
From Entropy Rate to Redundancy: Information
Dynamics in Large Language Models

Jessica E. Liang
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

jeliang@seas.upenn.edu

Abstract

Large language models (LLMs) achieve impressive performance, yet the mecha-
nisms by which information flows and adapts during fine-tuning remain underex-
plored. We introduce entropy rate as a dynamic, space–time information-theoretic
metric that captures how uncertainty propagates across layers and evolves across
epochs. Building on this foundation, we derive the redundancy score, a tractable
approximation that quantifies the predictability of each layer’s representations from
its neighbors. Layers with high redundancy contribute little novel information
and are strong candidates for structured pruning. Empirical studies on RoBERTa-
base (GLUE benchmark) show that redundancy-score pruning achieves substantial
compression while preserving accuracy, outperforming knowledge-entropy prun-
ing, LayerDrop, and SlimLLM. Beyond compression, redundancy profiles reveal
consistent architectural patterns, with mid-layer peaks corresponding to dynamic
representational activity. These findings position entropy rate and redundancy
score as principled, interpretable tools for analyzing, optimizing, and compressing
foundation models in natural language understanding and reasoning.

1 Introduction

Large language models (LLMs), such as RoBERTa, GPT, and T5, have achieved remarkable success
across a wide spectrum of natural language understanding and generation tasks. Despite their empiri-
cal effectiveness, the internal information dynamics that underpin their learning and adaptation remain
incompletely understood. In particular, questions persist regarding how uncertainty, redundancy, and
information flow evolve within these deep architectures during fine-tuning, and how such dynamics
relate to functional specialization, knowledge acquisition, and efficient model compression.

Previous research has sought to probe LLM representations using a range of tools, including repre-
sentational similarity analysis [25, 18], probing classifiers [2, 3], and information-theoretic measures
such as mutual information (MI) [29, 27, 12]. While these approaches have revealed important
structural and geometric properties of deep neural representations, they are typically limited to static,
layerwise snapshots. As a result, they offer only partial visibility into the temporal evolution and
dynamic propagation of information across layers and epochs.

A recent line of work has introduced knowledge entropy as a means to quantify uncertainty in LLM
outputs and internal memory utilization [17]. However, knowledge entropy is inherently static,
capturing only the aggregate uncertainty in a single layer or at a single epoch. This motivates the need
for dynamic, process-level metrics that can more fully characterize the propagation and transformation
of information as learning unfolds.

In this paper, we propose entropy rate as a principled, dynamic information-theoretic metric for
analyzing LLM fine-tuning. Entropy rate measures the conditional uncertainty in a layer’s represen-

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: SPIGM.



tations at a given epoch, conditioned on preceding layers and previous epochs, thereby capturing
both spatial (layerwise) and temporal (epochwise) information flow. By formulating representation
dynamics as a space–time Markov chain, we derive efficient approximations of entropy rate based on
Gaussianization and cosine similarity of finite differences. From this framework, we introduce the
redundancy score, a monotone reparameterization of entropy rate that quantifies how predictable a
layer’s representations are from its neighbors. Layers with high redundancy scores contribute little
novel, task-relevant information and are natural candidates for structured pruning.

We empirically evaluate redundancy score and entropy rate on RoBERTabase across eight GLUE
benchmark tasks, comparing against knowledge entropy, SlimLLM, and random structured dropout.
Our results reveal a universal, non-monotonic redundancy profile—low at the input/output layers and
peaking in the mid-layers—indicating zones of heightened representational flexibility. Pruning layers
with the highest redundancy score preserves accuracy while significantly reducing model complexity,
outperforming knowledge-entropy pruning, SlimLLM, and LayerDrop.

Contributions. Our main contributions are:

• We introduce entropy rate as a dynamic, space–time information-theoretic metric for charac-
terizing knowledge propagation and uncertainty dynamics in LLM fine-tuning.

• We derive the redundancy score from entropy rate, providing a tractable and interpretable
criterion for identifying prunable layers.

• Through extensive experiments on GLUE, we show that redundancy score uncovers robust,
universal specialization patterns in LLMs and enables effective structured pruning with
minimal performance loss.

• We clarify the distinction between entropy rate and redundancy score highlighting their
complementary roles in understanding model dynamics.

Overall, our findings establish entropy rate and redundancy score as principled, interpretable, and
practical tools for analyzing, diagnosing, and compressing large language models, enabling more
efficient and robust neural NLP systems.

2 Related Work

Understanding the internal information dynamics of LLMs during training and fine-tuning has been
an active and rapidly developing area of research. Early investigations primarily focused on static
analyses using probing [2, 3], representational similarity [25, 18], and information-theoretic measures
such as mutual information (MI) [29, 27, 30, 12, 10], to provide snapshots of knowledge, feature
geometry, or representational structure in pretrained models. However, these approaches generally do
not capture the dynamic, process-level evolution of internal representations that occurs throughout
fine-tuning.

Knowledge Entropy and Representational Dynamics. The concept of knowledge entropy, intro-
duced by Kim et al. [17], provides an information-theoretic view on the evolution of output entropy
during LLM pretraining and its link to knowledge acquisition capacity. They show that declining
output entropy signals a reduction in learning ability, but their framework focuses on output distribu-
tions and single-layer metrics. Our approach extends this line by adopting a multi-layer, space-time
formulation of entropy rate, capturing how uncertainty and information propagate not only through
depth but also across epochs. In parallel, Skean et al. [28] highlight the importance of intermediate
layers, demonstrating via information-theoretic and geometric analysis that these layers often yield
the richest representations for downstream tasks.

Mutual Information in Neural Networks. The Information Bottleneck (IB) principle [29] and its
deep learning applications [27, 12, 10] have inspired a substantial body of work using MI to under-
stand learning and generalization. Tishby et al. [30] argue that deep networks can be characterized
by MI between layers and input/output variables, which relate to theoretical generalization bounds.
Extensions such as those by Goldfeld et al. [10, 11] address practical MI estimation in deep architec-
tures. While MI-based metrics track important spatial dependencies, their use in high-dimensional
settings is often limited by computational challenges and statistical noise [24]. Furthermore, most
MI analyses provide only static or per-layer insight, neglecting the temporal dynamics that unfold

2



during fine-tuning. Our entropy rate framework circumvents these limitations by providing a tractable,
theoretically grounded measure of temporal and spatial information propagation.

Entropy and Uncertainty in Language Models. A rapidly expanding line of research leverages
entropy-based metrics to probe LLM uncertainty, robustness, and generalization. The so-called
“entropy law” connecting compression to performance has been explored in [36], while panoptic
analyses link compression and cross-entropy to scaling laws [23]. Entropy minimization has emerged
as an effective regularizer in both training and inference [1, 4], and high-entropy tokens are linked to
model uncertainty and robustness [34]. More nuanced metrics, such as kernel language entropy [22]
and semantic entropy [9], enable context-sensitive evaluation. Recent studies have also explored
entropy in the context of memory compression [6], privacy [13], dataset curation [33], memoriza-
tion [16], and test-time scaling [33]. Yet, most entropy analyses remain static or focus on token-level
uncertainty, failing to capture dynamic information flow over time and depth.

Entropy Rate and Dynamic Information Flow. Our work is distinctive in introducing entropy rate as
a space-time metric, tracking how uncertainty propagates through both layers and epochs during LLM
fine-tuning. By moving beyond static or token-level analyses, entropy rate provides a fundamentally
new perspective on representational evolution, saturation, and the flow of knowledge. Related efforts
on entropic distribution matching [19] and adaptive regularization [35] hint at the broader importance
of dynamic, process-level information metrics for model adaptation and optimization.

Other Related Approaches. Cosine similarity and Centered Kernel Alignment (CKA) [25, 18] are
commonly used to compare layer representations but lack grounding in information theory and do
not quantify learning capacity or knowledge saturation. Recent work has also used entropy-based
metrics in continual learning for detecting knowledge plateaus or catastrophic forgetting [5], but such
techniques are rarely applied to standard LLM fine-tuning scenarios. Our entropy rate formulation
provides a unified and practical tool for diagnosing knowledge saturation and representational
bottlenecks in both standard and continual learning regimes.

Summary. While prior research has built a foundation for probing, quantifying, and analyzing
LLM representations, our contribution lies in advancing a dynamic, theoretically principled, and
computationally practical entropy rate metric. This framework allows us to diagnose knowledge
acquisition, representational redundancy, and saturation throughout both space (layers) and time
(epochs), bridging the gap between information theory and the evolving internal dynamics of large
language models.

3 Proposed Method

3.1 Markov Chain Structure for Representations in the Space-Time Domain

During LLM fine-tuning, model representations evolve both hierarchically across layers and progres-
sively across epochs. Let Xt

l denote the hidden representation (or activation) at layer l and epoch t.
Typically, Xt

l is a high-dimensional vector (or tensor, for batched inputs) capturing the intermediate
output of the l-th transformer block at epoch t. These representations encode rich semantic and
syntactic features, which change both with model depth and as fine-tuning proceeds.

The evolution of these representations can be naturally modeled as Markov chains, since each state
primarily depends on its immediate predecessor. In the spatial (layerwise) domain, the representation
at each layer depends chiefly on the output of the previous layer, while in the temporal (epochwise)
domain, the representation at each epoch is mainly determined by the prior epoch due to incremental
parameter updates.

Formally, the Markov dependencies can be expressed as
X1 → X2 → · · · → XL, (1)

in the spatial (layer) domain, and as

X1 → X2 → · · · → XT , (2)
in the temporal (epoch) domain. Here, L denotes the number of layers and T the number of epochs.

These Markov chain structures justify the use of dynamic, process-level information-theoretic metrics,
the entropy rate, to characterize how uncertainty, information, and knowledge propagate through
space (layers) and time (epochs) during LLM fine-tuning.

3



3.2 Entropy Rate in LLM Fine Tuning

The entropy of a random variable measures its uncertainty [7]. The entropy rate quantifies the
uncertainty or variability of the representations generated by each layer across epochs, conditioned
on its previous state and neighboring layers. Formally, we define entropy rate of LLM fine tuning in
space-time as:

H(Xt+1
l+1 |X

t+1
l , Xt+1

l−1 , · · · , X
t+1
1 , Xt

l+1, X
t−1
l+1 , · · · , X

1
l+1) (3)

where Xt
l denotes the hidden representation (i.e., the output embedding or activation) of layer l

at epoch t. This quantity captures the conditional uncertainty in the representation produced by
layer l + 1 at epoch t + 1, given all lower-layer representations at the current epoch and all past
representations of layer l + 1.

Based on the Markov chains in (1) and (2), (3) can be simplified as

H(Xt+1
l+1 | Xt+1

l , Xt
l+1) = −

∑
x

P (xt+1
l+1 , x

t+1
l , xt

l+1) log
P (xt+1

l+1 , x
t+1
l , xt

l+1)

P (xt+1
l , xt

l+1)
(4)

The Markovian property justifies the definition and computation of entropy rate in our proposed
space-time analysis framework, providing a structured and rigorous means of quantifying knowledge
dynamics.

We can explicitly write the representation Xt+1
l+1 as a function of the current input, multi-head attention

weights, and feed-forward weights [31]:

Xt+1
l+1 = fl+1

(
MHAl+1(X

t+1
l ;W attn

l+1 ), Wffn
l+1

)
(5)

MHAl+1(X) = Concat (head1, . . . ,headh)W
O
l+1 (6)

headi = Attention(XWQ
l+1,i, XWK

l+1,i, XWV
l+1,i) (7)

where W attn
l+1 and Wffn

l+1 denote the set of attention and feed-forward weights in layer l + 1.

Note that Xt+1
l+1 depends not only on the lower-layer representations at the current epoch, but also on

its own previous state Xt
l+1 via the parameter update process:

Xt+1
l+1 = fl+1(X

t+1
l ; θt+1

l+1 ), (8)

where θt+1
l+1 is obtained from θtl+1 by a gradient update that uses Xt

l+1 (or gradients computed from
it). Thus, Xt+1

l+1 is indirectly dependent on Xt
l+1, reflecting the memory effect of weight updates over

epochs.

In the analysis of information dynamics within LLMs, directly computing quantities like entropy rate
is often intractable due to the high dimensionality and complex, nonlinear dependencies between
layers and time steps. These information-theoretic measures, however, are critical for understanding
how knowledge is propagated, retained, or transformed across the network’s depth (layers) and
breadth (time or input sequence). Entropy rate quantifies the uncertainty or information content
introduced at each layer over time. Approximating these quantities using tractable proxies such
as first-order Gaussian approximations [10][26] or cosine similarity between finite differences of
embeddings—allows us to efficiently and insightfully characterize the model’s internal information
flow. These approximations provide practical tools for diagnosing bottlenecks, identifying redundancy,
and informing pruning or compression strategies in modern transformer-based architectures. In this
paper, we propose approximation methods for entropy rate.

3.3 Entropy Rate Approximation

Let Jl denote the Jacobian of layer l with respect to a local input perturbation around the state
(Xt

l , X
t
l+1). Formally, it is defined as the first-order derivative of the layer’s output at time t+ 1 with

respect to the local input vector x:

Jl =
∂Xt+1

l

∂x

∣∣∣∣
x=(Xt

l ,X
t
l+1)

, (9)

4



and analogously for layer l + 1,

Jl+1 =
∂Xt+1

l+1

∂x

∣∣∣∣∣
x=(Xt

l ,X
t
l+1)

. (10)

Here, x represents a perturbation vector sampled from a local Gaussian distribution centered at the
current state. Although Xt+1

l and Xt+1
l+1 are evaluated at time t+ 1, the Jacobians are computed at

time t to capture the local linear behavior of the forward dynamics.

Define u = Xt+1
l+1 and v = (Xt+1

l , Xt
l+1). Under a first-order Taylor expansion around x0 =

(Xt
l , X

t
l+1), we have:

u ≈ u0 + Jl+1 δx, (11)

v ≈ v0 +

(
Jl

Jl+1

)
δx, (12)

where δx ∼ N (0, σ2I) is a small perturbation, and the nominal (unperturbed) values are:

u0 = Xt+1
l+1

∣∣
x=x0

, (13)

v0 =
(
Xt+1

l , Xt
l+1

) ∣∣
x=x0

. (14)

The constants u0 and v0 represent the outputs at the expansion point and merely shift the Gaussian
mean; they do not affect the covariance and thus do not contribute to the entropy computation.
Theorem 1 (First-Order Entropy Rate Approximation). Under a first-order linear–Gaussian approx-
imation around x = (Xt

l , X
t
l+1) with perturbation δx ∼ N (0, σ2I), the entropy rate of layer l + 1

admits the expansion

H
(
Xt+1

l+1 | Xt+1
l , Xt

l+1

)
≈ dl+1

2
ln
(
2πe σ2

)
− 1

2
tr(A), (15)

where
A = (Σuu)

−1/2 Σuv Σ
−1
vv Σvu (Σuu)

−1/2, (16)
and the local covariance blocks are

Σuu = σ2Jl+1J
⊤
l+1, (17)

Σvv = σ2

(
JlJ

⊤
l JlJ

⊤
l+1

Jl+1J
⊤
l Jl+1J

⊤
l+1

)
, (18)

Σuv = σ2 Jl+1

(
Jl

Jl+1

)⊤

. (19)

The proof of this Theorem is provided in Appendix A.
Theorem 2 (Cosine-Similarity Approximation of Entropy Rate). Under the first-order lin-
ear–Gaussian and finite-difference approximations, the entropy rate

H
(
Xt+1

l+1 | Xt+1
l , Xt

l+1

)
can be estimated by

H
(
Xt+1

l+1 | Xt+1
l , Xt

l+1

)
≈ dl+1

2
ln
(
2πe σ2

)
− 1

2(B − 1)

B−1∑
i=1

cos2
(
∆zl+1,i, ∆zl,i

)
, (20)

where

∆zl,i ≈ zl,i+1 − zl,i,

∆zl+1,i ≈ zl+1,i+1 − zl+1,i, (21)

and zl,i and zl+1,i denote the embeddings at layer l and l+ 1 on the i-th sample of a batch of size B.

5



The proof of this Theorem is provided in Appendix B.

To obtain the conditional entropy estimate over a full epoch, we compute the average of the batch-level
estimates. Suppose the epoch consists of M batches, each of size B. For the m-th batch, the estimate
is given by:

H
(m)
l+1 ≈ dl+1

2
ln
(
2πe σ2

)
− 1

2(B − 1)

B−1∑
i=1

cos2
(
∆z

(m)
l+1,i, ∆z

(m)
l,i

)
. (22)

Then, the epoch-level conditional entropy is obtained by averaging over all M batches:

H l+1 =
1

M

M∑
m=1

H
(m)
l+1 (23)

=
dl+1

2
ln
(
2πe σ2

)
− 1

2M(B − 1)

M∑
m=1

B−1∑
i=1

cos2
(
∆z

(m)
l+1,i, ∆z

(m)
l,i

)
. (24)

This expression provides a stable estimate of the conditional entropy for layer l + 1 across the full
training epoch.

In Appendix C, we provide the computational complexity, memory and storage requirements for
the exact computation, Theorems 1 and 2. For representation dimension d and batch size B, the
computational complexity for Theorem 1 is O(d3 + d2B), and for Theorem 2 is O(dB).

Subsequently, we define Redundancy Score Rl+1:

Rl+1 :=
1

2M(B − 1)

∑
m,i

cos2
(
∆z

(m)
l+1,i, ∆z

(m)
l,i

)
(25)

The details are described in Appendix D. We will therefore refer to Rl+1 as the Redundancy Score
(higher values indicate greater redundancy and, thus, a more prunable layer).

4 Experimental Results

We evaluate the entropy rate during both full fine-tuning and Low Rank Adaptation (LoRA) [15]
using RoBERTa [20] on the GLUE [32] benchmark. In addition, we compare entropy rate with
knowledge entropy during full fine-tuning, and further apply entropy rate as a criterion for layer
pruning. All experiments are conducted in a Google Colab environment equipped with an NVIDIA
A100 GPU, ensuring a consistent computational platform for entropy rate analysis and layer pruning
of RoBERTa on standard natural language understanding tasks. The runtime for the experiments was
approximately 3 hours.

4.1 Entropy Rate in Full Fine Tuning

In Fig. 1, we summarize the entropy rate (redundancy score) versus the layer index (starting layer 2
to compute redundancy score) in RoBERTabase fine tuning for eight datasets on the GLUE benchmark.
Across all datasets, the redundancy score as a function of layer depth exhibits a highly consistent
and distinctive profile. Specifically, the redundancy score remains low in the input and output
layers, but increases sharply through the early and middle layers, reaching a pronounced peak in the
upper-middle layers of the model (typically layers 3 to 8). This non-monotonic “∩-shaped” pattern is
robust to both the choice of dataset and the epoch of fine-tuning. The peak redundancy score values,
observed in the middle layers, often surpass 0.2–0.3, while the redundancy score in the final layer can
be as low as 10−3. Minor variations in the exact location and amplitude of the redundancy score peak
are observed across different datasets, reflecting some degree of task specificity, yet the qualitative
trend remains universal. Furthermore, this profile is stable across training epochs, with early, middle,
and late layers maintaining their respective redundancy score characteristics throughout fine-tuning.

These results indicate a clear functional specialization across the layers of large language models.
The low redundancy score in the input layers suggests stable feature extraction, while the elevated
redundancy score in the middle layers marks a zone of increased representational uncertainty and
flexibility, likely corresponding to dynamic knowledge integration and task adaptation. Output layers,

6



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1: The redundancy score versus layer index in RoBERTabase with full fine tuning for 6 epochs
using eight datasets on the GLUE benchmark, (a) MNLI, (b) MRPC, (c) SST-2, (d) CoLA, (e) QNLI,
(f) QQP, (g) RTE, (h) STS-B.

in contrast, return to low redundancy score, reflecting highly deterministic, task-aligned decoding.
The universality of this ∩-shaped redundancy score profile implies that redundancy score is an
intrinsic property of transformer architectures during fine-tuning, largely independent of specific
dataset or task.

Consequently, redundancy score can serve as a principled metric for identifying which layers are most
amenable to pruning or compression. Layers with high redundancy score exhibit greater redundancy
in their representations, often reflecting dynamic adaptation rather than essential information. As a
result, pruning these layers with higher redundancy score is less likely to harm the model’s predictive
accuracy or core capabilities, since their information is either noisy or can be compensated by
neighboring layers. In contrast, low-redundancy-score layers encode more stable and indispensable
representations. This observation justifies a redundancy-score-guided pruning strategy, where layers
with the highest redundancy score are removed to achieve efficient model compression without
significant degradation in performance.

4.2 Application to LLM Pruning

We prune layers using the redundancy score Rl from (25), a positive, monotone reparameterization of
the layerwise entropy-rate estimator, rather than the raw entropy rate. Intuitively, Rl quantifies how
much a layer’s representation change is predictable from (or duplicative of) neighboring layers, i.e.,

7



how little novel, task-relevant information it contributes. Layers with higher Rl thus encode more
redundant or noisy variation and are stronger pruning candidates. We therefore rank layers by Rl

(higher is more prunable) and remove those at the top of the ranking subject to architectural constraints
(e.g., preserving embeddings and the output head). This targeted criterion preferentially eliminates
duplicative computation, reducing model size and inference latency while maintaining—often after a
brief recovery fine-tune—accuracy and generalization.

Table 1 reports pruning results on RoBERTabase across the GLUE benchmark (MNLI, MRPC, SST-2,
CoLA, QNLI, QQP, RTE, STS-B). The first row gives the fully fine-tuned baseline after 6 epochs,
using the task-appropriate metric (accuracy for MNLI/QNLI/RTE/SST-2, Matthews correlation
for CoLA, F1/accuracy for MRPC/QQP, and Pearson correlation for STS-B). For pruning, we
remove four of the twelve transformer layers using four criteria: (1) pruning the four layers with the
highest redundancy score Rl (a positive, monotone reparameterization of our layerwise entropy-rate
estimator), (2) pruning the four layers with the highest knowledge entropy (KE), (3) random structured
LayerDrop following Fan et al. [8], and (4) SlimLLM layer pruning [14]. After each pruning/dropout
operation, we fine-tune for 5 additional epochs. The post-pruning results are summarized in rows 2–5.

Table 1: GLUE benchmark accuracy (or correlation for STS-B) for RoBERTabase under full fine-
tuning, entropy rate pruning, knowledge entropy pruning, and random layer dropout.

Method MNLI MRPC SST-2 CoLA QNLI QQP RTE STS-B
No Pruning 0.7840 0.8480 0.9220 0.8274 0.8731 0.8386 0.7509 0.9075
Our ER Pruning 0.7860 0.8480 0.9186 0.8255 0.8548 0.8361 0.7437 0.9063
KE Pruning [17] 0.3668 0.6838 0.7294 0.6913 0.5054 0.6318 0.5271 0.3125
Layer Dropout [8] 0.6910 0.8235 0.9186 0.6913 0.8371 0.8003 0.7256 0.8938
SlimLLM [14] 0.7660 0.8088 0.8979 0.8092 0.8548 0.8359 0.6787 0.9043

Our results show that redundancy-score (ER-derived) pruning closely tracks the full fine-tuning
baseline, indicating that Rl is effective at identifying layers that contribute little novel, task-relevant
information. In contrast, KE-based pruning causes substantial degradation across all tasks, suggesting
it is not a reliable signal for structured layer removal in RoBERTa. LayerDrop yields intermediate
performance—better than KE but consistently below the redundancy-score criterion, with especially
large gaps on linguistically challenging tasks such as CoLA and QNLI. SlimLLM is competitive but
generally trails our method and the no-pruning baseline, with parity on QNLI and near-parity on
QQP/STS-B. Overall, these findings support the redundancy score as a robust and principled pruning
signal, enabling meaningful compression with minimal loss in downstream performance.

5 Conclusions and Future Work

We introduced a space–time framework for analyzing information dynamics during LLM fine-tuning
by modeling hidden representations as Markov chains across depth (layers) and time (epochs).
Leveraging this structure, we derived tractable approximations to entropy rate via a first-order
linear–Gaussian analysis and a cosine-similarity surrogate and proposed the Redundancy Score Rℓ

as a positive, monotone reparameterization that quantifies how predictable a layer’s representation
change is from its neighbors. Empirically, Rℓ provides an effective signal for structured layer
pruning: on RoBERTabase across GLUE (Table 1), redundancy-score pruning closely preserves the full
fine-tuning baseline and outperforms knowledge-entropy pruning and LayerDrop, while remaining
competitive with SlimLLM.

Several promising directions emerge from our study. First, extending entropy rate analysis to even
larger LLMs (e.g., GPT) and multi-modal architectures may further illuminate universal principles
of deep learning dynamics. Second, combining entropy rate with other dynamic metrics, such as
mutual information rate or Fisher information, could yield a richer, multi-faceted understanding of
knowledge acquisition, retention, and forgetting. Third, exploring entropy-rate-guided pruning in
continual, multi-task, or low-resource settings may unlock new avenues for efficient adaptation and
deployment of foundation models.

8



References
[1] Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable

effectiveness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

[2] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. ICLR, 2017.

[3] Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James Glass. What do
neural machine translation models learn about morphology? In Regina Barzilay and Min-Yen
Kan, editors, Proceedings of the 55th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 861–872, Vancouver, Canada, July 2017. Association
for Computational Linguistics.

[4] Haw-Shiuan Chang, Nanyun Peng, Mohit Bansal, Anil Ramakrishna, and Tagyoung Chung.
Real sampling: Boosting factuality and diversity of open-ended generation via asymptotic
entropy. arXiv preprint arXiv:2406.07735, 2024.

[5] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of
the European conference on computer vision (ECCV), pages 532–547, 2018.

[6] Feng Cheng, Cong Guo, Chiyue Wei, Junyao Zhang, Changchun Zhou, Edward Hanson, Jiaqi
Zhang, Xiaoxiao Liu, Hai Li, and Yiran Chen. Ecco: Improving memory bandwidth and
capacity for llms via entropy-aware cache compression. In Proceedings of the 52nd Annual
International Symposium on Computer Architecture, pages 793–807, 2025.

[7] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons,
2006.

[8] Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. ICLR, 2020.

[9] Yichao Fu, Junda Chen, Siqi Zhu, Zheyu Fu, Zhongdongming Dai, Yonghao Zhuang, Yian Ma,
Aurick Qiao, Tajana Rosing, Ion Stoica, et al. Efficiently scaling llm reasoning with certaindex.
arXiv preprint arXiv:2412.20993, 2024.

[10] Ziv Goldfeld, Ewout van den Berg, Kristjan Greenewald, Igor Melnyk, Nam Nguyen, Brian
Kingsbury, and Yury Polyanskiy. Estimating information flow in deep neural networks. ICML,
2019.

[11] Ziv Goldfeld, Kristjan Greenewald, Jonathan Weed, and Yury Polyanskiy. Optimality of the
plug-in estimator for differential entropy estimation under gaussian convolutions. In 2019 IEEE
International Symposium on Information Theory (ISIT), pages 892–896. IEEE, 2019.

[12] Ziv Goldfeld and Yury Polyanskiy. The information bottleneck problem and its applications in
machine learning. IEEE Journal on Selected Areas in Information Theory, 1(1):19–38, 2020.

[13] Tianle Gu, Zongqi Wang, Kexin Huang, Yuanqi Yao, Xiangliang Zhang, Yujiu Yang, and
Xiuying Chen. Invisible entropy: Towards safe and efficient low-entropy llm watermarking.
arXiv preprint arXiv:2505.14112, 2025.

[14] Jialong Guo, Xinghao Chen, Yehui Tang, and Yunhe Wang. Slimllm: Accurate structured
pruning for large language models. ICML, 2025.

[15] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

[16] Yizhan Huang, Zhe Yang, Meifang Chen, Jianping Zhang, and Michael R Lyu. Entropy-
memorization law: Evaluating memorization difficulty of data in llms. arXiv preprint
arXiv:2507.06056, 2025.

9



[17] Jiyeon Kim, Hyunji Lee, Hyowon Cho, Joel Jang, Hyeonbin Hwang, Seungpil Won, Youbin
Ahn, Dohaeng Lee, and Minjoon Seo. Knowledge entropy decay during language model
pretraining hinders new knowledge acquisition. ICLR, 2025.

[18] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pages
3519–3529. PMLR, 2019.

[19] Ziniu Li, Congliang Chen, Tian Xu, Zeyu Qin, Jiancong Xiao, Ruoyu Sun, and Zhi-Quan Luo.
Entropic distribution matching for supervised fine-tuning of llms: Less overfitting and better
diversity. In NeurIPS 2024 Workshop on Fine-Tuning in Modern Machine Learning: Principles
and Scalability, 2024.

[20] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[21] Jan R Magnus and Heinz Neudecker. Matrix differential calculus with applications in statistics
and econometrics. John Wiley & Sons, 2019.

[22] Alexander Nikitin, Jannik Kossen, Yarin Gal, and Pekka Marttinen. Kernel language entropy:
Fine-grained uncertainty quantification for llms from semantic similarities. Advances in Neural
Information Processing Systems, 37:8901–8929, 2024.

[23] Zhixuan Pan, Shaowen Wang, and Jian Li. Understanding llm behaviors via compression: Data
generation, knowledge acquisition and scaling laws. arXiv preprint arXiv:2504.09597, 2025.

[24] Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In International Conference on Machine Learning, pages
5171–5180. PMLR, 2019.

[25] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular
vector canonical correlation analysis for deep learning dynamics and interpretability. Advances
in neural information processing systems, 30, 2017.

[26] Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D
Tracey, and David D Cox. On the information bottleneck theory of deep learning. Journal of
Statistical Mechanics: Theory and Experiment, 2019(12):124020, 2019.

[27] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via
information. arXiv preprint arXiv:1703.00810, 2017.

[28] Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and Ravid
Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. ICML,
2025.

[29] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method.
arXiv preprint physics/0004057, 2000.

[30] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 ieee information theory workshop (itw), pages 1–5. Ieee, 2015.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[32] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[33] Haoyu Wang, Yujia Fu, Zhu Zhang, Shuo Wang, Zirui Ren, Xiaorong Wang, Zhili Li, Chaoqun
He, Bo An, Zhiyuan Liu, et al. Llm × mapreduce-v2: Entropy-driven convolutional test-
time scaling for generating long-form articles from extremely long resources. arXiv preprint
arXiv:2504.05732, 2025.

10



[34] Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui
Chen, Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens
drive effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939,
2025.

[35] Cong Xu, Zhangchi Zhu, Mo Yu, Jun Wang, Jianyong Wang, and Wei Zhang. Are llm-
based recommenders already the best? simple scaled cross-entropy unleashes the potential of
traditional sequential recommenders. arXiv preprint arXiv:2408.14238, 2024.

[36] Mingjia Yin, Chuhan Wu, Yufei Wang, Hao Wang, Wei Guo, Yasheng Wang, Yong Liu, Ruiming
Tang, Defu Lian, and Enhong Chen. Entropy law: The story behind data compression and llm
performance. arXiv preprint arXiv:2407.06645, 2024.

A Proof of Theorem 1

Proof. Consider the first-order Taylor approximations:

u = Xt+1
l+1 ≈ u0 + Jl+1 δx, (26)

v =
(
Xt+1

l , Xt
l+1

)
≈ v0 +

(
Jl

Jl+1

)
δx, (27)

where δx ∼ N (0, σ2I) is a small Gaussian perturbation around the point x = (Xt
l , X

t
l+1). Since

both u and v are affine transformations of a Gaussian random variable, they are jointly Gaussian.

From this, the joint covariance matrices are:

Σuu = Cov(u) = σ2Jl+1J
⊤
l+1, (28)

Σvv = Cov(v) = σ2

(
JlJ

⊤
l JlJ

⊤
l+1

Jl+1J
⊤
l Jl+1J

⊤
l+1

)
, (29)

Σuv = Cov(u, v) = σ2Jl+1

(
Jl

Jl+1

)⊤

. (30)

The conditional entropy of a Gaussian random variable is given by [7]:

H(u | v) = 1

2
ln
(
(2πe)dl+1 detΣu|v

)
, (31)

where Σu|v = Σuu − ΣuvΣ
−1
vv Σvu. (32)

Now define the matrix:
A := Σ−1/2

uu ΣuvΣ
−1
vv ΣvuΣ

−1/2
uu , (33)

which is a symmetric positive semi-definite matrix quantifying how much the conditional variance is
reduced by observing v.

Using the identity for positive definite matrices:

Σu|v = Σ1/2
uu (I −A)Σ1/2

uu ,

we obtain:
det(Σu|v) = det(Σuu) · det(I −A). (34)

Hence, the conditional entropy becomes:

H(u | v) = 1

2
ln
(
(2πe)dl+1 det(Σuu) · det(I −A)

)
(35)

=
dl+1

2
ln(2πe) +

1

2
ln det(Σuu) +

1

2
ln det(I −A). (36)

Recall that Σuu = σ2Jl+1J
⊤
l+1, so:

ln det(Σuu) = dl+1 lnσ
2 + ln det(Jl+1J

⊤
l+1), (37)

11



where the second term can be absorbed into constants not affecting the dependency on noise.

Assuming A is small (i.e., v is weakly informative about u), we use the matrix log approximation [21]:

ln det(I −A) ≈ −tr(A), (38)

yielding:

H(u | v) ≈ dl+1

2
ln(2πe σ2)− 1

2
tr(A). (39)

Finally, by identifying u = Xt+1
l+1 and v = (Xt+1

l , Xt
l+1), we obtain the entropy rate approximation:

H
(
Xt+1

l+1 | Xt+1
l , Xt

l+1

)
≈ dl+1

2
ln
(
2πe σ2

)
− 1

2
tr(A). (40)

B Proof of Theorem 2

Proof. From Theorem 1 and the Gaussian conditional entropy, we have

H
(
Xt+1

l+1 | Xt+1
l , Xt

l+1

)
≈ dl+1

2
ln
(
2πe σ2

)
− 1

2
tr(A), (41)

where
A = (Σuu)

−1/2 Σuv Σ
−1
vv Σvu (Σuu)

−1/2. (42)

In practice we replace the unknown δx by finite differences between consecutive batch samples. For
i = 1, . . . , B − 1,

Jl(x) δx ≈ zl,i+1 − zl,i = ∆zl,i,

Jl+1(x) δx ≈ zl+1,i+1 − zl+1,i = ∆zl+1,i. (43)

where zl,i and zl+1,i denote the embeddings at layer l and l + 1 on the i-th sample of a batch of size
B. We treat batch index i as approximating discrete time steps, i.e., i ≈ t.

Now recall from above that:

Σuu = σ2Jl+1J
⊤
l+1, (44)

Σvv = σ2

(
JlJ

⊤
l JlJ

⊤
l+1

Jl+1J
⊤
l Jl+1J

⊤
l+1

)
, (45)

Σuv = σ2Jl+1

(
Jl

Jl+1

)⊤

. (46)

When computing the conditional covariance and its inverse or whitening operations, the common
factor σ2 appears uniformly in all covariance matrices. Consequently, it cancels out naturally from
all subsequent normalized or whitening expressions, so we just ignore σ2 from now on.

Under the rank-one approximation (plus a small ridge ϵI for stability), the local covariance blocks
satisfy

Σuu ≈ ∆zl+1,i ∆z⊤l+1,i + ϵI, (47)

Σuv ≈ ∆zl+1,i ∆z⊤l,i, (48)

Σvv ≈

(
∆zl,i ∆z⊤l,i ∆zl,i ∆z⊤l+1,i

∆zl+1,i ∆z⊤l,i ∆zl+1,i ∆z⊤l+1,i

)
+ ϵI. (49)

Whitening involves multiplying by the inverse square root of Σuu:

Σ−1/2
uu ≈ (∆zl+1,i∆z⊤l+1,i + ϵI)−1/2. (50)

12



Since ∆zl+1,i∆z⊤l+1,i is rank-one, we can use the identity for a small ridge ϵ > 0:

(∆zl+1,i∆z⊤l+1,i + ϵI)−1/2

≈ 1

∥∆zl+1,i∥2 + ϵ
∆zl+1,i∆z⊤l+1,i. (51)

Similarly, the inverse covariance Σ−1
vv is approximated by whitening the block-diagonal terms

independently, yielding a block-diagonal approximation:

Σ−1
vv ≈

(
(∥∆zl,i∥2 + ϵ)−1I 0

0 (∥∆zl+1,i∥2 + ϵ)−1I

)
.

Now, substituting these approximations into the definition of A, we have explicitly:

A = Σ−1/2
uu ΣuvΣ

−1
vv ΣvuΣ

−1/2
uu

≈
∆zl+1,i∆z⊤l+1,i

∥∆zl+1,i∥2 + ϵ
(∆zl+1,i∆z⊤l,i)

·

(
(∥∆zl,i∥2 + ϵ)−1I 0

0 (∥∆zl+1,i∥2 + ϵ)−1I

)

·(∆zl,i∆z⊤l+1,i)
∆zl+1,i∆z⊤l+1,i

∥∆zl+1,i∥2 + ϵ
. (52)

Since this product is rank-one, the trace simplifies greatly. Noting the cyclic property of the trace, we
have:

tr(A) ≈
∆z⊤l+1,i∆zl+1,i∆z⊤l,i∆zl,i∆z⊤l+1,i∆zl+1,i

(∥∆zl+1,i∥2 + ϵ)2(∥∆zl,i∥2 + ϵ)

=
∥∆zl+1,i∥2 (∆z⊤l,i∆zl+1,i)

2

(∥∆zl+1,i∥2 + ϵ)2(∥∆zl,i∥2 + ϵ)
. (53)

By assuming that ϵ is sufficiently small compared to embedding norms, we simplify this further to:

tr(A) ≈ ⟨∆zl+1,i,∆zl,i⟩2

∥∆zl+1,i∥2 ∥∆zl,i∥2 + ϵ
= cos2(∆zl+1,i,∆zl,i), (54)

where we used the definition of cosine similarity:

cos(x,y) =
x⊤y

∥x∥∥y∥
. (55)

Finally, averaging over i = 1, . . . , B − 1 yields

H
(
Xt+1

l+1 | Xt+1
l , Xt

l+1

)
≈ dl+1

2
ln
(
2πe σ2

)
− 1

2(B − 1)

B−1∑
i=1

cos2
(
∆zl+1,i, ∆zl,i

)
. (56)

C Computational and Memory Complexity

We analyze the computational complexity, memory usage, and storage costs of three methods for
estimating the entropy rate of a neural network layer: (1) the exact entropy computation based on
discrete probability distributions, (2) the first-order linear–Gaussian approximation (Theorem 1), and
(3) the cosine-similarity-based approximation (Theorem 2).

13



The exact entropy rate is defined as:

H(Xt+1
l+1 | Xt+1

l , Xt
l+1) = −

∑
x

P (xt+1
l+1 , x

t+1
l , xt

l+1) log
P (xt+1

l+1 , x
t+1
l , xt

l+1)

P (xt+1
l , xt

l+1)
. (57)

To compute this expression exactly, one must estimate the full joint distribution over the discretized
states of three layer representations, xt+1

l+1 , x
t+1
l , xt

l+1). Assuming each activation vector is quantized
into Q bins per dimension and the layer dimensionality is d, the joint distribution spans Q3d states.
This results in an exponential computational and memory complexity of O(Q3d), rendering the
method intractable for high-dimensional layers. Even for moderate dimensions (e.g., d = 10 and
Q = 10), the state space already exceeds 1030. Moreover, storing joint histograms across M batches
during training incurs a total storage cost of O(MQ3d).

The first-order linear–Gaussian approximation (Theorem 1) models the conditional entropy using
local Jacobians and covariance blocks around each data point. The key operations include matrix
multiplications, inversions, and square roots of d× d matrices, yielding a per-batch computational
cost of O(d3 + d2B), where B is the batch size. Memory usage per batch is O(d2) due to storage of
local covariance blocks. When averaged across M batches, the total storage requirement is O(Md2),
making this method scalable to modern deep networks.

The cosine-similarity approximation (Theorem 2) avoids explicit estimation of covariance structures
by using the cosine of finite differences between adjacent layer embeddings. This reduces computation
to a linear cost of O(dB) per batch and memory usage to O(dB). Since it only requires pairwise
vector operations, it scales efficiently with both batch size and layer dimension. Epoch-level storage
is also efficient at O(MB).

Table 2 summarizes the asymptotic complexity of the three methods. The exact computation, while
theoretically accurate, is infeasible in practice. In contrast, the first-order and cosine-similarity
approximations provide tractable alternatives for analyzing entropy dynamics in large-scale neural
models.

Table 2: Asymptotic complexity of entropy rate estimation methods. Here, d is the layer dimension,
B is the batch size, M is the number of batches, and Q is the quantization level.

Method Computation Memory Storage
Exact O(Q3d) O(Q3d) O(MQ3d)
Theorem 1 O(d3 + d2B) O(d2) O(Md2)
Theorem 2 O(dB) O(dB) O(MB)

D Simplified Entropy-Rate Proxy

D.1 Drop the Layer-Constant Term

For

H l+1 =
dl+1

2
ln
(
2πe σ2

)
︸ ︷︷ ︸

Cl+1

− 1

2M(B − 1)

M∑
m=1

B−1∑
i=1

cos2
(
∆z

(m)
l+1,i, ∆z

(m)
l,i

)
, (58)

standard Transformers have layer-invariant width dl+1 ≡ d and we use a common noise level σ2, so

Cl+1 ≡ C =
d

2
ln(2πe σ2) (59)

is independent of l. Define

Sℓ :=
1

M(B − 1)

∑
m,i

cos2
(
∆z

(m)
ℓ,i , ∆z

(m)
ℓ−1,i

)
. (60)

Then, for any a, b,

Ha ≤ Hb ⇐⇒ C − 1
2Sa ≤ C − 1

2Sb (61)
⇐⇒ Sa ≥ Sb, (62)

14



so ranking layers depends only on the second term. Use the centered proxy

H̃l+1 := − 1

2M(B − 1)

∑
m,i

cos2
(
∆z

(m)
l+1,i, ∆z

(m)
l,i

)
, (63)

which equals H l+1 up to the same constant C.

D.2 Positive Monotone Reparameterization

Since
H̃l+1 = −αSl+1, α :=

1

2M(B − 1)
> 0, (64)

minimizing H̃l+1 is equivalent to maximizing Sl+1. Define the positive score

Al+1 := −H̃l+1

= αSl+1

=
1

2M(B − 1)

∑
m,i

cos2
(
∆z

(m)
l+1,i, ∆z

(m)
l,i

)
,

which yields identical layer rankings and is often more interpretable (larger Al+1 ⇒ less new
information, more prunable).

D.3 Name and Interpretation

Because larger Al+1 corresponds to smaller conditional entropy (the layer adds less new information),
we rename it for clarity as the Redundancy Score:

Rl+1 := Al+1, (65)

so that

Rl+1 =
1

2M(B − 1)

∑
m,i

cos2
(
∆z

(m)
l+1,i, ∆z

(m)
l,i

)
(66)

We will therefore refer to Rl+1 as the Redundancy Score (higher values indicate greater redundancy
and, thus, a more prunable layer).

15


	Introduction
	Related Work
	Proposed Method
	Markov Chain Structure for Representations in the Space-Time Domain
	Entropy Rate in LLM Fine Tuning
	Entropy Rate Approximation

	Experimental Results
	Entropy Rate in Full Fine Tuning
	Application to LLM Pruning

	Conclusions and Future Work
	Proof of Theorem 1
	Proof of Theorem 2
	Computational and Memory Complexity
	Simplified Entropy-Rate Proxy
	Drop the Layer-Constant Term
	Positive Monotone Reparameterization
	Name and Interpretation


