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ABSTRACT

Two-view correspondence learning aims to discern true and false correspondences
between image pairs by recognizing their underlying different information. Previ-
ous methods either treat the information equally or fail to discard the superfluous
information of false correspondences, tending to be invalid in practical scenarios.
Therefore, inspired by Mamba’s inherent competence of selectivity, we propose
MambaMatch as a Mamba-based correspondence filter to selectively mine infor-
mation from true correspondences and to dispose of the potentially interfering
information of false correspondences. Specifically, the selection is achieved by
adaptively adjusting model parameters in a high-dimensional latent space, which
also avoids attention leakage and implements context compression, ensuring the
precise and efficient exploitation of pertinent information. Meanwhile, channel
awareness is tailored to serve as a complementary aspect of comprehensive in-
formation acquisition. Moreover, we design a novel local-context enhancement
module to capture reasonable local context that is crucial for correspondence prun-
ing. Extensive experiments demonstrate that our approach outperforms existing
state-of-the-art methods on several visual tasks while saving time and space costs.

1 INTRODUCTION

(a) Putative Matches (b) MLP-based Filters

(c) Attention-based Filters (d) Mamba-based Filters

Figure 1: Illustration of different methods for handling
putative matches. False matches are shown in red
(—), and correct ones in green (—). The transition of
the yellow hue from closer to red to closer to green
signifies a progression from lower to higher weights,
meaning the model is more likely to consider the match
as an inlier.

Two-view correspondence learning that
finds sparse matches and estimates geomet-
ric relationships for image pairs is a fun-
damental and crucial task in computer vi-
sion. It is of paramount importance for
many downstream tasks such as image re-
trieval (Tolias et al., 2016), Structure from
Motion (Saputra et al., 2018), and simulta-
neous localization and mapping (Mur-Artal
et al., 2015). The typical pipeline is divided
into two stages, namely generating a puta-
tive correspondence set and removing false
matches (i.e. outliers) (Ma et al., 2021).
However, constrained by the limited discrim-
inative ability of descriptors, the sparse and
irregular matches in the putative set usually
contain a large number of outliers, and re-
moving them is imperative for image matching. Therefore, in this paper, we focus on outlier rejection
to maintain true correspondences (i.e. inliers), which facilitates accurately estimating the true model.

In prior research, nascent outlier rejection methods such as RANSAC (Fischler & Bolles, 1981),
MAGSAC++ (Barath et al., 2020) and VFC (Ma et al., 2014) have demonstrated good performance
in situations where outliers are relatively minor. However, they often fail in real-world scenarios with
numerous outliers. Among the burgeoning learning-based approaches, Yi et al. (2018) and some
subsequent works (Zhang et al., 2019; Zhao et al., 2021; Liu et al., 2021) regard the corresponding
pruning as a binary classification problem. Yet, as shown in Figure 1(b), they employ multi-layer
perceptrons (MLPs) that treat each input equally, which fails to adequately discern the differences
in information resulting from inliers and outliers. Sun et al. (2020) customizes to give different
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attention to diverse inputs through explicit weights, but this simplistic approach is insufficient for
handling complex scenarios. Additionally, some vanilla attention-based methods (Liu & Yang, 2023;
Li et al., 2024) modulate the importance of information by constructing feature maps for the inputs
and assigning different weights. However, this soft attention is allocated across all data throughout,
leading to attention leakage and the retention of redundant context (i.e. incapacity to compress
context) as presented in Figure 1(c), which degrades the performance. Furthermore, attention-based
methods are impeded by quadratic complexity, resulting in inefficiency during both inference and
training. Therefore, we consider the following questions: (i) How to selectively treat inliers and
outliers, and allocate attention appropriately to different points? (ii) Can we fully capture the
information and compress the context into a more compact representation as much as possible?

Recently, a novel architecture termed Selective State Space Model, i.e. Mamba (Gu & Dao, 2023),
has gained widespread adoption in visual tasks (Liu et al., 2024b; Zhu et al., 2024). One of its key
advantages is the selectivity, enabling models to focus on or disregard specific inputs. This may offer
a pathway to address (i). Furthermore, it achieves optimization of complexity through compressing
context into a compact representation and employs hardware scanning methods. This presents a
potential avenue for addressing (ii). Inspired by this, we seek to introduce Mamba to tackle the
problem of two-view correspondence learning. However, most existing Mamba-based visual models
are tailored for tasks involving regular images as input (Guo et al., 2024; Zhu et al., 2024; Liu et al.,
2024b), and their common structures are ill-suited for two-view correspondence learning with sparse
points. Although some recent endeavors have explored using Mamba for point cloud tasks (Liu et al.,
2024a; Zhang et al., 2024), they predominantly focus on handling 3D sequences and lack guidance
on adapting to our 2D data while achieving context compression and ensuring no attention leakage.

Therefore, we propose a Mamba-based correspondence learning method MambaMatch, which is
superior in terms of effective data selection. Specifically, the channel-aware Mamba filter (CAMF)
is the main part, which can parameterize the state space model (SSM) parameters according to the
input data. This allows the network to distinguish inliers and outliers in the high-dimensional latent
space and give different focus, which is beneficial to correspondence pruning, especially with a high
percentage of outliers. Although Mamba is globally aware, its lack of channel awareness (Guo et al.,
2024) makes it underpowered for learning high-dimensional features with many channels. This may
lead to the model being sensitive to randomly distributed outliers. To this end, we customize its
channel awareness capability so that our method can better adapt to real-world scenes. Meanwhile,
it’s known that a fundamental principle in correspondence learning is the ability to capture local
context (Zhang et al., 2019; Liu et al., 2021). Therefore, to increase the capability to obtain context
information (Yi et al., 2018) of the initial sequences, we also design a local context enhancement
module (LCEM). As shown in Figure 1(d), our Mamba-based approach not only focuses on potentially
correct matches with higher weights but also discards false matches, avoiding attention leakage and
achieving context compression. To sum up, the contributions of this article mainly include the
following three folds:

i. To our best knowledge, this represents the inaugural exploration into leveraging Mamba for
sparse feature matching. Additionally, we pioneer the application of Mamba’s selection traits to
tackle scenarios characterized by a significant presence of outliers adeptly. This approach could
potentially offer valuable insights for a variety of other applications;

ii. We specifically engineer a new outlier filter based on Mamba that can more effectively filter out
mismatches by discarding particular inputs, trying to retain correct matches only. Concurrently,
we develop a local context enhancement module to address Mamba’s deficiency in capturing
local context, thereby enhancing the learning of correspondences;

iii. We design a suite of experiments to substantiate the rationality of our methodological design and
further demonstrate the efficacy and robust generalization capabilities of our approach through
various real-world datasets.

2 RELATED WORK

2.1 CORRESPONDENCE LEARNING

A renowned paradigm involves first obtaining an initial set of Correspondences, followed by the
application of outlier rejection to refine and achieve a more accurate correspondence set. The best-
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known handcrafted methods such as RANSAC (Fischler & Bolles, 1981) and its variants (Torr &
Zisserman, 2000; Ni et al., 2009; Chum & Matas, 2005) employ a hypothesis-verification strategy to
find a maximal consistent subset that fits a particular geometric model. This type of method is highly
dependent on the sampled subsets, leading to their failure in high outlier situations. Methods for
nonparametric models (Ma et al., 2014; Bian et al., 2017; Fan et al., 2023) can handle both rigid and
non-rigid deformations. But they are equally helpless in the face of large perspectives and repetitively
structured real-life scenarios. Then, with the development of deep learning, MLPs are first used as
a solution for correspondence pruning. Yi et al. (2018) utilizes them to extract high-dimensional
features of each putative correspondence individually and introduces context normalization (CN)
to capture global contextual information. Zhang et al. (2019) introduces a differentiable layer that
captures local information by softly assigning nodes to a set of clusters. Liu et al. (2021) combines
global and local coherence to robustly detect true correspondences. Zhang & Ma (2023) uses a CNN
as the backbone and avoids the design of additional context normalization modules of MLP-based
approaches. However, these methods treat each input equally and lack the ability to mine the different
information between inliers and outliers. Some subsequent approaches like NCMNet (Liu & Yang,
2023) and MC-Net (Li et al., 2024) attempt to address the divergence of information between outliers
and inliers by learning an attention map that softly assigns varying degrees of focus to different
regions. However, they suffer from attention leakage to outliers and efficiency issues due to the
inability to compress context.

Another popular pipeline involves directly obtaining an accurate set of Correspondences in one go.
Representative work such as SuperGlue (Sarlin et al., 2020) has made significant strides by utilizing
graph neural networks in conjunction with attention mechanisms (Vaswani et al., 2017). However,
these methods experience a quadratic decrease in efficiency as the number of keypoints increases,
leading to difficulties in practical application. Detector-free dense matching methods (Edstedt et al.,
2023; 2024) and semi-dense approaches (Sun et al., 2021; Tang et al., 2022)can achieve accurate
matches even in extreme scenarios like textureless regions, but the increased computational cost and
memory usage due to richer matches remain unresolved. Therefore, our paper focuses on the first
paradigm, while the second pipeline is discussed appropriately in the analysis.

2.2 STATE SPACE MODELS

The state space model (SSM) is initially used to describe dynamic systems. It has recently been
introduced as a generalized backbone for natural language processing and computer vision (Gu et al.,
2021b;a; Smith et al., 2022). The problem of early SSMs is similar to RNN models that easily forget
global contextual information and suffer from gradient vanishing as the sequence length grows (Gu
et al., 2020; 2021b). The recent work Mamba (Gu & Dao, 2023) based on SSM successfully
overcomes these shortcomings. With the subquadratic complexity and selective scanning mechanism,
Mamba (Gu & Dao, 2023) has the potential to be a prospective backbone. Zhu et al. (2024) and Liu
et al. (2024b) innovatively introduce Mamba to vision tasks. In addition, Liu et al. (2024a) and Zhang
et al. (2024) first propose to use Mamba to process 3D sequence data. The methods directly employed
for handling image data may not directly translate to our task because of the difference in data
structure. At the same time, approaches for point cloud tend to overly focus on data preprocessing
without significantly enhancing Mamba itself, more resembling a custom utilization. We observe
that while Mamba exhibits strong capability in capturing global information, it falls short in channel
information acquisition (Guo et al., 2024). Therefore, in this article, while we use Mamba to solve
the problem of how to selectively mine and utilize inlier information while discarding outliers, we
design the channel-aware module to increase its ability to acquire cross-channel information. This
may also offer a novel approach to addressing other scenarios with a high proportion of outliers.

3 PRELIMINARIES

3.1 REVISITING MAMBA

Mamba (Gu & Dao, 2023) is originated from state space models (SSMs), which are initially employed
for linear time-invariant systems to map the input x(t) ∈ RL to the output y(t) ∈ RL (Kalman,
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1960), it can be discretized to a discrete-time SSM by zero-order hold (ZOH) discretization:

ḣ(t) = Ah(t) +Bx(t),

y(t) = Ch(t),
(1)

where h(t) ∈ RN is the hidden state, ḣ(t) ∈ RN is the derivative of the hidden state. A ∈ RN×N ,
B ∈ RN×L, and C ∈ RL×N are the parameters of the model. The continuous-time SSM can be
discretized to a discrete-time SSM (Gu & Dao, 2023) by zero-order hold (ZOH) discretization as:

hk = Āhk−1 + B̄xk,

yk = C̄hk,
(2)

where Ā, B̄ and C̄ are discrete forms of A, B, and C. By iterating Equation 2, the model output y
manifests as the convolution between the input x and a kernel. This characteristic endows Mamba
with the inherent capability for parallel computation, illustrated succinctly as:

y = SSM(K̄, x) = K̄ ∗ x, (3)

where SSM(·) means the original state space model, and K̄ is the convolution kernel represented by:

K̄ = (CB̄,CĀB̄, ..., CĀM−1B̄), (4)

whereM denotes the sequence length of x. Moreover, Mamba can incorporate a selection mechanism
that allows the parameters to be changed from fixed to a function of the inputs, while changing the
tensor shape. We use linear layers denoted as:

sB(x) = Linear(x), sC(x) = Linear(x), (5)

where sB(x) and sC(x) are the parameter matrixs B and C with regard to the input x, respectively.

3.2 PROBLEM FORMULATION

Given an image pair (I, I′), we employ off-the-shelf feature detectors and descriptors to extract
keypoints from both images. Subsequently, employing the nearest neighbor (NN) method, we
establish initial putative matches. Denoted as C = [c1; c2; · · · ], where ci = {(xi, yi, x′i, y′i)|i =
1, · · · , N}, (xi, yi) and (x′i, y

′
i) represent the coordinates of the i-th keypoints in respective images.

In analogy to Yi et al. (2018), we approach the two-view correspondence learning problem as an
inlier/outlier classification and an essential matrix regression. For the putative correspondences C ∈
RN×4, to extract the deep information, they are usually upscaled to get F = {f1, f2, · · · , fi} ∈ RN×d.
Moreover, we establish an inlier predictor at each layer of the network for simultaneous training,
with only the last predictor yielding the probability value P = [p1, p2, · · · , pN ]T ∈ RN×1, where
pi ∈ [0, 1) signifies the probability that the corresponding ci is an inlier. Like other learning-based
methods (Liu et al., 2021; Liu & Yang, 2023; Li et al., 2024), we employ a weighted eight-point
method based on P to directly estimate the essential matrix. The entire process is encapsulated as
follows:

P̂ = fφ(C), Ê = g(P̂,C), (6)

where fφ(·) undertakes inlier prediction, and g(·) signifies the estimation of the parametric model.

4 METHODOLOGY

In order to adaptively learn to mine the meaningful information of inliers and discard the redundant
counterpart of outliers, we introduce a mamba-inspired network named MambaMatch. As depicted in
Figure 2, our framework initiates with the Position-Context Initialization (see Figure 2(b)) for feature
upscaling, proceeds with LCEM (see Figure 2(c)) for learning local context and CAMF for selectively
mining useful information, and culminates in the Cluster-Sequence Block as well as Inlier Predictor
(see Figure 2(d)) to obtain inlier probabilities. Drawing on the works of Zhang et al. (2019) and Liu &
Yang (2023), we combine the Cluster-Sequence Block in our framework without delving into intricate
specifics. In addition, we will describe CAMF in detail and give a specific structure in Section 4.1.
Notably, the MambaMatch layer (see Figure 2(a)), a fusion of LCEM, CAMF, and Cluster-Sequence
Block, constitutes the stacked layers denoted by L (e.g., L = 4 in our implementation).
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Figure 2: Framework diagram of MambaMatch. We use the putative set of correspondences obtained
by off-the-shelf descriptors and detectors as input and finally obtain the inlier probability of each
correspondence through the network.

4.1 CHANNEL-AWARE MAMBA FILTER

As mentioned earlier, the significance of the information provided by inliers and outliers varies.
Strategically mining and effectively utilizing the insights from these diverse points are crucial for
corresponding pruning. To this end, leveraging Mamba’s inherent selection traits, we design a
Mamba-based filter. This enables the network to inherit Mamba’s characteristics, allowing it to focus
on the inputs from inliers while disregarding outlier information and compressing the deep features
into more concise representations. First of all, we can rewrite Equation 3 as:

FM = SSM(K̄F ,FLC) = K̄F ∗ FLC , (7)

where FLC denotes the input of this module, i.e., the enhanced feature obtained from the original input
F after LCEM, which will be introduced concretely in Section 4.2, and K̄F means the convolutional
kernel. To further realize the selectivity as expressed in Equation 5, we perform this function using
the left part of Figure 3. In conclusion, it can be delineated as follows:

FM = FLC +M(SSM(CNN(M(FLC)))� δ(M(FLC))), (8)

where M(·) means MLP, CNN(·) denotes 1D convolutional neural network, � refers to the
Hadamard product, i.e., the product between elements, and δ(·) represents the activation function,
i.e., SiLU (Shazeer, 2020).
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Figure 3: Architecture of Chnnal-Aware Mamba Filter.

Therefore, as mentioned above, the pro-
posed Mamba Filter can focus on or dis-
card particular inputs to mining useful in-
formation, but it underperforms in cross-
channel information access (Guo et al.,
2024) while channel-wise information
is significant in high-quality correspon-
dence recognition. To enhance the ex-
pressive power of different channels, we
customarily design a channel-aware module as shown in Figure 3, denoted as:

FCA = FM �W, (9)

where W represents the expressive capabilities of different channels, we define weights:

W = Sigmoid(M(δ(M(AP(FM ))))), (10)

where δ(·) means ReLU activation fuction, while AP(·) denotes average pooling. Additionally, for
chaotic putative matches, it is necessary to supplement channel learning with context information.
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Following Yi et al. (2018), we introduce Context Normalization and optimize Equation 9 and
Equation 10 as:

FCA = FCN �W ′,
FCN = δ(BN(CN(FM ))),

W ′ = Sigmoid(M(δ(M(AP(FCN ))))),

(11)

where CN(·) and BN(·) denotes Context Normalization and Batch Normalization. Through this
approach, our Mamba Filter can focus on learning distinct channel representations and subsequently
select crucial channels via subsequent channel attention, thereby circumventing channel redundancy.

4.2 LOCAL CONTEXT ENHANCEMENT MODULE

Though Mamba (Gu & Dao, 2023) excels in global information acquisition, it’s also essential
to consider local context learning (Zhang et al., 2019) for two-view learning. To this end, we
design a Local Context Enhancement Module (LCEM) to improve the acquisition of local context.
In order to take full advantage of the information between local nodes, we construct a neighbor
graph Gi = {Vi, Ei} in the feature space for each correspondence fi based on its spatial adjacency.
Vi = {fi1, · · · , fik} denotes the k-nearest neighbors of fi and Ei = {ei1, · · · , eik} denotes the
directed edges connecting the anchor and its neighbors in the feature space. We use an edge
construction strategy similar to Zhao et al. (2021):

eij = [fi||fi − fij ], j = 1, 2, · · · , k, (12)

where [·||·] denotes the concatenation operation along the channel dimension.

Once the graph of the feature space is constructed, we need to consider how to effectively mine
intra-neighborhood consistency. To address the exigencies of real-world scenarios characterized
by substantial disparities and sparse matches, we advocate for the adoption of circular pooling, an
approach poised to capture the nuanced neighborhood consistency inherent in matches. Concretely,
our method entails the initial segmentation of the k nearest neighbors surrounding the anchor into
k
p cohorts, where p constitutes a divisor of k and means the number of neighbors in each cohort.
Subsequent to two iterations of circular pooling, the resulting formulation is expressed as:

FCP = CP2(CP1(Ei)). (13)

Here CPi(·) denotes the circular pooling, i.e., the convolutions with 1 × k
p kernels and 1 × p

respectively. In addition, to incorporate more contextual information, we continue to increase the
context-aware capability of circular pooling. Specifically, we perform the context normalization as
before on the output of the circular poolings, which can be represented as follows:

FLC = δ(BN(CN(FCP ))), (14)

where FLC is subsequently fed into the CAFM for selective information extraction.

In summary, our initial input feature F is finalized by LCEM and CAMF to get FCA with Equation 13,
Equation 14, Equation 8 and Equation 11. Next, we use the inlier predictor IP(·) as shown in
Figure 2(d) to predict the probability of getting the match to be an inlier, denoted as follows:

p = IP(FCA). (15)

4.3 LOSS FUNCTION

We choose a widely used loss function (Yi et al., 2018; Zhang & Ma, 2023) as:

L =

L∑
l=1

αLcls(
(l)p,Z) + βLreg(

(l)Ê,E). (16)

Herein, p represents the output probabilities of an inlier predictor as shown in Equation 15, Z =
{zi}Ni=1 encapsulates weakly supervised labels derived via geometric error (Hartley & Zisserman,
2003), Ê denotes the estimated essential matrix, and E stands for the ground-truth. α and β are
adeptly employed to harmonize the contributions of the two loss terms. Lcls(·) denotes a rudimentary

6
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binary cross-entropy loss designed for the classification aspect, while Lreg(·) is ascertained utilizing
the Sampson distance (Hartley & Zisserman, 2003):

Lreg (Ê,E) =

N∑
i=1

(
t′>i Êti

)2
‖Eti‖2[1] + ‖Eti‖2[2] + ‖ET t′i‖

2
[1] + ‖ET t′i‖

2
[2]

, (17)

where ti and t′i represent two keypoints that constitute the correspondence ci, and ||v||[i] denotes the
i-th element of vector v.

4.4 IMPLEMENTATION DETAILS

For implementation, we normalize the coordinates of keypoints to [-1, 1] with image size or camera
intrinsic. Our MambaMatch consists of L = 4 stacked MambaMatch layers. The geometric error
threshold is set to 10−4. The model is optimized by Adam (Kingma & Ba, 2022), and the learning
rate is set to 10−3 during the first 80k iterations then decaying with a factor of 0.999996 every step.
We use a batch size of 32, with weights β starting at 0 and then 0.5 after the first 20k iterations,
while α is fixed at 1 throughout the training process. Training is terminated after 700k iterations. All
training and testing are performed with a single RTX3090 GPU.

5 EXPERIMENT

5.1 RELATIVE POSE ESTIMATION

Table 1: Results (AUC@5°/@10°/@20°) of relative pose esti-
mation. The best results are marked in bold.

Method YFCC100M SUN3D
GMS 13.29/24.38/37.83 4.12/10.53/20.82
LPM 15.99/28.25/41.76 4.80/12.28/23.77
CRC 16.51/28.01/41.38 4.07/10.44/20.87
VFC 17.43/29.98/43.00 5.26/13.05/24.84
PointCN 26.73/44.01/60.49 6.09/15.43/29.74
OANet 27.26/45.93/63.17 6.78/17.10/32.41
CLNet 31.45/51.06/68.40 6.67/16.81/31.45
ConvMatch 31.69/51.41/68.45 7.32/18.45/34.41
NCMNet 32.30/52.29/69.65 7.10/18.56/35.58
MC-Net 33.02/52.42/69.23 7.40/18.72/34.81
MambaMatch (Ours) 33.48/53.23/70.48 7.67/18.87/34.87

Datasets. In experiments for rel-
ative pose estimation, we choose
the YFCC100M dataset (Thomee
et al., 2016) to demonstrate our
method’s capability to learn in out-
door environments and the SUN3D
dataset (Xiao et al., 2013) to show-
case its performance in indoor set-
tings. The YFCC100M dataset
consists of 100 million outdoor im-
ages collected from the web and is
divided into 72 distinct sequences.
In line with previous research (Yi
et al., 2018), we allocate 68 se-
quences for training and validation
purposes, while the remaining 4 sequences are earmarked for testing. As for the SUN3D dataset,
it contains original indoor RGBD video frames, from which we sample every 10th frame. We
select 239 sequences for training and validation, following the testing protocol established by other
methods (Zhang et al., 2019; Li et al., 2024), which reserves 15 sequences exclusively for testing.

Evaluation Protocols. We assess the accuracy of pose estimation by analyzing the area under the
cumulative error curve (i.e., AUC) for pose errors across various thresholds (5°, 10°, 20°). Pose error
is defined as the maximum of the angular error in rotation and translation. We use SIFT (Lowe, 2004)
to extract up to 2k keypoints and acquire putative matches with the NN method.

Baseline. In our experiments, we categorize the approaches based on their underlying principles
and endeavor to compare a wide array of the SOTA, encompassing traditional approaches (GMS (Bian
et al., 2017), LPM (Ma et al., 2019), CRC (Fan et al., 2023), VFC (Ma et al., 2014)) and learning-
based techniques (PointCN (Yi et al., 2018), OANet (Zhang et al., 2019), CLNet (Zhao et al., 2021),
ConvMatch (Zhang & Ma, 2023), NCMNet (Liu & Yang, 2023), MC-Net (Li et al., 2024)).

Results. Table 1 presents the estimation outcomes for both the YFCC100M dataset and the
SUN3D dataset. Drawing upon pertinent literature (Sarlin et al., 2020; Zhao et al., 2021), we
adopt RANSAC (Fischler & Bolles, 1981) as our robust essential matrix estimator. Employing
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OANet LMCNet ConvMatch MambaMatch (Ours)

Figure 4: Qualitative illustration of outlier rejection. False matches are marked with red (—) while
correct matches are with green (—). The relative pose estimation results (error of rotation and
translation) are provided in the top left corner of each image pair. Please zoom in for a better view.

the innovative Mamba architecture for feature matching, we juxtapose our proposed MambaMatch
against popular methodologies. It is evident that our method surpasses nearly all qualitative assess-
ments compared to the previous SOTA methods, with the closest competitor significantly trailing
behind us in terms of time efficiency (refer to Section 5.3). Additionally, we provide qualitative
insights into outlier rejection, as illustrated in Figure 4. Our approach excels at preserving inliers and
effectively eliminating outliers, thereby achieving relative pose estimation with minimal rotational
and translational errors. We present additional visualizations in the Appendix.

5.2 VISUAL LOCALIZATION

Table 2: Visual localization results.

Method Day Night
(0.25m,2°)/(0.5m,5°)/(1.0m,10°)

PointCN 83.1/92.2/96.2 69.4/79.6/89.8
OANet 83.3/92.5/96.6 71.4/80.6/90.8
CLNet 83.3/92.4/97.0 71.4/80.6/93.9
MS2DGNet 84.2/92.8/97.0 74.5/83.7/91.8
LMCNet 84.1/92.8/97.1 71.4/81.6/93.9
ConvMatch 84.5/92.7/96.8 73.5/83.7/91.8
MambaMatch (Ours) 85.1/93.0/97.1 72.4/83.7/93.9

To substantiate the practical applicabil-
ity of our approach, we conduct experi-
ments on visual localization using the of-
ficial HLoc pipeline (Sarlin et al., 2019).
Engineered to pinpoint the 6-degree-of-
freedom (6-DOF) orientation of query
images within a 3D architectural context,
this framework serves as the foundation
for our assessment. Building upon it,
we scrutinize the proficiency of our tech-
nique in yielding robust matching outcomes under demanding conditions, including shifts in viewpoint
and transitions from daytime to nocturnal illumination.

Datasets. Skin to Li et al. (2024), we leverage the well-established HLoc pipeline to assess the
effectiveness of our methodology in visual localization using the Aachen day-night dataset (Sattler
et al., 2018). This dataset encompasses 4328 images capturing Aachen city, accompanied by 922
query images, comprising 824 daytime and 98 nighttime snapshots, all meticulously captured by
smartphone cameras.

Evaluation Protocols. As per the authoritative assessments (Sarlin et al., 2019), we present the
proportion of accurately localized queries within specified thresholds of distance and orientation. It’s
noteworthy that we employ SIFT (Lowe, 2004) to extract up to 4, 096 keypoints from each image.
These keypoints are subsequently matched utilizing the NN to establish putative correspondences.
Following this, triangulation is performed on the SfM model using daytime images with known poses.
Finally, we leverage correspondence learning for 2D matching and register nighttime query images
with the COLMAP framework (Schonberger & Frahm, 2016).

Results. Table 2 shows the results of visual localization. MambaMatch achieves the best results
in most conditions both daytime and nighttime. Additionally, the qualitative results are shown in
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Figure 5: Visualization of visual localization. Please zoom in for a better view.

Figure 5. Red dots represent outliers, while green lines connect inliers. The top left corner displays
the proportion of inliers among all detected points. Apparently, our method is able to accurately
locate the correct match for scenes with large viewpoint changes, occlusion, and lighting changes.

5.3 ANALYSIS

Table 3: Computational usage.
Method P. (M) Flops. (G) T. (ms)
LMCNet 0.925 - 227.15
NCMNet 4.485 8.717 138.36
MC-Net 50.393 8.720 49.40
MambaMatch (Ours) 3.476 7.810 36.45

Computational Usage. The previous
experiments demonstrate the effective-
ness of our approach on various visual
tasks. To further validate the efficiency
of our method, we evaluate several per-
formance metrics, including model pa-
rameters (P.), floating-point operations
(Flops.), and average running time per
image (T.). These evaluations are conducted using the same test dataset (4k images, each extracted 2k
keypoints using SIFT (Lowe, 2004)). The results, presented in Table 3, indicate that our method offers
advantages over vanilla attention-based methods. While LMCNet (Liu et al., 2021) significantly
reduces model size by leveraging additional library functions, its time consumption is relatively
high due to graph construction and matrix decomposition used to solve explicit regularization terms.

Table 4: Compatibility with Matchers.

Matcher Filter Estimator @5° @10° @20°

SP + SG

7 RANSAC 38.06 58.38 74.67
X 38.58 58.92 75.13
7 PROSAC 39.41 59.00 74.91
X 40.19 59.48 75.81

SP+LG

7 RANSAC 39.42 59.69 75.89
X 39.63 59.81 76.02
7 PROSAC 39.93 59.82 74.21
X 40.26 59.95 74.97

LoFTR

7 RANSAC 39.84 60.51 76.42
X 41.45 62.06 77.64
7 PROSAC 42.58 58.14 70.04
X 42.65 59.24 71.70

Compatibility with Matchers. In the
experiments described above, we thor-
oughly showcase the outstanding capabil-
ities of MambaMatch when utilized with
SIFT (Lowe, 2004) and the NN match-
ers. Serving as a versatile backend out-
lier filter, we assessed the performance of
MambaMatch on YFCC100M (Thomee
et al., 2016) for relative pose estima-
tion, with or without various widely
adopted matchers. These include Super-
Point (DeTone et al., 2018) paired with
SuperGlue (Sarlin et al., 2020) (referred
to as SP + SG), SuperPoint paired with
LightGlue (Lindenberger et al., 2023)
(referred to as SP + LG), and LoFTR (Sun et al., 2021), while employing RANSAC (Fischler
& Bolles, 1981) or PROSAC (Chum & Matas, 2005)for pose estimation. For SP + SG and SP + LG,
we adhere to the settings of SuperGlue and detect up to 2, 048 keypoints. Evaluation procedures
for LoFTR closely follow those outlined in Truong et al. (2021). It’s worth noting that, in line with
recommendations from similar experiments in Liu et al. (2021), we refrain from employing a filtering
strategy in each method, opting instead to retain all putative correspondences as inputs. The findings
presented in Table 4 demonstrate that as a generalized outlier filtering approach, MambaMatch
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Table 5: Generalization ability test. We report the AUC@5 metric, highlighting the best results in
bold and the second-best results with underlining.

Method YFCC100M SUN3D

SIFT RootSIFT LIFT SuperPoint SIFT RootSIFT LIFT SuperPoint
PointCN 26.73 27.33 19.06 24.74 5.89 6.06 5.10 5.31
OANet 27.26 30.05 21.54 26.31 5.42 5.83 5.07 5.21
CLNet 31.45 32.42 22.48 27.44 6.39 6.52 4.85 3.37
LMCNet 30.48 31.65 23.36 26.77 5.71 5.98 5.40 5.52
ConvMatch 31.69 33.05 24.38 29.43 5.96 6.26 5.40 5.56
MambaMatch (Ours) 33.48 34.44 25.45 29.39 6.16 6.30 5.58 6.61

consistently enhances advanced matchers and can serve as a complementary module in practical
applications.

Generalization Ability. To evaluate the performance of MambaMatch in various scenarios
with descriptors, we first trained several learning-based methods using SIFT (Lowe, 2004) on
YFCC100M (Thomee et al., 2016). We then test these models on YFCC100M with RootSIFT (Arand-
jelović & Zisserman, 2012), LIFT (Yi et al., 2016), and SuperPoint (DeTone et al., 2018), as well
as on SUN3D (Xiao et al., 2013) using SIFT, RootSIFT, LIFT, and SuperPoint for pose estimation.
For each image, we extracted up to 2k keypoints using different descriptors, with putative matches
generated using the NN method. As shown in Table 5, MambaMatch consistently achieved the best
results in almost all cases, clearly demonstrating its superior generalization ability.

Table 6: Results of ablation studies.

N LCEM CAMF F.F. L.F. @5°Mamba C.A.
i. X 30.60
ii. X X 30.64
iii. X X 30.22
iv. X X 32.53
v. X X X 33.48
vi. X X X 31.84
vii. X X X 31.36

Ablation Studies. We conduct abla-
tion studies by repeatedly performing
relative pose estimation. The results
are presented in Table 6. Here, LCEM
means our proposed Local Context En-
hancement Module, Mamba refers to the
vanilla Mamba Filter we introduced, and
C.A. indicates whether a channel-aware
design is applied to the Mamba or not.
We report the AUC@5°using RANSAC
as an estimator on YFCC100M (Thomee
et al., 2016). As shown in i) and ii), ordinary Mamba has a limited increase in modeling capability,
while C.A. in iv) makes for a larger performance improvement. And comparisons between iv) and v)
can demonstrate the positive contribution of capturing local context. The best results are achieved
when the full set of our proposed modules is utilized. In addition to the ablation of the fundamental
structure, we also explored the substitution of our Mamba Filter with alternative attention mechanisms,
as illustrated in vi) and vii). Both FastFormer (F.F.) (Wu et al., 2021) and LinFormer (L.F.) (Wang
et al., 2020) are found to be slightly inferior to our approach.

6 CONCLUSION AND PROSPECTS

In this paper, we design a novel network named MambaMatch for two-view correspondence learning.
Inspired by the selective state space model, MambaMatch can focus on or discard particular inputs.
Specifically, by targeting the distinguishability of inliers and outliers in the high-dimensional hidden
space, the network gives different focus to the two, so that it can pay more focus to the useful
information brought by the inliers while discarding the interfering information of the outliers to
realize high-precision correspondence pruning. Meanwhile, since ignoring irrelevant information will
compress the context at the same time, resulting in redundant information being discarded directly,
this makes the model have subquadratic complexity. This is relatively friendly for handling real-time
tasks. A large number of experiments prove the superior performance of our method.

Additionally, our approach, which focuses on the selection characteristics of Mamba, may offer
insights for a range of tasks with a high proportion of noisy information interference.
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A APPENDIX

A.1 QUALITATIVE RESULTS FOR RELATIVE POSE ESTIMATION

We show more visualization results (including OANet Zhang et al. (2019), LMCNet Liu et al. (2021),
ConvMatch Zhang & Ma (2023) and MambaMatch) of outlier rejection and relative pose estimation
for outdoor scenes (the 1-st row to the 6-th row) and indoor scenes (the 7-th row to the 10-th row) in
Figure 6. Note that our MambaMatch is able to handle more complex scenes of large viewing angle
deviation with good results.

OANet LMCNet ConvMatch MambaMatch (Ours)

Figure 6: Qualitative illustration of outlier rejection. False matches are marked with red (—) while
correct matches are with green (—). The relative pose estimation results (error of rotation and
translation) are provided in the top left corner of each image pair. Please zoom in for a better view.

A.2 LIMITATIONS

Although our method has outperformed most attention-based methods in terms of efficiency, it
perhaps leaves much to be desired in terms of time and space when compared to MLP-based methods.
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In addition, compared with powerful dense matching methods, our method may also fall short in
performance.
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