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Abstract
Nowadays, research into personalization has been focusing on explainability and
fairness. Several approaches are able to explain individual recommendations, but
unfairness explainability has been limited to finding user/item features mostly
related to biased recommendations. In this paper, we devised a novel algorithm
that leverages counterfactuality methods to discover user-item interactions as user
unfairness explanations in GNN-based recommendation. Our approach perturbs
the graph topological structure to find an altered version (counterfactual explana-
tion) that minimizes the disparity in utility between the protected and unprotected
demographic groups. Experiments on four real-world graphs showed that our
method can systematically explain user unfairness on three state-of-the-art GNN-
based recommendation models. Moreover, the generated unfairness explanations
are connected to properties related to the networks topological aspects. Source
code and datasets: https://github.com/jackmedda/RS-BGExplainer.

1 Introduction
Context and Motivation. Even though novel recommender systems improve the users’ satisfaction,
researchers have gradually increased their focus towards the importance of preserving additional
properties, such as fairness [1, 2] and explainability [3]. Usually, these properties are independently
investigated, one at a time. Considering the main case study in our work, i.e. algorithmic fairness, it
is important for service providers to understand why the model behind their platform is unfair.

State of the Art. Explanation techniques are receiving increasing attention not only in the field of
recommender systems, but also in the more general domain of Graph Neural Networks (GNNs) [4].

Explanation methods in recommendation mainly rely on post-hoc [5, 6] and path-based [7–9]
techniques. Conversely, counterfactual techniques have been proved to be effective for deriving ex-
planations of GNNs outcomes in several downstream tasks [10–12], including recommendation [13].

In GNNs, counterfactual reasoning implies manipulating the topological structure of the graph, to
find the minimal set of perturbations that changes the model prediction. The same approach has been
used to mitigate unfairness in several downstream tasks [14–16], but only [17] focused on identifying
the patterns that globally explain unfairness issues in GNNs for node classification.

The few approaches explaining unfairness in recommendation exploit surrogate models [18] and
counterfactual reasoning [19]. Both of them identify user and item features causing recommendation
disparities. Conversely, [20] adopts interaction dependency graphs to uncover model instability. The
latter, which has global implications as the unfairness phenomenon, affects the system as a whole.

Open Issues. The existing unfairness explanation strategies face significant limitations, and as far
as we know, no analogous method was ever proposed in GNN-based recommender systems.
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First, algorithms designed to explain recommendations or GNNs predictions depend on local aspects,
such as knowledge-aware paths [7, 8] or node neighborhoods [10–13], preventing their adoption
to explain unfairness, which affects the system globally. Second, current solutions for unfairness
explanation are inapplicable on datasets missing specific features required for the targeted task [18,
19], their functioning constraints the explanation to specific issues (e.g., model instability [20]), they
adopt specialized fairness notions at the instance level [21] or node dropping strategies [17]1.

Our Contribution. In this work, we propose a framework, named GNNUERS (GNN-based
Unfairness Explainer in Recommender Systems), which perturbs the original bipartite graph in
order to identify a set of user-item interactions leading to consumer unfairness in GNN-based recom-
mender systems. Driven by counterfactual reasoning, consumer unfairness can be uncovered by the
selected edges, i.e. the user-item interactions, because their removal from the original graph can result
in fairer recommendations for the end users during the inference phase, thus globally explaining
under which conditions a model generates disparities. The original bipartite graph is modified under
the assumption that certain users did not interact with the items associated with the selected edges
(in the counterfactual world), while, in reality, the graph includes such edges (in the actual world).
We validate our proposal on three state-of-the-art models under four datasets, measuring key utility
metrics and performing further analyses on the unfairness patterns discovered by our method.

2 GNNUERS: Methodology
2.1 Problem Formulation

GNNUERS aims to explain why a recommender system f is unfair. Typically, f uses the past interac-
tions between users U and items I to learn the users’ preference patterns. User-item interactions
can be represented by an undirected bipartite graph G = (U, I, E), where E is the set of edges and
U ∪ I is the set of nodes. Any GNN, defined as f(A;W ) → R̂, can then be used to model the
recommendation task as a link prediction one. A is an n × n (n = |U | + |I|) adjacency matrix
representing G, W is the learned weight matrix of f , and R̂u,i is the linking probability between u

and i. The top-k items are recommended to u based on their decreasing probability in R̂u.

Following [10, 12], GNNUERS leverages counterfactual techniques to generate an adjacency matrix Ã,
minimally perturbed w.r.t. A. With a logic similar to [19], Ã represents a counterfactual explanation
of the unfairness if the trained GNN f produces altered and fairer recommendations when f uses Ã
instead of A in the inference phase. Formally, we seek to minimize the following objective function:

L(A, Ã) = Lfair(A, f(Ã,W )) + Ldist(A, Ã) (1)

where Ldist controls the distance between Ã and A, Lfair is the term monitoring fairness.

2.2 Framework

Perturbation Mechanism. Following [10], we generate a perturbed adjacency matrix Ã. Differ-
ently from [10], we adopt perturbations at the global level, and leverage a vector p ∈ {0, 1}B (B is
the number of candidate edges, e.g., B = |E|) instead of a matrix P to only affect meaningful entries
in A, i.e. where Au,i ̸= 0. p perturbs such entries through a function h : N2 → N that maps the 2D
indices (u, i) of A to a 1D index for p. Thus, given t = h(u, i), t < B, an entry pt = 0 denotes the
edge A(u, i) is deleted in Ã, i.e. Ãu,i = 0. Formally, Ã is populated as follows:

Ãu,i =

{
ph(u,i) if h(u, i) < B

Au,i otherwise
(2)

We derive p from an optimization process that uses a real valued vector p̂, as [10, 22]. p̂ is transformed
by a sigmoid function, then its values ≥ 0.5 are rounded to 1, otherwise 0, eventually obtaining p.

Perturbed Graph Generation. GNNUERS generates Ã by iteratively perturbing A with (2), and
measuring the unfairness level on the altered matrix of linking probabilities R̃. At first, ∀t ∈ [0, B),

1Node dropping would imply unfairness is caused by specific stakeholders, raising ethical concerns.
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we initialize p̂t = 0, such that pt = 1 after the sigmoid transformation and Ã0 = A is guaranteed. At
the j-th iteration, the perturbation vector p̂2 is updated by (1) based on the altered matrices Ãj−1 and
R̃j−1, where the latter was generated by feeding Ãj−1 in input to f . With the updated vectors p̂ and
p, we obtain Ãj , and the iterative process will continue until a certain condition is satisfied.

Loss Function Optimization. Grounded on the fairness notion of demographic parity, we set Lfair

as the absolute disparity in recommendation utility S across demographic groups, as in [23, 24]. As
recent works that focused on unfairness explanation or mitigation in recommendation [19, 25–27], we
focus on a binary setting, with sensitive attributes comprised of two demographic groups. We use U−
or unprotected3 (U+ or protected) to denote the group with higher (lower) utility on the evaluation
set. For the distance loss Ldist, any differentiable distance function can be adopted. Formally:

Lfair(A, R̃) =
∥∥∥S(R̃U− , AU−)− S(R̃U+ , AU+)

∥∥∥2
2

Ldist(A, Ã) = β
1

2
σ

(∑
i,j

∥∥∥Ãi,j −Ai,j

∥∥∥2
2

)
(3)

σ bounds Ldist to the same range of Lfair
4, while β balances them (we tested values in [0.001, 2.0]).

We use U+ or U− as superscripts on R̃ and A to denote the respective sub-matrices w.r.t. U+ or U−.

Normalized Discounted Cumulative Gain (NDCG) was selected as the utility metric S. However, due
to its non-differentiability, in the optimization process we adopt an approximated version [24, 28],
which we refer as NDCGApproxLoss, but still using NDCG in the evaluation phase. Given that our
goal is to explain the recommendation unfairness measured on the evaluation set, we use the ground
truth labels of the latter to measure NDCGApproxLoss during the GNNUERS learning process5.

3 Experimental Evaluation and Discussion
Experimental Setting. We relied on the artifacts of [23], adopting the same splitting strategy and
extending the set of datasets, i.e. MovieLens 1M (ML-1M) and Last.FM 1K (LFM-1K), with TaFeng
(FENG) and Insurance (INS). Due to space constraints, we will detail and examine only ML-1M,
FENG, and only the sensitive attribute age. As [23], age was binarized in Younger (Y) and Older (O).
Relying on Recbole [30], we evaluated GNNUERS on GCMC [31], NGCF [32], and LigthGCN [33].

To analyze the explanations, we identified three properties: Degree (DEG) is a node’s degree, Density
(DY) describes the tendency of a node to be connected to high-degree nodes, Intra-Group Distance
(IGD) describes how a node z is close to the other nodes z′ ∈ Z/{z}, Z ⊂ U or Z ⊂ V . Let Nz be
the neighbors set of z, N the graph diameter, Γ a function that measures the shortest path length:

DYz =

∑|Nz|
i=1

|{z′ | (z̄i, z′) ∈ E ∧ z̄i ∈ Nz}|
|Z|

|Nz|
IGDz =

∑N
n=1

|{z′ | Γ(z, z′) = n}|
n

|Z|
(4)

For a user u, DEG represents the interest towards the available items, DY the inclination to engage
with popular items, IGD the propensity to interact with items valued by the demographic group of u6.

The literature does not include baselines that explain unfairness in the form of user-item edges
as GNNUERS. We then compare our method with (i) its extension GNNUERS+CN, which limits the
perturbation to the edges connected to the unprotected user nodes, (ii) CASPER [20], an algorithm
that identifies the edge in a interaction dependency graph that causes the highest instability in a model,
(iii) RND-P, which mimics the GNNUERS edges selection process, but based on a random choice7.

Unfairness Explainability Benchmark. We first investigated the capability of GNNUERS to select
counterfactual explanations that effectively optimize Lfair. The evaluation is performed by randomly

2We constrain the floating-point oscillations of p̂ values, preventing a deleted edge from being restored.
3The gradient computation of NDCGApproxLoss was not tracked for the unprotected group, so as to explain

the unfairness in terms of the interactions that favored the other group.
4We adopt σ(x) = |x|/(1 + |x|) which grows slower as x increases w.r.t. the logistic function.
5For other tasks, e.g., mitigation, having access to the ground truth labels is a less realistic assumption [29].
6Due to space constraints, we omit the table with datasets and graph properties statistics.
7If the selected edges do not optimize L, the early stopping criterion might be triggered after a few iterations.
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ML-1M FENG

Figure 1: Distribution of |∆NDCG| measured between age subgroups. A Wilcoxon signed-rank test is
performed between each pair of boxes; p-value is shown if it is < 0.05

m
according to the Bonferroni correction.

Figure 2: GNNUERS on NGCF: deleted edges distribution (Del Edges Distribution) over the quartiles
(Q1-Q2-Q3-Q4) defined for each age group through sorting the nodes by each graph property.

sampling 100 subgroups of users coming from both demographic groups and measuring the utility
disparity with |∆NDCG|, i.e. Lfair. This approach mimics the learning process adopted by GNNUERS.

Figure 1 shows the |∆NDCG| distribution across the age subgroups. On the bottom, we include the
NDCG@10 after the perturbation and the deleted edges fraction. Our methods significantly narrow
the |∆NDCG| distribution compared with NP (No Perturbation) by perturbing just 1% of the edges in
some settings. Conversely, CASPER and RND-P are inefficient in reducing |∆NDCG|.
A further analysis on our methods impact on NDCG (not reported here) proved that the latter
is decreased more for the unprotected group w.r.t. the protected one, highlighting the edges are
specifically selected to provide an explanation of the prior advantage in NDCG for the former group.

Edges Selection Process. We analyze the perturbed edges by profiling the respective user nodes
with DEG, DY and IDG. User nodes were split by demographic groups and the nodes in each group
were partitioned in quartiles: the data points order was defined by each property value in each quartile,
e.g., low-DEG (Q1). For each group and each quartile, the number of perturbed edges was taken and
normalized by the total number of edges perturbed in each experiment. We constrain the analysis to
NGCF, where GNNUERS8 minimally affects the protected group NDCG to explain the unfairness.

Figure 2 highlights the distribution of deleted edges is significantly higher for the unprotected group.
Hence, unfair recommendations are highly dependent on such group interactions. On ML-1M, the
over-representation and over-DEG of the Younger is enough to deviate the recommendations in their
favor. No relevant pattern is reported across quartiles, but the Younger nodes themselves could be
related to the unfairness, given that GNNUERS prunes more their edges compared to the Older ones. On
FENG, GNNUERS deletes more edges connected to high-DEG and high-IGD (Q4) unprotected users
(Older), i.e. Older users with the most interactions and the closest ones to other Older nodes. Older
users in FENG are less represented, but their higher average DEG and IGD reflects such observations.

Discussion. In this work, we introduced GNNUERS, a framework to explain unfairness in GNN-based
recommender systems. We proved the effectiveness of our method measuring its performance in
unfairness explainability, and we also characterized the edges selected as explanation. Still, a more
comprehensive investigation including other features, according, for instance, to some requirements
defined by service providers, could provide more informative findings. Nonetheless, GNNUERS is
flexible to be extended to substantially different GNN-based architectures, e.g., GAT.

8GNNUERS+CN was not analyzed because it affects only the unprotected group
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