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Abstract

Data poisoning attacks refer to the threat where
the prediction of a machine learning model is
maliciously altered if part of the training data
is contaminated. Such attacks have been well-
studied in the context of full precision training,
and yet under-explored in neural network quan-
tization, which is becoming increasingly popular
for reducing memory cost and inference time of
large models. In this work, we deploy the poi-
soned data generated by existing SOTA attacks
and reveal their poor transferability to quantized
models, often rendering them largely ineffective.
Thus, our experiments uncover a surprising side
benefit of neural network quantization: it not
only reduces memory footprint but also strength-
ens a model’s robustness against data poison-
ing attacks. Conversely, we also propose new
quantization-aware attacks to explore the practi-
cality of poisoning quantized models. Our ex-
periments confirm that the new attacks improve
attack effectiveness (test accuracy drop) across
a number of quantization and poisoning setups,
sometimes by 90% in the best scenario.

1. Introduction
The tremendous success of modern machine learning mod-
els relies on training with a large amount of training data,
where the data collection process may not be entirely trust-
worthy. For example, practitioners may continuously col-
lect user data online (e.g., using Common Crawl1), which
may be maliciously contaminated by an attacker. Such a
threat is called data poisoning attacks (Biggio et al. 2012),
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where an attacker carefully crafts a set of “poisoned” data,
such that after training on it (possibly with clean data), the
model’s prediction is altered to a designated behavior.

Existing attacks are designed towards poisoning full-
precision models, which was the de facto standard for train-
ing machine learning models. However, as models con-
tinue to scale up, e.g., GPTs in large language models (Bi-
derman et al. 2023; Brown et al. 2020), training quickly
becomes overwhelmed by billions of parameters due to
the heavy amount of computation, memory and storage re-
quired. Moreover, deploying such models on edge devices
is becoming increasingly challenging.

To alleviate the above problems, a common approach is
neural network quantization (Bengio et al. 2013), where
full precision weights are replaced with low precision ones
to reduce memory footprint. Despite being widely applied
in model compression and mobile machine learning model
utilization, the risk of data poisoning against such quan-
tized models remains unexplored. In this paper, we aim
to shed light on this security risk and answer two impor-
tant questions: (1) How do existing data poisoning attacks
affect neural network quantization? (2) Is there an attack
factor that compromises quantization, and to what extent?

We answer the first question by evaluating various data poi-
soning attacks, i.e., indiscriminate attacks or availability
attacks 2) (Biggio et al. 2012; Huang et al. 2021) and tar-
geted attacks (Shafahi et al. 2018) against common neural
network quantization schemes. Specifically, we consider
Post-training Quantization (PTQ) and Quantization-aware
Training (QAT). PTQ performs a quantization step after a
full precision model is acquired. In contrast, QAT performs
quantization during training: during forward propagation,
QAT applies a quantization function to transform 32-bit
weights (may also include activation) to lower bit weights
(e.g., 1,4,8-bit); during backward propagation, QAT evalu-
ates the gradient at the quantized weights using the Straight
Through Estimator (Bengio et al. 2013) with an approxi-
mate gradient (Darabi et al. 2019; Hubara et al. 2016).

2The term “availability attacks” is sometimes narrowed to
mean modifying the entire dataset for data protection purposes.
For clarification, we refer to the latter class “unlearnable exam-
ples,” as a subclass of indiscriminate/availability attacks.
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Surprisingly, we discover that most existing attacks are
quantization-oblivious and hence suffer reduced attack ef-
ficacy on both PTQ and QAT compared with full precision
training, especially when the model is quantized to lower-
bit. Intuitively, we argue that the increased robustness of
quantized models may be because of the higher attack dif-
ficulty: for full precision training, to alter the model predic-
tion it often suffices to change the clean weights by a small
margin (e.g., from 0.6 to 1.3), but such small perturbation
becomes inadequate for quantized models as both clean
and poisoned weights could be mapped to the same dis-
crete values by the rounding operator in quantization. Our
results indicate that quantization methods are implicit de-
fense mechanisms against data poisoning attacks, which
are additional benefits aside from reducing memory costs.

Next, we answer the second question by designing two
novel Quantization-aware Attacks (QAAs). Our attacks
explicitly consider the proximal quantizers in the update
of quantization-aware training, which calibrates the poi-
soned points toward a more effective attack factor. Empiri-
cally, QAAs partially address the problem of quantization-
oblivious attacks and improve the attack performance (test
accuracy drop) by almost 90% at best in our experiments.

In summary, we make the following contributions: (1) We
reveal the elevated robustness of neural network quantiza-
tion against indiscriminate poisoning attacks; (2) We pro-
pose a novel quantization-aware data poisoning attacks and
achieve improved attack effectiveness across our experi-
ments; (3) We show that quantization also offers strong ro-
bustness against other data poisoning attacks.

2. Quantization-oblivious attacks
We provide the background of neural network quantization
and data poisoning attacks in Appendix A.

When applied to quantized neural networks, existing poi-
soning attacks can be regarded as “quantization-oblivious,”
where the poisoned samples ν are generated with full-
precision training regimes and applied to quantization di-
rectly. We examine existing indiscriminate attacks against
post-training quantization (PTQ) and quantization-aware
training (QAT). For the latter scheme, we specify the diffi-
culties of applying the GC attack (Lu et al. 2023b).

2.1. Post-training Quantization

After joining the poisoned set ν constructed by some indis-
criminate data poisoning attack into the training set, PTQ
first retrains a set of (poisoned) full precision weights w by
applying the normal training pipeline, which so far matches
the deployment of normal data poisoning in the full preci-
sion regime. After obtaining w, PTQ applies an extra quan-
tization step and acquires the (poisoned) discrete weights

Table 1. The attack accuracy/drop of label flip, TGDA, and GC at-
tack with εd = 0.03 on CIFAR-10 (ResNet-18) for full precision
training (FP) and PTQ (1,4,8-bit).

Clean Label Flip TGDA GC

FP 94.95% -1.13% -5.54% -13.73%

1-bit 71.21% -0.05% -2.35% - 6.58%
4-bit 85.30% -0.32% -3.37% - 8.21%
8-bit 91.09% -1.05% -4.88% -11.51%

w∗ = PQ(w). Compared to full precision weights, PTQ
suffers a drop of performance, which is verified in previ-
ous studies (e.g., in (Jacob et al. 2018)). Thus PTQ would
induce a further accuracy drop with w∗ compared with the
full precision clean parameter wc. However, this compari-
son might not be fair and we additionally compare the poi-
soned discrete weights w∗ with the clean discrete weights
w∗

c = PQ(wc) in Table 1 for three attack algorithms. We
observe that PTQ methods suffer significant performance
drop, but are more robust against such attacks compared to
FP in terms of relative accuracy drop for different quanti-
zation budgets. Furthermore, a severely compressed model
(lower bit) tends to be more robust. Intuitively, a lower-
precision model may diminish the relative change incurred
by data poisoning attacks.

2.2. Quantization-aware Training

In contrast, QAT involves training when acquiring the dis-
crete weights w∗ using Equation (10) in Appendix A,
which is significantly different from full precision training.
Specifically, given the poisoned set ν constructed by some
indiscriminate attack, QAT performs the following update:

w∗
t = F(µ+ ν;wt), (1)

wt+1 = wt − ηtB∇̃ℓ(µ+ ν;w∗
t ). (2)

Due to the existence of the rounding function ⌊·⌉, QAT is
likely to be more robust to data poisoning attacks as in-
tuitively it requires a larger budget to modify the clean
weights wc. Specifically, we define εw = ∥w−wc∥22 as the
perturbation introduced by the poisoned parameter. For full
precision training, a small perturbation εw is enough to in-
duce parameter change upon wc, which may cause a drop
in performance. However, for QAT, a smaller εw might
not be enough to urge any change upon the discrete clean
weights w∗

c . Let’s give an example using a single element
in a weight tensor, denoted as w: when the parameter cor-
ruption measure εw = 0.4, clean element wc = 1, we get
w = 0.6 for full precision training, but still w∗ = 1 for
QAT due to the rounding function. In summary, QAT may
be more robust against data poisoning attacks, which we
validate for different tasks in the experimental section.

Next, we analyze specific instances of indiscriminate at-
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Table 2. Comparison between target parameters generated by
GradPC in full precision (FP) and after post-attack quantization
in terms of accuracy drop on the CIFAR-10 dataset (ResNet-18),
where the clean accuracy is 94.95%.

FP 8-bit 4-bit 1-bit

Accuracy drop -21.69% -23.96% -26.35% -30.07%

εw 0.5 0.51 0.53 0.57

tacks on generating the poisoned data ν.

Gradient Canceling (GC) attack. Lu et al. (2023b) pro-
pose the GC attack to circumvent the nested optimization
problem by reformulating the problem to achieve a specific
target parameter. Specifically, GC considers the relaxed op-
timality of the (full precision) minimizer w to having van-
ishing (sub)gradients over the mixed distribution:

∇wℓ(χ;w) ∝ ∇wℓ(µ;w) +∇wℓ(ν;w) = 0. (3)

Thus, given a good (full precision) target parameter ŵ
(usually found by parameter corruption methods, e.g.,
Gradient-based Parameter Corrpution (GradPC, Sun et al.
2020)), the GC attack simply solves the following problem:

argmin
ν∈Γ

1
2∥∇wℓ(µ; ŵ) +∇wℓ(ν; ŵ)∥22, (4)

where Γ is a feasible set that can be specified according to
the attack constraints (e.g., visual similarity to real samples
to throttle defense). Intuitively, the GC attack realizes the
target parameter ŵ, in a more practical manner, by inject-
ing εd poisoned data into the (re)training pipeline.

We observe for QAT, there are two obstacles for direct ap-
plication: (1) the target parameter ŵ is still in full preci-
sion, thus may never be achieved by GC with QAT; (2)
the model (approximately) converges with a vanishing ap-
proximate gradient, thus Equation (3) is not applicable any-
more. We observe GC to be less effective against QAT in
practice (that we demonstrate in Section 4). In the next sec-
tion, we introduce a new variant of GC to overcome these
challenges in the context of QAT.

3. Quantization-aware attacks
In this section, we introduce Gradient Canceling with
Quantization (GC-Q) to address the aforementioned two
difficulties. Firstly, an appropriate target parameter needs
to be in the quantization set Q = {[−2b−1 . . 2b−1 − 1]}d.
To achieve that, we perform PTQ after the target param-
eter generation process. Specifically, we still use GradPC
to perform parameter corruption upon the clean parame-
ters wc and acquire the full-precision target parameter ŵ
with the perturbation budget εw = ∥ŵ −wc∥22. Then, we
perform an extra step of PTQ to obtain discrete target pa-
rameters ŵ∗ = PQ(ŵ), which we utilize as input to the

GC attack. We denote this procedure as post-attack quan-
tization (PAQ). In Table 2, we compare the full precision
target parameters with the PAQ ones. We observe that PAQ
induces a larger accuracy drop and a slightly bigger budget
εw, where a more ambitious quantization scheme leads to
lower accuracy and bigger εw.

Secondly, we address the convergence property of GC for
QAT. To leverage the approximate gradient in QAT imple-
mentations, or the backward quantizer in Equation (10), we
consider the quantized minimizer w∗ to have vanishing ap-
proximate gradient ĝ over the mixed distribution:

B∇wℓ(χ;w∗) ∝ B∇wℓ(µ;w∗) + B∇wℓ(ν;w∗) ≈ 0,

Note that as the gradient update is still in full precision, the
minimizer w∗ is acquired through a final forward quantizer
F thus it may not have exactly vanishing approximate gra-
dient upon outputting, where we denote as≈ 0. Thus given
a set of target parameters ŵ∗ generated by GradPC-PAQ,
our primal problem of interest can be formulated as:

argmin
ν∈Γ

1
2∥B∇wℓ(µ; ŵ∗) + B∇wℓ(ν; ŵ∗)∥22, (5)

where the poisoned set ν is obtained by e.g. (projected)
gradient descent. We introduce another quantization-aware
attack based on the TGDA attack (Lu et al. 2022) called
TGDA-Q in Appendix B.

4. Experiments
4.1. Experimental Settings

Hardware and Package. Experiments on indiscriminate
attacks are run on a cluster with NIVIDIA T4 and P100
GPUs, while experiments on targeted attacks and unlearn-
able examples are run on another machine with 2 NIVIDIA
4090 GPUs. The platform we use is PyTorch.

Datasets and Models. We consider image classification as
the evaluation task on the CIFAR-10 dataset (Krizhevsky
2009) (50k training and 10k testing images) in our main
paper. We apply the ResNet-18 (He et al. 2016) model and
obtain 94.95% clean accuracy.

Quantization schemes. In our main experiments, we con-
sider three quantization levels with the budgets of 1,4,8-
bit for quantizing weights only/both weights and activa-
tions. For binarization (1-bit), we consider two sets of
forward-backward quantizers: BNN (Hubara et al. 2016)
with F= PQ (the sign function ), B = 1[−1,1] and BNN++
(Lu et al. 2023a) with F= SS, B = ∇SS, where SS is a dy-
namic sign-Swish function which mimics the sign function
upon convergence. For higher precision (4,8-bit), we only
consider F= PQ, B = 1[−2b−1,2b−1−1].

Indiscriminate attacks. For quantization-oblivious at-
tacks (QOA), we directly adopt the poisoned data gener-
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Table 3. Quantization-aware training against indiscriminate attacks on the CIFAR-10 dataset with ResNet-18 model, including QOA
and QAA w.r.t. different precisions (full precision and integer with 1,4,8-bit) and tasks (quantizing weights only/both weights and
activations). The attack performance is evaluated in terms of accuracy drop (a larger absolute value indicates a better performance of
an attack) compared to the corresponding clean model. ↓ denotes the additional accuracy drop (improvement of attack effectivness)
incurred by QAA compared to their QOA counterparts.

Precision Task Clean
Quantization-oblivious Attacks Quantization-aware Attacks

Label Flip TGDA GC TGDA-Q GC-Q

full precision - 94.95% -3.32% -5.54% -13.73% - -

1-bit (BNN)
1W 89.37% -1.12% -2.15% - 5.16% -2.66% ( ↓ 0.51%) - 7.21% (↓ 2.05%)

1W1A 88.10% -0.63% -1.35% - 2.63% -1.77% (↓ 0.42%) - 4.99% (↓ 2.36%)

1-bit (BNN++)
1W 89.71% -1.10% -2.16% - 5.16% -2.56% ( ↓ 0.50%) - 7.20% (↓ 2.04%)

1W1A 88.55% -0.65% -1.34% - 2.60% -1.75% (↓ 0.41%) - 5.01% (↓ 2.41%)

4-bit
4W 93.39% -1.95% -3.92% - 8.53% -5.08% ( ↓ 1.16%) -10.99% (↓ 2.46%)

4W4A 92.93% -1.53% -3.53% - 6.97% -4.55% (↓ 1.02%) - 9.55% (↓ 2.58%)

8-bit
8W 94.94% -2.58% -4.46% -12.11% -5.13% ( ↓ 0.67%) -13.35% (↓ 1.24%)

8W8A 94.53% -2.46% -4.35% -10.93% -4.91% (↓ 0.56%) -11.95% (↓ 1.02%)

ated by existing attacks and feed into QAT. Specifically,
we consider Label flip (following the rule of y ← 10 − y
for CIFAR-10), TGDA3 (Lu et al. 2022) and GC4 (Lu et
al. 2023b) attacks and fix the attack budget εd = 0.03.
For quantization-aware attacks (QAA), we modify exist-
ing methods according to Section 3. We run TGDA and its
variant for 200 epochs across all tasks and 2000 epochs for
GC and its variant or early stop if the loss is smaller than 1.
For both attacks, we only modify the input x and assign the
label corresponding to the clean images during the initial-
ization stage of every attack. To evaluate the performance
of each attack, we take the acquired poisoning dataset ν and
retrain the model on both clean and poisoned data µ+ν for
100 epochs. The attack effectiveness is presented with the
final test accuracy.

Other attacks. We consider 8 unlearnable example meth-
ods: error-minimizing noises (EM, Huang et al. 2021),
adversarial poisoning (TAP, Fowl et al. 2021), generative
poisoning (DC, Feng et al. 2019), synthetic perturbations
(SN, Yu et al. 2022), autoregressive perturbations (AR,
Sandoval-Segura et al. 2022), neural tangent generaliza-
tion attacks (NTGA, Yuan and Wu 2021), robust error-
minizing noises (REM, Fu et al. 2021), and one-pixel short-
cut (OPS, Wu et al. 2022), as well as one SOTA targeted at-
tack method called gradient matching (Geiping et al. 2021).

4.2. QAT on Indiscriminate attacks

We first present our main results on indiscriminate attacks.

Verification on the robustness against QOA. Recall that

3https://github.com/watml/TGDA-Attack
4https://github.com/watml/plim

Table 4. Ablation study on the effect of the target parameter gen-
eration process (GradPC-PAQ) and modification of the GC al-
gorithm (by applying the backward quantizer in ĝ) for 1,4,8-bit
quantization (quantizing weights only) against GC-Q. We use the
forward-backward quantizers of BNN here for 1-bit quantization.

Precision PAQ ĝ Accuracy Drop

1-bit

✗ ✗ - 5.16%
✓ ✗ - 5.18%
✗ ✓ - 6.37%
✓ ✓ - 7.21%

4-bit

✗ ✗ - 8.53%
✓ ✗ - 8.57%
✗ ✓ -10.13%
✓ ✓ -10.99%

8-bit

✗ ✗ -12.11%
✓ ✗ -12.12%
✗ ✓ -12.97%
✓ ✓ -13.35%

in Section 2, we reasoned that QAT is likely more ro-
bust against quantization-oblivious attacks (QOAs) than
full precision training due to the presence of a rounding op-
erator as forward quantizers, which may escalate the diffi-
culty of weight change. We now experimentally verify our
reasoning by directly applying QOAs to the quantization-
aware (re)training pipeline. In Table 3 (columns 4-6), we
observe that QAT reduces the efficacy of all three attacks
(label flip, TGDA, and GC) and consistently demonstrates
its robustness against QOAs, all without any specific de-
fense mechanism integrated. In particular: (1) among dif-
ferent precisions, a lower precision QAT scheme (e.g., bi-
narization) is more robust against indiscriminate attacks.
For example, in Table 3 (BNN, BNN++), binarization di-
minishes the effect of QOAs rather significantly (e.g., an
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Table 5. Different unlearnable examples against QAT (binarizing
weights and activations with BNN forward-backward quantizers)
compared with full precision training. We evaluate attacks in
terms of accuracy drop. ↑ indicates accuracy increase, and hence
a drop of attack performance.

Methods FP 1W1A

Clean 94.95% 92.78%
EM -70.90% -68.66% (↑ 2.24%)
TAP -85.90% -79.87% (↑ 6.03%)
DC -76.00% -70.75% (↑ 5.25%)
SN -78.40% -73.53% (↑ 4.87%)
AR -80.02% -77.22% (↑ 2.80%)

NTGA -82.20% -69.54% (↑12.66%)
REM -70.60% -70.15% (↑ 0.45%)
OPS -75.50% -69.27% (↑ 6.23%)

accuracy increase of more than 10%). In contrast, higher
precision QAT schemes tend to be weaker against such at-
tacks. This observation suggests an interesting tradeoff:
lower precision networks generated with QAT may suf-
fer a larger (clean) accuracy drop, but they are more ro-
bust against indiscriminate data poisoning attacks; (2) a
broader quantization pipeline, e.g., quantizing both weights
and activations, is also a stronger defense against indis-
criminate attacks than quantizing only weights.

Are QAAs stronger attacks against QAT? In Section 3
we proposed two variants of quantization-aware attacks
(QAAs) including TGDA-Q and GC-Q by considering the
specific properties of quantization-aware training. In Ta-
ble 3 (columns 7-8), we examine the two QAAs by compar-
ing with their QOA counterparts. We observe that QAAs
consistently improve the performance of QOAs while GC-
Q induces a significant (relative) accuracy drop in the
range of 1-2.58%, and the attack effectiveness of QOAs
is improved by 90% at most. In particular, GC-Q almost
matches the attack efficacy for full precision training in the
case of 8-bit weights only QAT. In summary, QAAs pose a
stronger threat to QAT.

Ablation studies on GC-Q. Next we perform an ablation
study to examine the effect of the two major components in
GC-Q. Recall that we (1) constrain the target parameter ŵ
to be discrete by performing an additional PTQ step, which
we denote as GradPC-PAQ (post-attack quantization); (2)
include the backward quantizer to construct vanishing ap-
proximate gradient ĝ as the stationary point. In Table 4,
we observe that PAQ alone improves the attack effective-
ness marginally, and together with the quantized gradient ĝ
they lead to a much greater improvement.

4.3. Other Attacks

Unlearnable Examples. We examine 8 unlearnable ex-
ample (UE) algorithms against QAT for the extreme case

of binarization5 in Table 5. As UE algorithms are al-
lowed to modify the entire training set, they usually in-
duce a fairly large accuracy drop. Indeed, we observe that
in this extreme regime UE methods continue to be largely
effective against QAT, indicating that UE methods inher-
ently have strong transferability to quantized neural net-
works and remain desirable for data protection purposes.
Nevertheless, QAT does improve robustness against UE
across all methods (each row of Table 5 results in an ac-
curacy increase), while its effectiveness is more method-
dependant, e.g., more significant for NTGA (12.66% accu-
racy increase) and less significant for REM (0.45%).

Targeted attacks. Finally we study the effect of targeted
attacks against QAT (with a range of 1,3,4,5,8-bit preci-
sion). Specifically, we deploy a SOTA attack called gra-
dient matching (Geiping et al. 2021). For generating poi-
soned samples we randomly pick 10 test samples as targets
and generate εd = 1% (500) poisoned samples for each of
them. For each test sample, we perform 8 separate trials
with different random seeds and record the average attack
success rate (the attack is successful when the target sam-
ple is misclassified). We observe that QAT dramatically
reduces the attack efficacy among all choices of precisions.
Specifically, the attack success rate drops from 76.3% (full
precision) to the range of 8-18% across different precisions.
A bit surprisingly, our results suggest that targeted attacks
might not be robust against the popular QAT pipeline.

5. Conclusions
In this work, we examine the robustness of quantized neu-
ral networks against data poisoning attacks, with a primary
focus on indiscriminate attacks for general test accuracy
reduction. Empirically, we reveal that such attacks are
less effective against both post-training quantization and
quantization-aware training as their design, originated from
full precision training, does not take quantization into ac-
count. This motivates us to design stronger quantization-
aware attacks, whose relative improvement is confirmed
accross our experiments. Additionally, for unlearnable ex-
amples and targeted attacks, we find that quantization again
offers some robustness, with a much more pronounced ef-
fect for the latter. In future work, we plan to provide for-
mal guarantees of our quantization-aware attacks, includ-
ing their convergence properties and the amount of poison-
ing data needed in order for them to be effective. We will
also explore other optimization techniques to further im-
prove attack effectiveness.

5We apply a variant of BNN called Adabin (Tu et al. 2022) in
this set of experiments.
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A. Background
In this section, we provide the background, related works
and relevant notations on (1) data poisoning attacks; (2)
neural network quantization, especially quantization-aware
training algorithms.

A.1. Data poisoning attacks

Data poisoning attacks are an emerging security threat to
machine learning models. They are usually easy to deploy,
either actively through data aggregators (e.g., chatbots6) or
passively uploading poisoned data and waiting for them to
be scraped(Gao et al. 2020; Lyu et al. 2020; Shejwalkar et
al. 2022; Wakefield 2016). In this paper, we consider two
classes of data poisoning attacks: indiscriminate attacks
(including unlearnable examples) and targeted attacks.

Indiscriminate attacks. Indiscriminate attacks aim to de-
crease the model test accuracy by adding a small amount
(usually εd = 3% of the number of clean data) of poi-
soned data ν to the clean training set µ (Biggio et al. 2012;
Koh et al. 2022; Lu et al. 2022, 2023b; Muñoz-González
et al. 2017; Suya et al. 2021). Formally, let ℓ((x, y),w)
be our loss that measures the cost of our model parame-
ters w (in full precision) on a data sample (x, y) for super-
vised learning. Indiscriminate attacks can be formulated as
a nested optimization problem (i.e., a non-zero-sum Stack-
elberg game):

max
ν∈Γ

ℓ(µ̃;w⋆),

s.t. w⋆ ∈ argminw ℓ(µ+ ν;w), (6)

where µ̃ is a clean validation set. As the poisoned data only
affects the model prediction indirectly through retraining
on the mixture χ ∝ µ + ν, the problem is difficult to op-
timize and hard to scale up for neural networks. There are
two existing approaches that are applicable to neural net-
works that we utilize in this paper: (1) TGDA attack (Lu et
al. 2022) that applies total gradient descent ascent to solv-
ing a non-zero-sum Stackelberg formulation of poisoning
(which is still a hard optimization problem) and (2) Gradi-
ent Canceling (GC) attack (Lu et al. 2023b) that exploits a
target parameter for easier optimization.

There exists a special case of indiscriminate (availability)
attacks where the attacker can modify the entire training
set (i.e., the poisoning fraction εd = ∞). This setting
may not be realistic from an attack point of perspective,
but may be used for data protection purposes. In this paper,
we examine several approaches including error-minimizing
noises (Huang et al. 2021), adversarial poisoning (Fowl et
al. 2021), generative poisoning (Feng et al. 2019), synthetic

6https://atlas.mitre.org/studies/AML.
CS0009/

perturbations (Yu et al. 2022), contrastive poisoning (He et
al. 2022), etc.

Targeted attacks. In contrast to the general-purpose avail-
ability attacks, targeted attacks aim at altering the pre-
diction of a single test sample by injecting εd (usually
set to 1% of the number of clean data) poisoned samples
(Aghakhani et al. 2021; Carlini and Terzis 2021; Geiping
et al. 2021; Guo and Liu 2020; Huang et al. 2020; Shafahi
et al. 2018; Zhu et al. 2019). In this paper, we examine a
scalable and SOTA targeted attack called Gradient Match-
ing (GM) (Geiping et al. 2021).

A.2. Network quantization

In neural network quantization, we aim at minimiz-
ing the usual (nonconvex) objective function ℓ with dis-
crete weights w∗ instead of full precision (floating point)
weights:

min
w∗∈Q

ℓ(w∗), (7)

where Q ⊆ Rd is a discrete, nonconvex quantization set
such as Q = {−2b−1, . . . , 2b−1 − 1}d for the signed
quantization where b denotes the number of bits required
for quantization. Recall that we denote the full precision
weights as w in comparison to the discrete weights. Next,
we specify two quantization schemes.

Post-Training Quantization (PTQ). PTQ can be ex-
pressed with the following single forward pass (Huang et
al. 2023):

w∗=sPQ(w/s)=s×⌊clip(w/s,−2b−1, 2b−1−1)⌉, (8)

where PQ is the projector that quantizes the continu-
ous weights w to discrete ones, s is a scaling factor of
the quantizer (to extend Q to sQ for better coverage),
clip(w, a, b) = max{a,min{b, w}} clips the input to its
allowed range, and ⌊·⌉ is a rounding function that maps
the input to its nearest integer. PTQ is deployed after full-
precision training and does not ensure the acquired discrete
weights w would preserve accuracy (Jacob et al. 2018).

Quantization-Aware Training (QAT). QAT considers the
training procedure to minimize performance drop. How-
ever, during the backward pass, the gradient of PQ is al-
most 0 everywhere. A common approach is to deploy
a Straight Through Estimator (STE, Bengio et al. 2013)
where the gradient is evaluated at the quantized weights
w∗

t but used to update the continuous weights wt, noted as
below:

w∗
t = PQ(wt), wt+1 = wt − ηt∇̃ℓ(w∗

t ). (9)

Upon implementation, it is usually beneficial to apply an
approximate gradient (of a function close to PQ, but with
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well-defined gradients, e.g., hard tanh function) on top of
STE (Lu et al. 2023a):

w∗
t = F(wt), wt+1 = wt − ηtB∇̃ℓ(w∗

t ), (10)

where F (usually chosen as PQ) is the forward quantizer
and B (usually chosen as the indicator 1[−2b−1,2b−1−1]) is
the backward quantizer. Other choices of F and B can be
derived within the ProxConnect++ framework (Lu et al.
2023a).

B. TGDA and TGDA-Q
TGDA attack. To solve Equation (6), Lu et al. (2022) pro-
pose to measure the influence of ν through the total deriva-
tive Dνℓ(µ̃;w) = −∇wνℓ2 · ∇−1

wwℓ2 · ∇wℓ1 (where we
simplify ℓ1 = ℓ(µ̃,w), ℓ2 = ℓ(µ+ν;w)), which implicitly
appraises the change of w with respect to ν. Specifically,
TGDA considers the following total gradient ascent step for
the attacker and gradient descent step for the defender (in
full precision):

ν = ν + η · Dνℓ(µ̃;w), (11)
w = w − η · ∇wℓ(µ+ ν;w), (12)

where we observe that the defender’s update Equation (12)
is still in full precision, which does not reflect the training
scheme of QAT upon deployment. As a result, we observe
the performance of TGDA is largely affected by QAT (pre-
sented in the experiments), which motivates us to design
new variants in the next section.

TGDA with Quantization. We recall that ordinary TGDA
only considers full precision updates for the defender’s ac-
tion. Naturally, we substitute this step with quantization-
aware training, such that the new algorithm (TGDA-Q) can
be expressed as:

ν = ν + η · Dνℓ(µ̃;w), (13)

w∗
t = F(wt), wt+1 = wt − ηtB∇̃ℓ(w∗

t ), (14)

where the gradient ascent step is equipped with both for-
ward and backward quantizers to replicate the QAT proce-
dure upon deployment.
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