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ABSTRACT

Despite their success, Transformers suffer from quadratic complexity in the se-
quence length, limiting their applicability to long-range dependency problems
and making them expensive to train and run. After many proposals to address
this issue, the Long Range Arena (LRA) was suggested as a benchmark to eval-
uate the performance of new models in long-range dependency modeling tasks.
The Transformer and its variants performed poorly on this benchmark, and a new
series of architectures such as State Space Models (SSMs) gained some traction,
greatly outperforming Transformers in the LRA. Recent work has shown that with
a denoising pretraining phase, Transformers can achieve competitive results in the
LRA with these new architectures. In this work, we discuss and explain the superi-
ority of architectures such as MEGA and SSMs in the Long Range Arena, as well
as the recent improvement in the results of Transformers, pointing to the positional
and local nature of the tasks. We show that while the LRA is a benchmark for
long-range dependency modeling, in reality most of the performance comes from
short-range dependencies. By using rotary embeddings and training techniques to
mitigate its data inefficiency, the Transformer is also able to reach state-of-the-art
performance without a separate pretraining phase. What is more, with the same
techniques, we are able to remove all restrictions from SSM convolutional ker-
nels and learn fully parameterized convolutions without decreasing performance,
suggesting that the design choices behind SSMs merely added inductive biases
and learning efficiency for these particular tasks. Our insights indicate that LRA
results should be interpreted with caution and call for a redesign of the benchmark.

1 INTRODUCTION

The Transformer architecture (Vaswani et al.) has revolutionized sequence modeling, and has been
the basis for many state-of-the-art breakthroughs in NLP, computer vision, and reinforcement learn-
ing. Despite its success, it is not without limitations. Being reliant on the attention mechanism, the
Transformer suffers from quadratic complexity in the input sequence length, which makes it difficult
to scale to long sequences and expensive to train and run. Addressing this issue has become a hot
topic in the deep learning community, and many variations of the Transformer have been proposed
to improve its scalability.

In this work, we focus our attention on the Long Range Arena benchmark (Tay et al.), which was
designed to evaluate the ability of models to capture long-range dependencies. This benchmark
encompasses tasks in the image, text, and mathematical domains, and includes sequences of up to
16,384 elements. The Transformer architecture and its variants have been shown to perform poorly
on these tasks, which has motivated the development of new architectures.

These new architectures, such as State Space Models (SSMs) (Gu et al., b), were synthesized to a
common underlying idea by Li et al.. They can all be reformulated as a long-convolution, with a
kernel size matching the full sequence length. This kernel should be efficiently parameterized, that
is, scale sublinearly with the input sequence length, and should include a time decay mechanism,
reducing the weight of elements based on their distance to the current token.

Although these architectures greatly outperformed the Transformer on the Long Range Arena bench-
mark, the success of the Transformer in real-world settings has not been replicated. This raises
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Table 1: Accuracy comparison between different kernel sizes for a convolutional model on the LRA
tasks. For a given kernel size K, each embedding aggregates information from ⌊K/2⌋ embeddings
to each side from the previous layer (second column). Thus, by multiplying by the number of layers
(second to last row), we get the maximum range of dependencies that can be modeled. The accuracy
of the model is shown together with the ratio of performance with respect to the results from the
state-of-the-art model MEGA (last row). This ratio is shown in parentheses. In bold we highlight
the best kernel size for each task.

Kernel size Perc. field CIFAR10 Pathfinder Text classification Text retrieval ListOps

5 2 46.63% (51.56%) 51.80% (53.95%) 88.96% (98.37%) 90.32% (98.98%) 45.24% (71.65%)
7 3 49.05% (54.23%) 51.42% (53.56%) 90.61% (100.20%) 90.48% (99.16%) 49.26% (78.02%)

11 5 64.47% (71.28%) 51.56% (53.70%) 90.56% (100.14%) 90.41% (99.08%) 50.59% (80.12%)
21 10 70.25% (77.68%) 52.01% (54.17%) 90.26% (99.81%) 89.71% (98.31%) 52.28% (82.80%)
31 15 79.84% (88.28%) 51.20% (53.33%) 89.33% (98.78%) 89.46% (98.04%) 52.93% (83.83%)
61 30 83.62% (92.46%) 72.28% (75.28%) 85.41% (94.45%) 89.04% (97.58%) 52.73% (83.51%)

Num layers: 6 6 4 4 6

MEGA results: 90.44% 96.01% 90.43% 91.25% 63.14%

questions about how representative the LRA benchmark results are of long-range dependency mod-
eling performance. Indeed, the time-decay mechanism that these new architectures have in common
suggests a bias towards locality, which is counterintuitive to modeling long-range dependencies.

Recent work by Amos et al. has shown that, in fact, the Transformer can achieve competitive
performance on the LRA benchmark with appropriate training strategies. In particular, they used
a pretraining phase with a denoising objective, using the same data as the downstream tasks. In
this work, we achieve similar results without the need for a separate pretraining phase, reducing
the computational burden and the risk of representation collapse during the fine-tuning stage. We
use different data augmentation strategies for the image and mathematical domains, and a denoising
objective in a multitask learning setting for the text domain. We show that with these strategies,
the Transformer can achieve competitive performance on the LRA benchmark. We hypothesize the
reasons for the necessity of these strategies in the case of the Transformer: very high-dimensional
and insufficient data, and a very expressive architecture with poor inductive biases for the tasks.

Amos et al. showed that when using their pretraining strategy, a vanilla diagonal linear RNN can
achieve state-of-the-art performance on the LRA benchmark. We further show that, using our strate-
gies, an unrestricted and fully parameterized long convolution can achieve similar results as well.
This suggests that restrictions to the kernel such as those synthesized by Li et al. are not necessary
when enriching the data with proper strategies, but were only a way to add inductive biases and learn
more efficiently in these particular tasks.

We discuss the reasons behind these results, arguing that the tasks are mainly positional and local.
We measure the importance of locality and short-range dependencies by training convolutional mod-
els of increasing receptive fields. As shown in table 1, with small kernels of size 61 we get close to
state-of-the-art results in all tasks. Particularly concerning is the case of text, where kernels of size
5 suffice. This heavily favors long-convolution-based architectures with time-decay mechanisms.
Rotary embeddings add similar biases to the Transformer, and our ablation study shows its critical
importance in achieving state-of-the-art results in the LRA.

Our results call the validity of the LRA as a long-range dependency modeling benchmark into ques-
tion and indicate that it is important to analyze performance on the LRA with caution, taking into
account the inductive biases of the models and the nature of the tasks.

Our contributions can be summarized as follows, in order of importance:

• We discuss the positional and local nature of the tasks in the LRA benchmark, and provide
empirical evidence that one can reach close to state-of-the-art results with small convolu-
tions that bound the range of dependencies that can be modeled. This explains the great per-
formance of models such as MEGA or SSMs, and the poor performance of Transformers.
It also questions the validity of the LRA as a long-range dependency modeling benchmark.

• We show that the restrictions on the kernel synthesized by Li et al. are not necessary when
enriching the data or training process with proper strategies, but merely added inductive
biases and learning efficiency in these particular tasks.
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• We show that the reason for the poor performance of Transformers was a lack of inductive
biases, coupled with its high expressiveness and high-dimensional, scarce data. With rotary
embeddings that add positional and local biases, and techniques to avoid overfitting, we are
able to reach state-of-the-art performance. Unlike the techniques used by Amos et al., ours
do not require a separate pretraining phase, which reduces the computational burden and
eliminates the risk of representation collapse.

The code is publicly available at https://anonymous.4open.science/r/
paper-LRA-source-anon-D370.

2 BACKGROUND

2.1 THE ATTENTION MECHANISM

The attention mechanism, paramount in the Transformer architecture, suffers from quadratic com-
plexity in the sequence length. Indeed, given queries Q ∈ RL1×Dqk , keys K ∈ RL2×Dqk , and values
V ∈ RL2×Dv , where L1 and L2 are the sequence lengths, and Dqk and Dv are the dimensions of
the query/key and value vectors, respectively, the output of the attention module is given by

Y = softmax

(
QKT√
Dqk

)
V. (1)

The attention matrix A = softmax
(
QKT /

√
Dqk

)
is of size L1 ×L2, yielding a computation time

complexity of O(L1L2Dqk) and a naive space complexity of O(L1L2). In reality, we can avoid
quadratic memory complexity by recomputing the attention matrix during the backward pass (Dao
et al.).

Reducing the cost of running the Transformer and allowing it to process long sequences is a hot
topic in Deep Learning. From hardware usage optimizations such as the I/O optimizations in Flash
Attention (Dao et al.) or precision reductions and quantization (Gholami et al.), to architectural mod-
ifications like the Linear Transformer (Katharopoulos et al.), the Reformer (Kitaev et al.), blockwise
attention (Qiu et al.; Dai et al.) or sliding-window attention (Zaheer et al.), we have seen a large
body of work on this very topic.

2.2 LONG RANGE ARENA

To evaluate the performance and efficiency of the different architectural proposals for long-sequence
modeling, Tay et al. proposed a benchmark with tasks in the text, image, and math domains, called
the Long Range Arena. These tasks were designed to include long sequences, ranging from 1000 to
16000 elements, while keeping the computational burden reasonably low. It includes six different
datasets.

ListOps This synthetic task involves calculating the result of nested mathematical operations in
parentheses, which form a tree-like structure. Both operands and results are always
integers between 0 and 9, and sequences can be as long as 2000 tokens between op-
erations and operands. Four different operations can appear: minimum (MIN), maxi-
mum (MAX), median (MED), and sum modulo 10 (SM). The following is a short example:
MIN [MAX [1, 2, 3] , 4, 5] = 3.

Text Classification The IMDB sentiment analysis task, involving the classification of movie re-
views as positive or negative. In this benchmark, proposals are required to tokenize the text
at the byte level, instead of the usual subword tokenization. They should also use sequence
lengths of 1000, 2000, 3000 or 4000 bytes.

Document Retrieval This task involves finding a similarity score between two documents. The
dataset is the ACL Anthology Network, where the model has to predict whether two papers
have a citation link. The documents are tokenized at the byte level as well, this time re-
quiring a fixed sequence length of 4000 bytes. Inter-token interaction between documents
is not allowed for this task, this is, each document needs to be summarised to a fixed-size
vector representation and then compared.
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Image Classification The CIFAR-10 image classification task. Images are 32× 32 pixels, and the
task is to classify them into one of ten classes: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. In this benchmark, images are given in grayscale, and they
must be encoded as a one-dimensional sequence of individual pixels, totaling 32 × 32 =
1024 elements. No information about the two-dimensional structure of the image can be
provided to the model.

Pathfinder A synthetic task that involves identifying whether two white points in a black back-
ground are connected by a path of dashed white lines. The images are 32 × 32, and the
encoding restrictions are the same as in the Image Classification task.

Pathfinder-X An extreme version of the previous task, with larger images of 128 × 128 = 16384
pixels.

The Transformer achieved very poor results in this benchmark, both in the vanilla version and in
the proposed variants to handle long sequences. In fact, results across variants were fairly similar in
most tasks. The largest differences were found in the ListOps task, and we offer an explanation in
Appendix B.

2.3 NEW ARCHITECTURES

Motivated by the poor performance of the Transformer in the Long Range Arena, several works
have been published proposing new architectures that greatly improved their performance and com-
putational efficiency. In this section, we review some of the most relevant.

2.3.1 STATE SPACE MODELS

In 2022, Gu et al. (b) proposed a new architecture, S4, based on the discretization of a differential
equation model called the State Space Model (SSM). For a 1D input signal u(t), the differential
equation is the following: {

x′(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
, (2)

where x is the hidden state, u is the input signal, and y is the output signal. The elements A, B, C,
and D are the parameters of the model. The system is discretized with a fixed time step ∆, and the
D parameter is removed, as it can be seen as a skip connection. The discretized system is then:{

xt+1 = Âxt + B̂ut

yt = Cxt
, (3)

where Â = fA(∆, A,B) and B̂ = fB(∆, A,B) depend on the discretization method. This equation
can be seen as a linear recurrent network without inter-token nonlinear activations. This greatly
reduces expressiveness, as nonlinearities will only appear in token-wise operations. However, it also
has great properties. In addition to the recurrent formulation that allows for very fast auto-regressive
inference, the recurrence can be expanded to

xt+1 =

t∑
i=0

ÂiB̂ut−i,

and thus be seen as a convolution operation, allowing for fast and parallelizable training.

When the input signal is a vector, the parameters A, B, and C are matrices. In this case, the
exponential of the matrix A is not straightforward, but the kernel can be efficiently computed by
parameterizing the matrix A as the sum of a normal diagonal matrix minus a low-rank matrix. This
architecture pushed the state-of-the-art average accuracy in the Long Range Arena from 59.37% to
86.09%.

2.3.2 SYNTHESIZING SSMS

Posterior work has been published that synthesizes the key ideas that make the S4 model work.
Orvieto et al. developed a similar linear recurrent model with a diagonal parameterization with
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complex eigenvalues in the unit disk. They thus removed the discretization step or the normal
minus low-rank decomposition. Furthermore, independent processing of each dimension in the
diagonalized space allows us to process the convolution in O(L logL) by using the Fast Fourier
Transform, where L is the sequence length. They achieved performance comparable in the long
range arena to that of the S4 model.

Note that S4 has a convolutional mode that uses a kernel of the same size as the input signal. Li et al.
tried to generalize these architectures by creating a convolutional model directly and trying to pin
down the properties that these long convolutions should have to achieve good performance. They
found two sufficient conditions. First, the kernel should be parameterized in a way that makes the
effective number of parameters scale sublinearly with sequence length. Second, the kernel should
satisfy a decaying structure, that is, the weights assigned to distant tokens should be smaller in
magnitude than those assigned to closer tokens. They developed the SGConv architecture, which is
a simple convolutional model that satisfies these properties, and achieved comparable performance
in the Long Range Arena. The authors showed that the S4 model fulfilled these properties, and the
model developed by Orvieto et al. clearly does too, as the exponential of a matrix with complex
eigenvalues of norm less than 1 will decay in magnitude, and the number of parameters is linear in
the hidden dimension and independent of the sequence length.

2.3.3 MEGA

At the time of writing, the current state of the art in the Long Range Arena is MEGA (Ma et al.),
which alternates between the attention mechanism and an exponential moving average (EMA) across
the sequence length. More formally, given input embeddings x1, . . . , xL in RD, the output of the
EMA component is

yt = α⊙ xt + (1− α⊙ δ)⊙ yt−1, (4)

where δ ∈ (0, 1)D is a damping vector and α ∈ (0, 1)D is a component-wise decay factor. The
EMA operation is also a form of diagonal linear recurrence with eigenvalues of norm less than 1,
like the one in Orvieto et al.. This yields a convolutional kernel that meets the properties discussed
by Li et al.. The MEGA model achieved state-of-the-art performance in the Long Range Arena,
with an average accuracy of 88.21%.

2.4 IMPROVING THE TRANSFORMER IN THE LONG RANGE ARENA

Amos et al. managed to achieve close to state-of-the-art performance in the Long Range Arena with
the rotary Transformer by pretraining the models with a denoising objective, using the data from the
downstream task. Similar to the pretraining of BERT (Devlin et al.), the model is asked to predict
randomly masked tokens in the sequence.

Using this pretraining procedure, they also achieved competitive performance with a simple diagonal
linear recurrent model, without the need for any complex parameterization or initialization as in the
S4 model or the model by Orvieto et al..

2.5 GMLP

Liu et al. tried to achieve BERT’s performance on standard text tasks using only MLP networks. To
do this, they developed the gMLP architecture, alternating between channel-wise and spatial-wise
or sequence-wise projections. Let X ∈ RL×D be the input data, where L is the sequence length and
D is the embedding dimension. The gMLP layer is defined as follows:

Z = σ(XU), Z1, Z2 = split(Z, axis=“D”), Ẑ = Z1 ⊙ (WZ2 + b) , O = ẐV, (5)

where U ∈ RD×H and V ∈ RH×D are projections in the channel dimension, acting on each token
independently, and W ∈ RL×L and b ∈ RL are the weights and biases of a linear projection across
the sequence dimension. The function σ is a non-linear activation function such as the GELU.

They managed to achieve competitive performance with BERT on the GLUE benchmark. The au-
thors observed that the learned spatial projection matrices W were, in fact, Toeplitz matrices, which
resulted in a long convolutional operation. Unlike the long convolutions in the models described in
the previous sections, the kernels in gMLP are fully learned and unrestricted.
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3 TRAINING METHODS

As we hypothesized that the reasons for the poor performance of the Transformer in the LRA are
the lack of inductive bias, and very high-dimensional and insufficient data, we apply techniques to
avoid overfitting and prevent the model from learning spurious correlations.

CIFAR-10. Images are amenable to very natural data augmentation techniques. In the CIFAR-10
classification task, we apply a strategy derived from the one discovered in for AutoAug-
ment (Cubuk et al.). The specific techniques can be found in the source code files indicated
in appendix A.3.

Pathfinder. The LRA dataset provides three sets of examples of different difficulty, depending on
the path lengths and amount of distracting paths. The common procedure is to train only
on the difficult set. We try training on all three sets, without augmentation. The advantage
of this over using augmentation is that the dataset is more varied and that the model is able
to find the signal faster in the easier sets. Further discussion is provided in Appendix C.
To make the comparison fair and maintain the number of training steps, we reduce the
number of epochs from the usual 200 to 67. Validation and test sets are drawn from the
difficult set, and we remove subsets of similar sizes from the easy and intermediate ones to
have exactly three times the number of training samples.

ListOps. As each mathematical operation in the task is commutative, we can shuffle the order of
the operands without altering the result. In other words, at each node of the operation tree,
we can apply a random permutation to the children nodes. Using this technique, we can
generate many more training samples from the same input data.

Text tasks. Since data augmentation is not as straightforward in textual data, we apply a denoising
objective where we mask some tokens and ask the model to predict them. This is similar
to the masked language modeling objective in BERT (Devlin et al.) and what Amos et al.
did in their work. However, instead of training for this task in a separate pretraining phase,
we use a multi-task setting, where the total loss is the (unweighted) sum of the denoising
loss and the task-specific loss. This has the advantage of reducing computational costs (as
computations up to the final heads are shared), as well as removing the risk of representation
collapse during fine-tuning.
Using this auxiliary task presents several advantages. First, since masking is done dynami-
cally and randomly, the model sees different samples at each epoch, which helps to prevent
overfitting. Second, a token-wise classification task such as the denoising one provides a
large number of training samples per batch. Finally, since each text is tokenized at the byte
level, the model needs to learn to aggregate neighboring bytes to form meaningful word
embeddings. The MLM objective is known to produce a reliance on neighboring tokens to
predict the masked ones, thus resulting in useful representations for the main task.

4 TRANSFORMER PERFORMANCE

To test whether the lackluster performance of Transformers stemmed from a lack of inductive biases
and insufficient data, we train the Transformer using our mitigating strategies. Similarly to Amos
et al., we use rotary embeddings (Su et al.) to encode positional information. We compare our results
with the original Transformer results in the Long Range Arena (Tay et al.) and those obtained by
Amos et al. using a denoising pretraining objective. We also include results from the state-of-the-art
MEGA model (Ma et al.), and replicate their experiments using our training techniques.

The results are shown in table 2. We achieved a comparable performance with Amos et al. without
the need for a pretraining phase, reaching a higher average accuracy and outperforming in all non-
textual tasks. Both sets of techniques manage to take the Transformer to near state-of-the-art results.
We also observe that our techniques do not seem to improve the performance of MEGA. In fact,
it gets slightly worse, possibly due to an inexact replication of their optimization process to match
ours (see appendix A.2).

Our results suggest that prior Transformer results were indeed due to a lack of inductive bias for
the tasks and insufficient data, as we hypothesized. The MEGA model, on the other hand, was able

6
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Table 2: Accuracy comparison between training a Transformer model on the LRA using a denoising
pretraining objective, using our training techniques and the original results from Tay et al. without
techniques. We also report the original results from MEGA (Ma et al.) and replicate their experi-
ments with our techniques. Results for the PathX task are not available due to a lack of computational
resources, and they are also excluded from the average calculation to allow for a fair comparison.

Task CIFAR10 Pathfinder Text classification Text retrieval ListOps Average

Transformer (Tay et al.) 42.44% 71.40% 64.27% 57.46% 36.37% 54.39%
Transformer†(Amos et al.) 86.04% 94.16% 91.02% 91.57% 61.49% 84.86%

Transformer‡ 88.15% 96.28% 90.33% 90.80% 62.90% 85.69%
MEGA (Ma et al.) 90.44% 96.01% 90.43% 91.25% 63.14% 86.25%

MEGA‡ 87.60% 94.78% 90.92% 91.32% 61.15% 85.15%
† Using pretraining. ‡ Using our training techniques.

Table 3: Accuracy comparison between gMLP and SSMs S4 and S5. We use our training techniques
to train all three models, and also include the original results for S4 and S5. Results for the PathX
task are not available due to a lack of computational resources, and they are also excluded from the
average calculation to allow for a fair comparison.

Task CIFAR10 Pathfinder Text classification Text retrieval ListOps Average

S4 (Gu et al., a) 88.65% 94.20% 86.82% 90.90% 59.60% 84.03%
S5 (Smith et al.) 88.00% 95.33% 89.31% 91.28% 62.15% 85.21%

S4† 89.59% 93.61% 91.01% 90.73% 56.00% 84.19%
S5† 85.53% 95.60% 90.21% 88.96% 62.75% 84.61%

gMLP† 89.89% 97.26% 89.94% 90.37% 62.45% 85.98%
† Using our training techniques.

to reach its peak performance without better training strategies, as its inductive biases make it very
data-efficient in this benchmark.

5 REMOVING RESTRICTIONS FROM LONG-CONVOLUTION KERNELS

Next, we use the same techniques to train an unrestricted and freely parameterized long-convolution-
based model, gMLP, and compare it with SSMs S4 (Gu et al., a) and S5 (Smith et al.). The results
are shown in table 3. The gMLP model achieves performance comparable to both SSM models
and even outperforms them on average. The SSM models barely benefit from improved training
strategies, suggesting that they were able to reach peak performance without them because of their
inductive biases. Our results indicate that the design choices in SSMs merely added data efficiency
for these particular tasks, and not better long-range dependency modeling.

6 DISCUSSION ON THE POSITIONAL AND LOCAL BIASES OF THE LONG
RANGE ARENA TASKS

Our results indicate that the differences in performance between the Transformer and new archi-
tectures such as SSMs in the LRA are likely a byproduct of insufficient datasets and the greater
inductive biases of the latter. If we look closely at each task, we can deduce that they are mainly
positional. In particular, we expect a strong encoding of relative positions to be effective and more
efficient to learn. Further, some of the tasks might benefit greatly from a bias towards locality. Both
characteristics favor convolutional models with time decay mechanisms. This might also attribute
some of the increased performance of the Transformer to the use of rotary embeddings, which adds
similar biases.

Let us first consider textual data. Tokenizing text at the byte level means that the model has to learn
first how to form meaningful word embeddings from letters, a positional and local task. Some-
thing similar can be said for images, where we often want to detect patterns in small patches (local

7
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Table 4: Ablation study of positional encoding and training procedure for the Transformer on the
LRA tasks. We show accuracy results for summed learned and sinusoidal positional embeddings, as
well as rotary embeddings without using our training procedures.

Positional embeddings Summed learned Summed sinusoidal Rotary Rotary
Training techniques ✓ ✓ ✗ ✓

CIFAR10 67.87% 85.52% 58.84% 88.15%
Pathfinder 90.48% 92.81% 67.09% 96.28%

Text classification 64.49% 88.47% 69.73% 90.33%
Text retrieval 83.31% 87.06% 85.34% 90.80%

ListOps 41.30% 47.55% 43.90% 62.90%

Average 69.49% 80.28% 64.98% 85.69%

neighborhoods). This is made slightly more difficult by the fact that we encode the image as a 1D
sequence, separating consecutive vertical pixels by the width of the image, but the argument is still
valid. This does not necessarily mean that long-range dependencies are not important. For example,
in the Pathfinder task, the two connected dots can be very far apart in the image. Regardless of
this, modeling relative positions is likely to be better and more efficient, as it is necessary to find
neighboring pixels. Finally, in appendix B we provide a discussion of some of the patterns that are
learned in the ListOps task. The extent to which local patterns account for the increase in accuracy
to 63% escapes our analysis and still needs to be studied empirically.

7 ABLATION STUDY: TRANSFORMER PERFORMANCE

In this section we study the importance of correct positional encoding in increasing the performance
of the Transformer. Table 4 shows the results. We compare rotary, summed sinusoidal and summed
learned embeddings. The learned embeddings are very inferior to the other two, and rotary em-
beddings are superior to the summed sinusoidal ones, with small margins except for the ListOps
task. These results were expected because rotary and sinusoidal embeddings do not include train-
able parameters, model relative positions, and add a time-decay mechanism. The superiority of
rotary embeddings might come from the fact that they are applied only to key and query vectors,
without distorting intermediate representations or value vectors. Summed embeddings add this dis-
tortion, and they get entangled with the rest of the information across layers. In table 4 we also
find the impact of removing our training techniques. While rotary embeddings—together with bet-
ter hyperparameters—clearly improve the originally reported performance by the Transformer, not
using our training techniques causes a massive drop in accuracy.

8 MEASURING THE IMPORTANCE OF LOCALITY IN THE LONG RANGE
ARENA

The fact that a locality bias could be helpful in the LRA is concerning in a benchmark for long-range
dependency modeling. To discern the importance of locality on each task, we train a convolutional
model with small kernel sizes. This experiment should provide a baseline for the performance we
can expect with a fixed bound on the range of dependencies that can be modeled. The details of the
model can be found in appendix A.2, and the results are shown in table 1.

In general, we are able to get fairly close to state-of-the-art performance in each task with a small
distance bound of 30 tokens per layer. The Pathfinder task appears to be the least reliant on very
short-range dependencies. The extreme cases are the textual tasks, where a distance bound of 2
tokens per layer is sufficient to achieve state-of-the-art performance. It appears that aggregating
bytes into meaningful word embeddings is enough to make predictions about most of the samples.

Our results show the great importance of short-range dependencies in these tasks, especially in the
textual ones. This raises doubts about the relationship between the results in the LRA and the
ability to model long-range sequences, especially in the case of models with local inductive biases,
including recent architectures such as SSMs or MEGA, and Transformers with positional encodings

8
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that add time-decay mechanisms. The evaluation of models in the LRA should include an analysis
of the fairness of the results based on the biases of the model and the nature of the benchmark.

9 CONCLUSIONS

Our study provides critical insights into the nature of the tasks in the Long-Range Arena (LRA)
benchmark, challenging its utility for long-range dependency modeling evaluation. Specifically,
we identify that the tasks in the LRA benchmark largely benefit from positional and local depen-
dencies. Our experiments demonstrate that small convolutional networks—limited in the range of
dependencies they model—can closely match state-of-the-art results. This finding explains the suc-
cess of models like MEGA and structured state-space models (SSMs) on the benchmark and raises
questions about the adequacy of the LRA in truly testing long-range dependencies.

We also establish that the constraints on kernel design, as suggested by Li et al., are not strictly
necessary to achieve strong performance. Instead, enriched data and optimized training strategies
can yield similar benefits, with the proposed kernel constraints mainly providing inductive biases and
learning efficiency in specific tasks. This opens new pathways for more adaptable model designs for
long-range dependency modeling.

Our analysis highlights that Transformers’ historically weak performance on LRA tasks stems pri-
marily from a lack of inductive biases, rather than an inability to model dependencies. By intro-
ducing rotary embeddings for local and positional biases and refining training to prevent overfitting,
they also manage to achieve state-of-the-art results.

Our findings point to a significant re-evaluation of both model architectures and the LRA benchmark
for long-range dependency modeling. We underscore the need for benchmarks that genuinely assess
long-range dependencies, but leave the design of such a benchmark for future work. As general
guidelines, synthetic tasks such as Pathfinder seem to be the most robust to short-range dependencies
and allow us to modulate the range of dependencies required to solve the tasks. Natural language
seems to be an inconvenient modality, as it may prove difficult to create tasks that require long-range
dependency modeling but low computational resources, which was one of the intentions behind the
LRA. The restriction to simplified synthetic languages is probably the best choice.
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memory-efficient exact attention with io-awareness. In Advances in Neural Information Process-
ing Systems (NeurIPS).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Com-

9

https://openreview.net/forum?id=PdaPky8MUn
https://ieeexplore.ieee.org/document/8953317/


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameteriza-
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A EXPERIMENT DETAILS

A.1 HARDWARE AND SOFTWARE

All experiments were run on a single NVIDIA GeForce RTX 3090 GPU with 24GB of memory or
an NVIDIA GeForce RTX 3080 Ti GPU with 12GB of memory. We used PyTorch 2.1.0 with CUDA
12.2. The code for the experiments is available at https://anonymous.4open.science/
r/paper-LRA-source-anon-D370. A Conda environment file can be found in the repository
to reproduce the Python environment.

A.2 HYPERPARAMETERS

In tables 5 to 7 we show the hyperparameters used to train the Transformer, the gMLP model, and
the convolutional model on the LRA. We used the AdamW optimizer, with a learning rate scheduler
that reduces the learning rate on training plateau and during the last 10% of the training epochs. The
parameters of the Transformer apply regardless of the positional encoding, except those specific
to rotary embeddings. The base frequency for sinusoidal embeddings is the same as for rotary
embeddings.

With regard to the MEGA and SSM experiments, we generally replicated their hyperparameters,
with the following exceptions.

• When the models did not converge, we reduced the learning rate.

• The attention mechanism in MEGA is restricted to the classical softmax one.

• We use the same optimizers, schedulers and training epochs that we used for the Trans-
former, gMLP and convolutional models.

• For S5, we used the full-glu activation in Pathfinder and text retrieval, as we obtained better
results. We also cut down the epochs in text retrieval due to lack of time during the rebuttal
period.

With respect to the convolutional model, it consists of several equal layers with residual connections.
Each layer starts with a convolution that maps the input embeddings to H channels, with kernel sizes
varying between experiments to modify the bound of the distance between tokens that can interact
with one another. After a non-linearity, a linear layer returns back to D channels. The code for each
layer can be found in the file src/models/layers/res conv.py.

A.3 DATA AUGMENTATION

The augmentation techniques can be consulted in the source code.

• The augmentation process for the CIFAR10 dataset is covered in the src/utils/
augmentation/cifar10 augmentation.py and src/data loaders/
cifar10.py files.

• The augmentation process for the ListOps dataset is covered in src/data loaders/
listops.py.
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Table 5: Hyperparameters used to train the Transformer on the LRA. The rotary disable half pa-
rameter determines whether half of the base frequencies are set to 0, disabling the rotation of those
channels and making them independent of positional information. In the Pathfinder task, the number
of epochs is 67 when using all three sets, and 200 otherwise.

ListOps CIFAR10 Pathfinder Text classification Retrieval

Embed dim 256 160 128 256 128
Depth 6 10 6 8 6

Num attn heads 4 4 4 4 4
FF size 512 320 256 512 256

Dropout 0 0 0 0 0
Activation ReLU ReLU ReLU ReLU ReLU

Norm Layer Layer Layer Layer Layer
Prenorm Yes Yes Yes Yes Yes

Rotary base freq 10000 10000 10000 10000 10000
Rotary disable half No Yes No Yes Yes

Pooling Mean Mean Mean Mean Mean

Learning rate 0.0001 0.001 0.001 0.001 0.001
Batch size 64 48 128 16 64

Weight decay 0.05 0.05 0.05 0.01 0.01
Max epochs 120 200 67/200 80 60

Table 6: Hyperparameters used to train the gMLP model on the LRA. H is the expanded number
of dimensions where the spatial convolution operates. The number of independent channels is the
number of channels of the spatial convolution kernel, which are repeated to reach H channels.

CIFAR10 Pathfinder Text classification Text retrieval ListOps

Depth 10 6 6 6 6
D (embed dim) 128 128 128 128 128
H (hidden dim) 256 256 256 256 256

Independent channels 2 2 2 2 4
Max sequence length 1024 1024 4096 4096 2000

Dropout 0 0 0.1 0 0
Norm Layer Layer Layer Layer Layer

Activation GELU GELU GELU GELU GELU
Pooling Mean Mean Mean Mean Mean

Learning rate 0.001 0.001 0.001 0.0003 0.001
Batch size 48 128 16 64 32

Weight decay 0.1 0.1 0.2 0.1 0.1
Max epochs 200 67 80 60 120

A.4 MULTI-TASK LEARNING

In the multitask learning environment, we summed both the downstream task loss and the denoising
loss with the same weight of 1. For the denoising task, we mask 30% of the tokens in the input
sequence, of which a third are replaced by random tokens, and the rest are replaced by a special
mask token.

B SOME REMARKS ON THE LISTOPS TASK

Transformers achieved very poor results in the ListOps task, with different variants ranging between
17% and 36% accuracy. If we look at the distribution of labels depending on the root operation in
fig. 1, we can see that the labels are not uniformly distributed except for the SM operation. When the
root operation is a MIN, the distribution is strongly biased towards 0. The same happens with the
MAX operation, but towards 9, and with the MED operation, but towards 4. If we always predict 0 or
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Table 7: Hyperparameters used to train the convolutional model on the LRA. At each layer, a convo-
lution is applied mapping embeddings of dimension D to H channels. After a non-linearity, a linear
layer returns back to D channels. The size of the kernel varies for each experiment.

CIFAR10 Pathfinder Text classification Text retrieval ListOps

Depth 6 6 4 4 6
D (embed dim) 128 128 128 128 128
H (hidden dim) 256 256 256 256 256

Groups 1 32 1 1 1
Dropout 0 0 0 0 0

Norm Layer Layer Layer Layer Layer
Activation ReLU ReLU ReLU ReLU ReLU

Pooling Mean Mean Mean Mean Mean

Learning rate 0.001 0.001 0.001 0.0003 0.001
Batch size 64 128 16 64 32

Weight decay 0.1 0.1 0.2 0.1 0.1
Max epochs 200 67 80 60 120

9, we already get around 17% accuracy. If we predict 0, 4 or 9, based only on the root operation, we
get around 36% accuracy. These baselines yield precisely the results that the different Transformer
models achieved.
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(a) Distribution of labels for examples with root
MAX operation.
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MED operation.
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(c) Distribution of labels for examples with root
MIN operation.
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(d) Distribution of labels for examples with root
SM operation.

Figure 1: Distribution of labels based on the root operations in the ListOps task.

We can also look at where the models that achieved the best results (around 63% accuracy) are
improving their performance. In fig. 2, we compare the accuracy of a Transformer model that
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achieves around 63% accuracy with a greedy algorithm that always predicts the most frequent label
for each root operation (and randomly in the SUM MOD operation). We can see that the model is
still guessing randomly in the SUM MOD operation, but it is greatly improving the accuracy in the
rest of the operations.

In fig. 3, we can see the breakdown of accuracy by operation and label for the same Transformer
model. It seems that the model is learning to discard the most frequent label for the MIN, MAX and
MED operations, and moving its prediction upward or downward.
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Figure 2: Accuracy difference between a Transformer model that achieves around 63% accuracy
and a greedy algorithm that always predicts the most frequent label for each root operation (and
randomly in the SUM MOD operation). The accuracies are reported by root operation.
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Figure 3: Accuracy breakdown by operation and label for a Transformer model that achieves around
63% accuracy in the ListOps task.

C REMARKS ON TRAINING FOR THE PATHFINDER TASK

For this task, we decided to learn from the easy and intermediate sets instead of using augmentation,
or both. Of course, this is because we found better empirical results with this approach. The main
consideration is that the Transformer seemed to need several passes over the most difficult examples
to correctly learn them. The model seems to learn faster this way. However, not using any augmen-
tation or other sets leads to overfitting. A good balance is having extra data or a finite set of possible
augmentations. We recommend using a subset of the dihedral group D4 of reflections and rotations,
as they do not cause any distortion in the images due to low resolution. Depending on the ability of
the model to overfit, one might decide to use more or less augmentations, as well as other training
sets.
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