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Abstract

Through the rise of social media platforms,001
longitudinal language modelling has received002
much attention over the latest years, especially003
in downstream tasks such as mental health mon-004
itoring of individuals where modelling linguis-005
tic content in a temporal fashion is crucial.006
A key limitation in existing work is how to007
effectively model temporal sequences within008
Transformer-based language models. In this009
work we address this challenge by introducing010
a novel approach for predicting ‘Moments of011
Change’ (MoC) in the mood of online users,012
by simultaneously considering user linguistic013
and time-aware context. A Hawkes process-014
inspired transformation layer is applied over the015
proposed architecture to model the influence of016
time on users’ posts – capturing both their im-017
mediate and historical dynamics. We perform018
experiments on the two existing datasets for019
the MoC task and showcase clear performance020
gains when leveraging the proposed layer. Our021
ablation study reveals the importance of con-022
sidering temporal dynamics in detecting sub-023
tle and rare mood changes. Our results indi-024
cate that considering linguistic and temporal025
information in a hierarchical manner provide026
valuable insights into the temporal dynamics027
of modelling user generated content over time,028
with applications in mental health monitoring.029

1 Introduction030

Since the advent of the Transformer model031

(Vaswani et al., 2017), much of the work in Natural032

Language Processing (NLP) has focused on mak-033

ing improvements to attention mechanisms or lever-034

aging different sub-modules of the Transformer ar-035

chitecture among others, bringing significant gains036

in performance to multiple NLP tasks. However,037

less attention has been paid to the importance of038

longitudinal modelling of text, which is crucial for039

a wide range of downstream tasks such as those040

within the healthcare domain.041

Work at the intersection of NLP and mental 042

health has been focusing increasingly on tem- 043

porally sensitive tasks, such as that of predict- 044

ing changes in a mood (‘Moments of Change’ – 045

‘MoC’) of an online social media user on the ba- 046

sis of self disclosure (Tsakalidis et al., 2022b,a). 047

While transformer-based architectures have shown 048

great potential for non-temporally sensitive tasks 049

, the longitudinal modelling aspect of the major- 050

ity of state-of-the-art on temporally sensitive tasks 051

is based on RNN-based models (Tsakalidis et al., 052

2022b; Azim et al., 2022; Hills et al., 2023). This 053

has the drawback of (i) not utilising state-of-the-art 054

(SOTA) models in NLP and (b) not studying the 055

effect of the timing of the occurring events (e.g., 056

social media posts) with respect to the task at hand 057

(Gamaarachchige et al., 2022). 058

Aiming at tackling the aforementioned chal- 059

lenges, this paper introduces a novel Time-aware 060

Hierarchical Transformer, to predict MoC in online 061

user posts. Our model simultaneously analyzes 062

linguistic patterns in textual content, via BERT 063

(Devlin et al., 2019) as a fine-tunable component, 064

and integrates the temporal context of posts via 065

a time-sensitive decay and self-excitation mecha- 066

nism based on the Hawkes process (Hawkes, 1971). 067

Our approach operates on sequences of temporally 068

ordered user posts (‘timelines’), recognizing that 069

moments of emotional change show cascading ef- 070

fects, forming clusters of localized mood-changes 071

due to self-excitation effects – that are crucial to 072

understanding the trajectory and possible future 073

of a user’s emotional state. Our approach is mo- 074

tivated by the two following guiding hypotheses: 075

(1) Localized (Mood) Changes: real-life events (in 076

our case, changes in mood) are not occurring in 077

an isolated/random fashion; such an event is of- 078

ten surrounded by other significant related events, 079

indicating periods of volatility. (2) Temporal Exci- 080

tation: a recent real-life event could be a trigger, or 081

indicator of susceptibility, to changes (both positive 082
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and negative) in the near future – providing theoret-083

ical grounds for the application of a self-exciting084

process such as the Hawkes process.085

Our contributions are as follows:086

• We propose a formulation of the Hawkes pro-087

cess to model how past emotional states simul-088

taneously decay and excite future emotional089

probabilities – allowing for predictions that090

are semantically and temporally aware. Com-091

pared to prior work, our proposed formulation092

allows historical posts to both positively and093

negatively affect future emotional events.094

• We propose a time-aware hierarchical trans-095

former, modeling the linguistic and post-level096

dynamics at different levels. Our model is moti-097

vated by the insights of temporally exciting and098

localized mood changes – and of considering099

the linguistic context of posts in such a manner.100

• We contrast our approach against SOTA on the101

task of identifying MoC in two datasets, show-102

casing superior performance for the CLPsych103

2022 shared task (Tsakalidis et al., 2022a).104

• We ablate our model and investigate the suit-105

ability of our proposed modifications to the106

Hawkes process, and study the importance for107

modelling time-sensitive information, for cap-108

turing MoCs.109

2 Related Work110

Mental Health and Social Media. Early work111

from Coppersmith et al. (2014) involved predict-112

ing mental health conditions from Twitter posts113

at the user level, More recently, social media data114

has been used towards the assessment of depres-115

sion (Bathina et al., 2021; Kelley and Gillan, 2022),116

suicidal ideation (Cao et al., 2019; Shing et al.,117

2020; Sawhney et al., 2021b) and anxiety (Saiful-118

lah et al., 2021; Juhng et al., 2023), while shared119

tasks such as CLPsych (Zirikly et al., 2019; Tsaka-120

lidis et al., 2022a) and CLEF eRISK (Parapar et al.,121

2021, 2023), have paved an avenue for the com-122

munity to contribute towards the identification of a123

range of mental health conditions on social media.124

Predicting Moments of Change (MoC). The de-125

tection of changes in a user’s behaviour over time126

has been sparsely explored through the lenses of127

suicide detection (De Choudhury et al., 2016) and128

sentiment change (Pruksachatkun et al., 2019).129

Tsakalidis et al. (2022c) introduced the task of130

MoC (mood ‘switches’ and ‘escalations’) iden-131

tification in user timelines. Subsequently, the 132

CLPsych 2022 shared task on Reddit data (Tsaka- 133

lidis et al., 2022a) focused on the same task. Work 134

by Tseriotou et al. (2023) addressed temporality 135

in the modeling through the integration of path 136

signatures in recursive neural models using Pre- 137

trained Language model (PLM) representations. 138

Hills et al. (2023) modeled sequence dynamics us- 139

ing recurrence and integrated temporality by ap- 140

plying a Hawkes-inspired layer. While previous 141

work addressed temporality and explored the use 142

of temporal point processed towards doing so, it 143

did not examine its interplay with the powerful 144

Transformer (Vaswani et al., 2017) architecture. In 145

this work we remove the limitations around PLMs 146

and explore the interplay of Hawkes process with 147

Transformers to jointly model contextualised and 148

temporal dynamics. 149

Hierarchical Transformers. Transformer-based 150

models, like BERT (Devlin et al., 2018) and 151

RoBERTA (Liu et al., 2019), have proven invalu- 152

able across NLP domains and applications, with 153

mental health being no exception. Hierarchical ver- 154

sions of transformers have been recently studied 155

and contributed significantly towards processing 156

longer sequences (Pappagari et al., 2019; Zhang 157

et al., 2019; Wu et al., 2021; Nawrot et al., 2021) or 158

multiple document inputs (Liu and Lapata, 2019; 159

Ng et al., 2023). More specifically, Pappagari et al. 160

(2019) proposed RoBERT and ToBERT, using Re- 161

currence and Transformer over BERT respectively 162

through an additional module operating on the CLS 163

tokens of the long segmented input for different 164

NLP classification tasks. We adapt these models 165

and propose a time-aware hierarchical transformer 166

for sequential modeling of user timelines, named 167

HoRoBERT and HoToBERT, demonstrating supe- 168

rior performance. 169

Hawkes Process. Hawkes processes (Hawkes, 170

1971) are stochastic processes (Daley et al., 2003; 171

Daley and Vere-Jones, 2008; Shchur et al., 2021) 172

with the ability to model temporal patterns, in 173

which historic events encourage the appearance of 174

future events. They can capture self-excitatory be- 175

haviour where events trigger future events and they 176

have been widely applied in various domains, in- 177

cluding social science, neural activity, earthquakes, 178

epidemic modelling as well as language modelling 179

as is our case. They are particularly well-suited for 180

modelling variable length event sequences spaced 181

irregularly throughout time, such as social media- 182
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posts. In NLP, Hawkes processes have been used to183

model social media data (Rizoiu et al., 2017) such184

as retweet cascades (Dutta et al., 2020; Naumzik185

and Feuerriegel, 2022), and mental health disor-186

ders online (Sawhney et al., 2021c; Zhang et al.,187

2020; Hills et al., 2023). Self-excitation can pre-188

cisely capture the observed behaviour of such NLP189

events where an event increases the chances of an-190

other event happening in the near future – which191

exactly aligns with our aforementioned hypothesis192

that mood changes can occur in localized, tempo-193

rally excited clusters.194

As such, we use here the Hawkes process to inte-195

grate temporal context and self-excitation to struc-196

ture timelines of posts into clustered sub-timelines197

via the Hierarchical Transformer architecture to198

create a model capable of predicting mood changes199

by simultaneously considering semantic and tem-200

poral context in segmented social media timelines.201

We discuss this approach in the next section.202

3 Task Definition203

Identifying Moments of Change (Tsakalidis et al.,204

2022c) refers to the longitudinal task of detecting205

posts within a user’s posting history which indi-206

cate that the user’s mood has been changed com-207

pared to his/her recent past (on the basis of self-208

disclosure) in one of the following two ways: (a)209

‘switch’ (the post(s) indicate that the user’s mood210

has switched from neutral/positive to negative, or211

from neutral/negative to positive); (b) ‘escalation’212

(the post(s) indicate that the user’s mood has es-213

calated from negative to very negative, or from214

positive to very positive). The cases of both (a)215

and (b) are rarely occurring in existing annotated216

data (Tsakalidis et al., 2022b,a) – i.e., the user’s217

mood stays constant in the vast majority of his/her218

posts – and as such the MoC identification task is219

a challenging case of mental health monitoring, as220

indicated by SOTA results (Bayram and Benhiba,221

2022; Tsakalidis et al., 2022b).222

4 Methodology223

We propose a time-aware hierarchical transformer224

(Figure 1) , inspired by the Hawkes process, mod-225

elling textual (§4.1.2) and temporal (§4.1.3) con-226

text in segmented timelines (§4.1.1) of social media227

posts to predict mood changes of online users.228

4.1 Model 229

Our full architecture is outlined in Figure 1. It 230

consists of the following components, where the 231

input data flows from ingestion to final predictions 232

via the following modules: (1) segmentation, (2) 233

linguistic encoder, (3) post dynamics encoder, (4) 234

prediction layer in Figure 1. 235

4.1.1 Segmentation 236

The inputs to our model are chunks – segments of 237

timestamped textual posts of a given user’s entire 238

timeline. A timeline in the available datasets MoC 239

identification can have up to a maximum of 124 240

posts. We process them into windows of w = 16 241

posts, with a stride of s = 8. 242

4.1.2 Linguistic Encoder 243

The textual context of posts is modelled via BERT 244

as a fine-tunable part of the architecture. Segments 245

are first passed through a Sentence-BERT tokenizer 246

(Reimers and Gurevych, 2019) to get tokens of 247

posts, which are then fed as input to BERT. The 248

output of BERT are contextualized word embed- 249

dings; we consider their average to get a resulting 250

representation for each post in the chunk. 251

4.1.3 Post Dynamics Encoder 252

Both the sequential and the temporal information 253

of the posts are modelled by this component. 254

Sequentially-aware Encodings. We modify 255

the linguistic representations of individual posts 256

(§4.1.2) to become aware of sequential patterns 257

in previous posts , via a Transformer (Vaswani 258

et al., 2017) or LSTM (Hochreiter and Schmidhu- 259

ber, 1997). We refer to this decision as ToBERT 260

or RoBERT respectively, similarly to (Pappagari 261

et al., 2019). Both approaches are highly capa- 262

ble for modelling sequential information, and have 263

shown great benefit for processing large input se- 264

quences that would typically not fit naturally fully 265

into a model for computational reasons, such as 266

modelling long documents of news articles (Dai 267

et al., 2022), legal articles (Chalkidis et al., 2022), 268

and clinical notes (Dai et al., 2022). However these 269

models are not designed for modelling patterns ex- 270

hibited in the time-intervals between elements in a 271

sequence, which we hypothesize carry important 272

information, especially for predicting changes in 273

mood from social media posts. 274

Time-aware Encodings. We utilise the Hawkes 275

process to simultaneously decay and excite infor- 276
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mation learned by previous layers in the architec-277

ture, emphasizing temporally recent context.278

In particular, we transform the sequentially-279

aware encodings provided by a transformer / LSTM280

(§4.1.3) into time-aware encodings – by modifying281

the approach proposed by Sawhney et al. (2021c),282

termed Historical Emotional AggregaTion (HEAT).283

HEAT creates representations of posts by weight-284

ing the time-intervals to non-time-sensitive repre-285

sentations of previous posts, using self-excitation286

and time-decay in equation 1. It was explored by287

Sawhney et al. (2021a) to operate over static BERT-288

based representations of posts, to model temporal289

dependencies.290

HEAT was also adopted by Hills et al. (2023), op-291

erating over BiLSTM hidden states of static BERT-292

based representations, in both temporal directions.293

Their approach, "BiLSTM-HEAT", aimed to simul-294

taneously capture and contrast both past and future295

temporal-sequential-sensitive representations of a296

user’s entire timeline of posts.297

We modify and improve HEAT in the following298

ways: Firstly we strongly emphasize recent context,299

proposing a Markovian version – where rather than300

summing all previous representations we instead301

sum directly the previous hidden representation,302

v(i−1), while still decaying and exciting all other303

previous information in a segment. Furthermore,304

we remove the restriction which only excites/de-305

cays the positive parts of the previous context, as306

we see that approximately half (i.e., the negative307

values) of the contextual information learned in308

previous layers will be lost with this approach. As309

such our proposed Markovian HEAT layer is as310

follows:311

H(i) = v(i−1) +
∑

j:∆τj>0

v(j) · ϵe−β∆τj , (1)312

where ∆τj=t(i)−t(j), and ϵ and β are learnable313

parameters reflecting the behaviour of the self-314

excitation between the posts, which were treated315

as static hyper-parameters in prior work. We simi-316

larly use the widely-used form of the exponential317

time-decay in the intensity of (1) following previ-318

ous work (Sawhney et al., 2021c; Hills et al., 2023),319

given the wide applicability and realistic assump-320

tions of this form. The learnable parameters, ϵ and321

β allows us to respectively learn (i) the amount of322

impact of a previous event to a future event and323

(ii) how soon in the future this excitation will take324

place. While these were static hyper-parameters in 325

previous work (Sawhney et al., 2021c; Hills et al., 326

2023), we treat these as weights that can be learned 327

to more suitable values based on the temporal dy- 328

namics of the linguistic posts. Similar to Hills et al. 329

(2023), we concatenate these time-aware encod- 330

ings with the sequential encodings, followed by a 331

normalization in the range of -1 to +1, allowing 332

these two perspectives of the data to be contrasted 333

in the subsequent linear layer. In this way, our 334

Markovian HEAT encodes and learns the dynamics 335

of historical post representations in a time-aware 336

manner. 337

4.1.4 Prediction 338

To account for predictions of duplicate posts, due 339

to using a stride of s > 1 when segmenting posts, 340

we merge their predictions by retaining only the 341

class prediction which had the highest probability 342

output by the model. 343

5 Experiments 344

5.1 Datasets 345

We work on two datasets introduced by Tsakalidis 346

et al. (2022b) and Tsakalidis et al. (2022a), which 347

consist of timelines of social media posts, sourced 348

from the platforms (TalkLife and Reddit respec- 349

tively), that were manually annotated for MoCs 350

in mood (§C). Posts from Reddit were sourced 351

from mental health subreddits for the purposes of 352

the CLPsych 2022 Shared task (Tsakalidis et al., 353

2022a), and posts on TalkLife similarly primarily 354

discussed topics relating to mental health - as the 355

website is designed as a peer-to-peer mental health 356

support forum. 357

The TalkLife dataset contains data from 500 358

users, resulting in 500 timelines and a total of 6,195 359

posts, all within a relatively short time-frame of up 360

to 2 weeks. The distribution of labels in TalkLife 361

contains 4.7% Switch (S), 10.8% Escalation (E), 362

and 84.5% No Change (O) – highlighting the inher- 363

ent class imbalance in this dataset. In contrast, the 364

Reddit dataset is comprised of 186 users, resulting 365

in 255 timelines with a significantly larger total 366

of 18,702 posts collected over a longer time-scale 367

of approximately 2 months. The label distribution 368

for Reddit indicates a slightly higher presence of 369

Switches and Escalations, at 6.6% and 15.8% re- 370

spectively, with 77.6% of the posts categorized as 371

No Change. 372
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Figure 1: Time-aware hierarchical transformer, designed to predict mood changes in social media posts.

5.2 Experimental Procedure373

We train and evaluate our models on 3 seeds, tak-374

ing the average scores on the resulting test sets.375

We evaluate on the same test set proposed in the376

CLPsych 2022 shared task for Reddit (Tsakalidis377

et al., 2022a). For TalkLife, similar to Tsakalidis378

et al. (2022b); Hills et al. (2023), we train and eval-379

uate on all posts on TalkLife, treating each post as380

part of the test set. We similarly use 5 folds for381

training, validation, and testing with sizes of 60%,382

20%, 20% respectively performing a grid-search as383

described in the Appendix (A).384

6 Results385

We present our main results in Table 1, comparing386

our proposed time-aware hierarchical transformers387

to that of related work – and further compare our388

models to ablated variants in Table 2 to investi-389

gate the relative performance gains with different390

components of our model. We report classification391

scores precision, recall and F1, in terms of their392

macro-average, and class-wise specific scores on393

detecting Switches (S), Escalations (E), and No394

Change (O). Finally, we discuss and compare our395

main models and our ablation in section 7. 396

6.1 Ablation Study 397

To investigate the contribution of the different com- 398

ponents of our model, we perform an ablation anal- 399

ysis aiming at examining their importance for mod- 400

elling linguistic, temporal, and sequential patterns 401

in social media posts for predicting moments of 402

change in mood. 403

By doing so we aim to investigate the inclusion 404

of self-excitation (ϵ in equation 1), time-decay (β 405

in eq. 1), the residual connection to the previ- 406

ous hidden state, and the Markovian modification 407

made to HEAT which more strongly emphasizes 408

the directly previous post representation rather than 409

evenly considering the context in the entire timeline 410

as a whole. 411

Specifically, the ablated variants of the models 412

are denoted as follows, and are all implemented as 413

hierarchical architectures: 414

• BERT: BERT model followed by a linear layer. 415

This model has no sequential/temporal mod- 416

elling ability and is included to measure the 417

effectiveness of our proposed additional modi- 418
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Reddit macro-avg S E O
P R F1 P R F1 P R F1 P R F1

HoRoBERT .703 .681 .688 .452 .508 .478 .750 .590 .660 .905 .946 .925
RoBERT .690 .677 .677 .423 .525 .468 .738 .564 .637 .909 .943 .926
HoToBERT .658 .638 .633 .364 .517 .427 .717 .455 .556 .893 .942 .917
ToBERT .722 .619 .612 .601 .325 .300 .670 .595 .620 .896 .938 .916
BiLSTM-HEAT .681 .708 .686 .501 .479 .489 .602 .792 .677 .940 .853 .893
BERT .535 .544 .465 .229 .608 .332 .482 .088 .148 .893 .937 .914
CLPsych 2022 SOTA: UoS .689 .625 .649 .490 .305 .376 .697 .630 .662 .881 .940 .909

TalkLife macro-avg S E O
P R F1 P R F1 P R F1 P R F1

HoRoBERT .520 .609 .547 .215 .451 .292 .432 .551 .484 .913 .824 .866
RoBERT .515 .618 .543 .204 .478 .286 .424 .570 .486 .916 .807 .858
HoToBERT .511 .573 .534 .217 .356 .269 .414 .524 .462 .903 .839 .870
ToBERT .507 .562 .528 .223 .351 .273 .398 .493 .440 .899 .843 .870
BiLSTM-HEAT .516 .591 .540 .213 .388 .273 .424 .556 .479 .910 .829 .868
BERT .488 .570 .514 .218 .386 .279 .341 .520 .412 .904 .804 .851

Table 1: Per-class and macro-averaged results on each dataset (Reddit, TalkLife). Results are the P (precision), R
(recall), F1 score (harmonic mean of precision and recall). Best scores for each dataset are highlighted.

fications.419

• RoBERT/ToBERT: BERT followed by an420

LSTM/Transformer respectively and linear421

layer, serving as a baseline for comparison.422

This model is capable of sequential, but not423

temporal modelling.424

• HoRoBERT / HoToBERT: This is the base425

model applying our Markovian HEAT layer426

over the LSTM/ Transformer architectures re-427

spectively. We ablate parts of the model in the428

following variants:429

• HoRoBERT / HoToBERT (ϵ : 0): The influ-430

ence of event excitation (ϵ) in Eq. 1 is removed,431

effectively eliminating the self-excitation com-432

ponent. This helps us assess the importance of433

excitation in capturing temporal dynamics.434

• HoRoBERT / HoToBERT (β : 0): We re-435

move the time-decay component (β) in Eq. 1,436

allowing us to analyze the model’s performance437

without the temporally diminishing influence438

of historical events.439

• HoRoBERT (No Residual): The Markovian440

component, vi−1, in Eq. 1 is removed, effec-441

tively removing the residual connection to the442

directly previous hidden state – to understand443

how much this residual connection, as opposed444

to temporal modelling, is benefiting the overall445

model performance.446

• HoRoBERT (Not Markovian): Here we ag-447

gregate all prior hidden states, contrasting this448

with the Markovian variant which considers 449

only the directly previous hidden state. This 450

will thus provide us insight into the impact of 451

considering the entire historical context versus 452

a more localized, recent view. This ablated 453

formula is given by: 454

H(i) =
∑

j:∆τj>0

v(j) + v(j) · ϵe−β∆τj . (2) 455

With the above ablated models, we aim to study 456

the contributions of specific elements of our model: 457

self-excitation, time-decay, sequential modelling, 458

residual connections, in modelling the contexts 459

in social media posts for predicting moments of 460

change in mood. 461

7 Discussion 462

We investigate the performance of each ablated 463

model based on their precision (P), recall (R) and 464

F1 scores for the rare Moments of Change classes 465

"Switch" (S), "Escalation" (E), and "No Change" 466

(0), as well as their macro-average scores across all 467

classes. 468

7.1 Main Table of Results 469

HoRoBERT: The base HoRoBERT model in ta- 470

ble 1 performs the highest overall on both datasets 471

for macro-average F1, demonstrating it’s general- 472

izability to capture mood changes across different 473

social media platforms. It’s high performance on 474
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Reddit macro-avg S E O
P R F1 P R F1 P R F1 P R F1

HoRoBERT .703 .681 .688 .452 .508 .478 .750 .590 .660 .905 .946 .925
HoRoBERT (ϵ : 0) .704 .682 .688 .454 .513 .482 .753 .587 .659 .904 .946 .925
HoRoBERT (β : 0) .703 .683 .689 .453 .513 .481 .752 .591 .661 .905 .945 .925
HoRoBERT (No Residual) .690 .685 .682 .424 .537 .474 .733 .579 .646 .912 .938 .925
HoRoBERT (Not Markovian) .675 .679 .676 .447 .479 .462 .662 .641 .649 .917 .916 .916
HoToBERT .658 .638 .633 .364 .517 .427 .717 .455 .556 .893 .942 .917
HoToBERT (ϵ : 0) .649 .641 .631 .355 .521 .422 .694 .470 .558 .898 .932 .914
HoToBERT (β : 0) .658 .638 .633 .363 .521 .427 .719 .452 .554 .893 .942 .917
HoToBERT (No Residual) .651 .668 .657 .393 .504 .441 .644 .590 .615 .917 .910 .913
HoToBERT (Not Markovian) .642 .611 .565 .402 .404 .323 .591 .633 .533 .933 .795 .839

TalkLife macro-avg S E O
P R F1 P R F1 P R F1 P R F1

HoRoBERT .520 .609 .547 .215 .451 .292 .432 .551 .484 .913 .824 .866
HoRoBERT (ϵ : 0) .518 .610 .546 .213 .454 .290 .428 .555 .483 .913 .821 .865
HoRoBERT (β : 0) .521 .611 .549 .217 .451 .293 .431 .556 .486 .913 .825 .867
HoRoBERT (No Residual) .514 .621 .543 .204 .476 .285 .419 .583 .488 .918 .803 .856
HoRoBERT (Not Markovian) .515 .579 .538 .217 .369 .273 .423 .525 .468 .906 .842 .873
HoToBERT .511 .573 .534 .217 .356 .269 .414 .524 .462 .903 .839 .870
HoToBERT (ϵ : 0) .512 .572 .535 .235 .345 .279 .399 .529 .455 .903 .841 .871
HoToBERT (β : 0) .514 .576 .537 .230 .361 .281 .409 .526 .460 .903 .841 .871
HoToBERT (No Residual) .497 .590 .525 .215 .413 .283 .367 .558 .441 .909 .799 .850
HoToBERT (Not Markovian) .506 .563 .527 .247 .328 .282 .368 .525 .432 .902 .836 .867

Table 2: Ablation study, removing components of the model. Per-class and macro-averaged results on each dataset
(Reddit, TalkLife). Best scores per dataset are highlighted.

escalations in terms of F1 demonstrate it’s abil-475

ity to capture gradual mood shifts, which are of-476

ten identified through a series of posts over time –477

demonstrating the recurrent inductive bias of the478

RNN as being suitable for this task, when com-479

pared to the performance of the transformer vari-480

ants which have comparably worse performance481

for escalations. HoRoBERT also has comparatively482

higher scores for detecting Switches, which is also483

improved by integrating temporal information –484

demonstrating the effectiveness of our implementa-485

tion of HEAT for detecting sudden shifts in mood.486

ToBERT: Interestingly, ToBERT achieves the487

highest precision in the "Switch" class across both488

datasets – indicating it’s ability to accurately iden-489

tify these sudden mood changes. However, its re-490

call is comparatively low for Switches when com-491

pared to other models. However, when including492

the temporal component on top we see a jump in493

recall across both datasets. This suggests that the494

transformer architecture alone is quite effective at495

accurately identifying sudden mood changes – but496

the RNN variants are better overall at modelling497

all types of mood changes, as evidenced by their498

higher F1 scores for Switches and Escalations on499

both datasets. 500

Comparing RoBERT and ToBERT: RoBERT 501

and ToBERT, without the temporal Hawkes-based 502

formulation on top – have relatively poor perfor- 503

mance for predicting the rare events: "Switch" and 504

"Escalations", emphasizing the importance of our 505

architecture, including the Hawkes process on top, 506

for capturing temporal dynamics for these moments 507

of change. 508

BiLSTM-HEAT: This model offers a balanced 509

performance on both datasets. This further suggests 510

that the LSTM-based models, especially when cou- 511

pled with the ability for modelling time, are par- 512

ticuarly effective at modelling MoCs. However, 513

while (Hills et al., 2023) demonstrated improved 514

a large performance benefit when using the BiL- 515

STM variant compared to a single forward LSTM 516

variant – we demonstrate improved performance 517

over the BiLSTM variant using just the forward 518

LSTM, when using our improved modifications 519

to HEAT with our HoRoBERT when compared 520

to (Hills et al., 2023). Since both models are im- 521

plemented as hierarchical architectures in our pa- 522

per, this suggests that our modifications made for 523
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modelling time-intervals has been significantly im-524

proved over (Hills et al., 2023) as we can achieve525

higher performance even when just considering526

historical information.527

7.2 Ablation Study528

Temporal Dynamics’ Impact: The results from529

our ablation study provides a deeper insight into530

the importance of temporal dynamics for modelling531

mood changes on both datasets, seen from the ef-532

fect of removing the self-excitation (ϵ : 0) and533

the time-decay components (β : 0) in our HEAT534

based models – and helps reveal where the relative535

performance increase is obtained from our models.536

We see very minor variations in performance537

when removing these components, which raises538

questions about the significance of explicit tempo-539

ral modelling for capturing MoCs on both datasets.540

The fact that high performance is achieved without541

considering these temporal components, highlights542

that sequential and linguistic patterns captured by543

the models may already encode sufficient infor-544

mation to capture mood changes. This could im-545

ply that the temporal proximity of posts, without546

any weighting for recency or self-excitation, might547

not be as critical for the model to discern mood548

changes.549

While temporal intervals between posts are intu-550

itively significant for understanding mood changes,551

the minor differences observed in the models per-552

formances with and without explicit modelling553

of time-intervals suggest that the key to effective554

mood change detection may lie more in the model’s555

ability to understand and integrate linguistic and556

sequential cues. This insight emphasizes the impor-557

tance of considering temporal models which nat-558

urally complement the inherent predictive power559

of neural architectures that consider linguistic and560

sequential patterns.561

Importance of Residual Connection: The (No562

Residual) variants shows a higher recall in the563

"Switch" class, suggesting the potential of this for564

identifying these rare events – but at a quite high rel-565

ative cost to precision – suggesting that considering566

the directly previous post (through the residual con-567

nection) provides information to help contrast the568

current post with the previous to more accurately569

identify sudden changes in mood (i.e. "Switches").570

Markovian Modification: Finally, the (Not571

Markovian) variant has the steepest drop in perfor-572

mance in terms of precision for "Escalations" – but573

maintains a high recall for escalations, suggesting 574

that considering the entire history of posts helps 575

the model capture a large number of posts as being 576

Escalations – which typically follow each other in 577

a long sequence. These suggest that the incorpo- 578

ration of the residual connection to the previous 579

hidden state – and the modificiation of HEAT to 580

be a Markovian version offer the greater perfor- 581

mance gains to our model, rather than considering 582

time-intervals alone. 583

HoToBERT: This model under-performs, com- 584

pared to HoRoBERT on both datasets, especially 585

in the "S" class – suggesting the Transformer, even 586

with temporal modelling, is less effective for mod- 587

elling sudden mood changes. 588

Class-wise Analysis: Predicting "Switches" ap- 589

pears to be consistently more challenging across all 590

models, as indicated by the lower F1 scores over- 591

all. This may be due to the rarity and complexity 592

of identifying "Switch" events, which typically de- 593

pend on fewer contextual posts (as they are more 594

sudden), and they also typically form only half 595

of the number of events which are "Escalations" 596

– which are already exceedingly rare events. Pre- 597

dicting "Escalations" generally appears to be easier, 598

possibly due to the more clear linguistic patterns 599

and the model’s ability to capture gradual changes 600

more effectively. Finally, the "No Change" class 601

typically has the highest scores, likely due to it 602

being the dominant class in both datasets. 603

8 Conclusion 604

From our ablation study, we have demonstrated 605

the importance of our Hawkes formulation, partic- 606

ularly the ability to capture event excitation and 607

time-decay – to enhance our models to detect com- 608

plex changes in mood. We have seen HoRoBERT 609

consistently outperform other models in this study, 610

across both datasets, illustrating the effectiveness of 611

modelling changes in mood using a time-sensitive 612

hierarchical transformer with an LSTM component. 613

Our ablation study has helped validate our design 614

choices and modifications made in our proposed 615

model, and also help reveal important component 616

areas for further refinements in future work – by 617

comparing the effectiveness of different compo- 618

nents of our models to discern between "Switches" 619

and "Escalations". 620
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Limitations621

While the proposed time-aware hierarchical trans-622

former shows superior performance on temporally623

aware tasks such as predicting MoC of users using624

their social media posts, such work comes with625

some limitations. Firstly, the models rely on lever-626

aging the online content of users, meaning that this627

content shall be available through a publicly avail-628

able source or licensing for processing. At the same629

time our models operate only on online content and630

remain blind to any mood changes that manifest631

offline but are not shared online. Significantly, a632

range of off-line data available to clinicians such633

as psychotherapy sessions content could be very634

insightful but still remain untested. Secondly, our635

datasets consists purely of native English speaking636

users who are comfortable and vocal in expressing637

the state of their mental health online. Thus, we are638

still yet to examine the applicability of this work639

on more reserved non-English speakers individuals.640

Additionally, our models have not been examined641

on languages beyond English.642

Use of our models on different platforms show-643

cases variability in performance. These variations644

in performance may likely be due to variances645

in posting frequency on these platforms, and the646

choice of and switching-between topics discussed647

by users on the social media platforms. Therefore648

the generalizability of our work is yet to be exam-649

ined across a range of social media platforms.650

Lastly, we have exclusively focused on linguistic651

and temporal context in social media posts. How-652

ever, non-textual cues such as photos and videos653

and social-network interactions between users, are654

especially abundant online and considering these655

may help better capture a more holistic representa-656

tion of a user’s emotional state.657
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A Grid-search Used in Experimental910

Procedure911

We performed a grid-search on both datasets (§5.1),912

over the enlisted hyper-parameters – selecting the913

best performing model based on macro-average914

F1 score on the validation set, and optimizing the915

model using focal loss with a gamma of 2.0, train- 916

ing for 3 epochs, and fine-tuning the last 6 (i.e. 917

half) of BERT’s hidden layers: 918

Learning rate: {0.00001, 0.00005}, LSTM/ 919

Transformer hidden dimension: {512, 768}, ϵprior: 920

{0.01}, βprior: {0.01}, chunk size: {16}, stride: 921

{8}, number of attention heads in the transformer: 922

{12}. 923

B Infrastructure 924

All models and experiments were implemented 925

with PyTorch, and run on a server with 384 GB 926

of RAM and 3 NVIDIA A30 GPUs. 927

C Annotation of Datasets 928

Posts in both datasets were in English. Posts from 929

Reddit were annotated by 4 English (2 native) 930

speakers. Posts from TalkLife were annotated by 931

3 English speaking (1 native) university educated 932

annotators. 933
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