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Abstract

Diffusion models are successful for synthesizing high quality videos but are limited to
generating short clips (e.g. 2-10 seconds). Synthesizing sustained footage (e.g. over minutes)
still remains an open research question. In this paper, we propose MALT Diffusion (using
Memory-Augmented Latent Transformers), a new diffusion model specialized for long video
generation. MALT Diffusion (or just MALT) handles long videos by subdividing them into
short segments and doing segment-level autoregressive generation. To achieve this, we first
propose recurrent attention layers that encode multiple segments into a compact memory
latent vector; by maintaining this memory vector over time, MALT is able to condition on it
and continuously generate new footage based on a long temporal context. We also present
several training techniques that enable the model to generate frames over a long horizon with
consistent quality and minimal degradation. We validate the effectiveness of MALT through
experiments on long video benchmarks. We first perform extensive analysis of MALT in
long-contextual understanding capability and stability using popular long video benchmarks.
For example, MALT achieves an FVD score of 220.4 on 128-frame video generation on
UCF-101, outperforming the previous state-of-the-art of 648.4. Finally, we explore MALT ’s
capabilities in a text-to-video generation setting and show that it can produce long videos
compared with recent techniques for long text-to-video generation.

1 Introduction

Diffusion models (DMs) (Ho et al., 2020; Song et al., 2021b) provide a scalable approach to training high
quality generative models and have been shown in recent years to apply widely across a variety of data
domains including images (Dhariwal & Nichol, 2021; Karras et al., 2022), audio (Kong et al., 2021; Lakhotia
et al., 2021), 3D shapes (Lee et al., 2024; Luo & Hu, 2021; Zeng et al., 2022), and more. Inspired by these
successes, a number of DM-based approaches have also been proposed for generating videos (Blattmann
et al., 2023; Gupta et al., 2023; Ho et al., 2022b; Bar-Tal et al., 2024) and even enabling complex zero-shot
text-to-video generation (Gupta et al., 2023; Brooks et al., 2024).

In video generation, a central challenge and key desiderata is to achieve any-length generation where the model
is capable of producing a video of arbitrary length conditioned on its understanding of the previous context.
Many state-of-the-art existing video DM frameworks are prima facie, only capable of generating videos of
fixed temporal length (e.g., in the form of a fixed shape 3D RGB tensor (Ho et al., 2022b)) and generally
limited from 2-10 seconds. A standard “naive” approach for addressing any-length video generation is to
use autoregressive generation where new frames are generated conditioned on a small number of previously
generated video frames (rather than a long context). For example, given a 4-second base model, one might
autoregressively generate 2 new seconds of footage at a time, conditioning on the previous 2 seconds. Thus,
this autoregressive approach can generate compelling videos for longer extents than the base model (especially
for very high-quality generation models). However, it also has clear limitations. By not conditioning on long
temporal extents, these models often struggle to achieve long-term consistency. Moreover, small errors during
generation can easily cause error propagation (Ruhe et al., 2024), resulting in a rapid quality drop with the
frame index.

To summarize, there are two key subchallenges entailed by the any-length video generation problem:
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Figure 1: Overview. MALT first encodes a long video into a low-dimensional latent vector using a video
autoencoder (e.g., MAGVIT-v2 (Yu et al., 2024a)) and then divides it into multiple segments. After that,
we recurrently generate these segments one-by-one, based on our newly proposed diffusion transformer
architecture by adding recurrent temporal attention layers to existing architectures (Gupta et al., 2023;
Peebles & Xie, 2023). The red line on right figure denotes the increased receptive field of the MALT relative
to a single segment.

• long-term contextual understanding: allowing the model to condition on long temporal extents while
staying within memory limitations and computational constraints

• long-term stability: generating long videos without frame quality degradation over time.

Solving both of these issues is a critical next step for video generation, and indeed, there have been a number
of recent works that generate stable video using long context (Harvey et al., 2022; Yan et al., 2023). However,
they have been limited to simple datasets and fail to be stable for complex, realistic datasets.

Our approach. In this paper, we tackle any-length video generation by achieving the aforementioned twin
goals of long-term contextual understanding and long-term stability. Toward this end, we introduce a new
latent DM specialized for long videos, coined MALT Diffusion: Memory-Augmented Latent Transformers
(MALT for short); see Figure 1 for an illustration. For long-term contextual understanding, we introduce a new
diffusion transformer architecture that enables blockwise autoregressive generation of long videos. Motivated
by recent language models developed for handling long sequences (e.g., (Dai et al., 2019)), we design our
model by adding recurrent temporal attention layers into an existing diffusion transformer architecture, which
computes the attention between the current segment and the hidden states of previous segments (context).
Hence, hidden states of contextual segments act as a “memory” to encode context and is used to generate
future segments. Consequently, in contrast to conventional DMs, our model can behave as both a DM for
generating a video clip and as an encoder to encode previous contexts (clean inputs) as memory.

To mitigate error accumulation at inference (i.e., to achieve long-term stability), we propose a training
technique that encourages our trained model to be robust with respect to noisy memory vectors by applying
noise augmentation to the memory vector at training time. Moreover, we carefully design our model
optimization to mitigate the rapid increase of computation and memory costs with respect to video length,
enabling the training to be done on very long videos. With these components, MALT outperforms previous
state-of-the-art results on popular long video generation and prediction benchmarks (Yu et al., 2023b; Yan
et al., 2023) while using about 2× fewer parameters than the prior best baselines.1

The main contributions of our paper are:

• We propose a novel latent diffusion model MALT Diffusion: Memory-Augmented Latent Transformers
(or just MALT), which can generate and be trained on long videos and addresses the aforementioned
shortcomings.

• We propose several techniques for training our architecture on long videos, resulting in a robust model
both capable of being a denoiser and an encoder of previous contexts. We also ensure training can be
performed without expensive memory requirements.

1We mainly focus on videos, but ideas can be similarly applied to other domain like PDE or climate data (Ruhe et al., 2024).

2



Under review as submission to TMLR

• We show the strengths of MALT on long video generation/prediction benchmarks. For instance, MALT
achieves an FVD (Unterthiner et al., 2018) of 220.4 in unconditional 128-frame video generation on
UCF-101 (Soomro et al., 2012), 66.0% better than the previous state-of-the-art of 648.4. Also, on a
challenging realistic dataset, Kinetics-600 (Kay et al., 2017), MALT exceeds the prior best long video
prediction FVD as 799→392.

• We also qualitatively validate MALT’s capability in long-term contextual understanding and stability. In
particular, we show that MALT shows a strong length generalization: MALT generates long videos when
trained on an open-world short text-to-video dataset (up to 4-5 seconds per clip), producing >120 seconds
at 8 fps without suffering from significant frame quality degradation.

2 MALT Diffusion with Memory-Augmented Latent Transformers

Consider a dataset D, where each example (x, c) ∈ D consists of a video x and corresponding conditions
c (e.g., text captions). Our goal is to train a model using D to learn a model distribution pmodel(x|c) that
matches a ground-truth conditional distribution pdata(x|c). In particular, we are interested in the situation
where each x is a long video, and video lengths are much larger than conventional methods that often use
∼20-128 frames for both training and inference (He et al., 2022).

To efficiently model long video distribution, we adopt a “memory” that encodes previous long context in our
latent diffusion transformer. Specifically, we aim to train a single model capable of: (a) encoding previous
context of the long video as a compact memory latent vector, and (b) generating a future clip conditioned on
the memory and c.

In the rest of this section, we explain MALT Diffusion in detail. In Section 2.1, we provide a brief overview
of latent diffusion models. In Section 2.2, we describe problem formulation and how we design a training
objective. Finally, in Section 2.3, we explain the architecture that we used.

Notation. We write a sequence of vectors [xa . . . , xb] with a < b as xa:b.

2.1 Latent diffusion models

In order to generate data, diffusion models learn the reverse process of a forward diffusion, where the
forward diffusion diffuses an example x0 ∼ pdata(x) to a (simple) prior distribution xT ∼ N (0, σ2

maxI) (with
pre-defined σmax > 0) with the following stochastic differential equation (SDE):

dx = f(x, t)dt + g(t)dw, (1)

where f , g, w are pre-defined drift and diffusion coefficients, and standard Wiener process (respectively) with
t ∈ [0, T ] with T > 0. With this forward process, data sampling can be done with the following reverse SDE
of Eq. equation 1:

dx =
[
f(x, t)− 1

2g(t)2∇x log pt(x)
]
dt + g(t)dw̄, (2)

where w̄ is a standard reverse-time Wiener process, and ∇x log pt(x) is a score function of the marginal
density from Eq. equation 1 at time t. Song et al. (2021b) shows there exists a probability flow ordinary
differential equation (PF ODE) whose marginal pt(x) is identical for the SDE:

dx =
[
f(x, t)− 1

2g(t)2∇x log pt(x)
]
dt. (3)

Following previous diffusion model methods (Lee et al., 2024; Zheng et al., 2024), we use the setup in
EDM (Karras et al., 2022) with f(x, t) := 0, g(t) :=

√
2σ̇(t)σ(t) and a decreasing noise schedule σ : [0, T ]→ R+.

In this case, the PF ODE in Eq. equation 3 can be written:

dx = −σ̇(t)σ(t)∇x log p(x; σ(t))dt, (4)
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where p(x; σ) is the smoothed distribution by adding i.i.d Gaussian noise ϵ ∼ N (0, σ2I) with standard
deviation σ > 0. To learn the score function ∇x log p(x; σ(t)), we train a denoising network Dθ(x, t) with the
denoising score matching (DSM) (Song & Ermon, 2019) objective for all t ∈ [0, T ]:

Ex,ϵ,t

[
λ(t)||Dθ(x0 + ϵ, t)− x0||22

]
,

where λ(·) assigns a non-negative weight.

However, training Dθ directly with raw high-dimensional x is computation and memory expensive. To
solve this problem, latent diffusion models (Rombach et al., 2022) first learn a lower dimensional latent
representation of x by training an autoencoder (with encoder F (x) = z and decoder G(z) = x) to reconstruct
x from the low-dimensional vector z, and then train Dθ to generate in this latent space instead. Specifically,
latent diffusion models use the following denoising objective defined in the latent space:

Ex,ϵ,t

[
λ(t)||Dθ(z0 + ϵ, t)− z0||22

]
,

where z0 = F (x0). After training the model in latent space, we sample a latent vector z through an ODE or
SDE solver (Song et al., 2021a;b; Karras et al., 2022) starting from random noises and then decode the result
using G to generate a final sample.

2.2 Modeling long videos via blockwise diffusion

Given a “long” video x1:S ∈ RS×H×W ×3 with a resolution H ×W and number of frames S > 0, we divide the
video into N segments of length L: x(i−1)L+1:iL for 1 ≤ i ≤ N (thus S = NL). MALT will autoregressively
generate these segments one-by-one.

Autoencoder. Following the standard latent diffusion approach, we would like to be able to encode and
decode videos using a trained autoencoder, which is typically more lightweight compared to the diffusion
model. However for very long videos, even running the autoencoder can be infeasible—thus we encode and
decode videos in chunks of m < N contiguous segments at a time. Specifically, for 1 ≤ i ≤ N/m, we encode
x(i−1)mL+1:imL as a latent vector zim:(i+1)m and decode it as:

zim:(i+1)m := F (x(i−1)mL+1:imL) ∈ Rm·l×h×w×c,

G(zim:(i+1)m) ≈ x(i−1)mL+1:imL,

where F (·) is an encoder network that maps the original video segments to their corresponding latent vectors
with a spatial downsampling factor ds = H/h = W/w > 1 and a temporal downsampling factor dl = L/l > 1,
and G(·) is a decoder network. We use these latent segments z1, . . . , zn of the original x obtained from the
autoencoder for modeling the long video distribution.

Diffusion model. We now directly model the joint distribution of latent segments, p(z1:N |c), autoregressively
as

p(z1:N |c) =
N−1∏
n=0

p(zn+1|z1:n, c)with z1:0 := 0 (5)

where we learn all p(zn+1|z1:n, c) for 0 ≤ n ≤ N − 1 using a single diffusion model Dθ.

A naïve approach would be to use z1:n directly as a condition to the model; however, if the number of
segments, N , is large, z1:n easily becomes extremely high-dimensional and prohibitive with respect to memory
and compute. To mitigate this bottleneck, we instead introduce a fixed-size hidden state hi := [hi

1, . . . , hi
d]

recurrently computed from Dθ. This hidden state serves as a memory vector to encode the context (i.e.,
the previous sequence of segments) z1:n, where d > 0 is a number of hidden states that are used as memory
vectors (i.e., i is a segment index and d refers to the number of layers of the model).

Specifically, for 1 ≤ i ≤ n, we compute hn with the following recurrent mechanism:

hi = HiddenState
(
Dθ(zi

0, 0; sg(hi−1), c)
)
, (6)
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Figure 2: MALT model architecture. We add memory attention layers to the existing diffusion transformer
architectures, which are operated recurrently across segments of short video clips.

where h0 = [0, . . . , 0] and sg denotes a stop-grad operation. Note that we use a clean segment zi without
added noise so we set t = 0 here, which has not been used in conventional diffusion model training (Ho et al.,
2020; Song et al., 2021a;b).

To sum up, we train Dθ with the following denoising autoencoder objective with the memory hn:

E
[
λ(t)||Dθ(zn+1

t , t; hn, c)− zn+1
0 ||22

]
, (7)

where each data is sampled from the video dataset D, ϵ ∼ p(ϵ), t ∼ [1, T ], and n ∼ P (n) with pre-defined
prior distributions p(ϵ) and P (n). Specifically, we set P (n) as P (n = 0) = 1/2 and P (n = k) = 1/2(N−1) for
k > 0, as generating videos without memory (i.e., n = 0) is more difficult than continuation with a given
memory vector (i.e., n > 0). Note that in Eq. equation 7 we do not use the stop-grad operation on hn

itself; as we mentioned, diffusion model training uses t ≥ 1 in the common diffusion model objective because
they only consider noisy inputs but our memory vector computation uses a clean sample (t = 0), which
cannot be optimized without a backpropagation to hn. Instead, we use the stop-grad operation on the hi for
i < n which are used to compute hn in order to reduce memory requirements with respect to the number of
segments used during training.

Training for long term stability. Unfortunately, the video quality from the model Dθ trained with
Eq. equation 7 is usually not satisfactory, because of frame quality degradation caused by error accumulation.
We hypothesize that the reason why this happens is because there exists a discrepancy between training
and inference: in training, we use ground-truth latent vector zn for computation of the memory hn, but
at inference, the model instead uses generated latent vectors, where small errors during generation can
compound over a long sequence of segments.

To mitigate this discrepancy, we use a noisy version of hn at training time, denoted by h̃n, where

h̃n := HiddenState
(
Dθ(zn + ξ, 0; sg(hn−1), c)

)
, (8)

where h0 = [0, . . . , 0], (9)

and ξ ∼ p(ξ) with a pre-defined prior distribution p(ξ). Since h̃n is computed with hn−1 and a noisy latent
vector zn + ξ, the model is trained to be robust to small errors and reduces the train-test discrepancy between
the memory computed at training and inference.

Summing up all of these components, our final training objective L(θ) becomes:

L(θ) := E
[
λ(t)||Dθ(zn+1

t , t; h̃n, c)− zn+1
0 ||22

]
, (10)

with prior distributions p(ϵ), p(n), p(ξ).
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For p(ϵ), we use a progressively correlated Gaussian distribution proposed in Ge et al. (2023) to further
mitigate error accumulation. Next, we set p(ξ) to be a Gaussian N (0, σ2

memI) with small σmem > 0.

Inference. After training, we synthesize a long video by autoregressively generating one segment at a time.
Specifically, we start from generating a first segment z1 conditioned on c, and then iteratively generate zn+1

for n > 0 by computing memory hn and performing conditional generation from hn and c. We provide
detailed pseudocode in Appendix A.

2.3 Architecture

Autoencoder. Similar to the encoding scheme used in a recent latent video diffusion model, W.A.L.T
(Gupta et al., 2023), we use a causal 3D CNN encoder-decoder architecture for the video autoencoder based
on the MAGVIT-2 tokenizer (Yu et al., 2024a) without quantization (so that latent vectors lie in a continuous
space). We train the autoencoder with a sum of pixel-level reconstruction loss (e.g., mean-squared error),
perceptual loss (e.g., LPIPS (Zhang et al., 2018)), and adversarial loss (Goodfellow et al., 2014) similar to
prior image and video generation methods. Recall that both training and inference are not done directly on
long videos; they are done after splitting long videos into short segments.

Diffusion model. As outlined in Figure 2, our model architecture is based on the recent diffusion transformer
(DiT) architecture (Peebles & Xie, 2023; Ma et al., 2024b; Yu et al., 2024b). Thus, given a latent vector
zn ∈ Rl×h×w×c of a video clip xn, we patchify it with patch size pl × ps × ps to form a flattened latent
vector patchify(zn) ∈ R(lhw/plp2

s)×c with a sequence length lhw/plp
2
s and use it as inputs to the model. In

particular, we choose W.A.L.T (Gupta et al., 2023) as backbone, a variant of DiT which employs efficient
spatiotemporal windowed attention instead of full attention between large numbers of video patches.

To enable training with long videos with DiT architectures, we introduce a memory-augmented attention
layer and insert this layer to the beginning of every Transformer block. Specifically, we design this layer as a
cross-attention layer between the previous memory latent vector and the current hidden state, similar to
memory-augmented attention (Dai et al., 2019) in the language domain. Hence, query, key, and value of a
d-th memory layer with the segment zn and the memory latent vector hn−1 become:

query := hn
d , key := [hn−1

d , hn
d ], value := [hn−1

d , hn
d ],

hn−1
d , hn

d ∈ R(hw/p2
s)×(l/pl)×c′

,

where c′ denotes the hidden dimension of the model and hn−1
d , hn

d are reshaped as a sequence length l/pl and
a batch dimension size hw/p2

s, similar to previous space-time factorized attention (Bertasius et al., 2021). We
also use relative positional encodings that are widely used to handle longer context length.

With this formulation, memory-augmented attentions are only computed together with each of l/pl patches
that have the same spatial location (i.e., temporal attention in video transformers (Bertasius et al., 2021)).
This increase is not significant because the computation of attention is restricted only to the sample spatial
locations. Our memory augmented attentions have O(L2HW ) computational complexity whereas full
attention would scale as O((LHW )2).

Finally, recall that we build our architecture on W.A.L.T, but our general approach of using memory-
augmented latent transformers can be applied more broadly to any video diffusion transformer architectures,
such as Lu et al. (2023) and Ma et al. (2024b). We provide a detailed illustration of the architecture combined
with W.A.L.T in Appendix B.

3 Related Work

We provide a brief discussion with important relevant literature. We provide more detailed discussion in
Appendix C.

Video diffusion models. Inspired by the remarkable success of image diffusion models (Rombach et al.,
2022; Chen et al., 2024b), many recent approaches have attempted to solve the challenging problem of video
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generation through diffusion models by extending ideas and architectures from the image domain (Blattmann
et al., 2023; Gupta et al., 2023; Ho et al., 2022b; Harvey et al., 2022; He et al., 2022; Ge et al., 2023; Lu
et al., 2023; Ma et al., 2024b; Ho et al., 2022a; Singer et al., 2023; Voleti et al., 2022; Weng et al., 2023; Yin
et al., 2023; Yu et al., 2023b; 2024c; Zhou et al., 2022). Since memory and computation requirements increase
dramatically due to the cubic complexity of videos as RGB pixels, most works have focused on efficient
methods to generate videos via diffusion models. One avenue to achieve efficiency has been to train compact
latent representations specialized for videos and training latent diffusion models in such spaces (Gupta et al.,
2023; He et al., 2022; Yu et al., 2023b; 2024c). Other works have designed efficient model architectures
to reduce computation in handling video data (Gupta et al., 2023; Bar-Tal et al., 2024; Yu et al., 2024c).
Remarkably, with these efforts, very recent works have shown diffusion models can generate high-resolution
(1080p) and quite long (up to 1 minute) videos if they use massive number of videos as data with an extremely
large model (DeepMind, 2024; Brooks et al., 2024). Our method builds on both strands of prior work, leading
to an efficient architecture specialized for and trained on long videos.

Long video generation. Many works have attempted to solve long video generation in different directions.
First, there exist several works that interpret videos as compactly parameterized continuous functions of time
(neural fields; (Sitzmann et al., 2020)) and train GANs (Goodfellow et al., 2014) to generate such function
parameters (Yu et al., 2022b; Skorokhodov et al., 2022). These works have shown potential to generate
arbitrarily long and smooth videos but are difficult to scale up with complex datasets due to the mode
collapse problem of GANs (Srivastava et al., 2017). Another line of work has proposed an autoregressive
approach to generate frames conditioned on previous context (Blattmann et al., 2023; Gupta et al., 2023;
Yan et al., 2023; Weng et al., 2023; Ge et al., 2022; Villegas et al., 2023; Yan et al., 2021; Kondratyuk et al.,
2023). However, due to the high-dimensionality of videos, these approaches condition on a small temporal
window of previous frames. They also often suffer from error propagation leading to low-quality frames
for longer temporal horizons (Huang et al., 2023), particularly on complex datasets. Several recent works
have introduced training (or training-free) method to mitigate this issue (Ruhe et al., 2024; Kim et al.,
2024a; Chen et al., 2024a; Xie et al., 2024; Lu et al., 2024b), but they still do not have long conteuxutal
understanding capability. Other methods have proposed hierarchical generation to progressively generate
long videos by interpolating between previously synthesized frames (Yin et al., 2023; Huang et al., 2023).
However, if the target video length is extremely long, they need to generate very sparse video frames with
very little local correlation, which is challenging, and they are also limited to generating frames up to the
training length. MALT can be categorized as a diffusion based autoregressive approach; however, unlike the
above approaches that condition on previously generated frames, we condition on memory, which is capable
of capturing information going significantly further back in time, and is robust to error propagation when
generating extremely long videos.

Transformers for handling long context. Recent works primarily from the large language models (LLMs)
literature have proposed different ideas to handle extremely long contexts using transformers (Vaswani
et al., 2017). First, several works have introduced efficient attention mechanisms (Wang et al., 2020; Kitaev
et al., 2020; Beltagy et al., 2020; Choromanski et al., 2020) that reduce their quadratic complexity and
thereby can handle longer contexts better. Next, some approaches have attempted to adopt recurrence
in transformers (Dai et al., 2019; Bessonov et al., 2023; Bulatov et al., 2022; 2024; Hutchins et al., 2022;
Peng et al., 2023), showing great potential to understand long contexts, sometimes even demonstrating their
effectiveness on extremely long sequences (1M) (Bulatov et al., 2024). Some works introduce a method to
cache previous keys and values from previous contexts (known as KV-caches) (Wu et al., 2022; Adnan et al.,
2024; Pope et al., 2023), which are often combined with a relative positional encoding generalizable to a longer
sequence than the training length (Su et al., 2024). Finally, there exist some approaches that implement
efficient attention using hardware optimizations (Dao et al., 2022; Liu et al., 2023). Our method fits into this
larger family of approaches by incorporating the recurrence technique into recent transformer-based diffusion
approaches (Gupta et al., 2023; Peebles & Xie, 2023) to generate long sequences.
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Figure 3: Long video prediction results on UCF-101. Each frame has 128×128 resolution. We visualize
the frames with a stride of 16.

4 Experiments

We validate the performance of MALT and the effect of the proposed components through extensive
experiments. In particular, we investigate the following questions:

• Can MALT generate or predict videos with a long horizon with understanding? (Table 1a, 1b, Figure 3, 4)
• Do the proposed components (recurrent memory, training for long-term stability) contribute to the final

performance of images and videos (Table 2)?
• Is the frame quality of generated video maintained across frame indices? (Figure 5)

Note. Although we achieve strong performance on popular benchmarks, the focus of our paper is more on
long-term stability rather than per-frame fidelity. Thus, the size of our models is relatively compact, and we
do not train separate super-resolution modules to increase frame quality.

4.1 Setup

We explain some important setups in this section. We include more details in Appendix D and E.

Datasets. We use long video generation or prediction benchmarks (Skorokhodov et al., 2022; Yan et al.,
2023) to evaluate our method. Specifically, we use UCF-101 (Soomro et al., 2012) for unconditional video
generation with a length of 128 frames and use Kinetics-600 (Kay et al., 2017) for long video prediction to
predict 80 frames conditioned on 20 frames. We choose these video datasets as they contain diverse and
complex motions and thus can demonstrate the scalability of MALT to generalize to real-world complex
videos. For text-to-video generation, we train on 89M text-short-video pairs (up to 37 frames) and 970M
text-image pairs from public internet and internal sources. All datasets are center-cropped and resized to
128×128 resolution.

Training details. All models are trained with the AdamW (Loshchilov & Hutter, 2019) optimizer with a
learning rate of 5e-5. For our autoencoder, we use the same architecture and configuration as W.A.L.T (Gupta
et al., 2023). We also use similar diffusion model configurations that W.A.L.T used: specifically, we use
the W.A.L.T XL-config for UCF-101 and W.A.L.T L-config for Kinetics-600 experiments. We also use
the W.A.L.T L-config for text-to-video experiments. For the memory noise scale σmem, we use 0.1 in all
experiments.

Metrics. We mainly use the Frèchet Video Distance (FVD (Unterthiner et al., 2018); lower is better) to
evaluate the quality of generated videos, following recent works (Yu et al., 2023b; Skorokhodov et al., 2022;
Kim et al., 2024b). On Kinetics-600, we also measure Peak signal-to-noise ratio (PSNR; higher is better), SSIM
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Figure 4: Long video prediction results on Kinetics-600. Each frame has 128×128 resolution. We visualize
the frames with a stride of 5. The first 4 frames indicate an input condition. We mark the predicted frames,
where the different color denotes different segments predicted from the model. For each video, we visualize
the ground-truth in the first row and the prediction in the second row.
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Figure 5: Error propagation analysis. FVD values on Kinetics-600 measured with a part of segments in
the entire videos.

(higher is better), and perceptual metric (LPIPS (Zhang et al., 2018); lower is better) between ground-truth
video frames and predicted frames to measure how well the prediction resembles the ground-truth.

Baselines. We use existing recent video generation and prediction methods as baselines that are capable
of long video generation. Specifically, we use MoCoGAN (Tulyakov et al., 2018), MoCoGAN-HD (Tian
et al., 2021), DIGAN (Yu et al., 2022b), StyleGAN-V (Skorokhodov et al., 2022), PVDM (Yu et al., 2023b),
and HVDM (Kim et al., 2024b) as baselines for long video generation. For the video prediction task, we
consider the following baselines: Perceiver AR (Hawthorne et al., 2022), Latent FDM (Harvey et al., 2022),
and TECO (Yan et al., 2023), which are recent generation methods designed for handling long videos with
long-term understanding.

4.2 Long-term contextual understanding

First, Figure 3 on UCF-101 shows that our method does understand long-term dependencies through memory
latent vectors: in the video of two people fencing (last row), the first person on the left disappears entirely
but is able to reappear in the last generated frames. This is also demonstrated in Figure 4 where we train
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Figure 6: Long text-to-video generation results. We show two generated videos denoting frame indices
within each frame. Each video is generated at 8 fps spanning > 30s and each frame has 128×128 resolution.
Text prompts are provided under each visualization.

on Kinetics-600. For instance, in the second video, there is an orange roof on the left side of the given
prefix frames. The roof is covered by the camel’s head for a few dozen frames before reappearing in the last
predictions. Without a long understanding of the context, the model cannot remember these details, and the
final predicted segment cannot contain this roof.

Note that this is possible due to the fundamental difference between predominant autoregressive methods
and MALT: the former is “explicitly” autoregressive, while MALT is not. Specifically, prior works generate
video frames conditioned on the previous explicit context (e.g.„ explicit in the sense of being conditioned on
the last 8-16 RGB frames), whereas our method autoregressively generates video frames with respect to a
“latent memory”, which is capable of capturing much longer context in an efficient manner. This allows our
model to have an extremely long receptive field without blowing up memory requirements.

4.3 Long-term stability

We also quantitatively analyze long term generation stability by visualizing FVD plots of the recent long-video
generation training scheme, TECO, and MALT in Figure 5. Here, FVD values are computed by dividing the
predicted video frames into multiple segments of 16-frame video clips and separately measuring FVD values
using video clips at each specific interval. As shown in this figure, MALT generates higher-quality videos
(i.e., FVD values are always better at any given interval) but also suffers less from error accumulation issues
than the previous state-of-the-art TECO. Specifically, the FVD difference between the first and the last FVD
value of MALT is smaller (174.3) than TECO (225.5) even if the FVD difference of MALT is measured with
2× more number of segments (i.e., MALT generates 2× more video frames). This indicates the frame quality
of MALT drops slower than TECO, highlighting the robustness of MALT to error accumulation.

We also compare the T2V generation results from recent training-free long T2V methods and MALT.2 To
compare this, we train a relatively small model (545M) compared to existing T2V models that usually have
more than 2B parameters (Blattmann et al., 2023; Gupta et al., 2023; Ho et al., 2022a). As shown in Figure 6,
MALT shows reasonable T2V generation on complex text prompts and more importantly, generated frames
are consistent and stable over a long temporal horizon. We provide more visualizations in Appendix G: we
show that MALT can be generalized to generate up to 2 minute videos with 8 fps.

4.4 System-level comparison

Table 1a and 1b summarize long video generation and prediction results on UCF-101 and Kinetics-600
datasets, respectively. On UCF-101, MALT achieves an FVD score (lower is better) of 220.4, significantly
outperforming existing video generation methods including unconditional latent video diffusion models capable
of long video generation, such as PVDM (Yu et al., 2023b) and HVDM (Kim et al., 2024b). Similarly, on

2There are numerous factors that affect the frame quality, to name a few, model size, text caption fidelity, and video-text
alignment. Thus, an apples-to-apples comparison of videos based on frame fidelity is difficult because each method uses design
choices for aforementioned factors: Thus, we focus on comparing long-term stability of generated video frames.
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Table 1: System-level comparision. (a) FVDs of video generation and models on UCF-101 and (b) FVD,
PSNR, SSIM and LPIPS of video prediction models on Kinetics-600. For FVD on Kinetics-600, we measure
it with entire video frames, namely including initial ground-truth frames given as contexts and 80 predicted
frames from each baseline. For the other three metrics, we measure the values using only the predicted 80
frames. Bold indicate the best results.

(a) UCF-101

Method FVD ↓

MoCoGAN (Tulyakov et al., 2018) 3679.0
+ StyleGAN2 (Karras et al., 2020) 2311.3
MoCoGAN-HD (Tian et al., 2021) 2606.5
DIGAN (Yu et al., 2022b) 2293.7
StyleGAN-V (Skorokhodov et al., 2022) 1773.4
Latte (Ma et al., 2024b) + FreeNoise (Qiu et al., 2024) 1157.7
MeBT (Yoo et al., 2023) 968
PVDM (Yu et al., 2023b) 505.0
HVDM (Kim et al., 2024b) 549.7
CoordTok (Jang et al., 2024) + SiT-L/2 (Ma et al., 2024a) 369.3

MALT (Ours) 220.4

(b) Kinetics-600

Method FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Perceiver AR (Hawthorne et al., 2022) 1022 13.4 0.310 0.404
Latent FDM (Harvey et al., 2022) 960 13.2 0.334 0.413
TECO (Yan et al., 2023) 799 13.8 0.341 0.381

MALT (Ours) 392 15.4 0.437 0.276

a long video prediction task on Kinetics-600, MALT shows much better performance than the previous
state-of-the-art method, TECO, on all four metrics despite have ∼ 2× fewer parameters (440M for MALT
and 1.1B for TECO).

Table 2: Ablation studies. FVD, PSNR, and SSIM values on Kinetics-600. Gray indicates that the
component is fixed for ablation.“Last only” a condition model only on the last segment. “kv cache”: a
conditional model that predicts a segment on all previous segments without any compression. “Recurrent”:
our recurrent memory scheme that uses fixed-size hidden states as condition.

Robust FVD PSNR SSIM

W.A.L.T-L (Gupta et al., 2023) 459 14.8 0.400

Memory
design

Last only ✓ 423 15.0 0.424
kv-cache ✓ 396 15.1 0.429

Recurrent ✓ 392 15.4 0.437
Training
technique

Recurrent 383 14.7 0.401
Recurrent ✓ 392 15.4 0.437

4.5 Ablation studies

We conduct ablation studies and report in Table 2. We also perform error propagation analysis and summarize
the result in Figure 5. For further analysis, see Appendix F.

Memory design. As shown in Table 2, a conditional model that only uses the last segment (“Last only”)
shows worse performance than other models that use longer contexts, indicating the importance of long-
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term contextual understanding. Moreover, our recurrent and compact memory design (“Recurrent”) shows
comparable performance compared to the kv-cache that uses the entire context without any compression,
which speaks to the effectiveness of MALT.

Training objective. The model trained without noise augmentation and correlated prior distribution shows
worse SSIM and PSNR (e.g., PSNR gets worse from 15.4 to 14.7), exhibiting the frame quality drop across
the frame indices. It demonstrates the importance of our training techniques that use noise augmentation to
the memory latent vector and correlated prior distribution for stabilizing the frame quality.

5 Conclusion

We proposed MALT Diffusion, a latent video diffusion model for any-length video generation. It is based on
proposing a new DiT architecture, which employs a memory for encoding long video context into succinct
low-dimensional latent vectors. Our approach is general and can be applied in principle to any architectures
and we believe it will facilitate long video synthesis breaking beyond the current limits. We discuss social
impact and limitations in Appendix H.
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A Sampling Procedure

We provide detailed sampling procedure of MALT in Algorithm 1.

Algorithm 1 MALT Diffusion
1: for n = 1 to N do ▷ Autoregressively generate n-th latent vector zn.
2: Sample the random noise zn

T ∼ p(zT ).
3: for i in {0, . . . , M − 1} do
4: Compute the score ϵi ← Dθ(zn

i , t; hn−1, c).
5: Compute zn

i+1 ← zn
i + (ti+1 − ti)ϵi ▷ Euler solver; can be different with other solvers.

6: end for
7: hn = HiddenState

(
Dθ(zn

M , 0; hi−1, c)
)

▷ Compute memory latent vector.
8: end for
9: Decode [x1, . . . , xN ] from generated latent vectors [z1, . . . , zN ].

10: Output the generated video [x1, . . . , xN ].

B Architecture Illustration

Figure 7 visualizes the MALT architecture in detail as applied to the existing W.A.L.T (Gupta et al., 2023)
architecture. W.A.L.T is a variant of diffusion transformer (DiT) (Peebles & Xie, 2023) that uses repeating
spatiotemporal and spatial window attention layers instead of full attention. As illustrated in this figure,
MALT adds memory attention layers at the beginning of each spatiotemporal window attention layer and
spatial window attention layer. Here, window attention layers are similar to the original DiT that uses
adaptive instance normalization (AdaIN), where we use LoRA Hu et al. (2021) for parametrization of MLP
proposed by W.A.L.T to reduce the number of parameters without performance degradation. For memory
attention layer, we simply add a cross attention layer without AdaIN.

C More Discussion with Related Work

Diffusion model for sequential data. We emphasize that although we primarily explore video data in
this paper, our method is not limited to video data. There exists multiple works that try to generate general
sequential data (e.g., climate data, PDE data, audio, etc.) through diffusion models. For instance, Ruhe et al.
(2024) formulates a diffusion process specialized for sequential data; they propose denoising process with a
sliding window, where the noise scale of elements within a window is set differently by considering uncertainty
of each element. Another line of work (Ge et al., 2023; Lu et al., 2024a) have tried to solve this problem
by exploring temporal correlation of Gaussian noise in diffusion process with fixed-size sequences. Lippe
et al. (2023) tries to solve PDE through diffusion model based on autoregressive rollout, and demonstrates
high-frequency details can be predicted better than existing PDE solvers. Our method primarily focuses on
generating video data, where each element (i.e., video frame) is already quite high-dimensional and thus
mitigating error propagation and ensuring large context window size is more difficult than other temporal
data. Therefore, we believe our method can be extending to other forms of sequential data listed above.

Video generation. There are many works to tackle the problem of video generation. First, there are
approaches that uses generative adversarial network (GAN; Goodfellow et al. (2014)) for modeling video
distribution (Tulyakov et al., 2018; Yu et al., 2022b; Skorokhodov et al., 2022; Tian et al., 2021; Acharya et al.,
2018; Clark et al., 2019; Fox et al., 2021; Gordon & Parde, 2021; Kahembwe & Ramamoorthy, 2020; Munoz
et al., 2021; Saito et al., 2017; Vondrick et al., 2016; Yushchenko et al., 2019). They usually extend popular
image GAN architectures (e.g., StyleGAN (Karras et al., 2020)) by considering an additional temporal axis.
Another line of works encode videos in discrete token space using popular vector-quantized autoencoders (Yu
et al., 2024a; van den Oord et al., 2017; Yu et al., 2022a) and learn video distribution in this latent space,
either with autoregressive transformers (Yu et al., 2024a; Ge et al., 2022; Yan et al., 2021; Kalchbrenner et al.,
2017; Rakhimov et al., 2020; Weissenborn et al., 2020) or masked generative transformers (Yoo et al., 2023;
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Figure 7: Detailed architecture illustration of MALT if it is incoporated with W.A.L.T (Gupta et al.,
2023).

Yu et al., 2023a). Finally, many of recent works propose diffusion-based approach for generating videos (Ho
et al., 2022b; Harvey et al., 2022; Lu et al., 2023; Singer et al., 2023; Weng et al., 2023; Höppe et al., 2022;
Yang et al., 2022), and some of them have attempt to exploit knowledge learned from large-scale image
datasets (Blattmann et al., 2023; He et al., 2022; Ge et al., 2023; Ho et al., 2022a; Singer et al., 2023; Wang
et al., 2023; An et al., 2023) by fine-tuning image diffusion models or do image-video joint training. Our
model is also categorized as diffusion-based approach to synthesize long videos.

Video prediction. As our model has a capability of both video generation and prediction, it also has a
close relationship to existing video prediction methods (Srivastava et al., 2015; Finn et al., 2016; Denton
& Birodkar, 2017; Babaeizadeh et al., 2018; Denton & Fergus, 2018; Lee et al., 2018; Villegas et al., 2019;
Kumar et al., 2020; Franceschi et al., 2020; Luc et al., 2020; Lee et al., 2021; Seo et al., 2022). These methods
usually use given frames as condition to the model and generate future frames via popular deep generative
models, such as GANs, diffusion models, and autoregressive long video prediction (Harvey et al., 2022; Yan
et al., 2023), in contrast to previous works that usually focus on predicting a few video frames. Our method
also shares a similar goal to predict video frames with a long horizon.

D Setup

D.1 Datasets

UCF-101. UCF-101 (Soomro et al., 2012) is a video dataset widely used for evaluation of video generation
methods. Is consists of 101 classes of different human actions, where each video has 320×240 resolution
frames. The dataset includes 13,320 videos with 9,537 training split and 3,783 test split. Following the
previous recent video generation literature we only use train split and test split for evaluation (Yu et al.,
2023a; Singer et al., 2023). We center-cropped each video and resized it into 128× 128 resolution. We use
first 128 frames of videos for training and evaluation.

Kinetics-600. Kinetics-600 (Kay et al., 2017) is a large-scale complex video dataset consisting of 600
action categories. It contains about 480,000 videos in total, where they are divided into 390,000, 30,000, and
60,000 videos for train, validation, and test splits (respectively). Following the previous video prediction
benchmarks (Gupta et al., 2023; Yan et al., 2023; Yu et al., 2023a), we center-crop each video frame and
resize each video frame as 128×128 resolution. Due to the different tokenizer used in our method, we use 17
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frames for condition (a bit different from TECO (Yan et al., 2023) that uses 20 frames for condition) and but
predict 80 frames same as TECO. We use train split for train and validation split for evaluation.

T2V dataset. We use 89M text-short-video pairs (up to 37 frames) and 970M text-image pairs from public
and internal sources. All datasets are center-cropped and resized to 128×128 resolution. For videos, we
sample the frames with a fps of 8.

D.2 Hyperparameters

We mostly follow the same hyperparameter setup to W.A.L.T (Gupta et al., 2023). Specifically, we provide
the detailed hyperparameter values in Table 3.

Table 3: Hyperparameter setup.

UCF-101 Kinetics-600 T2V
Autoencoder
Input dim. 17×128×128×3 17×128×128×3 17×128×128×3
ds, dt 8, 4 8, 4 8, 4
Channel dim. 128 128 128
Channel multiplier 1, 2, 2, 4 1, 2, 2, 4 1, 2, 2, 4
Training duration 2,000 epochs 270,000 steps 1,000,000 steps
Batch size 256 256 256
lr scheduler Cosine Cosine Cosine
Optimizer Adam Adam Adam
Diffusion model
Input dim. 5×16×16 5×16×16 5×16×16
Num. layers 28 24 24
Hidden dim. 1,152 1,024 1,024
Num. heads 16 16 16
σmem 0.1 0.1 0.1
N 7 5 2
Training duration 120,000 steps 270,000 steps 700,000 steps
Batch size 256 256 256
lr scheduler Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW
lr 0.0005 0.0005 0.0002
Diffusion
Diffusion steps 1000 1000 1000
Noise schedule Linear Linear Linear
β0 0.0001 0.0001 0.0001
βT 0.02 0.02 0.02
Training objective v-prediction v-prediction v-prediction
Sampler DDIM (Song et al., 2021a) DDIM (Song et al., 2021a) DDIM (Song et al., 2021a)
Sampling steps 50 50 50
Guidance - - ✓

D.3 Metrics

For Fréchet video distance (FVD; Unterthiner et al. (2018)), we use the same protocol used in previous popular
video generation works (Yu et al., 2022b; Tulyakov et al., 2018); we use a pretrained I3D network (Tran
et al., 2015) to compute feature for evaluating statistics to compute FVD. For UCF-101, we use 2,048 real
and fame samples following the common practice in previous video generation literature (Yu et al., 2022b;
Skorokhodov et al., 2021; Yu et al., 2023b). For Kinetics-600, we use 256 samples for FVD evaluation and
average the values of 4 runs, following the setup in TECO (Yan et al., 2023). For other metrics (PSNR, SSIM,
LPIPS) used in evaluation on Kinetics-600, we also follow the evaluation setup of TECO: we compute them
in per-frame manner between predicted frames and ground-truth frames, and then average them.
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D.4 Training resources

All experiments are conducted with Google Cloud TPU v5e 16×16 instances, where each chip has a 16GB
HBM2 capacity. Note that training can be done on devices with relative small memory (less than 16GB)
because of our efficient training scheme design.

E Baselines

In what follows, we explain the main idea of baseline methods that we used for the evaluation.

• MoCoGAN (Tulyakov et al., 2018) proposes a video GAN to generate videos by decomposing motion
and content of videos into two different latent vectors.

• MoCoGAN-HD (Tian et al., 2021) also proposes a video GAN based on motion-content decomposition
but uses a latent space of pretrained image GAN to achieve the goal.

• DIGAN (Yu et al., 2022b) proposes to represent videos as implicit neural representations (INRs) (Sitzmann
et al., 2020) and introduces a GAN to generate such INR parameters.

• StyleGAN-V (Skorokhodov et al., 2022) interprets videos as continuous function of time t and extend
StyleGAN-2 (Karras et al., 2020) architecture to efficiently learn long video distribution.

• PVDM (Yu et al., 2023b) proposes a latent diffusion model based on triplane-based encoding of
videos (Kim et al., 2022) to avoid usage of computational-heavy 3D convolutions.

• HVDM (Kim et al., 2024b) uses the ideas in PVDM but also incorporates 3D wavelet representation for
video encoding to achieve better video reconstruction and generation.

• (Latent) FDM (Harvey et al., 2022) proposes a diffusion model framework for long videos, by exploring
various schemes to choose frames to be noised in the target long video tensor.

• Perceiver AR (Hawthorne et al., 2022) proposes an autoregressive model that can handle long contexts
in efficient and in domain-agnostic manner.

• CoordTok (Jang et al., 2024) presents a continuous video tokenizer that can encode long videos into
compact triplane latent representations. They also show this latent representations greatly improve
generation efficiency and efficacy.

• TECO (Yan et al., 2023) proposes a masked generative transformer (Chang et al., 2022) specialized for
long video generation, based on additional compression of image latent vector from image VQGAN (Yu
et al., 2022a) and causal transformer to encode these compressed sequences.

F Additional Analysis

Table 4: Additional analysis. FVD, PSNR, and SSIM values on Kinetics-600. Gray indicates that the
component is fixed for ablation of other components.

FVD PSNR SSIM

σmem
0.2 97 382 15.0 0.426
0.1 97 392 15.4 0.437

Training
Length

0.1 57 437 14.9 0.421
0.1 97 392 15.4 0.437

In addition to experiments in Section 4.5, we perform several additional experiments to show the effect of
hyperparameter σmem and the length of video (i.e., number of segments) used in training, and report these
results in Table 4. As shown in this table, MALT is quite robust the value choice of σmem, and training
MALT on longer videos improves the model to generate longer context.
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G Additional Qualitative Results

We provide video generation results from MALT, mostly on long text-to-video generation results.

A couple dancing under the stars on a rooftop

Figure 8: Long text-to-video generation results from MALT. We visualize video frames with a stride of
5. We visualize first 650 frames here and the next 600 frames are visualized in Figure 9.
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A couple dancing under the stars on a rooftop

Figure 9: Long text-to-video generation results from MALT. We visualize video frames with a stride of
5. Video frames are continued from Figure 8.
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A candlelit dinner with with table for two, flowers, candles, and wine

Figure 10: Long text-to-video generation results from MALT. We visualize video frames with a stride
of 5. We visualize first 650 frames here and the next 600 frames are visualized in Figure 11.

26



Under review as submission to TMLR

A candlelit dinner with with table for two, flowers, candles, and wine

Figure 11: Long text-to-video generation results from MALT. We visualize video frames with a stride
of 5. Video frames are continued from Figure 10.
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Fireworks display at Disneyworld, highly detailed, cinematic, high contrast, soft lighting, 8k.

Figure 12: Long text-to-video generation results from MALT. We visualize video frames with a stride
of 5. We visualize first 650 frames here and the next 600 frames are visualized in Figure 13.
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Fireworks display at Disneyworld, highly detailed, cinematic, high contrast, soft lighting, 8k.

Figure 13: Long text-to-video generation results from MALT. We visualize video frames with a stride
of 5. Video frames are continued from Figure 12.
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A jungle with trees, vines, animals, and waterfall, aerial view.

Figure 14: Long text-to-video generation results from MALT. We visualize video frames with a stride
of 5. We visualize 650 frames in total.
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Red wine is poured into a glass. highly detailed, cinematic, arc shot, high contrast, soft lighting, 8k.

Timelapse of sunset in the modern city.  highly detailed, cinematic, arc shot, high contrast, soft lighting, 8k.

Timelapse of nightlife on a busy street in Seoul. highly detailed, cinematic, arc shot, high contrast, soft lighting, 8k.

A fish swimming in an aquarium, wide lens

A hot air balloon floating through the sky

Butterfly fluttering its wings, slow motion.

Figure 15: Text-to-video generation results from MALT. We visualize video frames with a stride of 5.
We visualize 100 frames in total.
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Leaf changing color in the fall

Fire burning in a fireplace

Chef cooking in the kitchen

Firefighter putting out a fire

A 360 shot of a sleek yacht sailing gracefully through the crystal-clear waters of the Caribbean

Close up of grapes on a rotating table, High definition

Figure 16: Text-to-video generation results from MALT. We visualize video frames with a stride of 5.
We visualize 100 frames in total.
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H Limitations and Negative Social Impact

While MALT shows strong performance in long video generation benchmarks, it is as-yet tested only with a
relatively small model. Considering the scalability of diffusion transformer architectures in text-to-image (Chen
et al., 2024b) or text-to-video generation (Gupta et al., 2023), we expect the performance of MALT to show
a similar trend given more data and larger models. Moreover, considering that our text-to-video model is
trained on short videos (up to 37 frames), training MALT on large-scale text and long-video paired datasets
is a natural next direction. Finally, one can combine our approach with other techniques for sequence data,
such as Ruhe et al. (2024), or consider recent techniques in LLMs to further expand the context window and
to leverage its usefulness (Liu et al., 2023).

A tsunami hitting the coast of Japan, in ukiyo-e style.

Figure 17: Failure case from MALT. We visualize the video frames with a stride of 5. Each video frame has a
128×128 resolution. Text prompts used for generating videos are denoted in the below per each visualization.
We visualize first 400 frames.
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Failure cases. For text-to-video generation, our model sometimes does not align with the text prompt:
for instance, in Figure 17, the generated video frames do not have “ukiyo-e” style, but they are rather
photorealistic. Moreover, while MALT shows strong length generalization longer than the training length
(e.g., 50 seconds consistent generation in Figure 6), it sometimes fails to generalize and produce uncorrelated
frames to the previous context, as shown in the last two frames in Figure 17. We hypothesize this is because of
the small model size and short video length that we used, and we strongly believe training a larger model on
long video datasets can solve this issue, considering our superior performance on Kinetics-600 and UCF-101,
which are directly trained on long videos.

Long-context understanding. While MALT shows superior performance in long video generation with
efficiency, there might be better diffusion model architecture and formulation to handle long sequences better
with large window sizes, and exploring this should be interesting future work. In particular, one may focus
on an approach to model extremely long (e.g., 1, 1-hour movies) with diffusion models, which might be
suboptimal with MALT because we always assume the fixed-size memory latent vector. One may consider
borrowing ideas in recent LLMs into diffusion model contexts, like we have done in this paper, to apply
recurrent mechanisms to diffusion models.
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