simulation [27] as a source for training data. However,
simulation is not feasible for our task, as it is currently difficult to accurately model the complex
contact dynamics and create photorealistic renderings of off-road environments. Unlike previous
approaches, our framework can be trained directly in the real world and requires only 40 minutes of
human demonstration data.

Motion Controller Design for Perceptive Locomotion Another important question in perceptive
locomotion is the design of a motion controller that effectively makes use of the perceptive infor-
mation. A common strategy is to create a low-level motion controller that plans precise foothold
placements based on the perceived terrain [3, 4, 5, 6, 7]. While these methods have shown good
results in highly uneven terrains, the high computational cost required for terrain understanding
and rapid planning makes it infeasible for complex offroad environments. In this work, we devise a
novel way to interface between perception and low-level motion controllers for legged robots, where
the high-level perception model outputs the desired locomotion skills, including forward speed and
robot gait, to a low-level motor controller. With our framework, the robot can select a safe and fast
walking strategy for different terrains, which is crucial for offroad traversal.
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Figure 1: Our framework consists of a high-level skill policy and a low-level motor controller. The skill policy
selects locomotion skills (gait and speed) based on camera images. The low-level controller computes motor
commands for robot control.
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Figure 2: Architecture of our perception model. We extract a semantic embedding from a pre-trained semantic
segmentation network and use it to learn and predict forward speeds.

3 Overview

Our hierarchical framework (Fig. 1) consists of a high-level skill policy and a low-level motor con-
troller. At the high level, the skill policy receives the RGB image stream from the onboard camera
and determines the corresponding locomotion skill. Each skill consists of a desired forward speed
and a corresponding locomotion gait, which are computed by the speed policy and gait selector,
respectively. We train the speed policy using imitation learning from human demonstrations and
manually design the gait selector to find the appropriate gait for each forward speed. At the low
level, a convex MPC controller [28] receives the skill command from the skill policy and computes
motor commands for robot control. In addition, the convex MPC controller can optionally receive a
steering command from an external teleoperator, which specifies the desired turning rate.

4 Learning Speed Policies

In unstructured offroad terrains, it is crucial for a robot to adjust its speed in response to terrain
changes so that it can traverse through different terrains efficiently and without failure. To achieve
that, we design a speed policy, which computes the desired forward speed of the robot based on
camera images. We train the speed policy using a two-staged procedure: First, we pre-train a se-
mantic embedding from an offline dataset. After that, we collect human demonstrations and train
the speed policy using imitation learning.

4.1 Pre-trained Semantic Embedding

To reduce the amount of real-world data required to train the speed policy, we pre-train a semantic
segmentation model and extract a semantic embedding for subsequent finetuning. We implement
the model based on FCHarDNet-70 [29], which is a compact fully-convolutional encoder-decoder
architecture with good real-time performance. We pre-train the model on the RUGD dataset [30], an
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off-road driving dataset with pixel-wise semantic labels (grass, dirt, rock, etc.). We choose RUGD
because of its similarity to the images collected by the robot camera.

The next step is to extract an embedding from the pre-trained FCHarDNet [29] model for finetuning
on robot data. Although the pre-trained model performs well on the RUGD dataset, its predicted
segmentation becomes less accurate on robot images due to distribution shift. Meanwhile, the output
of the hidden layers still provides a continuous semantic description for each pixel. Therefore,
we extract a semantic embedding from the output of the last hidden layer in FCHarDNet, which
assigns a 48-dimensional embedding vector to each pixel in the input image (Fig. 2). We then
compute a speed map by feeding the embedding of each pixel through a fully-connected layer and
compute the forward speed by averaging over a fixed region at the bottom of the speed map, which
roughly corresponds to a rectangular area 1m long, 0.3m wide in front of the robot. The speed map
provides a straightforward and intuitive way to understand the model’s predictions and can be used
in navigational tasks such as path planning.

4.2 Learning Speed Commands from Human Demonstration

Even with the pre-trained semantic embedding, finding the appropriate speeds for offroad terrains
using reinforcement learning is still challenging due to omnipresent noise and safety concerns in the
real world. As an alternative, a human operator can readily assess the robot’s stability and adjusts the
speed command accordingly based on the operator’s previous experience with the robot platform.
Therefore, we collect speed commands from human demonstrations and train the speed policy using
imitation learning.

We collect human demonstrations by tele-operating the robot on a variety of terrains, including
asphalt, pebble, grass and dirt. During data collection, the operator gives speed commands using
a joystick, while other components of the pipeline, such as the gait selector and motor controller,
function accordingly (Fig. 1). Each time the camera captures a new image, we store the image and
the corresponding speed command. We then train the speed policy using behavior cloning [10],
where the objective is to minimize the difference between predicted speed and human command.

5 Speed-based Gait Selector

In addition to speed, the gait of a legged robot, such as its foot swing height, can greatly affect its
traversability, especially on uneven terrains. While the perception policy can output speed and gait
parameters jointly, training such a policy using imitation learning can be challenging, as it is difficult
for the human operator to demonstrate speed and gait choices at the same time. Meanwhile, previous
studies in animal [11] and robot [12, 13] locomotion have revealed a close connection between speed
and gait choices. Inspired by this discovery, we simplify the demonstration and learning process by
designing a heuristic-based gait selector, which computes the appropriate gait parameters based on
desired forward speed.

Gait Parameterization In our design, each gait is parameterized by three parameters, stepping
frequency (SF), swing foot height (SH), and base height (BH). The stepping frequency (SF) de-
termines the number of locomotion cycles each second. Similar to [12], we adopt a phase-based
parameterization for gait cycles, where each leg alternates between swing and stance. In addition,
we assume a trotting pattern for leg coordination, where diagonal legs move together and are 180�

out-of-phase with the other diagonal. The trotting pattern is known for its stability, thereby being the
default gait choice in most quadrupedal robots [28, 14]. The swing foot height (SH) determines the
leg’s maximum ground clearance in each swing phase. While a higher swing height improves stabil-
ity on uneven terrains by preventing unexpected contacts, a lower swing height is usually necessary
for high-speed running. The base height (BH) specifies the height of the robot’s center-of-mass.
While a low base height gives better stability at high speeds, a higher base height can be beneficial
when traversing through unknown obstacles.

Speed-Based Gait Selection We use empirical evidence to design the speed-based gait selector,
which finds a gait with high traversability for each speed. More specifically, for the boundary speeds
(0.5m/s and 1.5m/s), we first try different SFs with a nominal SH (0.12m) and BH (0.26m), and find
the lowest SF that would still ensure base stability (2.8Hz and 3.5Hz). After that, we sweep over
different values of SH and BH to find the highest value of both that would allow the robot to walk
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Figure 3: The gait selector selects gait parameters (SF, SH and BH) based on desired forward speed. For
example, when the desired speed is 0.5m/s, the speed selector would choose a stepping frequency of 2.8Hz, a
swing foot height of 0.16m, and a base height of 0.29m.

robustly without falling. Lastly, we linearly interpolate the parameter values between the boundary
speeds to find the gait for intermediate speeds. See Fig. 3 for details.

6 Low-level Convex MPC Controller

The low-level convex MPC controller computes and applies torques to each actuated degree of
freedom, given the locomotion skills from the skill policy. Our low-level convex MPC controller
is based on Di Carlo et al. [28] with two important modifications. Firstly, due to the robot’s small
form factor, it needs to constantly re-orient its body on uneven terrains, such as bumps and potholes.
Therefore, we implemented a state estimator to estimate the ground orientation and adjust the robot
pose to fit the ground, similar to Gehring et al. [31]. Secondly, to reduce foot slipping, we implement
an impedance controller for stance legs [32]. In addition to the motor torque command computed by
MPC, the impedance controller adds a small feedback torque to track the leg in its desired position.
We found both techniques to improve locomotion quality significantly. Please refer to Appendix A
for details.

7 Experiment and Result

To see whether our framework can learn to adapt locomotion skills based on terrain semantics, we
deploy it to a quadruped robot and test it in a number of outdoor environments in the real world. We
aim to answer the following questions in our experiments:

1. Can our framework operate without failure in complex offroad terrains for extended periods
of time, and how does it compare with existing baselines?

2. How does our framework generalize to terrain instances not seen during training?

3. Can our framework walk at high speed while ensuring safety?

4. What are the important design choices in training the perception module, and how does it
affect performance?

7.1 Experiment Setup

We implement our framework on an A1 quadrupedal robot from Unitree [14]. We equip the robot
with an Intel Realsense D435i camera to capture RGB images and a GPS receiver to track its real-
time location. We implement the entire control stack in the Robot Operating System (ROS) frame-
work [33] and deploy it on a Mac Mini with M1 chip, which is mounted on the robot. The convex
MPC controller runs at 400Hz, and the speed policy and gait selector run at 3Hz.

To train the speed policy, we collected 7239 frames of data on a variety of terrains, which corre-
sponds to 40 minutes of robot operation. The entire process, including robot setup, data collection,
and battery swaps, took less than an hour. The speed policy is trained on a standard desktop com-
puter with an Nvidia 2080Ti GPU, which took approximately 20 minutes to complete.
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Figure 4: The 450m-long test trail consists of multiple terrain types such as deep grass, shallow grass, gravel,
and asphalt. The learned skill policy adjusts the speed and gait based on terrain semantics and walks faster on
easier terrains.

Policy Type Speed Gait Params Traversal Time Number of Failures
(m/s) (SF, SH, BH) (min)

Fixed-Slow 0.5 [2.8, 0.16, 0.29] 15 0
Fixed-Mean 0.8 [3.0, 0.15, 0.28] 1 3

Fixed-Medium 1 [3.1, 0.14, 0.28] 1 4
Fixed-Fast 1.5 [3.5, 0.12, 0.27] 1 10+

Speed-Only Adaptive [3.1, 0.14, 0.28] 1 9
Gait-Only 0.8 Adaptive 1 2

Unitree-Normal Tele-operated N/A 11±0.4 0
Unitree-Sport Tele-operated N/A 1 2

Fully-Adaptive (ours) Adaptive Adaptive 9.6±0.2 0
Table 1: Performance of different policies on the test trail (450m). Compared to other policies, our framework
completes the entire trail without failure in the shortest time. We repeat the Unitree-Normal and Fully-Adaptive
policies 3 times and report the mean and standard deviation of the traversal time. We do not repeat the other
policies due to excessive robot damage.

7.2 Fast and Failure-free Walking on Multiple Terrains

To evaluate the adaptivity of our framework, we test our framework on an outdoor trail with mul-
tiple terrain types, including deep grass, shallow grass, gravel, and asphalt (Fig. 4). Our controller
switches between a wide range of skills as it traverses through the trail, from slow and careful step-
ping to fast and active walking, and completes the 450m-long trail in 9.6 minutes, comparable to the
performance of human demonstrations (10 minutes).

We compared our learned framework with the following baselines on the same test trail (Fig. 4),
including Unitree’s built-in controllers and variants of our controller with no or limited adaptation.
The result is summarized in Table. 1. Please refer to Appendix. B.2 for further details.

Unitree’s built-in controllers We tested two modes of the built-in controller, a normal mode
(Unitree-Normal) that walks up to 1m/s, and a sports (Unitree-Sport) mode that walks up to 1.5m/s.
Both controllers do not include perception and assume a fixed gait at all times. Although normal
mode completed the entire trail without failure, it walked slower than our learned framework, espe-
cially on asphalts, due to limitations on the maximum speed. On the other hand, the sports mode
controller failed to complete the course and got stuck in deep grass twice due to insufficient swing
foot clearance.

Fixed Skill with No Adaptation For these baselines, we disabled the perception module and
operated the robot with a fixed locomotion skill. We tested four skills, namely slow, mean, medium,
and fast, operating at 0.5m/s, 0.8m/s, 1m/s, and 1.5m/s, respectively, with the corresponding gait
selected according to Fig. 3. The slow, medium and fast skills cover the range of possible speeds
achievable by our low-level controller, and the mean skill walks at speed similar to the average speed
achieved by our adaptive policy (0.78m/s). The mean, medium, and fast skills failed to complete the
trail and incurred failures. While the slow skill completed the trail without failure, its traversal time
is 50% longer than our learned framework.
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0.5m/s 1m/s 1.5m/s0.75m/s 1.25m/sSlow Fast
Figure 5: Desired speed computed by the skill policy. The policy prefers faster skills for rigid and flat terrains
and prefers slower skills for deformable or uneven terrains.

(a) We test our robot on different terrain types.

(b) Success rate of fixed locomotion skills (blue) and the learned policy (red).

Figure 6: Our framework learns fast and safe locomotion skills. Top: We deployed our skill policy to 4 different
terrains. Bottom: Our policy finds a high speed in the safe region of each terrain.

Adapt Speed or Gait Only In our framework, we design a robot skill to be a combination of gait
and forward speed. To justify this design, we design two policies, where the robot adapts the gait or
the forward speed only. For the speed-only policy, we fix the gait parameters as if the forward speed
is 1.0m/s in Fig. 3 and adapt the speed using our framework. For the gait-only policy, we fix the
base speed to be 0.8m/s, similar to the average speed attained by our learned policy, and adapt the
gait using our framework. Both policies failed to complete the trail. For the speed-only policy, we
found the fixed gait to only work well when the base speed was close to 1m/s and frequently failed
at either higher or lower speeds. For the gait-only policy, the robot managed to walk through most
of the trail but slipped twice on rocky terrains.

7.3 Generalization to Unseen Terrain Instances

To further test the generalizability of our framework, we deploy the robot on a number of outdoor
trails not seen during training. The trails contain diverse terrain types, such as dirt, gravel, mud,
grass, and asphalt. The robot traverses through these test trails without failure and adjusts its loco-
motion skills based on terrain semantics. Please refer to Appendix. B.1 for details. To demonstrate
the skill choices of our framework, we select a few key frames from the camera images and plot
the corresponding speed in Fig. 5. Generally, the skill policy selects a faster skill on rigid and flat
terrains and a slower speed on deformable or uneven terrains. At the time of writing, the robot has
traversed through over 6km of outdoor trails without failure.

7.4 Analysis on Speed and Safety

To test the performance of the learned skill policy in terms of speed and stability, we deploy the
learned skill policy on four different terrains, including rock, pebble, grass, and pebble (Fig. 6a). We
compare our semantics-aware skill policy with 5 fixed skills, where the speed linearly interpolates
between 0.5m/s and 1.5m/s. For each speed, the corresponding gait is selected according to Fig. 3.
For each terrain and skill combination, we repeat the experiment 5 times and report the success rate,
where a trial is considered successful if the robot does not fall over during the traversal (Fig. 6b).
By comparing the success rate at different speeds, we obtained an approximation of the safe speed
range for each terrain. We then test the performance of our framework by comparing the average
speed obtained by our learned skill policy on each terrain against these safe speed ranges.
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The maximum safe speed varies significantly on different terrains. For example, while the robot
can walk up to 1.25m/s without failure on asphalt, it can only walk up to 0.5m/s on rock, due to
unexpected bumps and foot slips on the surface. Although not directly optimized for speed or robot
safety, our learned policy finds a close-to-maximum speed in the safe region of each terrain after
learning from human demonstrations. We also noted that on pebble and grass, there is a slightly
larger gap between the maximum safe speed and the speed selected by the skill policy. One reason
for this is that the speed demonstrated by the human operator can be more conservative than the
maximum safe speed.

7.5 Ablation Study on Perception Module

We compare our way of training the perception-enabled speed policy with a few baselines, which
either train the policy from scratch without pre-training or extract the pre-trained embedding directly
from the predicted semantic classes. We find that our policy, which is fine-tuned from the output of
the hidden layer, achieves the smallest error on the validation set and predicts the speed map with
high precision. Please see Appendix B.3 for further details.

8 Limitations and Future Work

In this work, we present a hierarchical framework to learn semantic-aware locomotion gaits from
human demonstrations. Our framework learns to adapt locomotion skills for a variety of terrains
using 40 minutes of human demonstration and enables a robot to traverse over 6km of outdoor
terrains without failure. One limitation of our framework is that, while our robot walks robustly
on a variety of off-road terrains, its performance is limited by the low dimensionality of human
demonstrations. For more difficult terrains such as steps or gaps, the robot will need more agile
behaviors such as jumping, which requires a deeper integration between the perception system and
low-level motor controller and learning more skills than speed or gait demonstrations. Another
limitation is that the perception system assumes that there is no non-traversable obstacles ahead of
the robot and therefore does not adjust the heading of the robot. In future work, we plan to increase
the agility of our controller and integrate path planning into our framework so that the robot can
operate fully autonomously in challenging off-road environments.
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