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ABSTRACT

Deep neural networks have produced revolutionary results in many applications;
however, the computational resources required to use such models are expensive
in terms of processing power and memory space. Research has been conducted in
the field of knowledge distillation, aiming to enhance the performance of smaller
models. Knowledge distillation transfers knowledge from large networks into
smaller ones. Literature defines three types of knowledge that can be transferred:
response-based, relational-based, and feature-based. To the best of our knowl-
edge, only transferring one or two types of knowledge has been studied before, but
transferring all three remains unexplored. In this paper, we propose ModReduce,
a framework designed to transfer the three knowledge types in a unified manner
using a combination of offline and online knowledge distillation. Moreover, an ex-
tensive experimental study on the effects of combining different knowledge types
on student models’ generalization and overall performance has been performed.
Our experiments showed that ModReduce outperforms state-of-the-art knowledge
distillation methods in terms of Average Relative Improvement.

1 INTRODUCTION

The term knowledge distillation was formally popularized in the work of Hinton et al. (2015), and
it refers to transferring knowledge from a large pre-trained model to a smaller one, aiming to retain
comparable performance to the large model. Knowledge distillation has been receiving increas-
ing attention from the research community due to its promising results. The methods by which
knowledge can be distilled vary widely based on several factors like knowledge type, the distilla-
tion algorithm, and the teacher-student architecture (Gou et al., 2021). Response-based knowledge
uses the large model’s logits as the teacher model’s knowledge. The main idea is that the student
optimizes its training over the soft targets, or the softened probability distribution, produced by the
teacher model instead of using discrete labels (Hinton et al., 2015). While this method showed great
success, one of its major drawbacks is that it disregards the knowledge a teacher model retains in its
intermediate layers. This encouraged researchers to introduce methods that capture the knowledge
in the intermediate layers of the teacher model, feature knowledge. Feature-based algorithms focus
on the features of the teacher model’s intermediate layers to guide the student’s learning. The chal-
lenge is that the teacher and the student models have different abstraction levels, which makes it one
of the objectives of the distillation process to determine the best layer associations for maximum
performance (Tung & Mori, 2019; Passalis et al., 2020; Kornblith et al., 2019). Relational-based
methods focus on the relationships between different data instances and different activations and
neurons (Gou et al., 2021). Several algorithms and methods have been introduced, focusing on dis-
tilling one or two of the knowledge sources from a teacher model to a student model. While they
show promising results, no research addresses the issue of distilling the three discussed knowledge
types instead of only one or two. To the best of our knowledge, ModReduce is the first work to ex-
plore this area. Moreover, we explore combining offline and online distillation strategies to achieve
this goal. For online learning distillation, we have explored four different techniques for knowledge
aggregation: Peer Collaborative Learning (PCL) (Wu & Gong, 2021), On-the-fly Native Ensembling
(ONE) (Zhu et al., 2018), Fully Connected Layers (FC), and Weighted Averaging.

ModReduce exhibits the following characteristics:
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1. Agnostic of the offline distillation algorithm used. The platform supports different imple-
mentations for each knowledge category distillation, including state-of-the-art algorithms.

2. Capable of executing different online learning algorithms.
3. Agnostic of the teacher and student model architectures.

Moreover, we introduce a new benchmark which is a union of the benchmarks available at Chen
et al. (2021); Tian et al. (2019). With this broad benchmark, several findings have been concluded.

2 RELATED WORK

Before digging deeper into different knowledge distillation schemes, it is better to explore the dif-
ferent knowledge representations a neural network possesses.

2.1 KNOWLEDGE SOURCES

2.1.1 RESPONSE-BASED

Response-based knowledge is defined as the response of a neural network whenever it is presented
with a particular input. The most popular response-based knowledge distillation scheme in image
classification tasks is using ”soft targets,” where the aforementioned probability distribution is con-
trolled using a temperature factor, T , which is used to soften the probability distribution. According
to Hinton et al. (2015), these soft targets provide informative dark knowledge from the teacher
model. The soft targets ”Hinton” approach is the most popular approach with the best results thus
far utilizing this type of knowledge. Unfortunately, this kind of knowledge is blind to the inner
features in the hidden layers of the model, as it only focuses on the final outputs.

2.1.2 FEATURE-BASED

Feature-based knowledge extends on the idea of response-based knowledge and takes the outputs
of intermediate layers into consideration. Accounting for the outputs of the intermediate layers is
important because deep neural networks can learn features with different levels of abstraction. For
instance, a deep CNN can learn abstract features like straight and curved lines in the shallowest
layers while detecting features with higher complexity at the deeper layers (Bengio et al., 2013).
This idea is useful for constructing teacher-student architectures since this type of knowledge can be
used in the training of the student network. Many knowledge distillation techniques use a distillation
loss function that accounts for feature-based knowledge. Equation 1 represents a general form of the
distillation loss function for feature-based knowledge, where ft(x) and fs(x) are the feature maps
of the teacher and student models respectively; ϕt and ϕs represent the transformation function of
the teacher and student models feature maps and lf (.) is a similarity measure between the feature
maps.

LFeaD((ft(x), fs(x)) = lf (ϕt(ft(x)), ϕs(fs(x))) (1)
The state-of-the-art framework in feature knowledge distillation was introduced in Chen et al.
(2021), which aimed to match the semantics between the teacher and student. They introduced
semantic calibration for cross-layer knowledge distillation that made better use of the intermediate
knowledge by matching the semantic level of the transferred knowledge. Then they used an atten-
tion mechanism to automatically learn a soft layer association with multiple targets, which helped
the student model in learning from multiple semantically matched hidden layers instead of just one
fixed layer.

2.1.3 RELATION-BASED

While the response-based distillation captures the knowledge in the output layers of the teacher
model, and feature-based distillation captures knowledge contained in the intermediate layers, the
relational-based distillation captures the interrelations between training data examples. Several tech-
niques have been proposed to capture the relations between the training data. Instance Relationship
Graph (IRG) (Liu et al., 2019) introduced a methodology of knowledge distillation based on con-
structing a graph where features are represented as vertices and relations as edges. Relational Knowl-
edge Distillation (RKD) (Park et al., 2019) proposed measuring the relations between training data
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instances using distance-wise and angle-wise losses that penalize structural differences in relations.
Contrastive Representation Distillation (CRD), which is the state-of-the-art in relational knowledge
distillation (Tian et al., 2019), captures important structural knowledge of the teacher network. It
trains a student to capture significantly more information in the teacher’s representation of the data
using objective contrastive learning, which encourages the student to map similar inputs to close
representations, in some metric space, while mapping different inputs to distant representations.

2.2 DISTILLATION SCHEMES

In this section, we overview the existing distillation schemes in the literature, which can be divided
into three schemes: offline distillation, online distillation, and self-learning distillation. We focus on
the first two schemes since they are more relevant to our target architecture.

2.2.1 OFFLINE DISTILLATION

This is the most basic and popular kind of distillation. It was introduced alongside the concept
of distillation by Hinton et al. (2015). This scheme transfers knowledge from a pre-trained expert
teacher model into a student model. The whole training process takes place in two phases; first, the
training of the teacher model on the set of training samples before distillation. The second phase is
extracting knowledge from the teacher model and passing it to the student model. The knowledge
is extracted from features, responses, or relations as mentioned in section 2.1. Offline distillation is
simple and straightforward to implement as it employs one-way knowledge transfer from a trained
teacher. In addition, the student model is usually smaller in size and simpler to train. On the
other hand, in this scheme, the model capacity gap always exists and cannot be avoided due to the
difference in complexity between the teacher and student models. Model capacity could be defined
as a measure of a DNN size based on the number of nodes and layers. The offline distillation methods
focus on improving knowledge transfer in several aspects. One aspect is regarding the design of the
student model and the knowledge type. For instance, in Romero et al. (2014), the student model is
deeper than the teacher model but it is much thinner at the same time. Hints from the inner hidden
layers of the teacher model are taught to the student model to guide the training process. Another
aspect is the loss functions for matching features or distributions matching.

2.2.2 ONLINE DISTILLATION

In the online distillation scheme, both the teacher and student models are being trained and updated
simultaneously. Online learning has been proven to improve the generalization ability of a network
by training it simultaneously with a pool of other networks. Moreover, online learning supports
heterogeneity in student networks as they can vary in architecture and size. Several techniques
have been proposed for the online learning scheme, such as Peer Collaborative Learning (PCL),
On-the-fly Native Ensemble (ONE), and weighted averaging. Peer Collaborative Learning (Wu &
Gong, 2021) integrates online ensembling and network collaboration into a unified framework. PCL
constructs a multi-branch network for training, in which each branch is called a peer. Random aug-
mentation multiple times is performed on the inputs to peers and assemble feature representations
outputted from peers with an additional classifier as the peer ensemble teacher. Moreover, PCL
employs the temporal mean model of each peer as the peer mean teacher to collaboratively transfer
knowledge among peers, which helps each peer to learn richer knowledge and facilitates optimizing
a more stable model with better generalization. In ONE (Zhu et al., 2018), training is only a sin-
gle multi-branch network while simultaneously establishing a strong teacher on-the-fly to enhance
the learning of the target network. The auxiliary branches share the low-level layers with the tar-
get network, with each branch, together with the shared layers, acting as an individual model. The
ensemble of those branches builds the teacher model. The training is performed in a closed loop
fashion where the teacher aggregates knowledge from branch models on-the-fly, and this knowl-
edge is distilled back to the branches to enhance the models’ learning. Evaluations of ONE report
enhancement of the generalization performance while maintaining the computational efficiency.
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Figure 1: ModReduce Architecture

3 MODREDUCE

3.1 FRAMEWORK STRUCTURE

The structure of our framework is as follows, one cumbersome teacher model that is already pre-
trained and has high accuracy in the specific task and three identical untrained student models. These
student models are smaller in size than the teacher model. Notably, the student models under the
standard training process obtain lower accuracy than the teacher model. The framework operation
is divided into two phases, the offline distillation phase, and the online distillation phase. Both these
phases are performed consecutively at each training step. First, offline distillation is performed
between the teacher model and each student model separately, using different knowledge sources
for each student. Then, online distillation is performed among the student models to aggregate the
knowledge gained in the offline phase. For online learning, we implemented different techniques as
mentioned in section 2.2.2.

3.2 OFFLINE TRAINING SETUP

This section will go through the functionality and loss calculation of each offline distillation method
used in our algorithm. We used Hinton for response distillation, SemCKD for feature distillation,
and CRD for relational distillation.

3.2.1 HINTON

By ”Hinton” here we refer to the vanilla KD, which depends on the loss calculated between the logit
layers of the teacher and student models. This method uses the outputs of the final Softmax layer
of the teacher, which contains the probabilities for each class (in a classification task), then applies
a temperature for these probabilities to convert them into the soft targets. Equation 2 shows how to
obtain a soft target qi, where T is the softening temperature, i is the index of the class, zi is the logit
computed for class i, and qi is the probability of class i. If T is greater than 1, we obtain qi values
that are softened probabilities (i.e., soft targets).

qi =
e

Zi
T∑

j e
Zj
T

(2)

3.2.2 SEMCKD

As a feature knowledge distillation method, SemCKD is concerned with transferring knowledge
from the intermediate layers of the teacher to the students. Moreover, it employs an attention mech-
anism to solve the problem of semantic mismatch caused by the difference in teacher and student
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architectures which could lead to a degradation in performance. The attention mechanism auto-
matically assigns layers from the teacher model for student layers to learn from. In addition to the
attention mechanism, each student layer learns from multiple layers in the teacher model to add
cross-layer supervision (Chen et al., 2021).

3.2.3 CRD

As for relational, or, structural knowledge, CRD is the current state-of-the-art. The original
response-based knowledge transfer proposed by Hinton et al. (2015) ignores the complex inter-
dependencies between the data instances, a problem CRD tries to solve by leveraging a contrastive
objective to capture this output correlation (Tian et al., 2019).

3.3 ONLINE TRAINING SETUP

The online learning phase enhances the generalization of the student models by sharing the knowl-
edge gained by the other models in the cohort during the offline phase. We have explored four
different online learning techniques inspired from different sources to find the best one for our goal.
These four techniques are PCL, ONE, FC, and Weighted Averaging.

3.3.1 PCL

This technique was inspired by Wu & Gong (2021). In it, the students try to learn collaboratively
from each other by employing a temporal mean model copy as a representation for each student. In
the online learning phase, each student tries to mimic the soft logits of the temporal mean models of
its peers.

3.3.2 ONE

In this technique, inspired by Zhu et al. (2018), inputs and predictions are used to learn a weight
for each student. Those weights are used to produce a group output from the individual student
predictions, which is then used as a guide for the students to mimic.

3.3.3 FC

Similar to ONE, this technique tries to produce a better group output from individual student pre-
dictions for the students to follow. However, this objective is achieved here by employing a dense
layer to aggregate the three individual predictions into a single one.

3.3.4 WEIGHTED AVERAGING

This technique has the same objective as ONE and FC, sharing knowledge between the students by
aggregating their predictions into a group output that each student is penalized against. As its name
suggests, we here try to learn a weight for each student, with the weights being from 0 to 1 and
having a total sum of 1. Such goal is achieved by having a learnable weight for each student, and
those weights are optimized based on students’ performance.

3.4 ALGORITHM

Algorithm 1 shows ModReduce training detailed procedure.

4 EXPERIMENTAL SETUP

To verify our proposed hypothesis and demonstrate the effectiveness of our novel framework, we
designed a flow for our experimentation. The flow chart in figure 2 describes the entire rationale of
each stage.

We started with our original hypothesis question: ”Does aggregating three knowledge sources in
one loss function yield better results than distilling only one knowledge source?”. If the answer was
yes, then this is a definitive answer to the hypothesis that offline aggregation of the three knowledge

5



Under review as a conference paper at ICLR 2023

Algorithm 1 ModReduce Algorithm

1: Load pretrained TeacherModel
2: S = {Response Distillation Model, Relational Distillation Model, Feature Distillation Model}
3: Create StudentModel[x] ∀{x ∈ S}
4: for epoch in epochs do
5: for batch in train data do
6: t predictions = TeacherModel.predict(batch)
7: for x ∈ S do
8: StudentModel[x].predictions = StudentModel[x].predict(batch)
9: StudentModel[x].offline loss = StudentModel[x].compute offline loss()

10: end for
11: group out = calculate group output(StudentModel[x].predictions: ∀x ∈ S)
12: for x ∈ S do
13: StudentModel[x].online loss = calc online loss(StudentModel[x].predictions,

group out)
14: StudentModel[x].total loss = online loss weight * StudentModel[x].online loss + of-

fline loss weight * StudentModel[x].compute offline loss()
15: end for
16: end for
17: end for

Figure 2: Experimental Flow

sources is sufficient and produces better results than distilling only one knowledge type. With that
established, we would not need any further experimentation. If the answer was no, then we need
to explore whether changing the aggregation method would enhance performance. So, the question
now becomes: ”Does online aggregation of three knowledge sources achieve better results than
only one knowledge source?” If the answer to this question was no, then that would be a definitive
answer to falsify our original hypothesis and clearly show that distilling only one knowledge type
is better than distilling three knowledge types. However, if the answer was yes, this proves our
proposed hypothesis (that aggregating three knowledge sources using online learning shall produce
better results than only one knowledge source). After ensuring that the obtained results using online
aggregation of three knowledge sources are higher than the state-of-the-art benchmarks, we can
further investigate which online learning technique achieves the highest performance. Addressing
this question, we integrated four different online learning algorithms to test the performance of our
model. We experimented with Peer Collaborative Learning (PCL), Fully Connected layers (FC),
On-the-fly Native Ensemble (ONE), and Weighted Averaging.

The state-of-the-art methods we compared against are Hinton (in response-based knowledge distilla-
tion), SemCKD (in feature-based knowledge distillation), and CRD (in relational-based knowledge
distillation). We created a new benchmark that combines the experiments conducted by CRD and
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Table 1: Test accuracy (%) of students and teachers with similar architectures for Hinton, Sem-
CKD, CRD, and ModReduce. ↑ indicates outperforming Hinton’s vanilla KD, whereas ↓ indicates
underperforming

Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 resnet32x4 vgg13
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 resnet8x4 vgg8
Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 73.09 70.46
Hinton 75.39 74.21 71.70 70.99 73.66 74.32 73.62
SemCKD 75.10 (↓) 73.11 (↓) 70.91 (↓) 70.95 (↓) 73.47 (↓) 75.55 (↑) 74.08 (↑)
CRD 76.12 (↑) 74.91 (↑) 71.72 (↑) 71.35 (↑) 73.65 (↓) 74.97 (↑) 74.39 (↑)
ModReduce 75.44 (↑) 74.84 (↑) 71.99 (↑) 72.01 (↑) 74.34 (↑) 75.78 (↑) 74.64 (↑)

Table 2: Test accuracy (%) of students and teachers with different architectures for Hinton, Sem-
CKD, CRD, and ModReduce. ↑ indicates outperforming Hinton’s vanilla KD, whereas ↓ indicates
underperforming

Teacher vgg13 resnet32x4 WRN-40-2 resnet32x4 resnet32x4 resnet32x4 vgg13 WRN-40-2
Student MobileNetV2 ShuffleNetV1 ShuffleNetV1 ShuffleNetV2 vgg8 vgg13 ShuffleNetV2 MobileNetV2
Teacher 74.64 79.42 75.61 79.42 79.42 79.42 74.64 75.61
Student 64.60 70.50 70.50 72.60 70.46 74.82 72.60 65.43
Hinton 68.72 74.59 75.45 75.73 72.48 77.21 75.89 69.02
SemCKD 68.66 (↓) 77.21 (↑) 76.93 (↑) 78.07 (↑) 75.02 (↑) 79.14 (↑) 76.24 (↑) 69.77 (↑)
CRD 69.66 (↑) 75.77 (↑) 76.59 (↑) 76.57 (↑) 73.68 (↑) 77.71 (↑) 76.26 (↑) 70.13 (↑)
ModReduce 69.23 (↑) 76.96 (↑) 77.14 (↑) 78.23 (↑) 75.21 (↑) 79.51 (↑) 76.76 (↑) 69.37 (↑)

SemCKD on CIFAR-100. Hence, our new benchmark contains 15 different combinations of teacher
and student models architectures along with the accuracy of the expert teacher model, base student
model, Hinton model accuracy, SemCKD model accuracy, CRD model accuracy, and our model
”ModReduce” accuracy. The results collected in our new benchmark are as reported in tables 1 and
2, where the bold values represent the highest achieved accuracy. Our model surpasses the state-
of-the-art benchmarks in 10 out of 15 experiments. It is worth noting that in the offline training of
different students reported in tables 1 and 2, a weight for Hinton loss was added to both SemCKD
and CRD students.

This was done to account for the fact that SemCKD reported their results with Hinton loss added to
theirs in offline training. Furthermore, CRD reported training their student with CRD and Hinton
that slightly improved upon CRD alone. Therefore, we preferred re-running all the experiments for
Hinton, SemCKD + Hinton, and CRD + Hinton as they represent the offline knowledge distillation
schemes with the best reported accuracies.

5 RESULTS AND DISCUSSION

In all the experiments, the 15 teacher-student models combinations shown in tables 1 and 2 were
used to obtain the conclusions for our questions. To capture the improvement of our model over
the existing knowledge distillation techniques, we utilized Average Relative Improvement (ARI); a
metric that was first introduced by CRD (Tian et al., 2019) and was later used by SemCKD (Chen
et al., 2021) in reporting their results. ARI provides a measure to test whether, on average, for the
set of different architectures, ModReduce improved upon a certain knowledge distillation technique
or not.

ARI =
1

M

M∑
i=1

AcciModReduce −AcciKD

AcciKD −AcciStu

∗ 100% (3)

The first question was whether direct aggregation of offline losses introduced by Hinton, CRD, and
SemCKD in a single loss function could improve upon using each loss function independently. For
that, we ran an experiment that performs an aggregated distillation by adding the loss functions of
Hinton, SemCKD, and CRD. Figure 3 shows that aggregating the three losses by simply adding
the loss functions with their weights improves only upon the Hinton model. At the same time, it
has equivalent performance to SemCKD and lower performance than CRD. From this experiment,
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we can conclude that simply combining the loss functions of the different knowledge distillation
techniques does not improve the accuracy of the student model.

Figure 3: Average Relative Improvement of Combined Loss Function (Hinton + CRD + SemCKD)
over each Method of them on its own

The next step was testing whether online aggregation of offline knowledge sources could improve
the student’s accuracy. We used four aggregation methods to create the teacher logits for the online
learning step. Two of them were based upon the Peer Collaborative Learning (Wu & Gong, 2021)
and On-the-Fly Native Ensembling (Zhu et al., 2018). The second aggregation method used a fully
connected trainable layer to calculate the online teacher logits. Figure 4 shows a graph of the average
relative improvement of the different aggregation methods used with ModReduce. ModReduce with
ONE and Weighted Averaging (WAvg) have a positive ARI compared to training a student using
any of the underlying single offline methods. Furthermore, using ModReduce with WAvg has the
highest ARIs over all the underlying offline methods; those being 48.2%, 25.50%, and 17.46% over
Hinton, SemCKD, and CRD, respectively.

Figure 4: Average Relative Improvement (ARI) of ModReduce over SOTA Methods using Different
Online Learning Techniques

Tables 1 and 2 show detailed results for the different experimentations. ModReduce, with WAvg as
the aggregation method for the online learning step, is better in 10 out of the 15 experiments. While
analyzing the five experiments in which ModReduce-WAvg is not the best performing, we observed
that it also was never the worst performing compared to the other methods. For instance, in Figure
5a, despite trailing CRD, we notice that ModReduce-WAvg has an accuracy of 69.23%, improving
up on SemCKD.
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On the other hand, Figure 5b shows the opposite case where ModReduce-WAvg is trailing SemCKD.
However, with an accuracy of 76.96%, it improves upon the state-of-the-art relational knowledge
distillation (CRD).

(a) VGG13 teacher and MobileNetV2 student (b) Resnet32x4 teacher and ShuffleNetV1 student

Figure 5: Accuracy of student trained with ModReduce against Hinton, CRD, and SemCKD in
experiments where ModReduce did not beat the Best performing method

These results, combined with the above ARI results, show that combining different offline knowl-
edge students through online distillation generalizes better than a single offline knowledge distilla-
tion technique; thus, on average, ModReduce-WAvg produces better student models.

6 CONCLUSION

In this work, we introduced ModReduce: a novel multi-knowledge distillation with online learning
framework. ModReduce aggregates knowledge distilled from three different sources: response-
based, feature-based, and relational-based knowledge. This aggregation is performed via online
learning between students, which also boosts their performance and enhances their generalization
ability. Our experiments proved that using online learning as an aggregation method for different
knowledge sources is better than combining the losses in a single student. We also showed that
distilling three knowledge types is better than only using one or two types. Our results surpass
the state-of-the-art SemCKD and CRD distillation schemes in 10 out of 15 experiments. More
specifically, ModReduce outperforms SemCKD in 6 out of 7 experiments and outperforms CRD
in 7 out of 11 experiments. Using the Average Relative Improvement (ARI) metric, ModReduce
achieved 48.29% improvement over Hinton, 25.5% improvement over SemCKD, and 17.64% over
CRD.

7 FUTURE WORK

Knowledge distillation is a prominent field with many research opportunities that could result in
better performance and less costly architectures. Even though ModReduce has already achieved
results that surpass the state-of-the-art benchmarks, a wide range of potential enhancements can be
conducted.

We propose investigating the effect of switching from a synchronous offline-online training scheme
to a sequential one (offline followed by online,) a potential enhancement to be tested. We have only
replicated the experiments reported in SemCKD and CRD benchmarks in our work. However, other
variations of teacher and student model architectures can be tested for further insights. Training
student with different architectures, as the three students trained had the same architecture in any
given experiment, might also be a good point to explore. Finally, we propose doing an extensive
ablation study to see the effect of the different components of the system on the eventual result. This
ablation study can test the effect of changing all variables or parameters one at a time.
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A APPENDIX

A.1 DATASET

To accomplish the abovementioned experimentation rationale, ModReduce was tested on a series
of classification tasks using the CIFAR-100 dataset, which consists of 100 classes containing 600
images each. CIFAR-100 has 500 training images and 100 testing images per class. The 100 classes
are grouped into 20 superclasses. Each image comes with a ”fine” label (the class to which it
belongs) and a ”coarse” label (the superclass to which it belongs). CIFAR-100 is the most used
dataset in the state-of-the-art benchmarks we compared our results against, making it a convenient
choice for our experimentations.

A.2 PREPROCESSING

To have a fair comparison, we implemented an identical pre-processing to our two main benchmarks
in Chen et al. (2021); Tian et al. (2019). All images are normalized by channel means and standard
deviation. Moreover, some data augmentation is also implemented, such as random cropping and
horizontal flipping.

A.3 TRAINING DETAILS

Following our benchmarks, we use stochastic gradient descent with a Nesterov momentum of 0.9.
We set the initial learning rate to 0.01 for MobileNetV2, ShuffleNetV1/V2, and 0.05 for other ar-
chitectures. The number of training epochs is 240 for all models, and the learning rate is divided by
10 at epochs 150, 180, and 210. We set the mini-batch size to 64 and the weight decay to 5 ∗ 10−4.
The hyperparameter β of SemCKD is set to 400, while the temperature T of Hinton KD is set to 4
throughout our experiments.
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