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Abstract

Conditional Stochastic Optimization (CSO) is a
powerful modelling paradigm for optimization un-
der uncertainty. The existing literature on CSO
is mainly based on the independence assumption
of data, which shows that the solution of CSO
is asymptotically consistent and enjoys a finite
sample guarantee. The independence assumption,
however, does not typically hold in many impor-
tant applications with dependence patterns, such
as time series analysis, operational control, and
reinforcement learning. In this paper, we aim
to fill this gap and consider a Sample Average
Approximation (SAA) for CSO with dependent
data. Leveraging covariance inequalities and in-
dependent block sampling technique, we provide
theoretical guarantees of SAA for CSO with de-
pendent data. In particular, we show that SAA for
CSO retains asymptotic consistency and a finite
sample guarantee under mild conditions. In addi-
tion, we establish the sample complexity O(d/ε4)
of SAA for CSO, which is shown to be of the same
order as independent cases. Through experiments
on several applications, we verify the theoretical
results and demonstrate that dependence does not
degrade the performance of the SAA approach in
real data applications.

1. Introduction
In this paper, we study a specific class of stochastic optimiza-
tion problems, called Conditional Stochastic Optimization
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(CSO) (Hu et al., 2020a;b; Wu et al., 2023), in the form of,

F ? := min
x∈X

Eξ
[
fξ
(
Eη|ξ [gη(x, ξ)]

)]
,

x? := arg min
x∈X

Eξ
[
fξ
(
Eη|ξ [gη(x, ξ)]

)]
,

(1)

where X ∈ Rd is the set of decision variables, fξ(·) : Rm →
R is a loss function depending on the random vector ξ
and gη(·, ξ) : Rd → Rm is a vector-valued loss function
depending on both random vectors ξ ∈ Ξ and η ∈ H .
Throughout, we only assume that we have samples from the
distribution P(ξ) and the conditional distribution P(η | ξ).
The goal of the problem (1) is to find an optimal solution
of decision x ∈ X that minimizes a given composition
expected loss, where the inner expectation with respect to
(w.r.t.) to an underlying population distribution η given ξ,
P(η | ξ), and the outer expectation is w.r.t. the distribution
P(ξ). Here we define F ? and x? as the optimal value and
solution for the problem (1), respectively.

CSO is a powerful modelling paradigm that is widely used in
a variety of applications, such as meta-learning in deep net-
works (Finn et al., 2017), optimal control in reinforcement
learning (Dai et al., 2017; Hambly et al., 2021), policy esti-
mation in linear quadratic adaptive control (Wang & Janson,
2021), instrumental variable regression in causal inference
(Hu et al., 2020b; Goda & Kitade, 2023). It can be regarded
as an intermediate class of optimization between classical
Stochastic Optimization (SO) (Fouskakis & Draper, 2002)
and Multistage Stochastic Optimization (MSO) (Zhang &
Xiao, 2021). Specifically, CSO is much more general than
SO and includes the classical SO as a special case when
gη(·) is an identity function. In addition, it can model and
account for dynamic randomness and involves conditional
construction, while SO works with the cumulative distri-
bution functions. CSO is also less complicated than MSO
which aims at a static choice, especially when it comes to
calculation and uncertainty quantification.

A variety of optimization methods in solving problem (1)
have been studied in the existing literature. However, the
construction of optimal solutions in large-scale, data-driven
settings remains a major challenge. In particular, since
the true distributions P(ξ) and P(η | ξ) in problem (1) are
unknown in most cases of practical interest, it could be
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extremely difficult to evaluate the original problem (1) ac-
curately: we lack essential information to solve problems
directly. Even if the true distributions are known, the learn-
ing procedure could be computationally excruciating, since
evaluating the corresponding expectation for a fixed x in-
volves computing a multivariate integral, which could be
high-dimensional and intractable. Despite the possibility
that the given loss functions are affine functions, the eval-
uation of the integral is still NP-hard. To address these
problems, in this paper, we consider a Sample Average Ap-
proximation (SAA)-based modelling paradigm (Wang et al.,
2022) for CSO, which embeds problem (1) into a surro-
gate problem by replacing the unknown (true) probability
measure with an approximation. That is, we reformulate
problem (1) into a surrogate problem constructed entirely
from training samples that can be solved efficiently to find
estimators of J? and x?.

Most of the existing work of SAA for CSO focuses mainly
on the learning algorithms for optimal solution with conver-
gence guarantees (Hu et al., 2020b; 2021; Goda & Kitade,
2023), while some works explore theoretical properties (Hu
et al., 2020a), including asymptotics, sample complexity,
etc. Despite these favourable theoretical guarantees and util-
ity in applications, the established results depend critically
on the assumption that random samples are independent
and identically distributed (IID) (Ermoliev & Norkin, 2013;
Kim et al., 2015; Bertsimas et al., 2018). This assumption,
however, may be difficult to justify in practice or may be
completely invalid. In fact, in most of the aforementioned
applications of CSO problems, the training samples of ξ
from P(ξ) and/or η from the conditional distribution of
P(η | ξ) for each ξ are naturally dependent. For applica-
tions where the trajectories of random variables have special
dynamic structures, such as in optimal system control and
reinforcement learning, the IID assumption of data fails:
the observed state-action trajectories are naturally depen-
dent and conditional on the initial state (Wang et al., 2016b;
Tucker et al., 2018). This is also especially true for data
sources, such as time series, Markov decision processes
and various autoregressive processes, with general depen-
dence patterns (Borrelli & Keviczky, 2008; Mcdonald et al.,
2011; Wang et al., 2022). Unfortunately, the literature on
CSO with dependent data is remarkably sparse. Ignoring
the existence of such dependencies can severely degrade
the performance of the model and cause it to deviate from
traditional statistical guarantees. Therefore, it is necessary
to study the impact of dependency within samples on the
SAA of problem (1).

Relaxations of the independence assumption have long been
an active area of research in both statistics and machine
learning communities. A widely used assumption to relax
the assumption of IID is the “mixing” of data generation,
where the dependence of the future on the past is made

explicit through the quantification of the decay of the de-
pendence as the future moves away from the past (Doukhan,
2012). There are many definitions of mixing of different
strengths. Most results in the learning literature focus on
β-mixing (Mcdonald et al., 2011), the notion we will use
in this paper. The popularity of the study of learning un-
der mixed conditions is partly due to the fact that many
temporally dependent data generation processes are mixed.
For example, the geometric ergodicity of a strictly station-
ary Markov chain implies that the β-mixing coefficients
are exponentially decaying in time (Lu et al., 2022). Like-
wise, mixing stochastic processes can be modelled for vari-
ous types of autoregressive processes (Mokkadem, 1988).
More generally, stable dynamical systems subject to finite-
variable state noise give rise to mixing Markov processes, a
class that encompasses many dynamical systems in system
identification, adaptive control, and reinforcement learning
(Vidyasagar & Karandikar, 2006).

We summarize the main contributions of this paper as fol-
lows.

• Leveraging covariance inequalities and independent
block sampling technique, we generalize SAA for CSO
to the scenario where training samples are assumed to
satisfy β-mixing and establish exponential deviation
bounds that hold uniformly over the decision set.

• We prove that the SAA solution is asymptotically con-
sistent and has a finite sample guarantee by establishing
a 1− α confidence bound on the out-of-sample risk.

• We also establish the sample complexity of O(d/ε4)
for CSO in the dependent setting. It is shown to be of
the same order as independent cases. In addition, we
study the impact of the conditional structure of CSO
on the sample complexity. The sample complexity
decreases to O(d/ε2) when the inner and outer ran-
domness are independent.

• The theoretical properties are evaluated in numerical
experiments with data generated from a stationary β-
mixing stochastic process, which are in support of our
theoretical results and show that the dependence of
β-mixing data does not degrade the performance of
SAA for CSO.

2. Related Work
The properties of the solutions of SAA to CSO are well
understood: related work on convergence analysis can be
found in Hu et al. (2020a) and Ermoliev & Norkin (2013);
the sample complexity of CSO is studied in Shapiro (2006)
and Hu et al. (2020a). Dai et al. (2017), Hu et al. (2020b) and
Zhang & Xiao (2019) develop a stochastic gradient-based
algorithm for the solution of SAA for CSO. Although CSO
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shares similarities with stochastic composition optimiza-
tion (SCO) (Wang et al., 2016a; Yu & Huang, 2017; Wang
et al., 2017) or multistage stochastic optimization (MSO)
(Dupačová, 1995; Swamy & Shmoys, 2012; Pflug & Pichler,
2014), they fundamentally differ: SCO is a composition of
two deterministic functions, whereas for CSO the internal
randomness is conditional on the external randomness, and
the internal expectation is taken over the conditional distri-
bution given the external randomness. CSO is a class of
optimization problems situated between stochastic optimiza-
tion and MSO, while the latter is not constrained regarding
the dependence. These differences lead to a drastic differ-
ence in the construction of the SAA and in the complexity
of the sampling. Our work is most similar to that of Dai
et al. (2017); Hu et al. (2020a;b). However, these works
focus on sample complexity or tractability where the data
are assumed to be IID. Results on performance guarantees,
such as asymptotic properties and finite-sample properties
of SAA for CSO with unknown probability distributions
and dependent training data, are not established and are of
particular interest.

Our work has the same strain as a series of papers, such
as Wang et al. (2022); Farden (1981); Li et al. (2021); Liu
et al. (2023); Pan (2023), which consider the scenario data
is dependent. In particular, Pan (2023) establishes a central
limit theorem results for the SAA for SO and Wang et al.
(2022) shows that the SAA retains consistency and finite
sample guarantee when the data is dependent. Under the
setup where data are dependent, Liu et al. (2023) develops
inferential tools for constructing confidence intervals. De-
spite these developments, properties, such as asymptotic
properties and finite sample performance, of estimators of
optimal value and solutions obtained from the well-known
SAA approach for CSO with dependent data are still unex-
plored. In this paper, we aim to fill this gap.

3. Motivating Applications
CSO can be used to model a variety of applications, includ-
ing robust supervised learning, operational control, portfolio
allocation, reinforcement learning, etc. Some of these ex-
amples are discussed in detail below.

Reinforcement Learning Consider policy evaluation for a
Markov decision process characterized by a tuple M :=
(S,A, P, r, γ), where S is a state space,A is an action space,
P (s, a, s′) represents the transition probability of the state
from s to s′ given the action a, r(s, a) : S × A → R
is a reward function, and γ ∈ (0, 1) is a discount fac-
tor. Given a stochastic policy π(a|s), the goal of pol-
icy evaluation is to estimate the value function V π(s) :=
E
[∑∞

k=0 γ
kr (sk, ak) | s0 = s

]
under the given policy π.

To estimate the value function V π(s), one can minimize the

mean squared Bellman error,

min
V (·):S→R

Es∼µ(·),a∼π(·|s)[(r(s, a)

−Es′|a,s[V (s)− γV (s′)])2],

where µ(·) is the stationary distribution. This minimization
problem clearly can be viewed as a special case of CSO
with a dependent state-action trajectory where ξ = (s, a),
η = s′, fξ(y) = (r(s, a)− y)2, gη(x, ξ) = V (s)− γV (s′).
A similar finding is also discussed in Dai et al. (2017); Hu
et al. (2020a).

Model-Agnostic Meta-Learning (MAML) (Finn et al.,
2017) MAML learns a meta-initialization parameter using
metadata from similar learning tasks such that taking one
or multiple gradient steps on a small training data would
generalize well on a new task. It can be framed into the
following CSO problem,

min
x

Ei∼P,a∼Diquery

[
`i

(
Eb∼Disupport

(x− α∇`i(x, b)) , a
)]
,

where P represents the distribution of different tasks,
Di

support and Di
query correspond to support (training) data

and query (testing) data of the task i, `i
(
·, Di

)
is the loss

function on data Di from task i, and α is a fixed meta step
size. Setting ξ = (i, a) and η = b, MAML is clearly a spe-
cial case of CSO for which multiple samples can be drawn
from the conditional distribution of P(η | ξ).

Noisy Linear Quadratic Regulator (Hambly et al., 2021)
The Linear Quadratic Regulator (LQR) problem is one of
the most fundamental problems in optimal control theory.
The LQR problem is concerned with finding a controller for
a linear dynamic system, i.e., a system where the dynamics
of the state are described by a linear function of the current
state and the inputs, with quadratic cost. Consider the fol-
lowing LQR problem over a finite time horizon T (Hambly
et al., 2021),

min
{ut}T−1

t=0

Ex0
[Ewt|x0

[

T−1∑
t=0

(x>t Qtxt + u>t Rtut)

+ x>TQTxT ]],

such that for t = 0, 1, · · · , T − 1,

xt+1 = Axt +But + wt, x0 ∼ P, (2)

where A ∈ Rd×d and B ∈ Rd×k are referred to as system
(transition) matrices; Qt ∈ Rd×d (∀t = 0, 1, · · · , T ) and
Rt ∈ Rk×k (∀t = 0, 1, · · · , T − 1) are matrices that pa-
rameterize the quadratic costs; xt ∈ Rd is the state of the
system with the initial state x0 drawn from a distribution P;
ut ∈ Rp is the action taken at time t and {wt}T−1

t=1 are ran-
dom noise from distribution Q, which could be dependent
from x0.
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Such applications are special cases of the CSO framework.
We emphasize that CSO is versatile enough to be general-
ized to diverse domains such as portfolio selection, peer-to-
peer optimization, and model-agnostic meta-learning. Some
other motivating examples are presented in the Appendix.

4. Sample Average Approximation
In this paper, we analyze the theoretical properties of the
corresponding SAA approach for solving CSO with de-
pendent samples. Let {ξi}Ni=1, {ηij}Mi

j=1 be samples that
can be viewed as a realization of random variables ξ, η
governed by the distribution P(ξ), P(η|ξ) supported on Ξ,
H , separately. An empirical version of problem (1) is the
search for an optimal decision x̂?N,M ∈ X based on samples
{ξi}Ni=1, {ηij}Mi

j=1. Formally, we embed problem (1) with
SAA to generate optimal solution x̂?N,M by approximat-
ing P(ξ) and P(η|ξ) with the empirical probability distri-
bution P̂(ξ) = 1

N

∑N
i=1 δξi and P̂(η|ξi) = 1

Mi

∑Mi

j=1 δηij—
the distribution that places an equal probability mass at
each sample point. Let F (x) = E[fξ(Egη|ξ(x, ξ))] and

F̂N,M (x) = 1
N

∑N
i=1 fξi

(
1
Mi

∑Mi

j=1 gηij (x, ξi)
)

. The re-
sultant surrogate optimization by replacement of P(ξ) and
P(η|ξ) with their corresponding empirical distributions can
be concisely expressed as

F̂N,M = min
x∈X

 1

N

N∑
i=1

fξi

 1

Mi

Mi∑
j=1

gηij (x, ξi)


x̂N,M = arg min

x∈X

 1

N

N∑
i=1

fξi

 1

Mi

Mi∑
j=1

gηij (x, ξi)

 ,

(3)

which approximates F ? and x? in problem (1), where both
are functions of the finite samples.

5. Preliminaries
In this section, we first collect notations and definitions that
will be used throughout the rest of the paper. We also intro-
duce some of the mathematical tools and propositions that
will be necessary for the following discussion. Given the
set A, we define an indicator function IA(x) = 1 if x ∈ A,
0 otherwise. For any x ∈ Rd we denote x+ := max{x, 0},
‖x‖1 :=

∑d
i=1 |xi|, ‖x‖ := ‖x‖2 = (

∑d
i=1 x

2
i )

1
2 , and

‖x+‖0 :=
∑d
i=1 I[0,∞)(xi). Define clA, intA as the clo-

sure and interior, respectively, of a set A. A function
f : X → R ∪ ∞ is said to be L-Lipschitz continuous if
there exists a constant L > 0, such that |f (x1)− f (x2)| ≤
L ‖x1 − x2‖2, ∀x1, x2 ∈ X. Similar to classical stochastic
optimization, we assume no knowledge of the true distribu-
tion of P(ξ) or the conditional distribution of P(η|ξ).

β-mixing We next introduce some definitions for dependent
observations in mixing theory (Doukhan, 2012), which pro-
vides a unified perspective that allows us to characterize the
dependence of data, and then briefly discuss the learning
scenarios in the non-IID case.

Definition 5.1 (Stationary). A sequence of random vari-
ables Z = {Zt}∞t=−∞ is said to be stationary if for any t
and non-negative integers m and k, the random vectors
(Zt, . . . , Zt+m) and (Zt+k, . . . , Zt+m+k) have the same
distribution.

In a stationary sequence, the distribution of a variable Zt is
consistent over time. However, this property does not im-
ply independence. In particular, for i < j < k,P (Zj | Zi)
cannot be equal to P (Zk | Zi). In the following, we present
the definition of β-mixing, a standard measure of the depen-
dence of the random variables within a stationary sequence.

Definition 5.2 (β-mixing). Let σl = σ (Z1, . . . , Zl) and
σ′l+k = σ (Zl+k, Zl+k+1, . . .), where σ (Zi1 , Zi2 , . . . , Zik)
is the σ-algebra for the collection (Zi1 , Zi2 , . . . , Zik). The
kth β-mixing coefficient for (Zt)t=1,2,... is defined as

β(k) := sup
l≥1

E

[
sup

B∈σ′l+k
|P (B | σl)− P(B)|

]
.

The process (Zt)t=1,2,... is said to be β-mixing if β(k)→0
as k →∞. Further, we say that (Zt)t=1,2,..., is alge-
braically β-mixing if there exist real numbers β0 > 0 and
r > 0 such that β(k) ≤ β0/k

r for all k and is exponentially
β-mixing if for some constants β̄0 ≥ 0 and β̄1 > 0, we have
β(k) ≤ β̄0 exp

(
−β̄1k

)
.

β-mixing is a weaker assumption than other mixing, such
as φ-mixing, and thus covers a more general non-IID sce-
nario. Roughly speaking, the coefficient of β(k) measures
the dependence of an event on those that occurred more than
k units of time in the past. Many results in the probability
literature rely on β mixing coefficients. The application of
β-mixing data to the results of statistical machine learning
is also highly desirable in applied work. Many common
time series models are known to be β-mixing. For extending
the results of IID to dependent data, β-mixing is considered
“just right” (Vidyasagar, 1997). Meir (2000) estimates gen-
eralization error bounds for nonparametric methods based
on model selection using structural risk minimization. Lu
et al. (2022) proved an almost sure invariance principle for
stationary β-mixing stochastic processes defined in Hilbert
space.

Independent Block Sampling Our main result requires the
method of independent block sampling as used by Yu (1993).
The idea of this method is to transform a sequence of depen-
dent variables into some subsequence that can be viewed
as nearly IID. In detail, let r and p be non-negative integers
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such that n/(2pr) → 1 as n → ∞. We split a depen-
dent sequence {Z1 . . . , Zn} into three sequences, {Ui}ri=1,
{Vi}ri=1 with consisting of r blocks and Wn containing the
rest. Each block forUi and Vi contain a p consecutive points.
{Ui}ri=1, {Vi}ri=1, and Wn are defined as follows,

Ui = {Zj : 2(i− 1)p+ 1 ≤ j ≤ (2i− 1)p} ,
Vi = {Zj : (2i− 1)p+ 1 ≤ j ≤ 2ip} ,
Wn = {Zj : j = 2rp+ 1, . . . , n} .

The sequence {U1, . . . , Ur} is now an IID block sequence,
so we can apply standard results of IID to explore the theo-
retical properties related to {Zi}.

6. Probability Deviation Bound of SAA
We will establish the deviation bound of SAA of CSO under
the scenario training samples are dependent. Before formal-
izing it, we first introduce some inequalities (Lemma 6.1,
6.2) that will be used to prove the main results.
Lemma 6.1. Let {Zj}nj=1 be a β-mixing sequence and
Zj , Zj+k ∈ Z be measurable w.r.t. σ(Z1, . . . , Zj) and
σ(Zj+k, Zj+k+1, . . .) respectively. Suppose a function
h : Z → R is Borel measurable. We then have that
| cov(h(Zj), h(Zj+k))| ≤ 4‖h‖2β(k), where ‖h‖2 is a
bound of function h.

Lemma 6.2. (Arab & Oliveira, 2019) Assume that the se-
quence {Zi}ni=1 is stationary, there exists some c > 0
such that for every i ≥ 1, |Zi| ≤ c almost surely, and
1
n Var (

∑n
i=1 Zi) ≤ σ2. Denote Uj =

∑(2j−1)p
k=2(j−1)p+1 Zk

with p being consecutive points in each block. Let dn > 1,
be a sequence of real numbers. Then, for every t ≤ dn−1

dn
1
cp

and n large enough, E
[
etUj

]
≤ exp

(
t2σ2pdn

)
.

Lemma 6.1 shows a covariance inequality bound for β-
mixing sequence. Lemma 6.2 shows an exponential bound
for the Laplace transformation of the blocks Uj mentioned
in Section 4. We next introduce commonly used assump-
tions for CSO for theoretical analysis (Hu et al., 2020a).
Assumption 6.3. (a) The decision set X ⊆ Rd is a compact
set with a finite diameter DX > 0.
(b) fξ(·) : Rm → R, gη(·, ξ) : Rd → Rm are Lipschitz
continuous, with Lipschitz constants Lf , Lg, respectively,
for any given ξ and η.
(c) For any x ∈ X, fξ(x) is Borel measurable in ξ, and
gη(x, ξ) is Borel measurable in η for all ξ.
(d) σ2

g = maxx,ξ E ‖gη(x, ξ)− E[gη(x, ξ)]‖2 <∞.
(e) |fξ(·)| ≤Mf , ‖gη(·, ξ)‖2 ≤Mg for any ξ and η.
Theorem 6.4 (Deviation bound of SAA). Assume that
{ξi}Ni=1, {ηij}

Mi
j=1 are stationary and β-mixing sequence

where the mixing coefficient satisfies
∑∞
k=l β(k) = O(ρl)

for some ρ ∈ (0, 1). Let dN > 1 be a sequence of real num-
bers, M = miniMi. For any ε > 0, under Assumption 6.3,

when L2
f

{
Mσ2

g + 8M2
g

∑M−1
j=1 (M − j)β(j)

}
≤ M2ε2

16 ,
we have that,

P
(

sup
x∈X

∣∣∣F̂N,M (x)− F (x)
∣∣∣ > ε

)
≤ τ,

where

τ = O(1)
(

4LfLgDX
ε

)d
exp

(
− Nε2

32dNM2
f (1+

∑
i>0 β(i))

)
.

Theorem 6.4 establishes a deviation bound uniformly in
x ∈ X for SAA, which shows that the bound is critically
dependent on the Lipschitz parameters, the inner/outer de-
pendent structure, and the dimension of the decision set.

The general proof step is similar to the IID case: we first
construct a net to get rid of the supreme over x; secondly, we
show the required sample size M = miniMi to guarantee
‖E[fξ(

1
M

∑M
j=1 gηj (x, ξ))−fξ(Egη(x, ξ))]‖ is sufficiently

small; we thirdly establish the result based on deviation
inequality for sums of random variables. However, the price
we need to pay under the dependent scenario is that we need
to establish the inequality for the measurable function of
β-mixing sequence as shown in Lemma 6.1 for the second
step. Compared with the well-known deviation inequality
for the sums of IID random variables, we need to extend
it to the β-mixing sequence which is established in this
paper by using the independent block sampling technique
and Laplace transformation of the blocks given in Lemma
6.2. From Theorem 6.4, we immediately have the following
result.

Corollary 6.5 (ε-optimal solution). Under Assumption The-
orem 6.4, for any ε > 0, we have

P
(
F (x̂?N,M )− F (x?) > ε

)
≤ τ,

where

τ = O(1)
(

4LfLgDX
ε

)d
exp

(
− Nε2

128dNM2
f (1+

∑
i>0 β(i))

)
.

These upper bounds may not be practical unless the param-
eters, e.g. Lf , Lg, are known. Our main concern here is
that, despite the constraint, we can still infer the exponen-
tial decay rate of the SAA, and that x̂?N,M is a ε-optimal
solution.

7. Performance Guarantee
Denote ξtest and ηtest|ξtest as test samples that are assumed
to be drawn from P(ξ) and P(η|ξ) and are independent
of the training data. Since the true distributions P(ξ),
P(η|ξ) are unknown, the out-of-sample risk defined as
E
[
fξ
(
Egηtest(x̂

?
N,M , ξtest)

)]
, which measures the valida-

tion of the model performance on testing data, cannot
yet be evaluated in practice. It is more practical to de-
termine its bounds. It can be seen directly that F ? ≤
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E
[
fξ
(
Egηtest(x̂

?
N,M , ξtest)

)]
, but this lower bound is imprac-

tical unless the true distributions are known. Alternatively,
we study the upper bound of the SAA for CSO.

Theorem 7.1 (Finite sample guarantee). Assume that
{ξi}Ni=1, {ηij}

Mi
j=1 are stationary and β-mixing sequence

where the mixing coefficient satisfies
∑∞
k=l β(k) = O(ρl)

for some ρ ∈ (0, 1). Under Assumption 6.3, for any
α ∈ (0, 1),

P{E
[
fξ
(
Egηtest(x̂

?
N,M , ξtest)

)]
≤ F̂ ?N,M + ε(α,N,M)}
≥ 1− α,

where ε(α,N,M) is a function of α, N and M and tends
to 0 as N,M →∞ for any fixed α.

Theorem 7.1 shows that the out-of-sample risk is bounded by
a sphere of F ?N,M with radius ε(α,N,M) with probability
1 − α. This provides a guarantee for prediction by using
SAA to obtain an estimator of x? with dependent samples.
Furthermore, it can be shown that SAA is asymptotically
optimal for CSO. That is, the optimal solution x̂?N,M and
the optimal value F̂ ?N,M converge almost surely to their true
counterparts x?, F ?.

Theorem 7.2 (Asymptotic consistency). Assume that fξ(·) :
Rm → R, gη(·, ξ) : Rd → Rm are convex, closed, proper
functions for any given ξ and η. Under Assumption of
Theorem 6.4, we have

lim
N,M→∞

F̂ ?N,M = F ?, lim
N,M→∞

‖x̂?N,M − x?‖2 = 0, a.s.

In summary, the results established above indicate that SAA
for CSO retains the performance guarantee when the data
source is β-mixing. Similarly, results can be extended to
other suitable mixing conditions with modification.

8. Sample Complexity of SAA for CSO
The above theorems, the deviation-error bound, the finite-
sample guarantee, and the asymptotic consistency, depend
on the sample sizeN,M , motivating us to derive the sample
complexity of SAA for CSO with dependent data. In this
section, we analyze the number of samples required for the
SAA to be ε-optimal for solving the CSO problem with high
probability.

Theorem 8.1 (Sample complexity). With probability 1−α,
the solution to the SAA problem is ε-optimal to the origi-
nal CSO problem if the sample size M = mini=1,··· ,N Mi

satisfy that L2
f

{
Mσ2

g + 8M2
g

∑M−1
j=1 (M − j)β(j)

}
≤

M2ε2

16 , and

N ≥ O(1)

(
dNM

2
f (1 +

∑∞
i=1 β(i))

ε2

)[
d log

(
8lfLgDX

ε

)
+ log

(
1

α

)]
.

From Theorem 8.1 it can be seen that the total sample com-
plexity of SAA for CSO in order to obtain a ε-optimal
solution is O(d/ε4) if we ignore the log factor. Hu et al.
(2020a) obtain the same result for the CSO problem in the
independent setting. This indicates that the SAA does not
seem to sacrifice accuracy to achieve ε-optimality under
the assumption of β-mixing. We emphasize that the lower
bound on the complexity of SAA is tight: the order can not
be improved without additional assumptions on loss func-
tions (e.g., smoothness). The complexity is tight since our
complexity results match the asymptotic rate established
in Dentcheva et al. (2017) and achieve the same order of
complexity established for CSO under IID cases described
in Hu et al. (2020a).

For the sake of comparison with bi-level MSO, we also
establish sample complexity under the scenario that η is
independent of ξ,

F ? := min
x∈X

Eξ [fξ (Eη [gη(x, ξ)])] ,

x? := arg min
x∈X

Eξ [fξ (Eη [gη(x, ξ)])] .

Theorem 8.2 (Sample complexity with independent
scheme). Assume {ξi}Ni=1, {ηj}Mj=1 generated from distri-
bution P(ξ), P(η) respectively are stationary and β-mixing
sequence, and {ξi}, {ηj} are independent with each other.
Under Assumption 6.3, with probability 1− α, the solution
to SAA problem is ε-optimal to the original problem if the
sample size N and M satisfy N ≥ O(1)

1+
∑∞
i=1 β(i)

ε2

(
log 1

α + d log
4LfLgDX

ε

)
,

M ≥ O(1)
1+

∑∞
i=1 β(i)

ε2

(
log(Nmα ) + d log

(
4LfLgDX

ε

)) .

In contrast to the sample complexity of O(d/ε4) for CSO,
in the independent case the sample complexity drops to
O(d/ε2).

9. Numerical Experiments
To verify the theoretical results for SAA for CSO with
dependent data and its applications in real problems, in
this section, we conduct numerical experiments, including
Model-Agnostic Meta-Learning (MAML) Linear Quadratic
Regulator (LQR), invariant regression, and real application
of risk-averse portfolio allocation.
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Figure 1. Bias, value of loss function and normalized error for the learned policy for MAML-LQR.

MAML-LQR In this section, we examine the convergence
of SAA for CSO with MAML LQR problem where the
initial state is assumed to be dependent. Our data gen-
eration procedure is as follows: the initial state of the
multi-agent is generated from the autoregressive process,
xi+1,0 = 0.9xi,0 + e, ∀i ∈ [1, N − 1], where e is normal
noise, N is the number of agents. This means there is a de-
pendence between the state variables among the N agents.
The optimal policy in the linear feedback form at time t ≥ 0
is parameterized by a matrix K = (K1, . . . ,KT ) given by
ut = −Ktxt. The cost can be expressed as to optimize the
policy K:

C(K) = min
{ut}T−1

t=0

Ex0
[Ewt|x0

[

T−1∑
t=0

(x>t Qtxt + u>t Rtut)

+ x>TQTxT ]].

We then use the K to take the action (ut = −Ktxt) and
move to the next state: xt+1 = Axt + But + wt, wt ∼
N(0, 1), t = 0, 1, . . . , T − 1. We consider the setting,

A =

(
1 0
0 1

)
, B = (−0.6,−1)>

QT =

(
ε 0
0 δ + φσ2

)
, Qt =

(
ε 0
0 φσ2

)
, Rt = δ.

where φ = 5 × 10−6, ε = 10−8, T = 10. We replicate 50
times with initial policyK0 ∈ R1×2T with

{
K0
}
ij

= −0.2

for all i, j.

We plot the bias of the estimate of K against the ground
truth K?, defined as (|vec(Kt)− vec(K?)|) and is shown
in Figure 1 (a). Figure 1 (b) is the value of the loss func-
tion based on Kt, and Figure 1 (c) is the normalized error
|C(Kt)−C(K?)|

C(K?) , defined as the deviation between the losses
based on Kt and K?.

Figure 1 indicates that although the dependence among the
training samples, under β-mixing conditions, SAA for CSO
retains convergence guarantee against the ground truth.

Robust Regression via Peer-to-Peer (P2P) Network We
consider the problem of robust regression with training sam-
ples ξ generated from P2P network

min
x
F (x) = Eξ=(a,b)

∣∣Eη|ξ(η>x− b)∣∣ ,
where ξ = (a, b), a ∈ Rd is a random feature vector, and
b ∈ R is the response. η = N

(
a, σ2

ηId
)

is a perturbed noisy
observation of the input feature vector a with σ2

η = 1. Let
d = 10, and the data is generated as follows, with 10 servers
(each with 20000 samples stored), ai ∼ N

(
µi, σ

2
ξId

)
,

bi = aTi x
? with σ2

ξ = 1 and pre-specified µi, x?. Here,
µi is allowed to be different from server to server, but the
same for σ2

ξ . For a given sample budget T , ranging from 103

to 106, we adopt different sample allocation strategies for
N = {O(T

1
2 ), O(T

1
3 ), O(T

1
4 )}, with M = O(T

1
2 ) and re-

peat 30 runs for each sample allocation to report the average
performance.

The performance measures include the bias, the in-sample
risk to the true values x? and F (x?), and the probability
guarantee, which is defined as P(x̂?N,M ∈ Bε=0.5(x?)). Ad-
ditionally, to compare the performance of the two sampling
schemes by choosing different inner samples, we also con-
sider the special case with independent inner and outer ran-
domness. In the independent sampling scheme, ηij = η1j

for all i > 1. The results are shown in Figure 2.

Figure 2 (a) shows that the setting N = O(T
1
2 ) has the

best performance, smallest bias, and highest probability
guarantee for robust regression. This is consistent with our
sample complexity results. We can see from Figure 2 (b)
that the probability guarantee increases exponentially with
the increase of the sample size. This is also in support of
our theoretical findings of the exponential decay rate of the
probability error bound of the bias. The performance of the
probabilistic guarantee and the in-sample risk are visualized
simultaneously in Figure 2 (c). For two sampling schemes,
Figure 2 (d) shows that the in-sample risk is smaller for
the independent sampling scheme, and the gap is gradually
reduced with increasing sample size, which are consistent
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Figure 2. Robust regression problem via P2P network.
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Figure 3. Incremental learning from Feb 2014 to Feb 2022

with our theoretical analysis.

Risk-Averse Portfolio Optimization Problem In this sub-
section, we study a risk-averse portfolio model by analyzing
a portfolio dataset from the Keneth R. French Data Library1.
The data are collected from Feb 2014 to Feb 2022 with daily
data. We would like to seek an optimal decision, x, in port-
folio allocation to maximum monthly return ξ ∈ Rd for d
assets which was invested duringN training periods. Let ηij
be the j-th daily return at time i ∈ {1, · · · , N}, and x ∈ Rd
be the decision variable, where each component xk repre-
sents investment percentage allocated to asset k, and satis-
fies simplex constraint X := {x : xk ≥ 0,

∑d
k=1 xk = 1}.

We consider the risk-averse problem,

min
x∈X

{
−EP̂(ξ)

[
x>EP̂(η|ξ)[η]

]
+ λVP̂(ξ)

[
x>EP̂(η|ξ)[η]

]}
where P̂(ξ) =

∑N
i=1 δξi , P̂(η | ξ) =

∑Mi

j=1 δηij . The λ and
c ∈ (0, 1) are the penalized parameters. In our experiment,
we also introduce the penalty term of r(x) = 0.1‖x‖1 and
set the parameter, λ = 0.5 and N = 24. Let K months be
a window. The incremental learning is implemented in this
process: we predict the total return of a window by using
the latest 24 months with K = 12.

1 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data
library.html

The risk-averse portfolio problem is one of the real appli-
cations of CSO, where the assets of individuals, firms, or
countries are typically dependent, and their monthly unit
returns are a kind of time series data. Figure 3 shows the
in-sample return, loss function value based on training sam-
ples, and out-of-sample return, loss function value based
on testing samples, of SAA. As shown in Figure 3 (a), the
mean return of 6 sliding windows are above zero, indicating
a positive yield. As a result, the cumulative return increases
significantly over time (Figure 3 (c)). (Some more results
can be found in the Appendix)

10. Conclusion
In this paper, we study the SAA for CSO when the data are
dependent. We establish exponential deviation bounds for
the SAA and show that the SAA retains asymptotic consis-
tency and the finite sample guarantee when samples form a
β-mixing sequence. We also show that the sample complex-
ity with dependent data is of the same order as for IID cases.
These results indicate the reasonableness of using SAA for
CSO in practice and are verified through numerical experi-
ments and real data applications. Although the performance
guarantee under independent cases holds with dependent
data under mild conditions, the established results in this
paper show that the dependent structure affects the learn-
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ing efficiency which is captured by the mixing coefficient
β(k). Studying the effect of β(k) on specific models and
applications, the sensitivity of loss with different degrees
of dependency would be interesting. It is also interesting to
find a method to estimate β(k) for practical implications to
evaluate model performance in applications. We leave these
works for the future.
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A. Motivated Applications
Robust Invariant Learning (Mroueh et al., 2015) Taking kernel learning as an example, we would like to build an
estimator that minimizes the expected risk while preserving consistency over a group of data transformations. Let
ξ1 = (a1, b1) , . . . , ξN = (aN , bN ) be a set of input data, where ai is the feature vector and bi is the label. One plausible
way to achieve such consistency is to consider the class of robust linear classifiers. The robust invariant estimator is then
established by averaging functions over all possible kernel transformation η = σ(a),

min
(x,x0)

Eξ=(a,b)

[
`
(
b,Eη|ξ

[
σ(a)Tx+ x0

])]
.

Here `(·) is some loss function and P(η|ξ) is a conditional distribution over all possible kernel transformations. Correspond-
ing to problem (1), gη(x, ξ) = ηTx+ x0.

Risk-Averse Portfolio Optimization Consider a general robust formulation of mean-variance trade-off in risk-averse
portfolio optimization

min
x∈X

{
−EP (ξ)

[
x>EP (η|ξ)[η]

]
+ λVP (ξ)

[
x>EP (η|ξ)[η]

]}
,

where ξ, η are monthly and daily returns respectively. This optimization problem can be seen as a special case of CSO with
g(x) = (x>EP (η|ξ)[η], (EP (ξ)[x>EP (η|ξ)[η]])2), f(y, z) = −y + λy2 − λz. The returns are clearly dependent.

B. Proof of Main Results
Lemma B.1 (Rio (2013), Corollary 1.4). Let {ξi}Ni=1 be a strictly stationary sequence of r.v.S with values in some
polish space Ξ. Set βi = β (α (ξ0) , σ (ξi)). For any numerical function f , Let SN (f) = f (ξ1) + · · · + f (ξN ). There
exists a sequence (bi)i∈Z of measurable functions form Ξ into [0, 1], satisfying

∫
Ξ
bidP = βi, Var (SN (f)) ≤ N ·∫

Ξ

(
1 + 4

∑
i>0 bi

)
f2dP.

Proof of Lemma 6.1. DenoteF j1 = σ(Z1, . . . , Zj), F∞j+k = σ(Zj+k, Zj+k+1, . . .). Since Zj and Zj+k areFk1 measurable
and F∞n+k measurable respectively, we have that

|E[h(Zj)h(Zj+k)]− (E[h(Zj)]) (E[h(Zj+k)])| = |E
[
E[h(Zj)h(Zj+k) | Fk1 ]

]
− (E[h(Zj)]) (E[h(Zj+k)])|

= |E
[
h(Zj) · E[h(Zj+k) | Fk1 ]

]
− (E[h(Zj)]) (E[h(Zj+k)])|

≤ ‖h‖ · E
∣∣E[h(Zj+k) | Fk1 ]− (E[h(Zj+k)])

∣∣
= ‖h‖ · E

[
ξ̃
(
E[h(Zj+k) | Fk1 ]− (E[h(Zj+k)])

)]
= ‖h‖ · E

[
ξ̃E[h(Zj+k) | Fk1 ]− ξ̃ (E[h(Zj+k)])

]
= ‖h‖ ·

[
E
[
ξ̃h(Zj+k)

]
−
(
E[ξ̃]

)
(E[h(Zj+k)])

]
where ξ̃ = sign

(
E[h(Zj+k) | Fk1 ]− (E[h(Zj+k)])

)
is Fk1 measurable.

|E
[
ξ̃h(Zj+k)

]
−
(
E[ξ̃]

)
(E[h(Zj+k)])| =

∣∣∣E [E [ξ̃h(Zj+k) | F∞n+k

]]
−
(
E[ξ̃]

)
(E[h(Zj+k)])

∣∣∣
=
∣∣∣E [Eh(Zj+k)

[
ξ̃ | F∞n+k

]]
−
(
E[ξ̃]

)
(E[h(Zj+k)])

∣∣∣
≤ ‖h‖ ·

∣∣∣E [E [ξ̃ | F∞n+k

]]
−
(
E[ξ̃]

)∣∣∣
= ‖h‖ · E

[
η̃
(
E
[
ξ̃ | F∞n+k

]
−
(
E[ξ̃]

))]
= ‖h‖ ·

[
E[η̃ξ̃]− (E[η̃])

(
E[ξ̃]

)]
,

where η̃ = sign
(
E
[
ξ̃ | F∞n+k

]
−
(
E[ξ̃]

))
is F∞n+k measurable. It follows that

|E[h(Zj)h(Zj+k)]− (E[h(Zj+k)]E[h(Zj)])| ≤ ‖h‖2 ·
∣∣∣E[η̃ξ̃]− (E[η̃])

(
E[ξ̃]

)∣∣∣ .
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Let B = {η̃ = 1} ∈ F∞n+k, A = {ξ̃ = 1} ∈ Fk1 . Therefore,

|E[h(Zj)h(Zj+k)]− (E[h(Zj)]E[h(Zj+k)])|
≤ ‖h‖2 ·

∣∣P(AB) + P(ĀB̄)− P(AB̄)− P(ĀB)−
[
P(A)P(B)− P(A)P(B̄)− P(Ā)P(B) + P(Ā)P(B̄)

]∣∣
= ‖h‖2 ·

∣∣[P(AB)− P(A)P(B)] +
[
P(ĀB̄)− P(Ā)P(B̄)

]
−
[
P(ĀB)− P(Ā)P(B)

]
−
[
P(AB̄)− P(A)P(B̄)

]∣∣
≤ ‖h‖2 · 4α(k) ≤ 4‖h‖2 · β(k).

Then, we have that

|Cov(h(Zj), h(Zj+k))| = |E[h(Zj)h(Zj+k)]− (E[h(Zj)]) (E[h(Zj+k)]) ≤ 4‖h‖2β(k).

Proof of Theorem 6.4. We first construct a ν-net {xl}Kl=1 on the set X with LfLgν = ε
4 to get rid of the sup over x, which

implies K ≤ O(1)
(

4LfLgDX
ε

)d
. Based on the Lipschitz continuity of fξ(·), gη(·), for any x ∈ X, there exist xl(x) such that∣∣∣F̂N,M (x)− F̂N,M

(
xl(x)

)∣∣∣ ≤ LfLg ∥∥x− xl(x)

∥∥
2
≤ ε

4
,∣∣F (x)− F

(
xl(x)

)∣∣ ≤ LfLg ∥∥x− xl(x)

∥∥
2
≤ ε

4
.

Therefore, for any x ∈ X, we have that,∣∣∣F̂N,M (x)− F (x)
∣∣∣ ≤ ∣∣∣F̂N,M (x)− F̂N,M

(
xl(x)

)∣∣∣+
∣∣∣F̂N,M (xl(x)

)
− F (xl(x))

∣∣∣
+
∣∣F (xl(x)

)
− F (x)

∣∣
≤ ε

2
+
∣∣∣F̂N,M (xl(x)

)
− F

(
xl(x)

)∣∣∣
≤ ε

2
+ max
l∈{1,··· ,K}

∣∣∣F̂N,M (xl(x)

)
− F

(
xl(x)

)∣∣∣ , (A1)

which implies

P
(

sup
x∈X

∣∣∣F̂N,M (x)− F (x)
∣∣∣ > ε

)
≤

K∑
l=1

P
(∣∣∣F̂N,M (xl(x)

)
− F

(
xl(x)

)∣∣∣ > ε

2

)
.

Let Z̃i = fξi

(
1
M

∑m
j=1 gηij (x, ξi)

)
−E [fξ (E [gη(x, ξ)])], where {Z̃i}Ni=1 is a β-mixing sequence since fξ is a measurable

function.We first show that |E(Z̃i)| ≤ ε
4 ,∣∣∣∣∣∣E

fξ
 1

M

M∑
j=1

gηj (x, ξ)

− fξ (E [gη(x, ξ)])

∣∣∣∣∣∣ ≤ LfE
∥∥∥∥∥∥ 1

M

M∑
j=1

gηj (x, ξ)− E [gη(x, ξ)]

∥∥∥∥∥∥
≤ Lf

E

∥∥∥∥∥∥ 1

M

M∑
j=1

gηj (x, ξ)− E [gη(x, ξ)]

∥∥∥∥∥∥
2


1/2

= Lf


∥∥∥∥∥∥Cov

 1

M

M∑
j=1

gηj (x, ξ),
1

M

M∑
j=1

gηj (x, ξ)

∥∥∥∥∥∥


1/2

= Lf

 1

M2

M∑
j,l=1

∥∥Cov
(
gηj (x, ξ), gηl(x, ξ)

)∥∥
1/2

≤ Lf

σ2
g

M
+

8M2
g

M2

M−1∑
j=1

(M − j)β(j)


1/2

≤ ε

4
.
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Then, when |E(Z̃i)| ≤ ε
4 , we have

P
(
|FN,M (x)− F (x)| > ε

2

)
= P

(∣∣∣∣∣ 1

N

N∑
i=1

Zi

∣∣∣∣∣ > ε

2

)
≤ P

(∣∣∣∣∣ 1

N

N∑
i=1

(
Z̃i − E

[
Z̃i

])∣∣∣∣∣ > ε

4

)
.

We next explore the property of P
(∣∣∣ 1
N

∑N
i

(
Z̃i − E[Z̃i]

)∣∣∣ > ε
4

)
. We first introduce some of the notations that are essential

for the theoretical development. Let Zi := Z̃i−E[Z̃i], Uk = Z2(k−1)p+1 + · · ·+Z(2k−1)p, Vk = Z(2k−1)p+1 + · · ·+Z2kp,
and WN = Z2pr+1 + · · ·+ ZN , for k = 1, · · · , r. Note that |Zi| ≤ 2Mf and |Uk| ≤ 2pMf . We denote UN =

∑r
k=1 Uk,

VN =
∑r
k=1 Vk. Thus, we have

∑N
i=1 Zi = UN + VN +WN .

To show the bound of P
(∣∣∣∑N

i=1 Zi

∣∣∣ > Nε
)

, we only need to analyze the term P (|UN | > Nε) and P (|UN | > Nε) ≤
e−NεtE[etUN ]. Let CZ := 2Mf .

E
[
etUN

]
= E

[
et

∑r
k=1 Uk

]
= Cov

(
et

∑r−1
k=1 Uk , etUr

)
+ E

[
et

∑r−1
k=1 Uk

]
E
[
etUr

]
= Cov

(
et

∑r−1
k=1 Uk , etUr

)
+ Cov

(
et

∑r−2
k=1 Uk , etUr−1

) (
E
[
etUr

])
+
(
E
[
et

∑r−2
k=1 Uk

]) (
E
[
etUr−1

]) (
E
[
etUr

])
= · · · =

r−1∑
l=1

Cov
(
et

∑r−l
k=1 Uk , etUr−l+1

) (
E
[
etU1

])l−1
+
(
E
[
etU1

])r
.

Cov
(
et

∑r−l
k=1 Uk , etUr−l+1

)
≤ t2 · exp {t(r − l + 1)pCZ}

r−l∑
k=1

Cov (Uk, Ur−l+1)

= t2 · exp {t(r − l + 1)pCZ}
∑
k∈A1

∑
l∈A2

Cov (Uk, Ul) ,

where 
A1 = {1, · · · , p︸ ︷︷ ︸

A11

, 2p+ 1, · · · , 3p︸ ︷︷ ︸
A12

, · · · , 2(r − k − 1)p+ 1, · · · , (2(r − k)− 1)p︸ ︷︷ ︸
A1(r−k)

,

A2 = {2(r − k)p+ 1, · · · , (2(r − k) + 1)p},
A1i = {2(i− 1)p+ 1, · · · , (2i− 1)p}, i = 1, · · · , r − k.∑

k∈A11

∑
l∈A2

Cov (Uk, Ul) ≤ p · Cov
(
Z1, Z2(r−k)p+1

)
+ · · ·+ pCov

(
Zp, Z2(r−k)p+1

)
≤ p2 · Cov

(
Zp, Z2(r−k)p+1

)
= p2 · Cov

(
Z1, Z2(r−k)p−p+1

)
.

Similarly, ∑
k∈A1i

∑
l∈A2

Cov (Uk, Ul) ≤ p · Cov
(
Z2(i−1)p+1, Z2(r−k)p+1

)
+ · · ·+ p · Cov

(
Z(2i−1)p, Z2(r−k)p+1

)
= p ·

(2r−2k−2i+2)p∑
l=(2r−2k−2i+2)p−p+1

Cov(Z1, Zl).

Therefore,

r−l∑
k=1

Cov (Uk, Ur−l+1) ≤
r−l∑
k=1

p ·
(2r−2l−2k+2)p∑

i=(2r−2l−2k+2)p−p+1

cov (Z1, Zi)

≤
r−l∑
k=1

p · 4C2
Z ·
∑
i

β(i) ≤ 4pC2
Z

∞∑
i=p

β(i).
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This inequality together with Lemma 6.2, we have that

E
[
etUN

]
≤

r−1∑
l=1

t2 exp {tpCZ(r − l + 1)}
(
4pC2

Z

) ∞∑
i=p

β(i)

 · {(E [etU1
])l−1

}
+
(
E[etU1 ]

)r
≤ 4pC2

Z

 ∞∑
i=p

β(i)

 · r−1∑
l=1

t2 exp {tpCZ(r − (l − 1))} · exp
{
t2σ2pdN (l − 1)

}
+ exp

{
t2σ2pdNr

}

= 4pC2
Z

 ∞∑
i=p

β(i)

 · r−2∑
l=0

t2 exp
{
tpCZr − tpCZ l + t2σ2pdN l

}
+ exp

{
t2σ2pdNr

}

= 4pC2
Z

 ∞∑
i=p

β(i)

 t2 exp {tpCZr} ·
r−2∑
l=0

exp
{
tpl
(
tσ2dN − CZ

)}
+ exp

{
t2σ2NdN/2

}

= 4pC2
Zt

2

 ∞∑
i=p

β(i)

 exp

{
tCZN

2

}
·
r−2∑
l=0

exp
{
tpl
(
tσ2dN − CZ

)}
+ exp

{
t2σ2NdN

2

}
.

Then,

P(|UN | > Nε) ≤ e−Nεt4pC2
Zt

2

 ∞∑
i=p

β(i)

 exp

{
tCZN

2

}
·
r−2∑
l=0

exp
{
tpl(tσ2dN − CZ)

}
+ exp

{
t2σ2NdN

2
−Nεt

}
.

Let t = ε
σ2dN

, we have t2σ2NdN
2 − Nεt = − Nε2

2σ2dN
and tσ2dN − CZ = ε − CZ < 0 for small ε. This indicates that∑r−2

l=0 exp
{
tpl
(
tσ2dN − CZ

)}
converges. In addition, Nεt = Nε2

σ2dN
, so, e−Nεt = exp

(
− Nε2

σ2dN

)
≤ exp

(
− Nε2

2σ2dN

)
.

Therefore, there exists a constant C ′ > 0, such that

P (|UN | > Nε) ≤


(

4pC2
Zε

2

σ4d2
N

) ∞∑
i=p

β(i)

 exp

(
εCZN

2σ2dN

)
· C ′ + 1

 exp

(
− Nε2

2σ2dN

)

=

 C ′ε2

σ4d2
N

e
CZNε

2σ2dN · p ·

 ∞∑
i=p

β(i)

+ 1

 exp

(
− Nε2

2σ2dN

)
.

Note that t = ε
σ2dN

≤ dN−1
pCZdN

implies ε ≤ σ2(dN−1)
pCZ

under the condition dN > 1. Therefore, with pdN
N > 0,

exp

{
εCZN

2σ2dN

}
≤ exp

{
N

2pdN
(dN − 1)

}
= exp{r} · exp

{
− N

2pdN

}
.

Then, there exists a constant C > 0, such that, P (|UN | > Nε) ≤ C · exp
(
− Nε2

2σ2dN

)
.

P

(∣∣∣∣∣ 1

N

N∑
i=1

Zi

∣∣∣∣∣ > ε

)
≤ P

(∣∣∣∣UNN
∣∣∣∣+

∣∣∣∣VNN
∣∣∣∣+

∣∣∣∣WN

N

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣UNN
∣∣∣∣+

∣∣∣∣VNN
∣∣∣∣+

2pCZ
N

> ε

)
≤ P

(∣∣∣∣UNN
∣∣∣∣+

∣∣∣∣VNN
∣∣∣∣ > ε

2

)
≤ 2 · P

(∣∣∣∣UNN
∣∣∣∣ > ε

4

)
≤ C · exp

(
− Nε2

32σ2dN

)
.

In addition, Lemma B.1 indicates that

Var

(
1√
N

N∑
i=1

Zi

)
=

1

N
Var

(
N∑
i=1

Zi

)
≤ 1

N
·N ·M2

f

(
1 +

∑
i>0

β(i)

)
= M2

f

(
1 +

∑
i>0

β(i)

)
.
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That is,

P

(∣∣∣∣∣ 1

N

N∑
i=1

Zi

∣∣∣∣∣ > ε

)
≤ C · exp

(
− Nε2

32dNM2
f

(
1 +

∑
i>0 β(i)

)) .
The results of the theorem hold.

Proof of Corollary 6.5. Note that

P(F (x̂?N,M )− F (x?) > ε)

= P(F (x̂?N,M )− FN,M (x̂?N,M ) + FN,M (x̂?N,M )− FN,M (x?) + FN,M (x?)− F (x?) > ε)

≤ P(F (x̂?N,M )− FN,M (x̂?N,M ) > ε/2) + P(FN,M (x?)− F (x?) > ε/2),

where the last inequality holds because FN,M (x̂?N,M )− FN,M (x?) < 0. Based on the result of Theorem 6.4, the result of
Corollary 6.5 holds.

Proof of Theorem 7.1. Let α = O(1)
(

4LfLgDX
ε

)d
exp

(
− Nε2

32dNM2
f (1+

∑
i>0 β(i))

)
, we get the result of Theorem 7.1 from

Theorem 6.4.

Proof of Theorem 7.2. Let F̂N,M (x, ξ, η) = 1
N

∑N
i=1 fξi

(
1
Mi

∑Mi

j=1 gηij (x, ξi)
)

, F (x) = E[fξ
(
Egη|ξ(x, ξ)

)
]. Define a

set of approximate solutions as

x?ε = {x ∈ X : F (x) ≤ F ? + ε}.

Let us rewrite the approximation problem in a parametric form

Φ(x, y(x, ξ, η)) = F (x) + F̂NM (x, ξ, η)− F (x)

where y(x, ξ, η) = F̂NM (x, ξ, η)− F (x) and consider a parametric problem

Φ(x, y(x)) = F (x) + y(x).

Theorem 6.4 indicates that with probability 1, F̂NM (x, ξ, η) → F (x) uniformly in x ∈ X, which implies y(x) → 0
uniformly in x ∈ X. Denote

Φ?(y) = min
x
{Φ(x, y(x))}, y : X→ R,

x?(y) = {x ∈ X : Φ(x, y(x)) = Φ?(y)} .

Since the functions f, g are convex, bounded functions and the set X is compact, we have ‖x?(y)− x?‖2 → 0 as y → 0.
Therefore,

F̂ ?NM = Φ?(·, y(x, ξ, η))→ Φ?(0) = F ?, a.s.

‖x̂?NM − x?‖2 = ‖x?(y(·, ξ, η))− x?‖2 → 0, a.s..

Proof of Theorem 8.1. We get the result of Theorem 8.1 from the ε-optimal solution given in Corollary 6.5.

Proof of Theorem 8.2. From formula (A1), one can see that it only needs to show the boundedness of

15
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P
(∣∣∣F̂N,M (x)− F (x)

∣∣∣ > ε
)

for fix x ∈ X. Note that

P
(∣∣∣F̂N,M (x)− F (x)

∣∣∣ > ε
)

≤ P

∣∣∣∣∣∣ 1

N

N∑
i=1

fξi

 1

M

M∑
j=1

gηj (x, ξi)

− 1

N

N∑
i=1

fξi (E (gη (x, ξi)))

∣∣∣∣∣∣ > ε

2


+ P

(∣∣∣∣∣ 1

N

N∑
i=1

fξi (Eη (gη(x, ξ)))− Eξ [fξ (Eη (gη(x, ξ)))]

∣∣∣∣∣ > ε

2

)

≤ P

 1

N

N∑
i=1

∣∣∣∣∣∣fξi
 1

M

M∑
j=1

gηj (x, ξi)

− fξi (Eη (gη (x, ξi)))

∣∣∣∣∣∣ > ε

2


+ P

(
1

N

N∑
i=1

fξi

(
Eη (gη (x, ξi))− Eη [fξ (Eη (gη(x, ξ)))] |> ε

2

)

≤
N∑
i=1

P

∥∥∥∥∥∥ 1

M

M∑
j=1

gηj (x, ξi)− Eη (gη (x, ξi))

∥∥∥∥∥∥ > ε

2Lf

+ C · exp

(
− Nε2

32dNM2
f

(
1 +

∑
i>0 β(i)

))

≤ N ·m · exp

(
− Mε2

32L2
fdMM

2
g

(
1 +

∑
i>0 β(i)

))+ C · exp

(
− Nε2

32dNM2
f

(
1 +

∑
i>0 β(i)

)) .
This inequality combining with formula (A1) indicates that

P

sup
x∈X

∣∣∣∣∣∣ 1

N

N∑
i=1

fξi

 1

Mi

Mi∑
j=1

gηj (x, ξi)

− Eξ [fξ (Eηg(x; ξ))]

∣∣∣∣∣∣ > ε


≤ O(1)

(
4LfLgDX

ε

)d(
exp

(
− Nε2

64dNM2
f

(
1 +

∑
i>0 β(i)

))+Nm exp

(
− Mε2

64dMM2
g

(
1 +

∑
i>0 β(i)

))) .
We then have the result of Theorem 8.2.

C. Linear Quadratic Regulator
We consider the Linear Quadratic Regulator (LQR) problem over a finite time horizon T (Hambly et al., 2021; Yang et al.,
2019),

min
{ut}T−1

t=0

E

[
T−1∑
t=0

(
x>t Qtxt + u>t Rtut

)
+ x>TQTxT

]
(A2)

such that for t = 0, 1, · · · , T − 1,
xt+1 = Axt +But + wt,

where A ∈ Rd×d and B ∈ Rd×k are referred to as system (transition) matrices, Qt ∈ Rd×d (∀t = 0, 1, · · · , T ) and
Rt ∈ Rk×k (∀t = 0, 1, · · · , T − 1) are matrices that parameterize the quadratic costs. xt ∈ Rd is the state of the system
with the initial state x0. ut ∈ Rp is the action taken at time t and {wt}T−1

t=1 are random noise assuming to be independent
from x0.

Let P ?t be the solution to the discrete algebraic Riccati equation

P ?t = Qt +A>P ?t+1A−A>P ?t+1B
(
B>P ?t+1B +Rt

)−1
B>P ?t+1A.

Under mild assumptions, Bertsekas (2012) shows that the optimal control sequence {ut}T−1
t=0 is given by

ut = −K?
t xt, where K?

t =
(
B>P ?t+1B +Rt

)−1
B>P ?t+1A.
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We then use policy gradient method to find an optimal policy Kt, t = 1, · · · , T − 1, through minimizing the loss function
(A2).

D. Numerical Experiments: Risk-Averse Portfolio Optimization Problem
We predict the total return of a window (K = 12) using the latest 24 months. The results of the experiment on six windows
are shown as follows.
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Figure 4. Cumulative return for risk-averse portfolio allocation optimization via incremental learning.
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