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Abstract

Language and vision-language models have shown impressive performance across1

a wide range of tasks, but their internal mechanisms remain only partly understood.2

In this work, we study how individual attention heads in text-generative models3

specialize in certain semantic or visual attributes. We reinterpret the established4

practice of probing intermediate activations with the final decoding layer through5

the lens of signal processing. This lets us analyze multiple samples in a principled6

way and rank attention heads based on their relevance to target concepts. Our7

results show consistent patterns of specialization at the head level across both8

unimodal and multimodal transformers. Remarkably, we find that editing as few as9

1% of the heads, selected using our method, can reliably impact targeted concepts10

in the model output.11

1 Introduction12

Large-scale generative models, including both language and vision-language transformers, have13

achieved remarkable performance on a wide spectrum of tasks, from open-ended text generation [1]14

to image captioning and visual question answering [2–5]. Despite these successes, the internal mech-15

anisms by which these models organize and represent knowledge remain only partially understood.16

In particular, the role of individual components, such as attention heads, in mediating specific aspects17

of generation has been the subject of increasing interest for both interpretability and control [6, 7].18

Previous studies have shown that attention heads in large language models (LLMs) often exhibit19

emergent roles, such as syntax tracking or copy behavior [8–10]. Interpretability tools such as20

the logit lens [11] and its extensions [12, 13] have provided strategies for inspecting intermediate21

model representations, revealing rich semantic information latent in hidden states. However, these22

techniques are typically applied heuristically and focus on individual examples, making it difficult to23

generalize findings across multiple samples or quantify the importance of specific model components24

in shaping the model’s output.25

In this work, we take a more principled approach to analyzing the specialization of attention heads in26

generative transformers. Specifically, we revisit a variant of Matching Pursuit (MP) [14], a classical27

greedy algorithm to approximate high-dimensional signals with sparse linear combinations of basis28

elements, and bridge it with recent interpretability techniques. By applying MP to the hidden states of29

text-generative models, we propose a way to identify a small set of attention heads that most strongly30

influence the capability of the model to generate text within a certain conceptual area (e.g., colors31

or numbers). Applying MP across both unimodal and multimodal models, we uncover consistent32

specialization patterns, with certain heads reliably governing the generation of semantically coherent33

token groups. We empirically validate our head selection strategy by demonstrating that targeted34

interventions, implemented by inverting these concept-specific heads, can selectively suppress the35

associated content, thereby enabling fine-grained and interpretable control over model outputs without36

requiring additional training.37
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2 Related Work38

Recent research on Transformer architectures has investigated the functional roles and specialization39

of attention heads. In language models, most attention heads appear redundant, with pruning studies40

showing that many can be removed with minimal loss in performance on NLP tasks [8, 9]. Some41

heads have also been linked to eliciting factual knowledge [6], promoting in-context induction [10],42

or suppressing lexical repetition [15].43

In vision-language, similar specialization patterns have been observed in the visual encoder of CLIP-44

like models, by applying methods that leverage visual-textual alignment to decompose heads over45

sentence encodings [16, 17]. A parallel line of research adapts the mechanistic interpretability tools46

developed for language models to the multimodal setting. Representative works include [18] and [19],47

which investigate information transfer mechanisms in multimodal transformers, and [20], which48

extends the logit lens [11] to the analysis of visual token representations.49

3 Pursuing specialized attention heads50

We start our investigation by exploring whether individual attention heads of generative LLMs51

specialize in interpretable functions. To isolate the contribution of each head, we use a residual52

stream decomposition approach: following [21], we model the output written by each head into the53

residual stream as a matrix Hh,l ∈ Rn,d, where n is the number of samples in the dataset and d is the54

internal dimensionality of the transformer. Our aim is to identify sparse and interpretable directions55

for each attention head Hh,l that maximally explain its variance on a given dataset. Concretely, we56

seek a sparse representation of Hh,l using directions drawn from a fixed dictionary of interpretable57

vectors, rather than an unconstrained continuous space, to ensure that the resulting components are58

meaningful and grounded in known semantic structures. As a dictionary, we adopt the unembedding59

matrix of the language model D ∈ Rv,d, as it naturally contains directions that are aligned with60

semantically meaningful outputs, allowing us to ground latent structure in human-interpretable terms.61

We employ a classical sparse coding algorithm: Simultaneous Orthogonal Matching Pursuit62

(SOMP) [22]. SOMP is a multi-sample extension of Orthogonal Matching Pursuit [23], itself a63

refinement of the original Matching Pursuit algorithm [14]. Rather than analyzing each sample64

independently, SOMP jointly considers all samples in a given dataset and selects the dictionary65

directions that are most informative across the representation. Formally, given a head activation66

matrix H ∈ Rn,d and a dictionary D ∈ Rv,d, SOMP aims to iteratively construct a column-sparse67

coefficient matrix W∗ ∈ Rn,v such that H ≈ W∗D. At each iteration, the algorithm identifies the68

dictionary entry most correlated with the current residuals and refits the reconstruction to minimize69

the difference between the original head outputs and their approximation. This process continues70

until a predefined sparsity level is reached.71

Importantly, we note a conceptual connection between our reinterpretation of SOMP and the logit72

lens (LL) [11], a tool widely used in mechanistic interpretability to probe internal representations73

of transformer models. Similarly to the method just described, LL works by projecting a single74

residual stream vector onto the unembedding directions to approximate the output logits of the model75

at intermediate layers. This is equivalent to performing a single step of matching pursuit on an76

individual example. Our SOMP-based method generalizes this idea in two key ways: it operates on77

multiple examples simultaneously, and it selects multiple dictionary directions, each capturing distinct78

components of the signal. This leads to a more robust and semantically structured characterization of79

the attention head’s functional role. In Table 1, we report some examples of specialized attention80

heads, obtained by applying SOMP to Mistral-7B attention heads, prompted by questions from the81

TriviaQA dataset [24]. Before applying SOMP, the tokens from the prompt were aggregated by82

averaging. As we show in the table, a direct application of LL 1 in this setting results in noisier and83

highly redundant explanations.84

Besides returning lists of latent directions and associated natural language tokens that better charac-85

terize each head, SOMP produces a reconstruction of the head representation in the space spanned86

by those vectors. Building on this insight, we propose a method to automatically identify the heads87

most relevant for a target attribute. Given a list of words related to the chosen semantic area, one88

1We aggregate over mutiple samples by storing the 5 tokens with highest logits for each sample, and then
taking the 5 most frequent tokens overall.
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Table 1: Top-5 tokens identified by SOMP and LL on selected attention heads of Mistral-7B, evaluated
on TriviaQA prompts.

Method L18.H27
(Politics)

L24.H20
(Nationality)

L25.H14
(Calendar)

L30.H28
(Digits)

SOMP COVID; Soviet;
Obama; Biden; Clinton

British; American;
European; German;
English

February; July; Octo-
ber; Christmas; April

9; 1; 3; 7; five

Logit Lens Covid; vaccine; pan-
demic; COVID; Biden

American; Americans;
America; American;
California

Sunday; October;
February; Oct;
breakfast

u; 8; u; n; 9

can restrict the unembedding matrix to the rows associated to these tokens and apply SOMP on this89

concept-specific dictionary. Then, the fraction of head variance explained by SOMP in this setting90

can be considered as a measure of specialization of the head, allowing us to rank and select heads by91

their relevance with respect to the target concept.92

4 Controlling generation through specialized heads93

We now evaluate how the specialization of attention heads can be leveraged to apply domain-specific94

targeted interventions to model behavior, effectively validating our selection. One way to do so is to95

disrupt the information flow from a selected subset of heads to the residual stream during the forward96

pass. Concretely, we apply this intervention by inverting the sign of the head representations. The key97

preliminary step is to identify relevant and specialized heads. To accomplish this, we apply SOMP98

over a restricted unembedding dictionary, filtered to include only a set of tokens associated with the99

target property. Then, we rank attention heads by the proportion of their variance explained by the100

SOMP reconstruction and intervene on the top-k ranked heads. In all of our experiments, we include101

a random control condition to verify the specificity of our findings. This control involves intervening102

on a randomly selected set of attention heads that matches the original set in both size and layer103

distribution but is entirely disjoint from it.104

4.1 Mitigation of toxic content105

Experimental setting As a first experiment, we focus on toxicity mitigation: specifically, reducing106

the occurrence of offensive words in text generated by Mistral-7B [25]. To do this, we identify a107

subset of toxic heads within the model and intervene on them. We consider two datasets, RealToxici-108

tyPrompts (RTP) [26], which contains naturally occurring Web prompts, and Thoroughly Engineered109

Toxicity (TET) [27], a benchmark with carefully constructed test cases, both of which are designed110

to elicit harmful responses from LLMs. For both datasets, we extract and label toxic words from111

Mistral’s responses using Llama3.3 [28]. From the list, we select the 100 most frequent toxic words,112

and randomly choose 70% of these to identify the toxic heads. To evaluate effectiveness, we measure113

how often the remaining 30% of toxic words appear in Mistral’s outputs after inversion, relative to114

their frequency before the intervention.115

Table 2: Normalized frequency of held-out toxic words after intervention. Lower values indicate
better mitigation. Targeted heads reduce toxicity, while random heads often increase it.

Dataset Top 16 heads Top 32 heads Random 16 heads Random 32 heads
RTP 0.77 0.72 1.26± 0.48 1.19± 0.31
TET 0.66 0.48 1.09± 0.17 1.41± 0.49

Result analysis The results we obtain by inverting the sign of toxic head activations are displayed116

in Table 2, for 16 and 32 heads. In both RTP and TET, intervening on such heads noticeably reduces117

the frequency of toxic words, even if they were not used for the head selection. Moreover, intervening118

on randomly chosen control heads tends to increase the frequency of toxic words. This trend is119

expected, as we are randomly picking and disrupting heads that are deemed non-toxic (we impose120

that they are distinct from the targeted ones), thus implicitly reinforcing toxic behavior.121
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4.2 Targeted control of visual attributes122

We now move to evaluating the extent and implications of head specialization in the LLM backbones123

within generative Vision-Language models (VLMs). These models are usually built by fine-tuning a124

pre-trained LLM on multimodal tasks, such as visual question answering or image captioning, using125

visual tokens coming from a pre-trained vision encoder as contextual information [3]. In line with126

recent works [20] that have successfully applied the logit lens to visual tokens of LLaVA, a prominent127

example of VLM, we investigate head specialization by applying our MP-based analysis on the head128

representations of image patches, averaged over tokens.129

Experimental setting For this experiment we benchmark LLaVA-NeXT-7B [4] (from now on just130

LLaVA for short) on a range of image classification datasets, including: MNIST [29], SVHN [30],131

GTSRB [31], Eurosat [32], RESISC45 [33] and DTD [34]. For each dataset, we begin by selecting132

the set of k most relevant heads. Heads are selected by applying SOMP to the unembedding matrix133

restricted to tokens corresponding to class names, and sorting heads by the fraction of variance134

explained by the SOMP reconstruction. In this experiment, we prompt the model to classify the135

image, and evaluate the generated output in terms of exact match with the ground truth class label.136
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Figure 1: Classification results under different head selection strategies: (blue) 16 heads with highest
variance ratio explained by SOMP; (green) 32 heads with highest explained variance ratio; (yellow)
16 random heads, with the same layer-wise counts of top 16; (orange) 32 random heads, with the
same layer-wise counts of top 32.

Result analysis We report the classification results in Figure 1, normalized for each dataset with137

respect to the accuracy obtained by LLaVA when no intervention is applied to its forward pass. For all138

datasets, inverting the the top 32 heads identified by our method is sufficient to significantly disrupt139

the classification performance, while inverting 32 random heads at equivalent layers has substantially140

lower to no impact on performance. At k = 16 the picture is similar with the exception of DTD,141

whose performance is unaffected, hinting at higher head redundancy on this task. Summing up,142

intervening on a small set of attention heads selected via SOMP significantly disrupts classification143

performance across diverse datasets, confirming head-level specialization in LLaVA.144

5 Discussion145

In this work, we investigated the specialization of attention heads in large generative models through146

a sparse, interpretable decomposition of their outputs. Using Simultaneous Orthogonal Matching Pur-147

suit (SOMP) over the model’s unembedding space, we identified directions aligned with semantically148

meaningful attributes and used them to recover sets of specialized heads across different tasks and149

modalities. Our approach offered a multi-sample generalization of the logit lens, allowing us to move150

beyond single-token analysis toward more stable, dataset-level structure. We showed that the selected151

heads could be ranked by their explained variance and that intervening on a small number of them152

produced targeted changes in generation. These findings held across text and vision-language settings,153

supporting the utility of head-level analysis and intervention for model understanding and control.154
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