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Abstract

Artificial intelligence (AI) is interacting with people at an unprecedented scale, offering
new avenues for immense positive impact, but also raising widespread concerns around the
potential for individual and societal harm. Today, the predominant paradigm for human–AI
safety focuses on fine-tuning the generative model’s outputs to better agree with human-
provided examples or feedback. In reality, however, the consequences of an AI model’s
outputs cannot be determined in isolation: they are tightly entangled with the responses and
behavior of human users over time. In this paper, we distill key complementary lessons from
AI safety and control systems safety, highlighting open challenges as well as key synergies
between both fields. We then argue that meaningful safety assurances for advanced AI
technologies require reasoning about how the feedback loop formed by AI outputs and human
behavior may drive the interaction towards different outcomes. To this end, we introduce a
unifying formalism to capture dynamic, safety-critical human–AI interactions and propose
a concrete technical roadmap towards next-generation human-centered AI safety.

1 Introduction

About 90 million people fly around the world every week (ICAO, 2019), protected by an intricate mesh
of safety measures, from certified physical and software components to thoroughly trained human pilots.
Within just a year of becoming broadly available, ChatGPT has surpassed air travel’s weekly usage at 100
million users (Heath, 2023), becoming one of the most widely used technologies in human history. What is
protecting these 100 million weekly users?

Figure 1: We identify a high-value window
of opportunity to combine the growing ca-
pabilities of generative AI with the robust,
interaction-aware dynamical safety frame-
works from control theory. This synergy
can unlock a new generation of human–AI
safety mechanisms that can perform sys-
tematic risk mitigation at scale.

In the age of internet-scale generative artificial intelli-
gence (AI), the problem of AI safety has exploded in interest
across academic (Russell, 2019; Hendrycks et al., 2021), corpo-
rate (Amodei et al., 2016; Ortega et al., 2018; OpenAI, 2022a),
and regulatory communities (White House, 2023; Union,
2021). Driving this interest is the fact that generative AI is
fundamentally interactive: users engage with it through typed
or spoken dialogue, generating essays, computer code, and
visual art (OpenAI, 2022b). This wide-spread use has begun
to expose the breadth of individual and social risks that these
new technologies carry when used by people. For example,
large language models (LLMs) have produced dialogue that
fueled a person’s thoughts of self-harm (Xiang, 2023) and gen-
erative art models have been found to produce sexist images
(OpenAI, 2022c), which can exacerbate gender divides. Even
with a growing body of literature aimed to address these open
challenges (Casper et al., 2023), we still lack a unified grasp
on human–AI interaction that enables rigorous safety analysis,
systematic risk mitigation, and reliable at-scale deployment.
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At the same time, despite some undeniably unique considerations, these concerns are not exclusive to gen-
erative AI. Safety has long been a core requirement for deploying autonomous systems at scale in embodied
domains like aviation (Tomlin et al., 1998; Kochenderfer et al., 2012), power systems (Dobbe et al., 2020),
robotics (Haddadin et al., 2012; ISO 15066; Bostelman et al., 2018), and autonomous driving (Althoff &
Dolan, 2014; ISO 22737:2021). To meet this requirement, the control systems community has pioneered
safety methodologies that naturally model the feedback loops between the autonomous system’s decisions
and its environment. In the last decade, safety efforts have focused on feedback loops induced by human
interaction: autonomous cars that interact with diverse road users such as cyclists, pedestrians, and other
vehicles (Noyes, 2023), or automated flight control systems that negotiate for control with pilots (Nicas et al.,
2019). Unfortunately, obtaining assured autonomous behavior that generalizes across human interactions in
multiple contexts remains a central open challenge.

In this paper, we argue that the fields of AI and control systems have common goals and complementary
strengths for solving human–AI safety challenges. On one hand, control systems provide a rigorous math-
ematical and algorithmic framework for certifying the safety of interactive systems, but so far it has been
limited by hand-engineered representations and rigid, context-oblivious models of human behavior. On the
other hand, the AI community has pioneered the use of internet-scale datasets to unlock remarkably general
latent representations and context-aware human interaction models, but it lacks a mature framework for
automatically analyzing the dynamic feedback loops between AI systems and their users.

Our survey of the safety landscape across AI and control systems reveals a high-value window of opportunity
to connect control-theoretic safety assurances with the general representations and rich human interaction
modalities offered by generative AI. Applying a unified lens, we propose a concrete technical roadmap towards
human-centered AI systems that can anticipate, detect, and avoid potential future interaction hazards. We
believe that technical progress in this direction will prove achievable and fruitful, but only through close
collaboration between researchers and practitioners from both the AI and control communities. Our hope is
to inspire a human–AI safety community that is a true descendant of generative AI and control systems safety.

Statement of Contributions: This paper identifies new synergies between AI and control systems safety,
culminating in a unifying analytical framework that formalizes human–AI safety as an actionable technical
problem. Our core contention is that AI safety should be treated as a dynamic feedback loop: a multi-step
process wherein current AI decisions and the resulting human responses influence future safety outcomes.
We make three contributions:

1. Lessons learned from AI and control systems. In Section 3, we outline the complementary
lessons that can be drawn from AI safety and control systems safety, highlighting synergies between
control systems formalisms and generative AI capabilities, as well as open challenges in both fields.

2. A technical roadmap for human–AI safety. In Section 4 we synthesize the insights gained
from our survey into a concrete technical roadmap. Specifically, we formulate a human–AI game
which mathematically models the multi-agent, dynamic interaction process between people and
increasingly capable AI. Along the way, we rigorously define the safety assurances we can hope for
in human–AI safety, outline the necessary mathematical models, and the open technical challenges.

3. Frontier framework: Human–AI safety filters. In Section 5, we extend a foundational control-
theoretic safety mechanism to the human–AI domain. We propose Human–AI safety filters which
rigorously monitor the operation of an AI at runtime and (minimally) modify its intended action
to ensure safety satisfaction. By mathematically formulating safety filters for general human–AI
systems, we present a concrete technical challenge poised for collaboration between the control
systems and AI community.

2 Values vs. Needs: Defining Safety-Critical Human–AI Interaction

Before we can proceed, we must answer the question “What defines a safety-critical human–AI interaction?”
In addition to AI safety’s current focus on value alignment, we argue that a high-stakes AI system must
also understand human needs, whose violation could result in unacceptable, often irreparable damage to
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(a) Safety in human–automation systems. An
autonomous car driving at high speed on the high-
way approaches stopped traffic. Determining which
present action (e.g., brake or accelerate) will pre-
vent future constraint violation (i.e., collision) is a
fundamental aspect of safety-critical control.

(b) Safety in human–AI dialogue. The AI chatbot must
decide an utterance (i.e., “action”) to help the child prepare their
food. Simply recommending the child take a bowl in the present
can cause a constraint violation in the future, when the child
puts a metal bowl in the microwave. A safe utterance avoids
this preemptively, specifying to take a microwave-safe bowl.

Figure 2: Examples of safety in embodied human–automation systems vs. human–AI dialogue.

people. In the mathematical representation of the AI’s decision problem, human values correspond to the
optimization objective (e.g., reward accrued over time or preferences), whereas human needs correspond to
the hard constraints that must always be satisfied.

We thus define safety as the continued satisfaction of the human’s critical needs at all times. In this paper,
we study human–AI interaction as a closed-loop dynamical system driven by the human’s actions and the
AI’s outputs, which jointly influence the AI’s learning and the human’s future behavior. We define a safety-
critical human–AI system as one in which the violation of a critical human need is possible during the
interaction evolution, and therefore the decisions made by the AI must actively ensure that such violations
do not happen. Even a seemingly innocuous AI chatbot can induce catastrophic outcomes for the human,
such as irreparable financial loss resulting from poor investment recommendations (Hicks, 2023) or bodily
harm (Xiang, 2023). We argue that, since any practical AI system will be uncertain about the human’s
current internal state, and therefore their future actions, it should be required to ensure that safety can be
maintained for any conceivable human behavior (including appropriately pessimistic instances). These key
considerations are laid out more formally in our human–AI systems theory roadmap in Sections 4 and 5.

3 Human-in-the-Loop Safety: Complementary Lessons from AI and Control

Over the past decades, the control systems and AI communities have developed complementary insights on
how to model human interaction and assess the safety of an intelligent system. In this section, we review
the technical progress in each field and highlight synergies between their respective tools and frameworks.

3.1 Lessons From Control Systems

The fundamental problem underpinning safety-critical control is that present actions which do not appear
to violate constraints can still steer the system into states from which it is impossible to avoid catastrophic
failures in the future. For example, consider the autonomous car approaching a traffic jam in Figure 2a:
even though accelerating would not immediately cause a collision, it could doom the car to rear-end stalled
traffic in a few moments, despite any later attempts to slow down; instead, if the car starts braking now, it
can come to an eventual stop before reaching the traffic jam. While this case may appear straightforward,
automatically determining where (from what states) and how (through what course of action) an autonomous
system can maintain safety is an extremely challenging problem, especially in uncertain conditions and in the
presence of other agents (Bansal et al., 2017; Luckcuck et al., 2019; Brunke et al., 2022; Dawson et al., 2023).

Dynamical Safety Filtering. Safety filters are an increasingly popular family of approaches that aim
to ensure safety for any autonomous task policy (Hewing et al., 2020; Hsu et al., 2024; Wabersich et al.,
2023). The filter automatically detects candidate actions that could lead to future constraint violations and
suitably modifies them to preserve safety. Broadly, safety filters may rely on a value function to classify
(and steer away from) unsafe states (Mitchell et al., 2005; Margellos & Lygeros, 2011; Fisac et al., 2015;
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Singh et al., 2017; Ames et al., 2019; Qin et al., 2021; Chen et al., 2020; Li et al., 2023; Dawson et al.,
2022) or roll out potential scenarios to directly predict (and steer away from) future violations (Mannucci
et al., 2017; Bastani, 2021). While traditionally many of the numerical tools with formal guarantees were
not scalable to high-dimensional systems, the past two decades have demonstrated significant theoretical
and computational advances for certifying general high-dimensional systems via safety-critical reinforcement
learning (Akametalu et al.; Fisac et al., 2019; Hsu et al., 2023), deep safety value function approximation
(Darbon et al., 2020), classification (Allen et al., 2014; Rubies-Royo et al., 2019), and self-supervised learning
(Bansal & Tomlin, 2021). These approaches are already leveraging modern tools pioneered by the AI
community to obtain scalable assurances, establishing a natural bridge with other AI paradigms, such as
generative models.

Synergies with AI. We see a major opportunity to advance these rigorous safety frameworks to the implicit
representations and context-aware models of interactive generative AI systems. Consider the example in
Figure 2b, which hypothesizes a safety-critical human–AI dialogue interaction. When the child asks for help
preparing food, the AI chatbot must determine what current utterance (i.e., “action”) could potentially yield
safety violations. A recommendation to put any bowl in the microwave can result in the child dangerously
microwaving a metal bowl in the future. With a safety filter, the AI should mitigate this preemptively by
modifying the utterance to specify a microwave-safe bowl. Translating this intuitive example to control
systems safety approaches will require new formalisms amenable to the latent representations implicit in
interaction (e.g., language-based representations) and encoding safety constraints that are hard to hand-
specify exhaustively (e.g., metal is dangerous in microwaves).

Human–Automation Systems Safety. The core modeling framework enabling human–automation sys-
tems safety is robust dynamic game theory (Isaacs, 1954; Başar & Olsder, 1998). In such zero-sum dynamic
games, the automation system (e.g., robot) must synthesize a safety-preserving strategy against realizations
of a “virtual” human adversary policy. Within this model lies another key lesson from control systems, the
operational design domain (ODD), which specifies the conditions and behavioral assumptions under which
the system can be expected to operate safely (On-Road Automated Driving Committee, 2021). For example,
in domains like aircraft collision avoidance (Vitus & Tomlin, 2008), the ODD specifies the limits of each air-
craft’s thrust and angle of attack that they can apply during game-theoretic safety analysis. In the absence
of high-quality human models, the safest ODD has traditionally been a rigidly pessimistic one, often yielding
overly conservative automation behavior even in nominal interactions (Bajcsy et al., 2020). To mitigate this,
the control systems community has explored leveraging hand-designed (Althoff et al., 2011; Liu et al., 2017;
Orzechowski et al.), planning-based (Bajcsy et al., 2020; Tian et al., 2022), or data-driven (Driggs-Campbell
et al., 2018; Li et al., 2021a; Nakamura & Bansal, 2023; Hu et al., 2023) models of human behavior to obtain
predictive human action bounds under which the safety assurance is then provided. Nevertheless, obtaining
assurances under generalizable and context-aware predictive models of human interaction with automation
is still an open problem.

Synergies with AI. We see a key opportunity to leverage better models of humans that encode generalizable
context and semantics of interaction. Furthermore, there is an open challenge on how to capture “appropriate
pessimism” in these data-driven predictive human models so that the resulting assurances are robust but
not unduly conservative. We explore this further in Section 3.2.

3.2 Lessons From AI

Many insights can be drawn from the decades-long history of AI Wiener, we focus our attention on the last
decade from advanced (often web-scale) generative models. First, we discuss the landscape of existing AI
safety mechanisms—from value alignment to monitoring—shedding light on where control systems techniques
are best suited to make impact. Then, we discuss the frontier of using generative AI as agent “simulators”,
which offers a strategic bridge between control systems safety frameworks and AI capabilities.

Generative AI Safety Mechanisms. Broadly speaking, the predominant AI safety mechanisms can be
divided into three categories: training-time alignment, evaluation-time stress-testing, and deployment-time
monitoring (see Amodei et al. (2016) and Hendrycks et al. (2021) for detailed overviews). Training-time
methods typically focus on value alignment, which is a central technical problem concerned with building
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“models that represent and safely optimize hard-to-specify human values” (Hendrycks et al., 2021) and is
dominated by techniques such as reinforcement learning from human feedback (Ouyang et al., 2022; Ziegler
et al., 2019; Lee et al., 2023; Munos et al., 2023; Swamy et al., 2024; Chen et al., 2024) and direct preference
optimization (Rafailov et al., 2023; Wallace et al., 2023). These training-time paradigms are complemented
by adversarial stress-testing, such as red-teaming (Ganguli et al., 2022; Perez et al., 2022; Wei et al., 2023;
Achiam et al., 2023; Qi et al., 2023), wherein the stress-tester (human or automated) aims to explicitly elicit
unsafe outputs from the trained generative model. Unsafe input-output pairs can be used in a variety of ways,
such as training classifiers to detect offensive content (Perez et al., 2022) or re-training the model with all the
classified harmful outputs replaced by non-sequiturs (Xu et al., 2021). Finally, monitoring is concerned with
deployment-time safety, and is rooted in anomaly detection (Chandola et al., 2009) which seeks to identify
out-of-distribution (Schlegl et al., 2017; Hendrycks et al., 2018; Goyal et al., 2020) or explicitly adversarial
inputs (Brundage et al., 2018).

Synergies with Control. The AI community’s goals of adversarial stress-testing and monitoring are most
closely aligned with the goals of control systems safety (Section 3.1). It is precisely in this context where
we see a high-value opportunity: in human–AI interaction, the detection of an unsafe input alone is not
enough; detection must be tightly coupled with the automatic synthesis of mitigation strategies. This kind
of detection and mitigation coupling is precisely what control systems safety frameworks excel at. Crucially,
these mitigation strategies transcend short-sighted measures by incorporating long-horizon foresight on how
a sequence of interactions can influence the system’s future safety.

Generative AI as Agent Simulators. Thanks to the explosion of human behavior data in the form of
physical motion trajectories, YouTube and broadcast videos, internet text and conversations, and recorded
virtual gameplay, we are seeing generative AI as an increasingly promising agent simulator. In physical
settings, generative AI has dominated motion prediction in the context of autonomous driving (Ivanovic
et al., 2018; Seff et al., 2023) and traffic simulation (Bergamini et al., 2021; Suo et al., 2021; Zhong et al.,
2023), enabled synthesizing complex full-body human motion such as playing tennis (Zhang et al., 2023),
and generated realistic videos of ego-centric human behavior from text prompts (Du et al., 2023). For non-
embodied agents, new results also show promise for using generative language models to simulate human-like
conversations (Hong et al., 2023), to plan the high-level behavior of interactive video game agents (Park et al.,
2023), and to play text-based strategy games such as Diplomacy in a way that is indistinguishable from people
(Meta et al., 2022).

Synergies with Control. As discussed in Section 3.1, access to generalizable and context-aware human models
is an outstanding challenge in human–automation safety. Embedding these increasingly sophisticated gener-
ative AI agent simulators within control systems safety frameworks has the potential to enable human-aware
AI stress-testing, monitoring, and mitigation strategy synthesis.

4 Towards a Human–AI Systems Theory

We envision a new technical foundation for human–AI interaction that combines the rigorous mathematical
principles underpinning control systems with the flexible, highly general representations that characterize
generative AI systems. In the remainder of the paper, we lay down a roadmap for how such a framework
can enable AI systems to reason systematically about uncertain interactions and potential future hazards,
unlocking robustness properties and oversight capabilities that are out of our reach today. We begin in this
section by bringing together the lessons from Section 3 into a unified human–AI systems theory.

4.1 Operationalizing the Interaction between People and AI

To operationalize the interaction between people and AI, we need a model that is general enough to capture
each agents’ beliefs as well as their ability to influence future outcomes. We contend that the latent repre-
sentations learned by generative AI systems provide a promising foundation on which to build a dynamical
system model that accurately captures this complex temporal evolution.

Human & AI States and Actions. Consider a human agent (H) and an AI agent (AI), each with their
own internal state and action spaces. The human’s internal state zH ∈ ZH captures their current beliefs
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and intents, while the AI agent’s internal state zAI ∈ ZAI encodes its current understanding of the ongoing
interaction. For example, for an AI chatbot, zAI can be the embedding of the conversation history based on
a web-scale LLM encoder. The human interacts by taking actions aH ∈ AH. In the chatbot example, aH could
be a text prompt, thumbs-up/down feedback on the chatbot’s last output, or an external action like an online
purchase. In general, the human’s internal state zH and the policy πH : zH 7→ aH by which they make decisions
are unknown to the AI. The AI also interacts by taking actions aAI ∈ AAI, which can represent a chatbot’s
next word or sentence, or external actions like automated online operations. Typically, these actions are
dictated by the AI’s task policy πAI

§ : zAI 7→ aAI (for example, the decoder of a pretrained LLM chatbot).

Human–AI (HAI) Dynamical System. Rooted in the control systems models from Section 3.1 we
consider human–AI (HAI) interaction as a game which evolves the internal states of both agents, as well as
the true state of the world, s ∈ S. Let the privileged internal–external game state be z := [s, zAI, zH]. In
general, no single agent has access to all components of z, but it is nonetheless useful for our conceptualization
of the game’s overall evolution.

Throughout interaction, each component of the game state evolves over time. The world state dynamics
st+1 = fs(st, aAI

t , aH
t ) are influenced in general by both the human’s and AI’s actions. The human’s internal

state, in turn, has dynamics zH
t+1 = fH(zH

t , aAI
t , aH

t , oH
t ), affected by the human’s observations oH

t , e.g., stimuli
received from the outside world state st beyond the immediate context of interaction with the AI system.

While the above dynamics are not generally known to the AI, the AI may (explicitly or implicitly) learn to
estimate them during interaction. This reasoning by the AI is precisely captured by the third component of
our system, namely the evolution of the AI’s internal state zAI

t , which (unlike the two unknowable components
above) is directly accessible to the AI. In fact, zAI

t is the AI’s current representation of the entire game.
Crucially, the AI’s internal state also evolves via its own dynamics

zAI
t+1 = fAI(zAI

t , aAI
t , aH

t , oAI
t ), (1)

driven by the ongoing interaction (aH
t , aAI

t ) and, possibly, by the AI’s observations oAI
t of the world state st,

e.g., through web crawling, incoming sensor data, and state estimation algorithms. From the standpoint
of decision theory, zAI is an information state that can be seen as implicitly encoding the sets Ŝ(zAI) ⊆ S
and ẐH(zAI) ⊆ ZH of possible world states s and human internal states zH given the AI’s current knowledge.
From the architectural standpoint, zAI is typically a latent state maintained by a neural network (e.g., a
transformer) that continually updates its value based on ongoing interactions (aAI, aH) and observations oAI.
In other words, this neural network is an AI world model (Ha & Schmidhuber, 2018) that implements the
AI’s internal state dynamics fAI (a deterministic Markovian transition given oAI, much like in a belief MDP).

Operational Assumptions on Human Behavior. A key consideration in any human–AI systems theory
is the operational design domain (ODD, as described in Section 3.1). Specifically, what are the assumptions
we place on human behavior during—and in between—interactions with the AI? Even though the AI does
not have direct access to the human’s policy or internal state, it can maintain a conservative predictive
model of the human’s conceivable behavior in any given situation. Let the predictive action bound be a
set-valued mapping ÂH : ZAI ⇒ AH that delimits the actions aH ∈ ÂH(zAI) that the human can be expected
to take given the AI’s current representation, zAI. We refer to these actions as “allowable” throughout the
manuscript. Adjusting this bound enables designers to instantiate a spectrum of operational assumptions on
human behavior, from maximally conservative (i.e., ÂH(zAI) ≡ AH) to normative (i.e., ÂH(zAI) ⊂ AH)). For
example, this bound may be used to preclude reckless behavior such as the human taking a harmful action
aH while being aware, as per zAI, of its negative consequences.

4.2 Formalizing Safety-Critical Feedback Loops

We now characterize the evolution of the HAI dynamical system over time. We will continue to use the
language of control theory, but we will leverage the generative AI’s learned internal representation zAI to
analyze interactive feedback loops and their safety outcomes directly in latent space.

Failure Set. Specifying what is considered a failure is the first step in any safety framework. Formalizing
the conceptual definition of safety in Section 2, the privileged failure set F∗ ⊆ S ×ZH is the set of world–

6



Under review as submission to TMLR

Figure 3: Common sense failure identification via GPT-4. Today’s web-trained generative AI models
show the potential to identify common sense safety hazards from both text and images.
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human states (s, zH) that violate a critical need of the human. For example, this can include states in which
the human is physically injured, financially ruined, socially ostracized, or psychologically harmed. In some
contexts, the AI agent can observe failure conditions directly: a driver assist system can detect whether a
vehicle is in collision. In other contexts, this may not be possible: an AI chatbot that generates a racist
microaggression may not readily detect the psychological impact on a minority user. For this reason, a
practical safety framework should seek to enforce safety from the AI’s perspective by requiring that:

∀t, zAI
t ̸∈ FAI. (2)

Here, FAI ⊆ ZAI is the AI’s inferred failure set: the set of all internal states zAI in which the AI assesses that
the system may be in failure. For brevity, we refer to FAI as the “failure set” whenever there is no ambiguity.

Failure Specification Mechanisms. Meaningful human–AI safety requires enabling a diversity of human
stakeholders to encode their needs. Recent efforts in the AI community have explored various mechanisms
for specifying requirements on AI system operation. We organize these into a simple taxonomy, attending
to whether the need is specific to a single person and whether it is expressly communicated to the AI.

1. Factory rules (collective, explicit): Certain universal needs may be decided by societal stake-
holders and explicitly encoded by system designers (Mu et al., 2023). Constitutional AI can be
viewed as an early proposal for this type of mechanism, whereby an AI system is explicitly trained
to identify potential responses or conditions that are “harmful, unethical, racist, sexist, toxic, dan-
gerous, or illegal” based on a designer-generated corpus of examples (Bai et al., 2022).

2. Common sense (collective, implicit): Some practical everyday needs are implicit in the human
experience. For example, a common-sense need is to not be financially ruined or electrocuted.
We hypothesize that, as generative AI models become increasingly accurate and expressive, the
semantics of failure may be directly extracted from their learned representations by prompting (Li
et al., 2021b; Guan et al., 2024). Figure 3 provides anecdotal evidence suggesting that even today’s
early web-trained generative AI models can be prompted (without fine-tuning) to discern whether
a situation presents a common-sense safety hazard from both text and images.

3. Direct feedback (individual, explicit): Some individual needs can only be learned from express
human feedback. For example, if you have a severe allergy, you need to avoid eating food that could
cause a serious anaphylactic reaction. This type of failure may be encoded through express feedback
from an end user: for example, using edits (i.e., corrections) to the LLM’s outputs (Gao et al., 2024)
or human-provided harmfulness labels (Dai et al., 2024).

4. Need reading (individual, implicit): By observing a specific person’s behavior and engaging in
interactions over time, the AI system may be able to infer their personal needs even if they are never
made explicit (Shah et al., 2019). For example, a future AI chatbot may pick up cues indicating that
a user is psychologically triggered by a particular topic, possibly due to undisclosed past trauma.

HAI Safety Definition. Given a failure specification, we seek to determine under what conditions the AI
can maintain safety for all allowable realizations of the human’s future behavior and, at the same time, to
prescribe the most effective AI policy to do so. From the AI’s standpoint, this amounts to characterizing
the set of all safe information states zAI

0 from which there exists a best-effort AI policy that will steer the
human–AI system clear of a future safety violation for all realizations of human policies allowed by its
current uncertainty. Mathematically, this maximal safe set is characterized as

Ω∗ := {zAI
0 ∈ ZAI : ∃πAI, ∀π̂H | ∀τ ≥ 0, zAI

τ /∈ FAI} (3)

where zAI
τ is the information state at a future time τ , after both agents execute their respective policies1for

τ steps from the initial state zAI
0 . If zAI

0 ∈ Ω∗, then there exists some AI policy πAI : zAI 7→ aAI that keeps
1Since the human actions aH considered by the AI depend on its own internal state zAI (which implicitly estimates plausible

human internal states zH), the AI-hypothesized human policies are, effectively, mappings π̂H : zAI 7→ aH.
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zAI
τ inside Ω∗, and thus away from the failure set FAI, for all time τ . The pessimism of the safety analysis is

regulated by restricting the worst-case human behavior to be consistent with the predictive action bound:
aH

τ ∈ ÂH(zAI
τ ). The construction of these predictive action bounds can once again benefit from the generative

AI’s predictive power. For example, a large language model can be queried with prompts based on the ODD
of the safety analysis and used to sample diverse hypothetical human responses to AI generations (e.g., to
simulate antagonistic or goal-driven dialogue (Hong et al., 2023)).

4.3 Posing the Safety-Critical Human–AI Game

We now have all the key mathematical components for a rigorous safety analysis of the human–AI interaction
loop. We cast the computation of Ω∗ as a zero-sum dynamic game between the AI and a virtual adversary
that chooses the worst-case realization of the human’s behavior allowed by the AI’s uncertainty. The game’s
outcome from any initial information state zAI

0 , under optimal play, can be encoded through the safety value
function (Barron & Ishii, 1989; Tomlin et al., 2000; Lygeros, 2004; Mitchell et al., 2005; Fisac et al., 2015):

V (zAI
0 ) := max

πAI
min

π̂H

(
min
t≥0

ℓ(zAI
t )

)
, Ω∗ =

{
zAI

0 ∈ ZAI : V (zAI
0 ) ≥ 0

}
. (4)

Here, ℓ : ZAI → R is a safety margin function that measures the proximity of the HAI system to the failure
set and encodes FAI as the zero sublevel set {zAI : ℓ(zAI) < 0}. If the value V (zAI

0 ) is negative (i.e., zAI
0 ̸∈ Ω∗),

this means that, no matter what the AI agent chooses to do, it cannot avoid eventually entering FAI under the
worst-case realization of the allowable human actions aH

t ∈ ÂH(zAI
t ) over time. Critically, the game posed in

Equation 4 quantifies the best the AI system could ever do to maintain safety—hence, the maximal safe set.

The value function defined above satisfies the fixed-point Isaacs equation (Isaacs, 1954) (the game-theoretic
counterpart of the Bellman equation) relating the current safety margin ℓ to the minimum-margin-to-go V
after one round of play:

V (zAI) = max
aAI∈AAI

min
aH∈ÂH(zAI)

min
{

ℓ(zAI), E
oAI

[
V

(
fAI(zAI, aAI, aH, oAI)

)]}
︸ ︷︷ ︸

Q(zAI,aAI,aH)

. (5)

The solution to this zero-sum dynamic programming equation yields a maximin policy pair (πAI
è , πH

†)
containing the AI’s best safety effort πAI

è to maximize the closest future separation from the failure set,
and the worst-case human behavior πH

† that would close this distance and, if possible, make it reach zero.2
The policies (πAI

è , πH
†) can be approximately computed through modern learning-based AI methods such as

self-supervised learning (Bansal & Tomlin, 2021) or adversarial self-play RL (Silver et al.; Pinto et al., 2017;
Hsu et al., 2023). This enables scalable learning from experience and even under partial observability (Hu
et al., 2023), and once again leverages the complementary strengths of AI and control systems.

We emphasize that the human behavior encoded by πH
† constitutes a worst-case model (rather than a statis-

tically calibrated one), trained to thwart the AI’s best effort to maintain safety but required to conform to
the operational design domain. We discuss some important implications of this choice in the conclusion.

In the next section, we discuss how this theoretical human–AI game can be translated into a practical
computational procedure enabling AI systems to monitor and enforce safety as they interact with people.

5 Frontier Framework: The Human–AI Safety Filter

As AI technology continues to advance, manually designing or fine-tuning harm prevention strategies with
human feedback becomes increasingly untenable (Christiano et al., 2018; Bowman et al., 2022). To break this
scalability mismatch, we posit that the same advances driving AI power can be leveraged to autonomously
identify potential harms and devise proactive strategies that explicitly consider human–AI feedback loops.

2The virtual adversary πH
† : ZAI → AH exploits the range of (1) plausible internal human states ẑH ∈ ẐH(zAI) given the AI’s

imperfect situational awareness zAI and (2) ODD-compatible human actions aH ∈ ÂH(ẑH) given each possible inferred internal
state ẑH. Implementations of πH

† may include two-step pipelines (zAI 7→ ẑH 7→ aH) or implicit end-to-end models (zAI 7→ aH).

9



Under review as submission to TMLR

Figure 4: (left) The AI always acts under the safety-critical game policy (πAI
è , πH

†), making it safe but
conservative. (right) The filtered AI uses task policy πAI

§ as long as in the future it can apply πAI
è against πH

† .

The general formulation in Section 4 enables AI systems to preempt potential pitfalls within a specified
ODD, but the resulting policy is only concerned with safety. If we were to leave πAI

è in control of the AI’s
entire behavior, as illustrated on the left of Figure 4, it would surely be safe but likely overcautious and
unable to provide value to its users. In reality, it is not enough for the AI system to avoid causing failures
(if so, we could simply not turn it on), but rather it must do so while assisting its users and performing
requested tasks (which may or may not be themselves related to safety). Ideally, we want to minimally
override the AI’s task-driven actions with the safety policy, only intervening at the last possible moment.
How can we do this?

The systematic detect-and-avoid functionality we seek closely mirrors the safety filter mechanisms established
in robotics and control systems, which we reviewed in Section 3. Rather than reinvent a suitable mechanism
for human–AI systems, we argue for a frontier framework that builds upon the fundamental principles of
safety filtering and extends them to the general interaction problem formalized in Section 4.

Formally, a human–AI safety filter is a tuple (πAI
è , ∆, ϕ) containing:

• fallback policy: πAI
è : ZAI → AAI, aims only to avoid catastrophic failures, without regard to task

performance, and is therefore kept as a last resort.

• safety monitor: ∆: ZAI × AAI → R, checks if the fallback πAI
è would still maintain safety after a

candidate action aAI is taken from zAI, outputting a positive or negative value following Equation 4.

• intervention scheme: ϕ : ZAI × AAI → AAI, permits a candidate action aAI if if passes the monitoring
check and otherwise replaces it with an alternative action that does, for example πAI

è (zAI).

This definition can encompass a broad spectrum of potential future supervisory mechanisms (Legg, 2023)
and allows us to construct a new central theorem to understand their guarantees and assumptions.

Theorem 1 (General Human–AI Safety Filter) Consider a human–AI system with AI world model
fAI(zAI, aAI, aH, oAI) and a safety filter (πAI

è , ∆, ϕ). If the AI agent is deployed with an initial internal state
zAI

0 ∈ ZAI deemed safe by the safety monitor under the fallback policy, i.e., ∆
(
zAI

0 , πAI
è (zAI

0 )
)

≥ 0, then the
interaction under filtered dynamics fAI

(
zAI, ϕ(zAI, aAI), aH, oAI

)
with any AI task policy πAI

§ : zAI 7→ aAI and
any realization of human behavior satisfying aH ∈ ÂH(zAI) maintains the safety condition ∀t ≥ 0, zAI ̸∈ FAI.

To date, the concept of a safety filter has only been instantiated for embodied systems with physics-based
state spaces (low-dimensional vectors of physical quantities like positions or velocities, governed by well-
understood dynamical laws). Here, we are the first to generalize the scope of this mathematical formalism
to the much broader context of AI safety. This result lays the theoretical foundations for the algorithmic
application of safety filters to general human–AI systems, which evolve “latent state spaces” and encode
harder to model interactions such as dialogue between a human user and an AI chatbot.

An important aspect of Theorem 1 is that it holds for an arbitrary fallback policy πAI
è : as long as the

safety monitor ∆ can accurately predict whether πAI
è will succeed at maintaining safety in the future, the

intervention scheme ϕ can prevent actions that would lead to a vulnerable state, i.e. a state outside the
fallback-safe set Ωè. Naturally, if the available fallback policy is not very effective, the filter will be forced
to intervene often, restricting the human–AI interactions to remain inside a smaller set Ωè. This is where
the safety game from Section 4 comes in.

10
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The Perfect Human–AI Safety Filter. The safety-critical human–AI game we posed in Section 4
implicitly encodes the least-restrictive safety filter possible: one that allows maximal freedom to the AI’s task
policy πAI

§ while preempting all future safety failures under the AI’s uncertainty. In particular, if we had access
to the exact solution to this safety game, such a perfect safety filter could be implemented by choosing fallback
policy πAI

è , safety monitor ∆ := Q(·, ·, πH
†), and switch-type intervention scheme ϕ := 1{∆>0}·πAI

§ +1{∆≤0}·πAI
è .

Algorithmic Human–AI Safety Filtering. We conclude by giving a concrete account of how one could
practically instantiate a human–AI safety filter for a generative AI model, visualized in Figure 5. Following
the common neural network architecture of generative AI models, let base AI model (given to us for analysis
and safe integration) be comprised of an encoder E and a decoder πAI

§ ; this decoder is precisely what we have
been referring to as the task policy, mapping an internal (latent) state zAI to a proposed output action aAI.

Figure 5: Human–AI Safety Filter. The
base AI model encodes the AI’s observa-
tions into its latent state zAI which is used
as input for its task policy (πAI

§ ). A safety
filter includes a learned AI safety strategy
πAI

è , a safety monitor ∆ that predicts safety
risks, and a predictive human model con-
taining a virtual adversary πH

† that gener-
ates pessimistic predictions of human inter-
action. Based on ∆, the AI’s outputs to
the human are filtered by the intervention
scheme ϕ, and modified to guarantee safety.

The purple block in Figure 5 depicts the safety filter com-
ponents: the fallback policy, safety monitor, and intervention
scheme. Computationally, adversarial reach-avoid RL can be
used to obtain an approximation of the optimal fallback pol-
icy πAI

è from the safety game in Equation 4. A reliable safety
monitor ∆ can be implemented by either directly evaluating
the learned safety value function at any information state zAI

(safety critic) or by simulating a family of pessimistic interac-
tion scenarios by querying the learned virtual adversary πH

† . In
turn, the intervention scheme can range from a simple binary
switch (at each time, apply πAI

§ if deemed safe, else apply πAI
è )

to a more sophisticated override (e.g., find a minimally disrup-
tive deviation from πAI

§ that is deemed safe).

Even though the components of the safety filter would be ap-
proximate by their learning-based nature, the scheme can be
leveraged in combination with modern statistical generalization
theory, such as PAC-Bayes theory (McAllester, 2003; Majum-
dar et al., 2020), adversarial conformal prediction (Gibbs &
Candes, 2021; Bastani et al., 2022), and scenario optimization
(Schildbach et al., 2014; Lin & Bansal, 2023), to maintain a
high-confidence guarantee that the AI system will robustly en-
force the satisfaction of the human’s critical needs throughout
the interaction for all human behaviors allowed by the opera-
tional assumptions. We emphasize that a key strength of this safety framework is that it naturally scales
with the rapidly advancing capability of modern AI systems: as future generations of language models,
vision-language systems, and general AI agents become ever stronger, so will the safety assurances that can
be provided through the proposed techniques and system architecture.

6 Conclusion

In this paper, we aim to inspire the genesis of a new human–AI safety research community. We take concrete
steps towards this by identifying a fundamental synergy between the principled safety formalism offered by
control theory and the general representations learned by internet-trained AI systems. By combining lessons
from control and AI, we propose a technical roadmap to guide research efforts towards a safety framework
that can reliably anticipate and avoid potential hazards emerging during interaction. We propose a frontier
framework called the human–AI safety filter, wherein an AI system’s task policy is systematically monitored
and minimally overriden by a safety policy synthesized via safety-critical adversarial self-play.

Broader Impact Statement

We expect that the proposed interdisciplinary safety framework will help catalyze a much needed rapproche-
ment between the AI and control systems communities to develop rigorous safety assurances for dynamic
human–AI feedback loops. A significant positive impact may come in the form of the first practical safety
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frameworks that can not only keep up with the rapid advances in AI capabilities but actively benefit from
them to provide stronger guarantees, ushering in a new generation of advanced AI systems that can be
trusted because of their sophistication, and not in spite of it.

On the other hand, we also highlight possible pitfalls of our proposed human–AI safety framework. The
approximate nature of learning-based generative AI makes it extremely challenging to provide a clear-cut
delineation of uncertainty, which will likely limit us to statistical assurances in the foreseeable future. These
fall short of the stronger if–then certificates that we can aspire to in other engineering domains: hard
guarantees establishing that, as long as the system’s operational assumptions are met, catastrophic failures
are categorically impossible (i.e., a failure can only result from an explicit assumption being violated). Even
high-confidence statistical assurances can leave human-centered AI systems open to black swan events with
extremely low probability but potentially dramatic consequences.

There is a risk that the improved treatment of human–AI feedback loops developed through the proposed
agenda could be repurposed and misused by malicious or reckless actors to construct AI systems that exploit
interaction dynamics against the interest of their users, for example by seeking to manipulate their decisions.
Even with today’s relatively myopic fine-tuning approaches, we see a worrying emergence of unintended (e.g.,
sycophantic) AI outputs as the system learns to secure positive user responses. Future systems equipped with
long-horizon reasoning but without a proper safety framework could conceivably seek long-term interaction
outcomes serving a third party’s agenda at the expense of their users’ needs.

We nonetheless remain cautiously optimistic: First, human–AI safety filtering does not require teasing
apart the likelihood of various conceivable human behaviors in a given context. Rather, safety-directed
predictions robustly consider the set of all such plausible behaviors without distinction, making them
harder to exploit for manipulation purposes. Second, the need to consider large prediction sets containing
both likely and unlikely outcomes aligns well with the inclusion of underrepresented individual behaviors
that do not conform to dominant patterns in the training datasets. Finally, provided that future AI
systems are deployed with a cyber-secure dynamical safety mechanism that cannot be removed or altered
by unauthorized parties, such a framework would help detect and mitigate emergent and intentional
misalignment. Naturally, this will require a process of standardization and regulatory oversight; the first
step, however, must be to establish what assurances are possible. Ultimately, we expect that technical
advances in human–AI safety will inform the conversation between technologists, policymakers, political
leaders, and the public at large. A timely conversation that, fortunately, is already ongoing.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Anayo K. Akametalu, Shromona Ghosh, Jaime F. Fisac, Vicenc Rubies-Royo, and Claire J. Tomlin. A mini-
mum discounted reward Hamilton–Jacobi formulation for computing reachable sets. 69(2):1097–1103. ISSN
1558-2523. doi: 10.1109/TAC.2023.3327159. URL https://ieeexplore.ieee.org/document/10294099.

Ross E Allen, Ashley A Clark, Joseph A Starek, and Marco Pavone. A machine learning approach for real-
time reachability analysis. In 2014 IEEE/RSJ international conference on intelligent robots and systems,
pp. 2202–2208. IEEE, 2014.

Matthias Althoff and John M Dolan. Online verification of automated road vehicles using reachability
analysis. IEEE Transactions on Robotics, 30(4):903–918, 2014.

Matthias Althoff, Colas Le Guernic, and Bruce H Krogh. Reachable set computation for uncertain time-
varying linear systems. In Proceedings of the 14th international conference on Hybrid systems: computation
and control, pp. 93–102, 2011.

Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and Paulo
Tabuada. Control barrier functions: Theory and applications. In 2019 18th European control conference
(ECC), pp. 3420–3431. IEEE, 2019.

12

https://ieeexplore.ieee.org/document/10294099


Under review as submission to TMLR

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete
problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from
ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Andrea Bajcsy, Somil Bansal, Ellis Ratner, Claire J Tomlin, and Anca D Dragan. A robust control framework
for human motion prediction. Robotics and Automation Letters, 2020.

Somil Bansal and Claire J Tomlin. DeepReach: A deep learning approach to high-dimensional reachability.
In IEEE International Conference on Robotics and Automation (ICRA), 2021.

Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-Jacobi Reachability: A brief overview
and recent advances. In IEEE Conference on Decision and Control (CDC), 2017.

EN Barron and H Ishii. The bellman equation for minimizing the maximum cost. NONLINEAR ANAL.
THEORY METHODS APPLIC., 13(9):1067–1090, 1989.

Tamer Başar and Geert Jan Olsder. Dynamic noncooperative game theory. SIAM, 1998.

Osbert Bastani. Safe reinforcement learning with nonlinear dynamics via model predictive shielding. In 2021
American control conference (ACC), pp. 3488–3494. IEEE, 2021.

Osbert Bastani, Varun Gupta, Christopher Jung, Georgy Noarov, Ramya Ramalingam, and Aaron Roth.
Practical adversarial multivalid conformal prediction. Advances in Neural Information Processing Systems,
35:29362–29373, 2022.

Luca Bergamini, Yawei Ye, Oliver Scheel, Long Chen, Chih Hu, Luca Del Pero, Błażej Osiński, Hugo Grim-
mett, and Peter Ondruska. Simnet: Learning reactive self-driving simulations from real-world observations.
In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 5119–5125. IEEE, 2021.

Roger V. Bostelman, Joseph A. Falco, Marek Franaszek, and Kamel S. Saidi. Performance assessment
framework for robotic systems. Technical report, National Institute of Standards and Technology, 2018.

Samuel R Bowman, Jeeyoon Hyun, Ethan Perez, Edwin Chen, Craig Pettit, Scott Heiner, Kamilė Lukošiūtė,
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