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Abstract

Medical large language models (LLMs) research
often makes bold claims, from encoding clinical
knowledge to reasoning like a physician. These
claims are usually backed by evaluation on com-
petitive benchmarks—a tradition inherited from
mainstream machine learning. But how do we sep-
arate real progress from a leaderboard flex? Med-
ical LLM benchmarks, much like those in other
fields, are arbitrarily constructed using medical li-
censing exam questions. For these benchmarks to
truly measure progress, they must accurately cap-
ture the real-world tasks they aim to represent. In
this position paper, we argue that medical LLM
benchmarks should—and indeed can—be em-
pirically evaluated for their construct validity.
In the psychological testing literature, “construct
validity” refers to the ability of a test to measure
an underlying “construct”, that is the actual con-
ceptual target of evaluation. By drawing an anal-
ogy between LLM benchmarks and psychological
tests, we explain how frameworks from this field
can provide empirical foundations for validating
benchmarks. To put these ideas into practice, we
use real-world clinical data in proof-of-concept
experiments to evaluate popular medical LLM
benchmarks and report significant gaps in their
construct validity. Finally, we outline a vision for
a new ecosystem of medical LLM evaluation cen-
tered around the creation of valid benchmarks.

1. Introduction
In recent years, medical Large Language Models (LLMs)
have garnered significant attention, with a growing body of
research examining their capabilities. These range from en-
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Figure 1. Overview of evaluation datasets for medical LLMs.
We analyzed the evaluation datasets used in the 100 most cited pa-
pers on medical LLMs over the past 5 years. The majority (60%) of
studies assess models on public benchmarks constructed based on
medical exams, while 40% rely on (private or public access) real-
world hospital data. There is no clear consensus on a standard
benchmark—though MedQA is the most frequently used.

coding clinical knowledge (Singhal et al., 2023) to making
differential diagnoses (McDuff et al., 2023), summarizing
complex medical texts (Van Veen et al., 2024), mimick-
ing clinical reasoning (Savage et al., 2024; Brodeur et al.,
2024), and even demonstrating empathy in patient interac-
tions (Maida et al., 2024). Yet the question of how to evalu-
ate these capabilities remains a subject of ongoing debate. In
the world of medicine, the gold standard for generating evi-
dence is the randomized controlled trial (RCT). While some
studies indeed conduct RCTs with meaningful real-world
outcomes (Li et al., 2023; Brodeur et al., 2024), most re-
search on medical LLMs leans on competitive benchmarks—
an evaluation practice inherited from the broader machine
learning community (Donoho, 2024; Orr & Kang, 2024).

Benchmarks have always played a central role in driving
progress in machine learning, and we do not dispute their im-
portance. Indeed, progress in areas such as computer vision
over the past decade would likely not have occurred without
benchmarks like ImageNet (Russakovsky et al., 2015). Pub-
lic benchmarks are indispensable tools for the community
to enable frictionless democratization of progress (Donoho,
2024; Recht, 2024). However, the landscape of medical
LLM benchmarks remains fluid and fragmented. While flag-
ship medical LLMs, such as Med-PaLM 2 (Singhal et al.,
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2025), tout progress by evaluating on a select set of popular
benchmarks, much of existing research uses custom, one-off
evaluation datasets, and the field has yet to converge on con-
sensus benchmarks for medical capabilities (Fig. 1).

We need medical LLM benchmarks to gauge progress,
yet existing options leave much to be desired. As in other
machine learning domains, most benchmarks proposed in
the literature are arbitrarily constructed. In the context of
medical LLMs, the tendency to anthropomorphize these
models has led researchers to adopt human medical exami-
nations—such as the United States Medical Licensing Ex-
amination (USMLE)—as evaluation benchmarks (Pal et al.,
2024). Yet, as any clinician can attest, real-world clinical
practice bears little resemblance to these exams (Raji et al.,
2025). Unlike benchmarks in tasks like ImageNet classifica-
tion, where performance claims are relatively inconsequen-
tial, medical LLM benchmarks carry significant weight, as
they implicitly suggest general clinical skills. To ensure such
claims are valid, our benchmarks must be as faithful to the
complexities of real-world clinical practice as possible.

The USMLE, like other professional licensing exams such
as the bar for lawyers, is designed to evaluate baseline req-
uisite knowledge prior to being given the agency to practice
medicine. These exams act as proxies for human readiness,
much in the same way that the SAT exam is only a proxy for
the success of a student in college. Over decades, they have
been refined through observations of human performance
and an understanding of cognitive abilities thought to under-
pin professional competence (Haist et al., 2013). However,
there is no compelling reason to assume these exams serve
the same purpose for LLMs as they do for humans. This
points to a deeper issue in the current discourse surrounding
LLM evaluation: the lack of a principled framework for
determining what constitutes a good benchmark and how
benchmark performance relates to real-world utility.

In this position paper, we argue that medical LLM bench-
mark datasets should be deliberately designed and quan-
titatively evaluated to ensure construct validity. Further-
more, in the context of medicine, this quantitative evaluation
can uniquely leverage real-world data, such as electronic
health records (EHR). Construct validity refers to the degree
to which a test or measurement accurately represents the
concept or construct it is intended to measure. This concept
was first introduced by Cronbach & Meehl (1955) in the con-
text of discussions on the validity of psychological tests. In
this paper, we draw an analogy between LLM benchmarks
and such psychological tests, and explain how methods for
quantitative assessment of the validity of psychological tests
can be applied to medical LLM benchmarks using EHR
data. We envision a new standard for evaluating medical
LLMs: each benchmark should be associated with explicit
claims and empirically evaluated by hospital systems to

ensure that its construct validity supports those claims.

Our position is motivated by the observation that LLM capa-
bilities, much like psychological traits, are viewed as la-
tent “constructs” that lack operational definitions. These
models are no longer regarded as mere statistical predictors
performing narrowly defined classification tasks on struc-
tured inputs and outputs, but as “agents” with emergent
“capabilities” in open-ended tasks (Wei et al., 2022). Just as
the multi-faceted and complex constructs of intelligence or
depression cannot be measured in the same way as tempera-
ture is measured with a thermometer, the ability of LLMs
to reason cannot be assessed in the same way we evalu-
ate image classifiers. For our evaluation to support such a
claim, we must move beyond practices where benchmarks
are accepted based solely on their subjective face validity.

Psychometrics has long tackled this challenge that machine
learning is only now beginning to face: how to design tests
that accurately measure latent constructs (Strauss & Smith,
2009). We propose that machine learning take a cue from
psychology and develop a new science of benchmarking,
focused on creating principled tools to evaluate the con-
struct validity of its benchmark datasets. At its core, con-
struct validity asks whether a test truly captures the real-
world phenomenon it claims to measure. This notion is par-
ticularly apt for medical benchmarks, as medicine generates
a wealth of real-world data from clinical practice (Evans,
2016), which makes it an ideal starting point for building a
benchmarking science grounded in empirical reality.

Much of the research critiquing popular medical LLM
benchmarks or proposing new ones is ultimately an ef-
fort to enhance construct validity. For example, Johri et al.
(2025) introduce an evaluation framework based on simu-
lated patient-clinician conversations rather than the clinical
vignettes used in medical exams. The motivation is that tra-
ditional question-answering benchmarks fail to capture the
nuances of real-world patient-clinician interactions, where
skills like comprehensive history-taking and open-ended
questioning are crucial. This is fundamentally a question of
construct validity—i.e., to what extent does a benchmark
measure the skills required for real-world diagnostic reason-
ing? In this paper, we equip researchers with a natural
framework for discussing, evaluating and constructing
medical LLM benchmarks using general principles that
transcend specific tasks, instead of addressing limitations
in existing benchmarks through ad-hoc solutions.

Discussions of benchmark validity are conspicuously absent
from mainstream machine learning literature. While some
work has critiqued the validity of image classification bench-
marks—Raji et al. (2021) qualitatively analyzed the con-
struct validity of ImageNet and GLUE, while Fang et al.
(2024) empirically tested whether ImageNet progress trans-
lates to real-world datasets—construct validity has yet to
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become a standard consideration in benchmark design, in-
cluding for LLMs. Empirical evaluation of construct validity
would clarify what benchmark performance actually signi-
fies and help make sense of discrepancies in model rankings
across benchmarks in model leaderboards (Pal et al., 2024).

In the rest of this paper, we elaborate on our position. In Sec-
tion 2, we draw a parallel between psychological tests and
LLM benchmarks, and explain how LLM capabilities mir-
ror psychological constructs and what this means for their
evaluation. Section 3 provides an overview of validity the-
ory and the various notions of construct validity, using the
example of a depression test to illustrate how these concepts
can be applied to medical LLM benchmarks. In Section 4,
we examine how real-world clinical data can be used to em-
pirically assess the validity of popular medical LLM bench-
marks and highlight validity gaps in current benchmark
datasets. Finally, we outline our vision for an evaluation
ecosystem for medical LLMs that prioritizes valid bench-
marks and discuss alternative views to model evaluation.

2. LLM Benchmark Datasets as Analogues to
Psychological Tests

LLM benchmark datasets and psychological tests share a
key conceptual similarity: both aim to measure a “latent
construct”—an abstract, unobservable trait that is not
operationally defined. In psychology, constructs such as
intelligence, depression, or working memory cannot be di-
rectly measured like height or temperature; instead, they
are assessed through standardized tests designed to capture
behaviors or responses indicative of the underlying trait. For
example, an IQ test does not measure intelligence itself but
evaluates problem-solving, pattern recognition, and reason-
ing skills, which are taken as proxies for intelligence. Simi-
larly, LLM benchmarks do not directly measure its ability to
“reason” or “understand” but instead assess performance on
tasks assumed to reflect these capabilities, such as answer-
ing medical questions or summarizing text. Psychological
testing generally involves five key components:

1. Test Subject: The individual being evaluated.
2. Latent Construct: The psychological construct that

the test measures. This might include personality traits,
cognitive abilities, or mental health conditions.

3. Test Instrument: A set of items (questions, tasks, or
stimuli) presented to the test subject to elicit responses.

4. Test Score: A quantitative measure derived from the
subject’s responses to the items in the test instruments.

5. Inference on Test Result: The interpretation of the
test score in relation to the underlying latent construct.

In our analogy, different LLMs (e.g., GPT-4, PaLM and
Claude) serve as test subjects, their capabilities (e.g., mathe-
matical reasoning) as latent constructs, evaluation on bench-
mark datasets (e.g., GSM8K, MATH (Cobbe et al., 2021)) as

Figure 2. Analogy between LLM benchmarks and psychologi-
cal testing. Tests aim to evaluate latent constructs that are theoreti-
cally conceived but not directly observable. The validity of a test
depends on how well inferences drawn from its scores align with
the underlying construct being measured across test subjects.

test instruments, performance metrics on benchmarks as the
test scores, and researchers’ claims about model capabilities
as inferences based on the resulting test scores (Fig. 2).

The validity of psychological tests and the risks of their mis-
interpretation have long been debated in psychometrics. In
The Mismeasure of Man, Stephen J. Gould criticized the
validity of craniometry and IQ tests as measures of intelli-
gence, highlighting how they have been misused to justify
politicized views of biological determinism (Gould, 1996).
Similarly, our research community must critically examine
whether we are mismeasuring models through benchmarks
with limited (construct) validity, and whether our research
claims risk enabling the misuse of LLMs in critical applica-
tions such as medicine. The analogy between LLM bench-
marks and psychological tests extends beyond medicine,
but in the next section, we take a closer look at how psy-
chologists have tackled test validity and how insights from
validity theory can help us empirically assess the relevance
of medical LLM benchmarks as measures of progress.

3. Validity Theory and the Rethinking of
Medical LLM Benchmarks

The concept of construct validity was first introduced in a
seminal paper by Cronbach & Meehl (1955), which catego-
rized test validity into three distinct types: criterion, content,
and construct—together forming the classical view on valid-
ity of tests. Later, Samuel Messick (Messick, 1998) argued
that construct validity subsumes all three, establishing it as
the overarching framework in modern validity theory. In
this section, we outline both the classical (Section 3.1) and
modern (Section 3.2) perspectives on validity theory and
explore their relevance to medical LLM benchmarks.

3.1. Classical view: A tripartite theory of validity

Validity theory provides a systematic framework for deter-
mining whether a psychological test truly measures the psy-
chological construct of interest—for instance, whether the
Big Five Personality Test captures personality traits (Barrick
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& Mount, 1991) or the Stanford-Binet Intelligence Scale as-
sesses intelligence (Laurent et al., 1992). Under the classical
view, validity of a test can be evaluated through three distinct
methods, which we detail below. As a running example, con-
sider the Beck Depression Inventory (BDI), a psychometric
test developed in the 1960s by Beck et al. (1961) to assess
depression severity through a multiple-choice questionnaire
(Jackson-Koku, 2016). BDI has been the subject of exten-
sive research on its validity as a measure of the “depression
construct” (Richter et al., 1998). We show how each type of
validity applies to BDI and, by extension, how these princi-
ples can inform the validation of medical LLM benchmarks.

1) Criterion validity examines how well a test predicts
or correlates with an outcome that represents success-
ful expression of the construct being measured.

A criterion in validity theory is an external, observable out-
come or measure that we have a reason to believe the con-
struct should predict. For instance, a criterion for validating
the BDI could be a clinical diagnosis of depression made by
a psychiatrist using DSM-5 criteria. Criterion validity comes
in two forms: predictive or concurrent (Barrett et al., 1981).
Predictive validity is assessed when the test results precede
the criterion measure, while concurrent validity is evaluated
when both are measured within a similar timeframe (Guion
& Cranny, 1982). A test demonstrates criterion validity if its
scores meaningfully correlate with the chosen criterion.

Example of criterion validation for BDI tests. Concurrent
validity of the BDI can be assessed by examining whether
BDI scores correlate with other established measures of de-
pression. For example, (Ambrosini et al., 1991) evaluated
the concurrent validity of BDI scores in outpatient adoles-
cents by comparing them to diagnoses generated by the
Kiddie-Schedule for Affective Disorders and Schizophrenia
(K-SADS) and a 17-item clinician-rated depression scale
derived from the K-SADS (Puig-Antich & Ryan, 1986). Pre-
dictive validity can be assesed by examining if BDI scores
predict future depressive episodes or treatment outcomes.
For instance, (Green et al., 2015) assessed the predictive
validity of BDI by examining the association of its suicide
item with future suicide attempts or deaths by suicide.

Criterion validation of medical LLM benchmarks. Sup-
pose we focus on diagnostic reasoning as the LLM capabil-
ity of interest and use a benchmark like MedQA, which com-
prises clinical vignettes paired with multiple choice diagno-
sis questions, to test the diagnostic reasoning construct. A
strong criterion for validating this benchmark would be the
diagnostic accuracy of an LLM on real-world patient cases.
In other words, if the score achieved by the medical LLM
on MedQA predicts its accuracy in diagnosing actual pa-
tients, then the benchmark demonstrates criterion (predic-
tive) validity. Fortunately, empirically assessing this is feasi-

Validity

Criterion validity

Content validity

Construct validity

Predictive 
validity

Concurrent 
validity

Convergent 
validity

Discriminant 
validity

Face validity

Figure 3. Outline of different types of test validity evidence. Be-
yond subjective face validity, the classical tripartite theory catego-
rizes validity into criterion, content, and construct validity. Modern
perspectives view construct validity as the overarching concept,
with face, predictive, concurrent, convergent, and discriminant va-
lidity serving as distinct sources of evidence for construct validity.

ble—one could match clinical vignettes with corresponding
patient charts and ICD codes in EHRs and test whether the
medical LLM accuracy on MedQA vignettes correlates with
its performance on similar real-world patient cases.

Criterion validation of medical LLM benchmarks resemble
procedures already used to assess medical licensing exams
by evaluating their correlation with future clinical and pro-
fessional performance. For instance, Swanson et al. (1996)
studied knowledge retention in fourth-year medical students
by determining whether their performance on medical exam
items predicted their scores on similar items in the future.
Similarly, Norcini et al. (2014) studied the correlation be-
tween USMLE scores and long-term professional success.

2) Content validity is established by demonstrating
that the test items are representative of the content do-
main of interest. Typically, content validity is estab-
lished deductively, by first defining a domain and then
systematically selecting items from it to form the test.

Criterion validity alone may be insufficient to establish the
validity of a test. For example, while the BDI might success-
fully predict depression-related outcomes, it would fall short
as a true measure of depression if it overemphasized symp-
toms like sleep disturbances and appetite changes while ne-
glecting other aspects such as low mood and anhedonia. A
valid test must capture the full breadth of the construct it
aims to measure. As Cronbach & Meehl (1955) describe, the
“universe” or “content domain” of a construct encompasses
all possible ways to assess its various facets—for depression,
this includes every conceivable way of evaluating mood, an-
hedonia, sleep disturbances, etc. In this sense, content valid-
ity assesses whether a test meaningfully represents this con-
tent domain rather than arbitrarily sampling from it.

Example of content validation for BDI tests. Content val-
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idation of BDI can be performed by defining the “universe”
of all possible depression symptoms based on DSM/ICD
criteria and having an expert panel assess how well the items
within BDI represent these symptoms. For example, to high-
light the strengths and gaps in its coverage, Moran (1982)
found that the BDI effectively captures 6 of the 9 DSM-III
criteria for depression. However, two criteria—sleep distur-
bances and changes in eating behavior—are only partially
addressed, while one, agitation, is entirely absent.

Content validation of medical LLM benchmarks. The
content domain of medicine is exceptionally well-structured
in comprehensive ontologies, taxonomies and tasks. Clini-
cal ontologies (SNOMED, LOINC, RxNorm, ICD) provide
granular classification of diseases, symptoms, procedures,
and medications, while educational frameworks systemat-
ically map learning objectives in medical exams. These
frameworks—notably Bloom’s taxonomy for learning ob-
jectives and Miller’s pyramid for clinical competence pro-
gression—offer ready-made structures for evaluating the
coverage of clinical concepts, skills and tasks for medical
LLM benchmark (Bloom et al., 1956; Miller, 1990).

Once the content domain is defined, content validation can
be carried out by empirically evaluating how comprehen-
sively a benchmark like MedQA or PubMedQA cover medi-
cal concepts relevant to a given patient population or health
system. The relevance of individual concepts can be gauged
by assessing their prevalence in real-world EHR data for the
population of interest. Additionally, benchmark coverage
for different types of patients can be evaluated since EHRs
keep track of the demographic makeup of the population.

3) Construct validity is involved whenever a test mea-
sures an attribute that is not operationally defined. In
essence, it seeks to answer the question: “What con-
structs account for variance in test performance?”

Construct validity evaluates whether a test truly measures
the theoretical construct it claims to capture. A test has con-
struct validity if variations in scores across individuals can
be primarily attributed to differences in that construct. This
is a broader concept than criterion and content validity and
was introduced by Cronbach & Meehl (1955) following the
American Psychological Association Committee on Psycho-
logical Tests (1950–1954) (APA, 1954), which concluded
the limitations of relying solely on criterion and content vali-
dation to establish the validity of tests. Today, as we discuss
in Section 3.2, “construct validity” has evolved into an um-
brella term that encompasses all aspects of test validity.

Returning to the BDI example, depression is not “opera-
tionally defined” because it cannot be measured directly like
temperature with a thermometer. Instead, depression is a the-
oretical construct that must be assessed indirectly through its
observable manifestations. Establishing the construct valid-

ity of BDI requires examining how its scores relate to other
variables that are theoretically associated with depression.
Construct validity is typically classified into: convergent va-
lidity, which indicates that test scores correlate with other
measures of the same construct, and discriminant validity,
which ensures that test scores do not correlate with measures
of unrelated constructs (Campbell & Fiske, 1959). The pri-
mary goal of construct validity is to identify the theoretical
constructs that explain variance in test performance. For the
BDI, this means ensuring that score differences primarily
reflect variations in levels of depression among individuals.

Example of construct validation for BDI. Schotte et al.
(1997) investigated the construct validity of BDI in a large
sample of unipolar depressive inpatients. The study used fac-
tor analysis to demonstrate that BDI captures two distinct
dimensions of the depression construct in the subjects’ re-
sponses, psychological/cognitive and somatic/vegetative,
and that these dimensions correlate with external measures
based on Dexamethasone suppression biomarkers.

Construct validation of medical LLM benchmarks. A
medical LLM benchmark has construct validity if it reliably
distinguishes between models based on their proficiency in
the clinical skill being evaluated. Simply put, models that
perform well in the evaluated task should score higher, while
weaker models should score lower. For example, consider
diagnostic reasoning: the construct validity of MedQA as a
test of this skill can be assessed by comparing model rank-
ings on MedQA with their rankings in real-world diagnostic
accuracy evaluated on real-world patient cases. If MedQA is
a valid measure of diagnostic reasoning, its rankings should
generalize to real-world clinical cases—but they would not
necessarily predict performance on unrelated tasks, such as
medical text summarization or treatment planning. In this
light, the fact that models rank differently across bench-
marks that supposedly evaluate the same task—such as those
on the Open Medical-LLM Leaderboard—raises important
questions about the construct validity of these benchmarks.

3.2. Modern view: “All validity is construct validity”

Contemporary perspectives on test validity no longer treat
“types of validity” as distinct categories under the tripartite
model. While Cronbach & Meehl (1955) originally defined
construct validity as a separate type alongside content and
criterion validity, Messick (1989) argued that all forms of
validity evidence ultimately contribute to the interpretation
and use of constructs.1 In his seminal 1989 work, Messick
reframed what were once considered separate validity types
as different forms of evidence supporting construct validity.
This unified view emphasized that validation is not about

1Thirty years after his 1955 paper, Cronbach himself aligned
with Messick’s view, agreeing that the classical theory is ultimately
about supporting construct interpretations (Cronbach, 1989).
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Figure 4. Empirical validation of the MedQA benchmark using
EHR data. Each MedQA item consists of a clinical vignette, a
question, and multiple-choice answers, while each EHR patient
case includes a clinical note and a corresponding clinical decision.
To assess the validity MedQA, we empirically test whether strong
performance on benchmark items reflects the ability of an LLM to
encode and apply medical knowledge in real-world practice.

the test itself but about the interpretations and applications
of test scores, with all validation efforts aimed at supporting
inferences about constructs. That is, even ostensibly straight-
forward processes, such as criterion prediction or content
sampling, are grounded in theoretical assumptions about
constructs. The idea that “all validity is construct validity”
was later reinforced and expanded through the influential
work of Michael Kane (Kane, 2012; 2001). The Educational
Testing Service (ETS), which administers standardized tests
such as TOEFL and GRE, currently adopts this unified view
in its test design manuals (Kane & Bridgeman, 2017).

4. Empirical Validation of Medical LLM
Benchmarks using EHR Data

Validity theory provides a theoretical framework for assess-
ing whether medical LLM benchmarks reflect real-world
tasks. However, for benchmark validation to become a stan-
dard practice, we need clear, practical validation procedures.
We argue that benchmark validation is a distinct research
agenda, and medicine provides an ideal testing ground due
to the vast availability of real-world clinical data from EHRs
which can enable direct comparisons between benchmarks
and the real-world tasks they are meant to represent (Adler-
Milstein et al., 2015; Blumenthal & Tavenner, 2010).

In this section, we demonstrate that practical validation of
medical LLM benchmarks is feasible, even as the rigorous
strategies for empirical validation remain an open question.
As a proof of concept, we evaluate the MedQA benchmark
(Jin et al., 2021) using real-world EHR data from the Uni-
versity of California, San Francisco medical center. MedQA
was constructed from USMLE questions to evaluate the med-
ical reasoning and knowledge of LLMs in a multiple-choice
format. Each item in the benchmark comprises a clinical
vignette, lead-in question and answer choices (Fig. 4). Full
experimental details are provided in the Appendix.

The MedQA benchmark is meant to evaluate the construct

of medical reasoning and knowledge—strong perfor-
mance is often taken as evidence that an LLM “encodes med-
ical knowledge.” However, for this claim to hold, a model
that excels on MedQA should also demonstrate the ability to
reason and apply relevant medical knowledge in real-world
clinical practice. To demonstrate the feasibility of empirical
evaluation of benchmark validity, we introduce proof-of-
concept validation procedures, which we structure within
the classical validity framework outlined in Section 3.1.

4.1. Criterion validity of MedQA

We evaluate the criterion validity of MedQA by testing
whether the accuracy of an LLM on its multiple-choice
questions predicts its performance in real-world clinical
decisions requiring the same medical knowledge. To con-
duct this experiment, we matched each MedQA question
to 10 patient cases in the EHR where the clinical decision
relied on the same medical knowledge being tested. Specifi-
cally, we extracted the correct answer for each question in
MedQA and categorized it as either a drug or a diagnosis.
Drugs were mapped to RxNorm codes, while diagnoses
were mapped to their respective SNOMED codes. Using
these standardized codes, we queried clinical notes in EHR
data to retrieve 10 physician progress notes in which the
drug or diagnosis appeared in the "Assessment and Plan"
section. This process yielded a dataset of benchmark items,
each paired with 10 real-world patient encounters where the
tested medical knowledge was applied (Fig. 4).

MedQA Real-world data

Accuracy Accuracy α
Llama 3 0.54 0.48 0.56
GPT-4 0.71 0.28∗ 0.29
Chimera Llama 0.60 0.45 0.48
Biomerge 0.57 0.36 0.49
Orpomed 0.49 0.24 0.38
JSL MedLlama 0.61 0.37 0.49
PMY MedLLama 0.75 0.36 0.45

Table 1. Predictive validity of MedQA. (∗GPT-4 refrained from
answering 57% of real-world questions; unanswered cases were
counted as an error. Accuracy on answered cases was 0.64.)

We evaluated state-of-the-art LLMs: GPT-4 and Llama 3.0,
as well as the leading models from the Medical-LLM leader-
board: Chimera Llama, Biomerge, JSL Medllama, PMY
Medllama, Orpomed, and OpenBioLLMC (Pal et al., 2024).
For each model, we evaluate accuracy on MedQA, accuracy
on real-world data, as well as the following criterion:

α = P(Correct on real-world case |Correct on MedQA).

The metric α is the conditional accuracy of an LLM on real-
world cases that resemble the clinical vignettes it correctly
answered in the benchmark. This metric serves as a measure
of predictive validity—if correctly answering a benchmark
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Figure 5. Left: Impact of number of answer choices in MedQA on accuracy. Middle: Distribution of clinical tasks and scenarios in
MedQA and real-world data. Right: Distribution of the number of UMLS concepts in MedQA vignettes and real-world clinical notes.

question implies a high probability of accuracy on similar
real-world cases, then the benchmark effectively predicts
real-world performance. To estimate α, we filter MedQA to
retain only questions the LLM answered correctly and then
evaluate its accuracy on the matched real-world cases.

The results in Table 1 show a modest correlation between
LLM performance on the MedQA benchmark and real-
world cases. In a scenario of perfect criterion validity, we
would expect α to approach 1. However, our experiment
show that α offers little improvement over the overall accu-
racy of an LLM on real-world data, suggesting that correctly
answering benchmark questions does not strongly predict
real-world clinical performance on diagnostic and treatment
decisions similar to those in the benchmark. Additionally,
we observe a general drop in accuracy when models transi-
tion from the benchmark to real-world cases. A likely expla-
nation is the contrived format of MedQA, which provides
answer choices that are absent in real-world clinical reason-
ing. Notably, as the number of answer choices in MedQA
increases, performance drops across all models (Fig. 5).

There are several reasons why a benchmark might show poor
criterion validity. For one, the idealized patient presenta-
tions in clinical vignettes may differ significantly from the
messy, real-world clinical notes that are often cluttered with
irrelevant information that could make it hard for model per-
formance on the benchmark to generalize. Another possibil-
ity is that matching patients based on the correct answer in
MedQA might not represent the best measure of clinical sim-
ilarity. To set a standard for criterion validity, researchers
and clinicians could collaborate to define a more robust stan-
dard for comparing items in a benchmark and real-world
patient cases in terms of their “clinical similarity.”

4.2. Content validity of MedQA

To evaluate how well MedQA represents real-world clini-
cal concepts and contexts where medical knowledge is ap-
plied, we designed an experiment to strip away surface-level
details and represent both MedQA questions and real-world
clinical notes in a unified content format. We leveraged the
Unified Medical Language System (UMLS) (Bodenreider,
2004) to define the “content domain” of medical knowledge

(Bodenreider, 2004). UMLS is a comprehensive ontology
that integrates concepts from medical vocabularies such as
SNOMED, MeSH, LOINC, RxNorm, and ICD. By compar-
ing the UMLS concept coverage between MedQA questions
and real-world clinical notes, we can determine how well
MedQA represents the content domain of clinical practice.
For concept extraction, we used cTAKES, a widely adopted
NLP system in health informatics (Savova et al., 2010).

In addition to extracting UMLS concepts, we also examined
how MedQA questions align with real-world clinical scenar-
ios where medical knowledge is retrieved and applied across
both inpatient and outpatient progress notes. To do this, we
categorized each MedQA question and clinical note into one
of 15 possible clinical scenarios, such as diagnosis, treat-
ment management, and reasoning about treatment safety and
side effects. This allows us to define the content domain via
(patient, task) tuples—linking the patient cases that resem-
ble MedQA vignettes and the real-world decision-making
contexts that resemble MedQA questions (Fig. 4).

The results in Fig. 5 indicate that while MedQA covers a
range of real-world clinical scenarios, it disproportionately
favors diagnostic questions over treatment-related ones. Ad-
ditionally, real-world patient cases are associated with a sig-
nificantly larger number of USMLE concepts compared to
clinical vignettes in MedQA, which are intentionally stream-
lined to include only the information necessary to answer the
question. In contrast, real-world medicine is messy—patient
records often contain a flood of details, many of which are
irrelevant to the immediate diagnostic or treatment task.
This stark difference in complexity suggests that MedQA
represents a much simpler content domain than real-world
practice, which could explain its poor predictive validity in
Table 1, since prior research has shown that LLMs are prone
to distraction (Shi et al., 2023; Hager et al., 2024).

4.3. Construct validity of MedQA

The construct validity of MedQA holds if variations in ac-
curacy scores across LLMs reflect their actual ability to
encode medical knowledge. A straightforward way to as-
sess this is by comparing model rankings between the bench-
mark and a real-world evaluation task. If MedQA genuinely
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measures medical knowledge, the rankings of LLMs on the
benchmark should align with how these models perform
when retrieving and applying medical knowledge in real-
world cases. However, as we see in Table 1, this is not the
case: GPT-4 tops the rankings on MedQA, yet Llama 3 out-
performs on real-world clinical notes. Interestingly, GPT-4
had a notably high non-response rate on real-world notes,
which makes the interpretation of benchmark peformance
even harder. Is MedQA truly measuring clinical knowledge
or spurious statistical pattern matching?

Factor analysis is commonly used to assess the construct
validity of psychological tests by examining whether test
items correlate with real-world measures that reflect the in-
tended psychological construct (Kang, 2013). Similarly, the
construct validity of medical benchmarks can be evaluated
by comparing model performance on categorized bench-
mark tasks with real-world clinical tasks in the same cate-
gories. Another approach is to prompt models with chain-
of-thought reasoning and assess if their reasoning align with
expert clinicians. If a model reaches the correct answer with
flawed reasoning, it may indicate that the benchmark cap-
tures statistical patterns rather than medical understanding.

5. A Benchmark-Validation-First Approach to
Medical LLM Evaluation

In the previous section, we showed that empirically evalu-
ating the validity of medical LLM benchmarks is not only
possible but well within reach. This opens the door for a new
line of multidisciplinary research on developing methods for
a new evaluation paradigm that prioritizes benchmark vali-
dation before model evaluation, rather than the other way
around. In this envisioned evaluation practice, benchmarks
are not arbitrary datasets but structured tests with a clearly
defined construct, content domain, and validity criteria.

Our envisioned benchmark is not a foreign concept in clin-
ical research—if anything, it aligns more closely with the
structure of clinical studies, which evaluate specific inter-
ventions (constructs) within a defined population (content)
against measurable outcomes (criteria). Yet, current medical
LLM benchmarks fall short of this standard—we rely on
ad hoc datasets, loosely defined metrics, and populations
that lack clear relevance. Even our evaluation metrics often
fail to capture what truly matters. For instance, Goodman
et al. (2024) highlights how standard accuracy measures like
ROUGE fail to reflect the quality of LLM-generated clinical
summaries. MedQA, for its part, does not specify a particu-
lar disease, population, or demographic focus. And when
it comes to constructs, none of the existing benchmarks in
Fig. 1 are designed with a well-defined theoretical model of
LLM capabilities in mind. By incorporating construct va-
lidity principles, we can not only evaluate the relevance of
existing benchmarks but also develop new valid ones.

One might ask: why concern ourselves with the construct
validity of toy benchmarks when we could simply evaluate
LLMs on real-world data? While some recent benchmarks,
such as MedHELM2, incorporate real-world data and tasks,
even those benchmarks involve design choices that must be
scrutinized for construct validity. For instance, the selection
of which real-world tasks to include necessarily reflects as-
sumptions about what constitutes competent performance.
A medical benchmark might emphasize diagnostic accu-
racy over patient communication skills, which are difficult
to simulate in silico, or prioritize rare disease identifica-
tion over common primary care scenarios. Similarly, the
method of adaptation from real-world contexts to evaluation
formats, such as converting clinical decision-making into
multiple-choice questions or summarizing complex patient
interactions into standardized prompts, introduces its own
biases and potential misalignment with real-world practice.
Even the choice of success metrics, whether focusing on
exact match accuracy, clinical safety, or downstream pa-
tient outcomes, implicitly makes assumptions about what
medical LLM competence should look like. Thus, while
real-world data provides valuable grounding, it does not
eliminate the fundamental challenge of construct validity;
it merely shifts the locus of concern from artificial tasks
to the inevitable abstractions required to make real-world
complexity amenable to systematic evaluation.

More broadly, many hospitals are often reluctant to share
data due to the risk of violating privacy regulations. In our
envisioned paradigm, hospitals would not need to share raw
data at all. Instead, they could serve as benchmark valida-
tors by locally evaluating public benchmarks and reporting
validation scores to researchers. Similar to model leader-
boards, we could have leaderboards for evaluation bench-
marks, where the most thoroughly validated benchmarks
rise to the top. Model leaderboards could prioritize eval-
uation on these top-ranked benchmarks. Such framework
creates a competitive ecosystem where researchers vie to
develop benchmarks validated by the most hospitals, while
developers select benchmarks endorsed by health systems
most relevant to their deployment setting.

6. Alternative Views
In this position paper, we argued for a fundamental rethink-
ing of how we evaluate medical LLMs, particularly as their
capabilities grow more abstract and their deployment con-
texts become increasingly open-ended. Since benchmarks
are not created equal, we need tools and a shared framework
for evaluating and comparing them in terms of how well
they reflect real-world tasks in clinical practice. We pro-
posed leveraging the tools used to evaluate the construct va-
lidity of psychological and educational tests to establish an

2https://crfm.stanford.edu/helm/medhelm/latest/

8

https://crfm.stanford.edu/helm/medhelm/latest/


Medical LLM Benchmarks Should Prioritize Construct Validity

empirical science for medical benchmark evaluation.

There are alternative views on the future of medical LLM
evaluation, all of which challenge the very concept of bench-
marking itself. One perspective argues that, given the evolv-
ing nature of healthcare—changes in populations, the intro-
duction of new drugs, etc (Finlayson et al., 2021)—we can-
not rely on an the same benchmark to evaluate progress over
time. A static benchmark may create an illusion of progress,
but it will inevitably lose relevance as medicine advances.
Another viewpoint stresses that evaluation should prioritize
clinical utility, specifically the impact of LLMs on clinical
decision-making (Hager et al., 2024), rather than focusing
on benchmark performance—an argument that has also been
made in the context of diagnostic tests (Bossuyt et al., 2012).
A third view posits that, as LLMs are seen as agents, their
evaluation should use conversational simulators rather than
static datasets (Mehandru et al., 2024; Johri et al., 2025).

While these alternative approaches may play a role in the fu-
ture evaluation of medical LLMs, we argue that benchmarks
will likely remain the most frictionless means of reproducing
and evaluating new LLMs. Evaluating clinical utility typi-
cally requires models to be embedded within a health sys-
tem, which is not feasible to most researchers, while adap-
tive evaluations or agent-based simulations are essentially
just other forms of constructed tests. Crucially, the require-
ment for construct validity applies to any evaluation instru-
ment, whether a static benchmark, a simulated environment,
or an interactive conversational system. Even if the field
moves toward evaluation methods beyond benchmarks, the
core issue of construct validity will continue to be relevant.
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A. Figure 1. Overview of Evaluation Datasets for Medical LLMs
We conducted a systematic PubMed search to identify open-access articles evaluating large language models (LLMs) in
clinical contexts, focusing on publications from the last five years. Using the PubMed query function, we retrieved PubMed
IDs (PMIDs) and obtained abstracts and full texts via the PubMed Central Open Access (PMCOA) API in structured BioC
JSON format for further analysis. Our search yielded 361 papers, representing publicly available clinical LLM research in
PubMed at the time. To facilitate manual review, we selected the top 100 most-cited papers and extracted key metadata
from their abstracts and methods sections. Each paper was categorized based on two criteria:

1. Source of Evaluation Data

• Real-World Hospital Data: Papers that used clinical datasets from electronic health records (EHRs), patient
charts, or other real-world medical sources (e.g., MIMIC-III, institutional hospital records).

• Constructed Benchmark: Papers that evaluated LLMs using synthetic or researcher-designed data, such as
expert-generated clinical vignettes, hypothetical case studies, or simulated patient interactions.

2. Benchmark Used for Evaluation

• Public Benchmark: If the paper used a publicly available dataset for LLM evaluation (e.g., PubMedQA, MedQA,
MultiMedQA, MMLU, i2b2, n2c2, BC5CDR, or other established biomedical NLP benchmarks), the specific
benchmark was recorded in the dataset.

• Constructed Dataset: If the paper used a dataset specifically created for the study (e.g., handcrafted clinical
scenarios or institution-specific data not publicly available), the benchmark field was left blank.

B. Table 1. Predictive Validity of the MedQA Benchmark
To evaluate different models on their ability to handle clinical scenarios, we matched MedQA questions to real word clinical
notes in a systematic process. We started with the complete Multiple Choice Questions (MCQs) from the Step 1 and Step 2
sections of the MedQA dataset. Each MCQ was divided into two parts: (1) the prompt, which included the context of the
question, and (2) the extracted question, which represented the specific inquiry about the prompt.

From the answer choices provided for each question, we isolated the correct answer and assigned it to one of two categories:
either a drug or a diagnosis. Correct answers identified as drugs were mapped to their corresponding RxNorm codes, while
diagnoses were matched to their respective SNOMED codes. Using these standardized codes, we queried the clinical notes
to retrieve approximately 10 notes containing either the drug or the diagnosis within the "Assessment and Plan" section of a
physician’s progress note.

The retrieved clinical notes included all sections typically structured in the SOAP (Subjective, Objective, Assessment, and
Plan) format. For our analysis, we excluded the "Plan" section to avoid bias and paired the remaining note content with the
extracted question and its answer choices, forming a dataset that resembled standard MCQs with real-world clinical context.

This curated dataset was then used to evaluate top-performing models, including GPT-4, GPT-3.5, and Llama 3.0, as well as
leading models from Hugging Face’s MedQA leaderboard: Chimera Llama, Biomerge, Orpomed, JSL Medllama, PMY
Medllama, and OpenBioLLMC.

C. Figure 5. Content Validity Experiments
C.1. Left: Impact of Number of Answer Chouces in MedQA on Accuracy

We test across 3 different axes: model, dataset, and perturbation. For the models, we tested on GPT-3.5-Turbo, GPT-4,
GPT-4o, GPT-4o-mini, and Llama-3.3-70b. We test across 3 different datasets: MedQA (4 option version), MedMCQA,
and MMLU (specifically the "anatomy", "clinical knowledge", "college medicine", "college biology", "medical genetics",
and"professional medicine" subsets). For MedQA and MMLU, we draw from the test split and for MedMCQ we draw from
the dev split.

C.2. Middle: Task Coverage Comparison between MedQA and Real World Data Methodology

We extracted a sample of 100 inpatient progress notes and 100 outpatient progress notes to represent real-world medical
documentation. For the real-world clinical notes, we isolated the Assessment and Plan sections, as these contain the
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physician’s primary clinical reasoning and decision-making processes. The extracted sections were then input into the model
for categorization. We applied the following standardized prompt across all three datasets (MedQA, inpatient notes, and
outpatient notes) to classify the primary task being performed in each note:

"Identify which of the following categories best characterizes the primary task performed by the physician in this
note:"

1. Diagnosis

2. Medical fact

3. General question about a drug

4. General question about a disease

5. Treatment or management

6. Drug interaction

7. Side effects

8. Question about a procedure

9. Question about a test or measurement

10. Mechanism of action

11. Definition

12. Treatment efficacy

13. Treatment safety

14. Use in specific populations

15. Medical ethics

The model was instructed to respond strictly in the following format: [Number: Category] (e.g., "1. Diagnosis").

C.3. Right: UMLS Concept Methodology

To analyze the distribution of the UMLS concept of medical claims within the MedQA benchmark, we systematically
processed all questions (n = 1,273) in the data set. First, we iterated through each question and saved it as an individual
TXT file to facilitate batch processing. These TXT files were then processed using the cTAKES (clinical Text Analysis and
Knowledge Extraction System) API.

The cTAKES pipeline categorized the identified UMLS concepts into predefined semantic types, including diseases,
laboratory tests, medications, procedures, and signs or symptoms. For each question, we link the extracted concepts back to
their corresponding MedQA question, ensuring a clear mapping between the question and its associated UMLS concepts.

Each UMLS Concept Unique Identifier (CUI) served as a unique key, allowing us to quantify the total number of concepts
extracted across the entire dataset. By aggregating and analyzing these CUIs, we characterized the distribution of medical
concepts present in the MedQA benchmark, providing insights into the diversity and scope of clinical knowledge tested by
the data set.

13



Medical LLM Benchmarks Should Prioritize Construct Validity

C.3.1. CONCEPT DISTRIBUTION PER SECTION METHODOLOGY

To analyze the concept distribtion across structured sections of an Electronic Health Record (EHR), we collaborated with
a medical doctor to identify the key sections commonly used by physicians to evaluate clinical scenarios. These sections
served as a framework for categorizing information within the USMLE questions in the MedQA dataset.

Using this framework, we systematically input each USMLE question into a standardized structure and prompted GPT-4o
with the following instruction:

Please categorize the inputted questions into the following structured JSON format
by only extracting information from the input and not adding anything additional:
{

"Patient History": {
"Demographics": "...",
"Chief Complaint": "...",
"Patient Presentation": "...",
"Past Medical History": "...",
"Current Medications": "...",
"Review of Symptoms": "..."

},
"Objective": {

"Vital Signs": "...",
"Physical Exam": "...",
"Laboratory Findings": "...",
"Radiographic Findings": "...",
"Pathology Findings": "..."

},
"Question": "..."

}
Question:
{q[’question’]}

This prompt ensured that each question was categorized into predefined EHR sections, extracting only the information
present in the question text without adding external details. After categorizing all questions, we applied the cTAKES pipeline
to each section of the structured questions to identify and map UMLS concepts.

For each section (e.g., Patient History, Objective), the cTAKES analysis categorized the extracted concepts into semantic
types such as diseases, laboratory tests, medications, procedures, and signs or symptoms. The UMLS Concept Unique
Identifiers (CUIs) were linked back to their respective sections and questions, enabling a granular analysis of concept
distributions within the MedQA benchmark.
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