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Abstract

A foundational principle of connectionism is that
perception, action, and cognition emerge from par-
allel computations among simple, interconnected
units that generate and rely on neural representa-
tions. Accordingly, researchers employ multivari-
ate pattern analysis to decode and compare the
neural codes of artificial and biological networks,
aiming to uncover their functions. However, there
is limited analytical understanding of how a net-
work’s representation and function relate, despite
this being essential to any quantitative notion of
underlying function or functional similarity. We
address this question using fully analysable two-
layer linear networks and numerical simulations
in nonlinear networks. We find that function and
representation are dissociated, allowing represen-
tational similarity without functional similarity
and vice versa. Further, we show that neither
robustness to input noise nor the level of gen-
eralization error constrain representations to the
task. In contrast, networks robust to parameter
noise have limited representational flexibility and
must employ task-specific representations. Our
findings suggest that representational alignment
reflects computational advantages beyond func-
tional alignment alone, with significant implica-
tions for interpreting and comparing the represen-
tations of connectionist systems.

1. Introduction
The parallel distributed processing hypothesis posits that
function in artificial and biological networks emerges from
interactions among simple interconnected units that com-
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Figure 1: Random walk. (A) A random walk on the solution
manifold of a two-layer linear network reveals that input and read-
out weights can change continuously, inducing changes in the
(B) network parametrisation and thus the (C) hidden-layer repre-
sentations, while preserving the (D) network output.

pute with distributed representations (Rumelhart et al. 1986).
Accordingly, one might aim to identify function from net-
works observables such as connectivity weights and neu-
ral activity patterns; however, this is often complicated by
the inherent complexity and partial observability of these
systems. In particular, the structure of artificial and bio-
logical networks is often non-identifiable in the sense that
networks can be structurally distinct, yet implement the
same input-output mapping. For example, biophysical
neuron models can exhibit nearly identical functions at both
the neuron (Goldman et al. 2001) and network levels (Prinz
et al. 2004) despite considerable variation in their architec-
ture (reviewed in Marder and Goaillard 2006; Albantakis
et al. 2024). Similarly, artificial neural networks (ANNs) are
almost always non-identifiable due to simple symmetries,
such as permutation-invariance of neurons (Sussmann 1992;
Albertini and Sontag 1993), scale-invariance of activation
functions (Neyshabur et al. 2015a), alongside more complex
symmetries arising from feature composition across layers
and from finite training data (Refinetti et al. 2021; Arous
et al. 2022). As modern networks are deep and heavily over-
parameterised (Zhang et al. 2021), they are inherently non-
identifiable, with many parametrisations yielding the same
input-output behaviour. Determining when parametrisations
become identifiable and understanding the consequences
of non-identifiability remain open problems (Roeder et al.
2021; Entezari et al. 2022; Vlačić and Bölcskei 2022; Ghosh
et al. 2022; Wang and Jordan 2021; Godfrey et al. 2022;
Martinelli et al. 2023; Bona-Pellissier et al. 2021; Kori et al.
2024; Marconato et al. 2024).

Even deep linear networks exhibit both trivial and non-trivial
symmetries, making their parametrisation non-identifiable.
While any deep linear network can be re-parametrised as
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a single linear transformation (Laurent and Brecht 2018),
it does so through multistage computations that give rise
to hidden-layer representations. Moreover, the optimisa-
tion landscape of a deep linear network is non-convex and
contains a high-dimensional solution manifold (Figure 1)
whose shape is determined by the statistics of training data
and the network architecture (Baldi and Hornik 1989; Saxe
et al. 2014; Arora et al. 2019), making it a useful surro-
gate for studying representation learning (Saxe et al. 2019;
Braun et al. 2022; Dominé et al. 2024). Here, we leverage
the analytical tractability of deep linear networks to study
functionally equivalent parametrisations at global minimum
error. Crucially, these solutions employ different internal
representations, which has significant computational con-
sequences, most notably in their affordances for linear de-
coding, representational similarity analysis (Section 4), and
their sensitivity to noise (Section 5).

We now detail our contributions:

• We derive exact parametric equations characterising the
complete and distinct subregions of the solution manifold
in two-layer linear networks.

• We demonstrate that, although all subregions allow flexi-
ble neural representations, some inherently lead to iden-
tifiable task-specific representational similarities, while
others result in non-identifiable, task-agnostic representa-
tional similarities.

• We establish that in contrast to task-specific solutions,
task-agnostic solutions are non-identifiable and non-
comparable.

• We analytically show that input noise and generalisation
error do not constrain representations to task-specific re-
gions, whereas parameter noise does.

• We validate our analytical findings through numerical
simulations, demonstrating that these computational prin-
ciples persist in non-linear neural networks.

All simulations are detailed in Appendix A, and a code
repository reproducing all figures is available on GitHub at
lukas-braun/dissociating-similarity.

2. Setting and preliminaries
We consider a two-layer linear network (Figure 1A),

ŷn = W2W1xn, (1)

trained to minimise the mean-squared error

LMSE =
1

2P

P∑
n=1

||ŷn − yn||22 (2)

over a dataset D = {(xn,yn)}Pn=1, with inputs xn ∈ RNi

and corresponding targets yn ∈ RNo . The input weights

W1 ∈ RNh×Ni project inputs to hidden-layer neural repre-
sentation hn = W1xn ∈ RNh , which are projected to out-
puts via the readout weights W2 ∈ RNo×Nh . We denote by
X = [x1, ...,xP ], Y = [y1, ...,yP ], and H = [h1, ...,hP ]
the matrices that contain all inputs, targets and hidden-layer
representations, respectively. The network’s representa-
tional similarity matrix (RSM) is then defined by

RSM = XTWT
1 W1X = HTH, (3)

capturing pairwise similarities between inputs in the hidden
representational space. Laurent and Brecht (2018) showed
that, under the following assumptions:
Assumption 2.1. The loss function is convex and differen-
tiable, e.g., the mean-squared error loss.
Assumption 2.2. The network is not bottlenecked,
i.e., min (Ni, No) ≤ Nh

all local minima of a deep linear network are global and
equivalent to the solution of the corresponding single-layer
linear regression problem. Notably, this result holds without
assumptions on the structure of the training data. In our set-
ting, this permits the following definition (see Appendix C):
Definition 2.3. Under Assumptions 2.1 and 2.2, any pair of
network weights satisfying

W2W1Σxx = Σyx (4)

is a globally optimal general linear solution (GLS), where

Σxx =
1

P

P∑
n=1

xnx
T
n and Σyx =

1

P

P∑
n=1

ynx
T
n (5)

denote the input and input-output covariance matrices.

Note that the absence of suboptimal minima does not pre-
clude the existence of other critical points, nor does it guar-
antee convergence of gradient-based algorithms. To distin-
guish general weight matrices W1 and W2 from those that
satisfy Equation (4), we denote the latter as optimal weights
Ω1 and Ω2. Further, we denote the compact singular value
decomposition (cSVD), as defined in Appendix B.1, of the
inputs and least-squares solution as

cSVD(X) = ABCT , (6)

and
cSVD(Σyx(Σxx)

+) = USVT . (7)

In the following, we analytically study the full set of global
solutions, the so called solution manifold, and partition it
into subregions with distinct representational and compu-
tational properties. Crucially, our analysis holds without
assumptions on the structure of the training data and irre-
spective of how a solution is obtained, and thus does not
depend on any particular learning or optimisation algorithm.
Figure 2A visualises the entire solution manifold and its
subregions for a simple example, providing some intuition
for the formal definitions and theorems developed next.
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3. Partitioning the solution manifold of
two-layer linear networks

Two-layer linear networks architectures are typically highly
overparametrised, admitting many combinations of input
and output weights that achieve the global optimum for a
given task. Formally, the set of all such network weights
defines the solution manifold,

M =
{
Ω2Ω1 : Ω2Ω1Σxx = Σyx

}
. (8)

We note that useful intuition about the manifold’s structure
can be gained by viewing it as the set of weight configura-
tions related by invertible linear transformations. For any
invertible matrix Q ∈ RNh×Nh , the weight pair

Ω2 → Ω2Q
−1 and Ω1 → QΩ1 (9)

implements the same input-output map and thus lies on the
same manifold (Baldi and Hornik 1989; Saxe et al. 2014).
In the context of a neural network architecture, these Q-
transformations redistribute how information is processed
across layers, for example, by rotating and scaling interme-
diate representations. However, since they preserve rank,
they only fully characterise the solution manifold when the
input and output dimensions are identical and the task has
full rank, conditions that may not be met in real-world sce-
narios. To refine this view, we partition the input space
into three subspaces: Observed and relevant, observed but
irrelevant, and unobserved null directions, with correspond-
ing projections Pr = VVT , Pi = AAT − VVT , and
Pu = I−AAT . The distinction between relevant and irrel-
evant directions arises because the input space can exceed
the intrinsic dimensionality of the solution manifold (but
not vice versa). Specifically,

r = rank(Σyx) ≤ min(rank(X), rank(Y)), (10)

so when the input rank exceeds the target rank, some in-
put directions are irrelevant to solving the task. Likewise,
the hidden space can be partitioned into subspaces corre-
sponding to the hidden-layer representations of relevant,
and irrelevant inputs, and all remaining unoccupied null
directions. Importantly, the hidden representations of rele-
vant and irrelevant inputs may overlap, which necessitates
compensation and introduces structural constraints on the
form of valid solutions. The following parametrized equa-
tion fully encapsulates this intricate structure of the solution
manifold:
Theorem 3.1. Any GLS satisfies

Ω1 = Q
√
SVT + Γ1Pi + Γ2Pu and

Ω2 = U
√
SQ+ +Ψ+ Γ3(I−HH+),

(11)

where Q ∈ RNh×r is an arbitrary full-column-rank matrix,
Γ1, Γ2 ∈ RNh×Ni are arbitrary matrices subject to the con-
straint rank(QQ+Γ1Pi) ≤ rank((I−QQ+)Γ1Pi), Ψ =

−U
√
SQ+Γ1Pi [(I−QQ+)Γ1Pi]

+, and Γ3 ∈ RNo×Nh

is an arbitrary matrix.

The first terms of Ω1 and Ω2 implement the core input-
output mapping; Γ1 and Γ2 project from task-irrelevant and
unobserved input directions; Γ3 projects from the unoccu-
pied hidden space; Ψ cancels interference from irrelevant
inputs that are projected into the core; and the rank con-
straint ensures that such a correction exists. See Appendix C
for a detailed proof and Figure 2B for a visualisation.

Next, we partition the solution manifold into distinct regions
and subsequently analyse their respective representational
and computational properties. For proofs of Theorems 3.3,
3.5 and 3.7 refer to Appendix D, and to Figure 2C-E for
visualisations.
Definition 3.2. Any GLS that minimises the norm of the
network function,

argmin
W1,W2

||W2W1||2F s.t. W2W1Σxx = Σyx (12)

is a least-squares solution (LSS).
Theorem 3.3. All LSS satisfy Ω2Ω1 = Σyx (Σxx)

+ and
are exactly parametrised by

Ω1 = Q
√
SVT + Γ1Pi + Γ2Pu and

Ω2 = U
√
SQ+ +Ψ+Φ+ Γ3(I−Ω1Ω

+
1 ),

(13)

subject to the definitions and constraints in Theorem 3.1,
and the additional constraint that rank(HH+Ω1Pu) ≤
rank((I − HH+)Ω1Pu), and where Φ = −(U

√
SQ+ +

Ψ)Ω1Pu [(I−HH+)Ω1Pu]
+.

Here, Φ cancels interference from unobserved inputs pro-
jected into the occupied hidden space, with the rank con-
straint ensuring a correction exists.
Definition 3.4. Any GLS for which the norm of the hidden-
layer representations and readout weights is minimised

argmin
W1,W2

||W1X||2F + ||W2||2F

s.t. W2W1Σxx = Σyx ,
(14)

is a minimum representation-norm solution (MRNS).
Theorem 3.5. All MRNS are parametrised by

Ω2 = M
√
NRT and Ω1 = R

√
NOTX++Γ2Pu, (15)

where R ∈ RNh×r is an arbitrary (semi-)orthonormal
matrix, and

cSVD(YCCT ) = MNOT . (16)

Definition 3.6. Any GLS for which the sum of the norm of
the weight matrices is minimised

argmin
W1,W2

||W1||2F + ||W2||2F s.t. W2W1Σxx = Σyx (17)

is a minimum weight-norm solution (MWNS).
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Figure 2: Solution manifold. (A) Schematic of solution manifold (left) for a two-layer linear network trained on a single training
pair (right). The GLS (blue plane) reflects that weight W12 lies in the input null space and is unconstrained, while W11 and W21 are
coupled, an increase in one requires a decrease in the other. Constrained LSS (yellow), MRNS (red), MWNS (orange) are highlighted
subregions of the manifold. (B) Schematic of the parametrisation of the GLS, showing how components of Ω1 map relevant, irrelevant,
and unobserved input directions to the hidden space, and how components of Ω2 map from unoccupied and occupied hidden directions
to the output. Projections from irrelevant inputs can interfere with the core (blue), creating overlap (black) between the relevant (dark
grey) and irrelevant (light grey) hidden space , which is cancelled by Ψ. (C) As in (B) , but for LSS. Projections from unobserved input
directions into the occupied hidden space are cancelled by Φ. (D) and (E) are as in (B) , but show MRNS and MWNS respectively. The
additional constraints remove projections and further restrict the core.

Theorem 3.7. All MWNS are parametrised by

Ω2 = U
√
SRT and Ω1 = R

√
SVT . (18)

We note, that the relation between MWNS and the singular
value decomposition of the least-squares solution has been
previously derived under strong assumptions, namely that
Σxx = I, Ni = No and that Σyx has full rank (Saxe et al.
2019, see appendix S14-S15). Further, we note that

Corollary 3.8. MRNS and MWNS are identical if inputs
are whitened, i.e., Σxx = I.

A key difference between the four solution types lies in how
they constrain the image and kernel of the weight matrices,
which map between input, hidden, and output spaces. GLS
impose minimal constraints. LSS restrict projections to and
from null spaces in the input and hidden layers. MRNS fur-
ther reduce freedom in the null space, eliminate irrelevant
projections, and constrain the core solution itself. MWNS,
the most restrictive class, eliminate all irrelevant and null-
space projections, and enforce balance in the core by requir-
ing equal contributions from the input and output weights.
While this perspective clarifies how different subregions of
the solution manifold constrain the structure of the weight
matrices, it does not address a key question: how these
solutions differ in their hidden-layer representations.

3.1. Hidden-layer representations

Understanding hidden-layer representations begins with
identifying the degrees of freedom in the input weights,
which govern how inputs are mapped into hidden space.
Intuitively, input weights are constrained only by the need
to preserve sufficient task-relevant information for the out-
put weights to solve the task. In this section, we go be-
yond this intuition by leveraging the exact parametrisations
of Ω1 to precisely characterise the degrees of freedom in
hidden-layer representations. Proofs for Corollaries 3.9,
3.11 and 3.12 are in Appendix E. We begin by noting that

GLS and LSS differ only in how they handle projections
from unobserved input and unoccupied hidden directions
and thus implement the same input-output map on the train-
ing data. As a result, they exhibit identical degrees of free-
dom in their hidden-layer representations

H = Q
√
SVTX+ Γ1PiX. (19)

Since Q can be any full-column-rank matrix and Γ1 is
free up to a rank constraint, GLS and LSS support nearly
arbitrary hidden-layer representations. To illustrate this, we
consider a semantic learning task linking items to positions
within a hierarchical structure (Figure 3A,B). For example,
we can select a point on the solution manifold where the
hidden-layer representations of the items form the shape of
an elephant (Figure 3C).
Corollary 3.9. GLS and LSS permit any RSM of the form

RSM = XT (V
√
SQTQ

√
SVT +V

√
SQTΓ1Pi

+PT
i Γ

T
1 Q

√
SVT +PT

i Γ
T
1 Γ1Pi)X.

(20)

In our example, this yields a highly structured RSM, yet
does not reflect the task structure, i.e., the hierarchical re-
lationships between items (Figure 3C). Accordingly, we
make
Definition 3.10. Neural representations whose RSM de-
pends on the specific choice of input weights are task-
agnostic representations.

In contrast, hidden-layer representations of MRNS

H = R
√
NOTX+X (21)

and MWNS
H = R

√
SVTX (22)

are unique up to an orthogonal transformation R, which in-
cludes rotations and reflections. Thus, in both cases, hidden-
layer representations are not unique. In the semantic hierar-
chy task, this results in representations that appear arbitrary
and unstructured (Figure 3D,E). However,
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Figure 3: Hidden-layer representations. (A) Schematic of the semantic hierarchy task. (B) Inputs are encoded as random vectors (left)
and corresponding target vectors encode for the position in the hierarchy (right). A one (zero) indicates that an item is (not) a child of a
node. (C) Example hidden-layer representations (left), RSM (center) and corresponding 2D multidimensional scaling plot (right) for a
GLS, (D) MRNS, and (E) MWNS.

Corollary 3.11. The RSM of MRNS is unique and given by

RSM = ONOT . (23)

Since O and N are fully determined by the training data,
the RSM is invariant to the specific choice of input weights.
Similarly,

Corollary 3.12. The RSM of MWNS is unique and given by

RSM = XTVSVTX. (24)

Again, the RSM is invariant to the specific choice of input
weights, as V and S are fully determined by the training
data. Accordingly, we make

Definition 3.13. Neural representations whose RSM if fully
determined by the training data are task-specific representa-
tions.

In the semantic hierarchy task, this yields an RSM that
reflects the hierarchical structure, where representational
similarity increases with proximity in the hierarchy, for
MRNS; and an RSM that reflects a combination of input
statistics and target hierarchy for MWNS (Figure 3D,E).

In summary, in two-layer linear networks, neural representa-
tions and the underlying function are dissociable: the same
function can arise from different hidden-layer representa-
tions, and the same representations can support different
functions. For GLS and LSS this flexibility supports al-
most arbitrary representations and task-agnostic RSMs. In
contrast, MRNS and MWNS impose constraints which de-
termine representations up to orthonormal transformations,
and are guaranteed to have unique and task-specific RSMs.

4. Implications for neural data analysis
A fundamental challenge in understanding computations
and learning in artificial and biological neural networks

is linking changes in connectivity and representations to
changes in function. However, if representation and func-
tion are dissociable, two key observations follow. First,
changes in network function need not alter neural represen-
tations, as changes in one layer can be offset by compen-
satory changes in the next. Second, changes in network
function can proceed without altering representations, as it
can, in principle, occur entirely in downstream layers. We
now examine the implications of these findings for represen-
tational comparisons, representational drift, and the synaptic
stability-plasticity trade-off through a series of illustrative
simulations. While exact outcomes depend on task specifics
and hyperparameter choices, these are not our focus here; a
systematic analytical and numerical exploration is left for
future work.

4.1. Linear predictivity

A common method for comparing neural representations is
to assess how well activation patterns from a source model
or recording can predict those of a target via linear regres-
sion (e.g., Yamins et al. 2014; Yamins and DiCarlo 2016).
High linear predictivity is often interpreted as evidence that
two systems process information similarly. However, since
function and hidden-layer representations are dissociable,
strong linear predictivity does not necessarily imply func-
tional alignment. We illustrate this by comparing hidden-
layer representations from independent random walks on the
solution manifold of LSS, MWNS, and MRNS (Figure 4A).
In each case, we compare either representations from two
different network functions (across function) or from the
same network function (within function). While R2 scores
are on average slightly higher for within-function compar-
isons, the main determinant of predictivity is whether the
representations are task-agnostic or task-specific. Specifi-
cally, in across-function comparisons, R2 scores are highest
when the source representation comes from a LSS (which
shares representational degrees of freedom with GLS), fol-
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A B C D

Figure 4: Implications for neural data analysis. All panels show results during random walks on the solution manifolds of LSS,
MWNS, and MRNS. (A) Mean and standard deviation of R2 scores for linear predictivity across n = 10 random walks. All source-target
combinations are shown for across-function (left) and within-function (right) comparisons. (B) Example trajectories of RSA correlation
scores, shown for across-function (left) and within-function (right) comparisons. (C) MSE of a linear decoder trained on the hidden-layer
representation at the initial time step. (D) Mean and expected MSE under input noise (left) and parameter noise (right).

lowed by MRNS, and lowest for MWNS. Within-function
comparisons yield high R2 when the source is task-agnostic
or when both source and target are of the same type; in
contrast, predicting a task-agnostic representation from a
task-specific one lead to the lowest R2 scores. These pat-
terns arise because task-agnostic solutions process both rel-
evant and irrelevant input directions, producing higher-rank
representations that cannot be linearly predicted from the
lower-rank task-specific ones. These results indicate that
linear predictivity is predominantly driven by solution type
rather than functional alignment, and may yield misleading
conclusions if underlying representational constraints are
not explicitly taken into account.

4.2. Representational similarity analysis

Representational similarity analysis (RSA) compares neu-
ral activation patterns by evaluation the similarity of
RSMs across conditions, stimuli, models, or partici-
pants (Kriegeskorte et al. 2008; Haxby et al. 2014). As
with linear predictivity, our analytical results show that the
interpretability of RSA in terms of functional alignment
critically depends on the solution type of the comparanda.
We illustrate this in Figure 4B using example trajectories
from the previous section. Since task-agnostic solutions
(i.e., GLS and LSS) exhibit highly flexile RSMs, correlation
coefficients r involving such representations fluctuate un-
predictably throughout the random walk, both within and
across functions. By contrast, comparing within and across
task-specific solutions (i.e., MWNS and MRNS) results in
static and consistent r, as they exhibit unique RSMs. How-
ever, because MWNS and MRNS induce different unique
RSMs, comparisons across types yield imperfect similarity
even within the same function. In summary, RSA reliably
reflects functional similarity only when representational con-
straints enforce unique RSMs, underscoring the importance
of accounting for solution type in representational compar-
isons.

4.3. Drifting neural representations

Intuitively, one might expect that if a stimulus elicits sta-
ble perception and behaviour, the associated neural repre-

sentations should likewise remain stable (Rule et al. 2019;
Driscoll et al. 2022). However, this assumptions is chal-
lenged by converging evidence of representation drift across
species, brain regions and modalities (e.g., Ziv et al. 2013;
Driscoll et al. 2017; Schoonover et al. 2021; Marks and
Goard 2021; Deitch et al. 2021; Alisha et al. 2023). Our anal-
ysis shows that the existence of a solution manifold allows
hidden-layer representations to vary without changing the
implemented function. This dissociation implies that stable
perception and behaviour do not require stable representa-
tions. Indeed, an optimal linear decoder trained on an initial
representation rapidly degrades in performance during a
random walk on the solution manifold (Figure 4C). Thus,
representational drift need not signal functional change, but
may instead reflect a reparameterisation within a function-
ally equivalent subspace.

4.4. Synaptic stability and plasticity

The so-called stability-plasticity dilemma posits that neural
systems must remain plastic enough to acquire new knowl-
edge while remaining stable enough to retrain previously
learned information (Grossberg 1987; Abraham and Robins
2005). This view, grounded in single-neuron and synapse-
level intuitions, has motivated continual learning algorithms
that explicitly regulate synaptic changes to preserve past
knowledge (e.g., Kirkpatrick et al. 2017; Zenke et al. 2017;
Aljundi et al. 2018). However, our analysis shows that
this dilemma need not apply at the network level, because,
independent of the solution type, many distinct configura-
tions of synapses and representations implement the same
function (see e.g., Figure 1). This raises important method-
ological concerns: observing or inducing isolated synaptic
or representational changes may not suffice to infer function,
learning, or the underlying learning mechanisms in artificial
or biological neural networks.

5. Advantages of task-specific representations
A natural question arises from the observation that function
and representation are dissociable: why do biological and
artificial systems often converge to non-arbitrary represen-
tations that obey the structure of the task? One possible
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explanation is that task-specific representations confer com-
putational advantages, creating selective pressure in both
biological and artificial systems. Consequently, such repre-
sentations may emerge as preferred functional implementa-
tions, leading to representational alignment across systems.

5.1. Secondary error

One hypothesised advantage of task-specific representations
is improved performance on secondary datasets, such as
in- or out-of-distribution generalisation. To test this, we
identify solutions on the primary-task solution manifold
that minimise the error on an unseen secondary dataset
D̃ = {(x̃n, ỹn)}Qn=1. In Appendix F we derive,

Theorem 5.1. The secondary error is minimised by all
solutions of the form

Ω2Ω1 = ΣyxΣ
+
xx + Z̃Pu, (25)

where

Z̃ =
(
Ỹ −ΣyxΣ

+
xxX̃

)(
PuX̃

)+

+ Γ̃P̃u, (26)

with Γ̃ ∈ RNo×Ni arbitrary and P̃u = I−PuX̃(PuX̃)+.

Since the solution is a LSS with a perturbation in the unob-
served null directions of the primary-task inputs, minimis-
ing secondary error permits task-agnostic solutions. Hence,
observing H gives no information about secondary task
performance and secondary error alone cannot explain the
emergence of task-specific representations in two-layer lin-
ear networks.

5.2. Sensitivity to noise

Neural systems are subject to a multitude of internal and
external sources of noise, which range from variability in
incoming sensory signals to fluctuations in synaptic effi-
cacy and spontaneous neural activity (Faisal et al. 2008).
Therefore, solutions that exhibit robustness to such noise are
advantageous, as they enable the neural circuitry to main-
tain reliable function (Johnston et al. 2020). The following
theorems are derived in Appendix G.

Theorem 5.2. The expected loss under additive, indepen-
dent and identically distributed (i.i.d.), zero-centred input
noise ξxn

with variance σ2
x is

〈
1

2P

P∑
n=1

||Ω2Ω1

(
xn + ξxn

)
− yn||22

〉
=

σ2
x

2
||Ω2Ω1||2F + c,

(27)

where c is a noise-independent constant that only depends
on the training data.

Corollary 5.3. Any LSS or MRNS minimises the expected
loss under input noise (see Figure 4D).

Thus, while robustness to input noise selects for solutions
with minimal functional norm, LSS employ task-agnostic
representations, so robustness alone does not ensure repre-
sentational alignment.

Theorem 5.4. The expected loss under additive, i.i.d., zero-
centred noise Ξ1 and Ξ2 in the parameters, with vari-
ances σ2

1 ∝ 1/||X||2F and σ2
2 ∝ 1/No is〈

1

2P

P∑
n=1

|| (Ω2 +Ξ2) (Ω1 +Ξ1)xn − yn||22

〉

=
1

2P

(
||Ω1X||2F + ||Ω2||2F + c

)
.

(28)

where c is again a noise-independent constant.

Corollary 5.5. Any MRNS minimises the expected loss un-
der parameter noise (see Figure 4D).

We have scaled noise variances to simplify the analytical
expression; without this scaling, the results hold up to mul-
tiplicative constants. Robustness to parameter noise thus
selects for solutions with task-specific representations, en-
suring representational alignment.

Theorem 5.6. Under the assumption that the input data is
whitened, i.e., Σxx = I, the expected loss under additive,
i.i.d., zero-centred parameter noise Ξ1 and Ξ2 with vari-
ance σ2

1 ∝ 1/Ni and σ2
2 ∝ 1/No and input noise ξxn

with
variance σ2

x is〈
1

2P

P∑
n=1

|| (Ω2 +Ξ2) (Ω1 +Ξ1)
(
xn + ξxn

)
− yn||22

〉
=

σ2
x

2

(
||Ω2Ω1||2F + ||Ω2||2F + ||Ω1||2F

)
(29)

+
1

2P

(
||Ω2||2F + ||Ω1X||2F

)
+ c,

with noise-independent constant c.

Corollary 5.7. Under the stated assumptions and con-
straints, any MRNS or MWNS minimises the expected loss
under input and parameter noise.

We note, that if the input data is not whitened, interaction
terms render the optimal subspace depends on input statis-
tics, complicating its explicit analytical characterisation.

In summary, neither minimising secondary error nor input
noise sensitivity promotes task-specific representations. In
contrast, robustness to parameter noise selectively favours
solutions with task-specific structure, thereby supporting
representational alignment. This suggests that shared rep-
resentations across biological and artificial systems may
arise from implicit or explicit optimisation for parameter
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Figure 5: Function and representation are dissociable in non-linear networks. (A) Hidden-layer activations for 1024 MNIST inputs,
grouped by class (left) and the corresponding task-specific RSM (right) after training a ReLU network from small initial weights. (B) Same
as (A) , but for a network reparameterised via augmented Lagrangian optimisation to reshape hidden-layer representation while preserving
training set classifications. (C) RSM of the network from (A) after reparameterisation using exact invariant transformations (Section 6.1).
(D) Test error under input noise for all exact invariant transformations. Networks with input-null expansion are sensitive. (E) As in
(D) but for parameter noise; networks with scaled, nuisance, and duplicate expansions are sensitive.

robustness, such as regularisation strategies that favour low-
norm solutions. However, this reflects an inductive bias
rather than a general principle and without explicit justifi-
cation, functional and representational alignment cannot be
assumed to coincide.

6. Nonlinear networks
The results presented thus far apply to two-layer linear net-
works. We now extend our study to emphnonlinear net-
works (networks with nonlinear activation functions), and
show that they exhibit analogous degrees of freedom in
representation and associated computational trade-offs as
their linear counterparts. Here, we face a challenge: A full
characterisation of the solution manifold of general non-
linear network remains analytically intractable, even for
two-layer networks (Misiakiewicz and Montanari 2024).
However, substantial progress has been made in deriving
function-preserving transformations that allow reparametri-
sation of nonlinear networks while leaving their input-output
map invariant (Simsek et al. 2021; Martinelli et al. 2023).
Here, we exploit these function-preserving transformations
to construct functionally equivalent reparametrisations of
nonlinear networks, which allows us to probe computational
differences between networks with minimal and expanded
representations, in analogy to the task-specific and task-
agnostic representations of Section 3.

6.1. Functional invariances in deep ReLU networks

Feedforward networks with any activation function are
output-invariant to permuting neurons within a layer, as
permuting the rows of one weight matrix and the corre-
sponding columns of the next leaves the network function
unchanged (permutation invariance, Sussmann 1992). Feed-
forward networks with rectified linear unit (ReLU) activa-
tion are further invariant to rescaling a neuron’s incoming
weights by a factor α > 0 and its outgoing weights by 1/α,
due to the non-negative homogeneity of ReLU (scale invari-
ance, Neyshabur et al. 2015a). Simsek et al. (2021) and
Martinelli et al. (2023) identify additional invariances that
fully characterise the manifold of global minima in teacher-

student settings, where one network is trained to replicate
the function of another. Although these invariances may
not capture all functionally equivalent parametrisations out-
side of the teacher-student setting, they provide a means
to construct network reparametrisations that exactly pre-
serve network function. We realize two of their invariances
by inserting hidden-layer neurons with arbitrary incoming
weights and zero outgoing weights (nuisance-neuron in-
variance) and by duplicating hidden-layer neurons while
halving the outgoing weights of both the original and the
duplicated neuron (duplication invariance). Lastly, one can
add any perturbation to the input-layer weights that lies in
the unobserved nullspace of the input data while preserving
the network’s function (input-nullspace invariance).

6.2. Manipulating representations of ReLU networks

We train a two-layer ReLU network with 1024 hidden neu-
rons on the MNIST dataset (LeCun et al. 1998) from small
norm random weights, resulting in task-specific represen-
tations (Figure 5A, “rich” learning from Jacot et al. 2018;
Chizat et al. 2019; Woodworth et al. 2020). Starting from
this trained model, we use augmented Lagrangian optimisa-
tion to modify the hidden-layer activations of 1024 training
inputs such that their representations collectively resemble
an image of two elephants, while enforcing that the net-
work’s predicted class labels remain unchanged across the
entire training set (Figure 5B). This transformation illus-
trates the extensive representational freedom in ReLU net-
works. Although class predictions remain fixed in this case,
the underlying network function and its decision boundaries
change, as classification ignores relative differences. How-
ever, even when limited to exact invariances, one can induce
nearly arbitrary RSMs (Figure 5C).

6.3. Computational advantages in ReLU networks

To complement the analytical results in Section 5.2 on the ro-
bustness of task-specific representations in linear networks,
we empirically evaluate secondary (test) error and robust-
ness to input and parameter noise across different nonlinear
solution types. We train two-layer networks with 1024 hid-
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den dimensions and ReLU activation on the training set of
the MNIST digit classification task (LeCun et al. 2010) from
8 random initialisations. These models trained from small
initial weights serve our task-trained (minimal) solutions.
We next apply four function-preserving transforms defined
by the four invariances of Section 6.1 to these task-trained
(minimal) networks to construct expanded (non-minimal)
parametrisations that exactly preserve the network function.
These minimal and non-minimal parametrisations serve as
our solution types in the nonlinear setting.

In Figure 5D, we observe the effect of input noise on the
task-trained (minimal) and expanded (non-minimal) net-
works. In accordance with the linear result, only transforma-
tions in the unobserved input space have a deleterious effect
(input-null). In Figure 5E, we observe the effect of pa-
rameter noise on the initial and transformed networks. Non-
minimal models (scaled, nuisance, duplicate) de-
grade in test error more quickly than minimal ones, similarly
to what is derived in Section 5.2, though duplicated expan-
sions (duplicate) are more robust due to noise averaging.
In contrast, input-nullspace perturbations (input-null)
have no effect because transformations are in unobserved
input directions, and input noise is absent. Lastly, at near-
zero noise levels, we observe that no manipulations inflate
the secondary (test) error, consistent with the result of Sec-
tion 5.1 that generalisation performance does not constrain
network representations to be minimal.

7. Related work
The solution manifold of artificial networks. The solu-
tion manifold of two-layer neural networks was first de-
scribed by Baldi and Hornik (1989). Subsequent work
showed under some assumptions that all minima in deep
linear networks are global and equivalent to those in linear
regression (Laurent and Brecht 2018). The dissociation be-
tween general linear solutions and minimum-norm solutions
has been previously studied under a set of strong assump-
tions (Saxe et al. 2014). Sensitivity to noise for task-specific
and task-agnostic rich and lazy solutions has been previously
studied numerically in nonlinear neural networks (Flesch
et al. 2022) and generalisation and transfer performance
of deep linear networks have been previously investigated
(Lampinen and Ganguli 2019; Advani et al. 2020; Tahir et al.
2024; Ingrosso et al. 2024) using a teacher-student paradigm
(Gardner and Derrida 1989; Riegler and Biehl 1995; Saad
and Solla 1995). The relation between representational drift
and drift on the solution manifold that results from stochas-
ticity during gradient descent (Chaudhari and Soatto 2018)
has been studied on a subpart of the solution manifold in
linear networks (Pashakhanloo and Koulakov 2023) and in
nonlinear networks, again, relying on the teacher-student
setting (Avidan et al. 2023; Li et al. 2024).

Comparing the solutions of artificial and biological net-
works. Neuroscientists have identified parallels between
artificial and biological neural computation (Richards et al.
2019; Saxe et al. 2021; Doerig et al. 2023) from hierarchi-
cal feature extraction in visual processing (DiCarlo et al.
2012; Eickenberg et al. 2017; Lindsay 2021) to analogous
population dynamics during decision-making tasks (Mante
et al. 2013; Chaisangmongkon et al. 2017). The field has
developed various methods to quantify this shared repre-
sentational structure, including representational similarity
analysis (Kriegeskorte et al. 2008), linear predictivity (e.g.,
Yamins et al. 2014; Yamins and DiCarlo 2016), and metric-
based methods (Williams et al. 2021); see Klabunde et al.
(2023) for an overview of methods. However, recent work
has identified significant methodological challenges in com-
paring representations between artificial neural networks,
including confounding effects from stimulus correlations
(Cai et al. 2019; Hermann and Lampinen 2020; Dujmović
et al. 2023), metric-dependent results (Ding et al. 2021;
Soni et al. 2024), and difficulties in matching representa-
tions even between identical networks trained with different
random initialisations (Han et al. 2023); these negative re-
sults suggest further problems when comparing artificial
and biological neural networks, where little is known in ad-
vance of the computation the biological networks performs.
These challenges may apply to existing neural predictivity
benchmarks such as Brain-score (Schrimpf et al. 2020) and
the Natural Scenes Dataset (NSD; Allen et al. 2022).

8. Discussion
In this work, we give a complete analytical characterisation
of the global minima manifold for deep linear networks, and
demonstrate that different subregions of this manifold afford
different interpretability and computational properties due
to their representational structure. We conclude that the
use of deep, overparametrised networks poses fundamental
challenges for representational analysis, interpretation, and
comparison, as the impact of variability in the parametrisa-
tion of functionally equivalent representations on these use
cases is significant.

Our analysis does not assume a specific learning algorithm
and ignores the question of how a specific solution could be
attained in practice. However, the computational advantages
of task-specific representations detailed in Section 5 are
compatible with the view that gradient descent, in particular
in overparametrised models, is subject to implicit regularisa-
tion that prefers solutions with certain optimality properties
for both linear and nonlinear networks (Zhang et al. 2017;
Yun et al. 2021; Vardi and Shamir 2021; Neyshabur 2017;
Neyshabur et al. 2015b; Du et al. 2019; Arora et al. 2018;
Chizat and Bach 2020).
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A. Simulation details
A.1. Random walk

Given a two-layer linear network with weight matrices W1 and W2, we implemented random walks on the GLS as follows.
First, we randomly initialised weight matrices using a random normal initialisation with zero mean and standard deviation
1/
√
Ni and 1/

√
Nh respectively. Then, for each step, we first diffused both weight matrices by

W(t+ 1) = (1− α)W(t) + αξ (30)

with
ξ ∼ N (µ = 0, σ2 = 25), and α = 0.00625 (31)

and then performed gradient descent on both W1 and W2 with learning rate η = 0.25 to return back to the solution
manifold. Similarly, for the random walk on the LSS, we sampled initial W1 and W2 randomly, diffused them, performed
gradient descent on both W1 and W2, and subsequently enforced the two rank constraints to return to the solution manifold.
The random walk on the MRNS was implemented by first computing

cSVD(YXTX+T ) = MNOT , (32)

sampling a random
Γ ∼ N (µ = 0, σ2 = 1/Ni), and R̃ ∼ N (µ = 0, σ2 = 1). (33)

Then, in every step, we diffused Γ and R according to Equation (30), and then calculated

R = R1R
T
2 with cSVD(R̃) = R1DRT

2 . (34)

We then set
W1 → R

√
NOTX+ + Γ and W2 → M

√
NRT . (35)

Similarly, for MWNS we first computed the cSVD of the LSS

cSVD
(
Σyx(Σxx)

+
)
= USVT (36)

and sampled a random matrix R̃ ∼ N (µ = 0, σ2 = 1). Then, for each step, we defused R̃ according to Equation (30) and
then calculated R as for MWNS. Network weights were then set to

W1 → R
√
SVT (37)

and
W2 → U

√
SRT . (38)

A.2. Tasks

Random regression task Random regression tasks are made up of a randomly sampled input

X ∼ N (µ = 0, σ2 = 1/Ni) ∈ RNi×P (39)

and target matrix
Y ∼ N (µ = 0, σ2 = 1/No) ∈ RNo×P . (40)

Semantic hierarchy Each of the P = 16 items in the semantic hierarchy task was encoded as a random normal distributed
vector

X ∼ N (µ = 0, σ2 = 1/Ni) ∈ RNi×P . (41)

Corresponding target vectors were then generated according to the position of the item in the hierarchy. If an item is a child
of a particular node it is encoded as a 1 and 0 otherwise. For example, a pea is alive, not an object, not an animal, a plant,
not handy, not earth, not a bird, not furry, but a veg, not a tree ... resulting in the target vector [1, 0, 0, 1, 0, 0, 0, 0, 1, 0 ...].
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A.3. Figure 1

Random walk on MRNS manifold of random regression task with Ni = 4, Nh = 7, No = 3, and P = 3 for 500 steps with
diffusion parameter α = 0.005.

A.4. Figure 3

The neural network has Ni = 16, Nh = 16, No = 31. The point on the LSS solution manifold which depicts an elephant
bfE ∈ RNh×P , was found by first initialising the weight matrices as

W1 = EXT (XXT + 5× 10−3I)+ and W2 = YXT (W1X(W1X)T + 1× 10−2I)+, (42)

and subsequently applying gradient descent on both weight matrices to find a point on the solution manifold. Randomly
sampled points on the solution manifold of MRNS and MWNS were generated according to the definitions of Ω1 in
Theorem 3.5, and Theorem 3.7.

A.5. Figure 4

Random walk on solution manifold for GLS, LSS, MRNS, and MWNS on a random regression task with Ni = 6, Nh = 16,
No = 2, and P = 4 for 100 steps.

(A) We fit a linear model to predict the hidden-layer activations of one model by the hidden-layer activations of another for
each time step of the random walk, using ridge regression and subsequently calculated the R2 score of that fit.

(B) We performed representational similarity analysis on pairwise random walk trajectories of (B) by calculating the
euclidean distance matrix of their respective hidden-layer representations

RSMij = ||hi − hj ||2 (43)

and subsequently compared their off-diagonal values using Pearson correlation coefficients.

(C) To analyse drift, we fit a linear decoder on the hidden-layer representation of a model at the beginning of the random
walk

W̃ = ΣyxW
T
1 (W1XXTWT

1 )
+ (44)

and subsequently calculated the mean squared error of that classifier, given the hidden-layer representation at each time step.

(D) We numerically calculated the average loss across n = 500000 randomly sampled input noise vectors with σ2
x = 1 at

each time step. Accordingly, we numerically calculated the average loss across n = 500000 randomly sampled parameter
noise matrices with σ2

1 = 1/||X||2F and σ2
2 = 1/No.

A.6. Simulating nonlinear networks

As a precursor to all numerical experiments with nonlinear networks in Section 6, we train feed-forward neural networks
on a non-synthetic dataset to produce a task-specific parametrisation. All neural networks in this section are trained with
back-propagation and (mini)-batch gradient descent from small initial weights, a regime that induces task-specific feature
learning in nonlinear networks similarly to linear networks Chizat et al. (2019).

A.7. Expanding nonlinear networks

The first expansion (scaled in figures) rescales the input weights to each neuron by a constant factor α and the output
weights the neuron by 1/α, which preserves the output of each neuron due to the scale-invariance of ReLUs. However, the
magnitude of the representations that this model employs increases. The second expansion (nuisance in figures) adds
nuisance neurons with random incoming weights and zero outgoing weights (“zero-type” neurons per Martinelli et al. 2023);
similarly, these neurons do not affect the output the model, but introduce noise in hidden-layer reprsentations. Lastly, we
include a parameter-expanded baseline (duplicated) that duplicates each neuron and correspondingly recales outgoing
weights from the duplicated neuron and its copy by a factor of two; this manipulation does not change the representational
structure of the model.
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A.8. Figure 5

The neural networks start with Ni = 784, Nh = 1024, No = 10. Manipulations adding parameters in panel (E) add twice
the number of neurons. Models are trained for 30 epochs on the full MNIST training set of 50,000 images with exponential
learning rate decay.

B. Notation and preliminaries
Throughout this paper we adhere to the following notation: Scalars are denoted by letters (e.g. a, τ , L), matrices by bold
uppercase letters (e.g. X, Γ), column vectors are denoted by bold lowercase letters (e.g. x, λ), and row vectors by the
transpose of a column vector (e.g. xT , λT ). The vector dot product and vector outer product are denoted by aTb and abT

respectively. The zero matrix and identity matrix of size n are denoted by 0 and In respectively. A−1 and A+ denote the
inverse and Moore–Penrose pseudoinverse of a matrix. The ℓ2-norm of a vector is expressed by ||x||2 and the Frobenius
norm of a matrix is expressed by ||A||F . Finally, the expected value and trace operator are denoted by ⟨·⟩ and Tr(·).

B.1. Compact singular value decomposition

We extensively use the cSVD to analyse matrix structures. For any matrix A ∈ Rm×n with rank r, the cSVD decomposes it
into a product of three:

cSVD(A) = USVT , (45)

where U ∈ Rm×r and V ∈ Rn×r are (semi-)orthonormal matrices containing the left and right singular vectors, and
S ∈ Rr×r is a diagonal matrix with corresponding non-zero singular values in descending order. In contrast to the full
singular value decomposition, the singular vectors of the cSVD are not generally square orthogonal matrices but may be
semi-orthogonal dependent on the relationship of m, n, and r (Table 1). It further follows, that S−1 is well defined. Using
that (BC)+ = C+B+ if B has orthonormal columns or C has orthonormal rows (Greville 1966) it further follows that

A+ =
(
USVT

)+
= V (US)

+

= VS+UT

= VS−1UT

(46)

is the Moore-Penrose inverse of any matrix A.

Table 1: Orthonormality of singular vectors of the cSVD

m = n m < n m > n
r = m r < m r = m r < m r = n r < n

UTU = Im = Ir = Im = Ir = In = Ir
UUT = Im ̸= Im = Im ̸= Im = Im ̸= Im
VTV = Im = Ir = Im = Ir = In = Ir
VVT = Im ̸= Im ̸= In ̸= In = In ̸= In

B.2. Linearity of expected value and trace

Both, the expected value and trace operator are linear and therefore additive

⟨A+B⟩ = ⟨A⟩+ ⟨B⟩, (47)

Tr (A+B) = Tr(A) + Tr(B), (48)

and homogeneous
⟨aA⟩ = a⟨A⟩, (49)

Tr(aA) = aTr(A), (50)

from which it further follows that
⟨Tr(A)⟩ = Tr(⟨A⟩). (51)
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B.3. Expected values of random vectors and matrices

Let ξ1 ∈ Rn be a vector whose entries are i.i.d. and drawn from a zero-centred random distribution with variance σ2
1 . Then,

⟨ξ1⟩ = 0 ∈ Rn (52)

and the expected value of the inner and outer product is

⟨ξT1 ξ1⟩ = nσ2
1 and ⟨ξ1ξ

T
1 ⟩ = σ2

1In (53)

respectively. Let ξ2 ∈ Rm be a second random i.i.d. vector sampled from a zero-centred distribution with variance σ2
2 , then

⟨ξT1 ξ2⟩ = 0 and ⟨ξ1ξ
T
2 ⟩ = 0 ∈ Rm×n. (54)

We continue by deriving general forms for the expected value of products of random matrices. Let Ξ1 ∈ Rm×n be a matrix
whose entries are i.i.d., drawn from a zero-centred random distribution with variance σ2

1 . Then,

⟨Ξ1⟩ = 0 ∈ Rm×n. (55)

Further, let Ξ1i and Ξ1j denote the i-th and j-th column of the matrix. Then it follows from Equation (53) that the expected
value of the inner product for each column of Ξ1 is

〈
ΞT

1iΞ1j

〉
=

{
0, if i ̸= j

mσ2
1 , otherwise

, (56)

and therefore that 〈
ΞT

1 Ξ1

〉
= mσ2

1In. (57)

Similarly, from Equation (53) it follow that

〈
Ξ1iΞ

T
1j

〉
=

{
0, if i ̸= j

σ2
1I, otherwise

(58)

and therefore that 〈
Ξ1Ξ

T
1

〉
= nσ2

1Im. (59)

Let Ξ2 ∈ Rl×n be a second random i.i.d. matrix, sampled from a zero-centred distribution with variance σ2
2 , then it follows

from Appendix B.3 that 〈
Ξ2Ξ

T
1

〉
= 0. (60)

We proceed by deriving equalities for the expected values of random matrices and their interactions with arbitrary constant
matrices. For arbitrary constant matrix B ∈ Rm×m and i ̸= j we get〈

ΞT
1 BΞ1

〉
i,j

= Tr
(
B
〈
Ξ1jΞ

T
1i

〉)
= Tr (B0)
= 0

(61)

and for i = j 〈
ΞT

1 BΞ1

〉
i,j

= Tr
(
B
〈
Ξ1jΞ

T
1i

〉)
= Tr

(
Bσ2

1I
)

= σ2
1 Tr (B)

(62)

and therefore 〈
ΞT

1 BΞ1

〉
= σ2

1 Tr (B) I. (63)
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C. The general linear solution
From Theorem 3 in Laurent and Brecht (2018) it follows that any minimum of the convex and differentiable mean-squared
error

LMSE =
1

2P

P∑
n=1

||W2W1xn − yn||22 (64)

corresponds to the global optimum of the convex single-layer optimisation problem

LMSE =
1

2P

P∑
n=1

||W̄xn − y||22, (65)

as long as the underlying network
W̄ = Ω2Ω1, (66)

has no bottlenecks. The global optima of the network then correspond to

∂LMSE

∂W̄
= 0

⇔ 1

P

P∑
n=1

(
W̄xn − yn

)
xT
n = 0

⇔ W̄
1

P

P∑
n=1

xnx
T
n − 1

P

P∑
n=1

ynx
T
n = 0

⇔ W̄Σxx = Σyx.

(67)

Resubstitution then gives the general linear solution

Ω2Ω1Σxx = Σyx. (68)

Finally, we note that the GLS can also be written as

Ω2Ω1Σxx = Σyx

⇔ Ω2Ω1 = ΣyxΣ
+
xx + Z(I−ΣxxΣ

+
xx)

⇔ Ω2Ω1 = ΣyxΣ
+
xx + Z(I− 1/PAB2ATPAB−2AT )

⇔ Ω2Ω1 = USVT + Z(I−AAT ),

(69)

where Z ∈ RNo×Ni is an arbitrary matrix.

Proof of Theorem 3.1. In the following, we derive a complete parametrisation of the GLS

Ω2Ω1 = USVT + Z(I−AAT ). (70)

We begin by rewriting Ω1 in the basis of relevant, irrelevant and unobserved null directions

Ω1 = Ω1Pr +Ω1Pi +Ω1Pu (71)

with corresponding projectors Pr = VVT , Pi = AAT − VVT , and Pu = I − AAT . Substitution into the GLS
(Equation (69)) than reveals that directions that lie in the relevant input space must obey

Ω2(Ω1Pr +Ω1Pi +Ω1Pu)Pr = (USVT + ZPu)Pr

⇔ Ω2Ω1Pr = USVT ,
(72)
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from which it follows that Ω1Pr = Ω1VVT can be parametrised as Q
√
SVT , where Q ∈ RNh×r is any full-column-rank

matrix, projecting relevant inputs into hidden space. It then follows that we can further separate Ω2Ph into two subspaces,
one projecting relevant hidden representations and one projecting all other dimensions

Ω2Ω1Pr = USVT

⇔ (Ω2QQ+ +Ω2(I−QQ+))Q
√
SVT = USVT

⇔ Ω2QQ+Q
√
SVT = USVT

⇔ Ω2Q = U
√
S,

(73)

and thus Ω2QQ+ can be parametrised as U
√
SQ+. We call these two parts of the network function the core. We continue

by analysing the subspace covered by irrelevant inputs

(Ω2QQ+ +Ω2(I−QQ+))(Ω1Pr +Ω1Pi +Ω1Pu)Pi = (USVT + ZPn)Pi

⇔ (Ω2QQ+ +Ω2(I−QQ+))Ω1Pi = 0
⇔ Ω2(I−QQ+)Ω1Pi = −Ω2QQ+Ω1Pi.

(74)

This implies that task-irrelevant inputs can be mapped into the core readout space by input weights (right-hand side of the
equation), provided that other task-irrelevant components are simultaneously projected in such a way that they cancel the
effect (left-hand side of the equation). This ensure that the network output remains unchanged despite the first-layer weights
processing task-irrelevant components. For the compensation in the two-layer network to be successful, we have to have

Ω2(I−QQ+)Ω1Pi = −Ω2QQ+Ω1Pi

⇔ Ω2(I−QQ+)(I−QQ+)Ω1Pi = −Ω2QQ+Ω1Pi

⇔ Ω2(I−QQ+) = −Ω2QQ+Ω1Pi
[
(I−QQ+)Ω1Pi

]+
+ Z̃

[
I− (I−QQ+)Ω1Pi((I−QQ+)Ω1Pi)

+
]
(I−QQ+)

⇔ Ω2(I−QQ+) = −Ω2QQ+Ω1Pi
[
(I−QQ+)Ω1Pi

]+
+ Z̃

[
QQ+ + (I−HH+)

]
(I−QQ+)

⇔ Ω2(I−QQ+) = −Ω2QQ+Ω1Pi
[
(I−QQ+)Ω1Pi

]+
+ Z̃(I−HH+),

(75)

where Z̃ ∈ RNo×Nh is an arbitrary matrix. Crucially, the pseudo-inverse only exists if

im(QQ+Ω1Pi) ⊆ im((I−QQ+)Ω1Pi). (76)

As both sides live in the same subspace Pi, this is equivalent to

rank(QQ+Ω1Pi) ≤ rank((I−QQ+)Ω1Pi). (77)

Or in words, there must be at least as many dimensions of the irrelevant input space that are projected outside the core as
there are dimensions that are projected into the core. Substitution then gives

Ω2(I−QQ+) = −U
√
SQ+Ω1Pi

[
(I−QQ+)Ω1Pi

]+
+ Z̃(I−HH+). (78)

Finally, we analyse the unoccupied null directions

Ω2(Ω1Pr +Ω1Pi +Ω1Pu)Pu = (USVT + ZPu)Pu

⇔ Ω2Ω1Pu = ZPu,
(79)

from which it follows that Ω1Pu can be chosen arbitrarily. In summary, we then have

Ω1 = Ω1Pr +Ω1Pi +Ω1Pu

= Q
√
SVT + Γ1Pi + Γ2Pu

(80)

where Γ1, Γ2 ∈ RNh×Ni can be chose freely up to the constraint that rank(QQ+Γ1Pi) ≤ rank((I−QQ+)Γ1Pi), and

Ω2 = Ω2QQ+ +Ω2(I−QQ+)

= U
√
SQ+ +Ψ+ Γ3(I−HH+),

(81)

where Γ3 ∈ RNo×Nh is an arbitrary matrix and Ψ = −U
√
SQ+Ω1Pi [(I−QQ+)Ω1Pi]

+.
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D. Partitioning of the solution manifold
Proof of Theorem 3.3. We use the method of Lagrange multipliers to minimise

argmin
W1,W2

||W2W1||2F (82)

under the constraint that
W2W1Σxx = Σyx. (83)

We begin by substituting Ω̄ = W2W1. Then the Lagrangian is

L = ||Ω̄||2F +Tr
(
ΛT

(
Ω̄Σxx −Σyx

))
(84)

with gradients
∂L
∂Ω̄

= 2Ω̄+ΛΣxx = 0

⇔ Ω̄ = −1

2
ΛΣxx,

(85)

and
∂L
∂Λ

= Ω̄Σxx −Σyx = 0. (86)

Then starting from Equation (85) we have

Ω̄ = −1

2
ΛΣxx

⇔ Ω̄Σxx = −1

2
ΛΣxxΣxx

⇔ Σyx = −1

2
Λ

1

P
AB2AT 1

P
AB2AT

⇔ ΣyxPAB−2AT = −1

2
Λ

1

P
AB2AT

⇔ Σyx(Σxx)
+ = −1

2
ΛΣxx,

(87)

where in the third step we substituted Equation (86). Then, resubstitution into Equation (85) yields

Ω̄ = Ω2Ω1 = Σyx(Σxx)
+ = USVT . (88)

Next, we derive a complete parametrisation of the LSS

Ω2Ω1 = USVT . (89)

Again, as in the parametrisation for the GLS (Theorem 3.1), we rewrite Ω1 in the basis of relevant, irrelevant and unobserved
null directions

Ω1 = Ω1Pr +Ω1Pi +Ω1Pu (90)

with corresponding projectors Pr = VVT , Pi = AAT −VVT , and Pu = I−AAT . First, we note that the equations for
the relevant and irrelevant input directions are identical to the ones presented in Theorem 3.1, that is

Ω2(Ω1Pr +Ω1Pi +Ω1Pu)Pr = USVTPr

⇔ Ω2Ω1Pr = USVT ,
(91)

and
(Ω2QQ+ +Ω2(I−QQ+))(Ω1Pr +Ω1Pi +Ω1Pu)Pi = USVTPi

⇔ Ω2(I−QQ+)Ω1Pi = −Ω2QQ+Ω1Pi.
(92)
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From which it follows that

Ω1Pr = Q
√
SVT (93)

Ω1Pi = Γ1Pi (94)

Ω2QQ+ = U
√
SQ+ (95)

Ω2(I−QQ+) = Ψ+ Z̃(I−HH+), (96)

where Q ∈ RNh×r is an arbitrary full-column-rank matrix, Γ1, is an arbitrary matrix subject to the constraint
rank(QQ+Γ1Pi) ≤ rank((I − QQ+)Γ1Pi), Ψ = −U

√
SQ+Γ1Pi [(I−QQ+)Γ1Pi]

+, and Z̃ ∈ RNo×Nh is an
arbitrary matrix. However, LSS differ in how they constrain the solution manifold in the case of unobserved null directions.
In particular, Ẑ(I−HH+) is constrained by

Ω2(Ω1Pr +Ω1Pi +Ω1Pu)Pu = USVTPu

⇔ (Ω2QQ+ +Ω2(I−QQ+))Ω1Pu = 0

⇔ (U
√
SQ+ +Ψ+ Z̃(I−HH+))Ω1Pu = 0

⇔ Z̃(I−HH+)(I−HH+)Ω1Pu = −(U
√
SQ+ +Ψ)Ω1Pu

⇔ Z̃(I−HH+) = −(U
√
SQ+ +Ψ)Ω1Pu

[
(I−HH+)Ω1Pu

]+
+ Ẑ[I− (I−HH+)Ω1Pu((I−HH+)Ω1Pu)

+](I−HH+)

⇔ Z̃(I−HH+) = −(U
√
SQ+ +Ψ)Ω1Pu

[
(I−HH+)Ω1Pu

]+
+ Ẑ[HH+ + (I−Ω1Ω

+
1 )](I−HH+)

⇔ Z̃(I−HH+) = −(U
√
SQ+ +Ψ)Ω1Pu

[
(I−HH+)Ω1Pu

]+
+ Ẑ(I−Ω1Ω

+
1 ),

(97)

where Ẑ ∈ RNo×Nh is an arbitrary matrix. Again, for the pseudo-inverse to exist we must have

im(HH+Ω1Pu) ⊆ im((I−HH+)Ω1Pu). (98)

As both sides live in the same subspace Pu, this is equivalent to

rank(HH+Ω1Pu) ≤ rank((I−HH+)Ω1Pu). (99)

In other words, at least as many unobserved dimensions that are projected into the occupied hidden-layer dimensions have
to be projected into the unoccupied hidden-layer dimensions in order for a correction to exist. In summary, we then have

Ω1 = Ω1Pr +Ω1Pi +Ω1Pu

= Q
√
SVT + Γ1Pi + Γ2Pu

(100)

where Γ1, Γ2 ∈ RNh×Ni can be chose freely up to the constraints that rank(QQ+Γ1Pi) ≤ rank((I−QQ+)Γ1Pi), and
rank(HH+Ω1Pu) ≤ rank((I−HH+)Ω1Pu), and

Ω2 = Ω2QQ+ +Ω2(I−QQ+)

= U
√
SQ+ +Ψ+Φ+ Γ3(I−Ω1Ω

+
1 ),

(101)

where Γ3 ∈ RNo×Nh is an arbitrary matrix, Ψ = −U
√
SQ+Ω1Pi [(I−QQ+)Ω1Pi]

+, and Φ = −(U
√
SQ+ +

Ψ)Ω1Pu [(I−HH+)Ω1Pu]
+.

Proof of Theorem 3.5. We use the method of Lagrange multipliers to minimise

argmin
W1,W2

||W1X||2F + ||W2||2F (102)

under the constraint that
W2W1Σxx = Σyx. (103)
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Then the Lagrangian is
L = ||W1X||2F + ||W2||2F +Tr

(
ΛT (W2W1Σxx −Σyx)

)
(104)

with gradients
∂L
∂W1

= 2W1XXT +WT
2 ΛΣxx = 0

⇔ W1XXT = −1

2
WT

2 ΛΣxx,

(105)

∂L
∂W2

= 2W2 +ΛΣxxW
T
1 = 0

⇔ W2 = −1

2
ΛΣxxW

T
1 ,

(106)

and
∂L
∂Λ

= W2W1Σxx −Σyx = 0. (107)

Starting from Equation (106), we then have

W2 = −1

2
ΛΣxxW

T
1

⇔ WT
2 W2 = −1

2
WT

2 ΛΣxxW
T
1

⇔ WT
2 W2 = W1XXTWT

1 ,

(108)

where in the last line we substituted Equation (105). Let

cSVD(W2) = ABCT and cSVD(W1X) = DEFT (109)

be the cSVD of the network weights, then

WT
2 W2 = W1XXTWT

1

⇔ CBATABCT = DEFTFEDT

⇔ CB2CT = DE2DT .

(110)

Since C and D are (semi-)orthonormal matrices and B and E are diagonal matrices with strictly positive entries it follows
that

C = D and B2 = E2 ⇔ B = E. (111)

In the following we denote C and D as R, and B and E as G and write

W1X = RGFT and W2 = AGRT , (112)

where R is an arbitrary (semi-)orthogonal matrix. Finally, let

cSVD(X) = JKLT , (113)

and
cSVD(YXTX+T ) = cSVD(YLKJTJK−1LT )

= cSVD(YLLT )

= MNOT .

(114)

Then starting from Equation (107) we get

W2W1Σxx = Σyx

⇔ W2W1XXT = YXT

⇔ W2W1JK
2JT = YLKJT

⇔ W2W1JKLT = YLLT

⇔ AGRTRGFT = MNOT

⇔ AG2FT = MNOT ,

(115)
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from which it follows that
A = M, FT = OT , and G2 = N ⇔ G =

√
N (116)

and therefore that
W2 = M

√
NRT and W1X = R

√
NOT . (117)

Finally, we rewrite
W1X = R

√
NOT

W1JKLT = R
√
NOT

W1 = R
√
NOTLK−1JT + Z

(
I− JJT

)
W1 = R

√
NOTX+ + Z

(
I− JJT

)︸ ︷︷ ︸
Γ

,

(118)

where Z is an arbitrary matrix.

Proof of Theorem 3.7. We use the method of Lagrange multipliers to minimise

argmin
W1,W2

||W1||2F + ||W2||2F (119)

under the constraint that
W2W1Σxx = Σyx. (120)

Then the Lagrangian is
L = ||W1||2F + ||W2||2F +Tr

(
ΛT (W2W1Σxx −Σyx)

)
(121)

with gradients
∂L
∂W1

= 2W1 +WT
2 ΛΣxx = 0

⇔ W1 = −1

2
WT

2 ΛΣxx,

(122)

∂L
∂W2

= 2W2 +ΛΣxxW
T
1 = 0

⇔ W2 = −1

2
ΛΣxxW

T
1 ,

(123)

and
∂L
∂Λ

= W2W1Σxx −Σyx = 0. (124)

Starting from Equation (123) we then have

W2 = −1

2
ΛΣxxW

T
1

⇔ WT
2 W2 = −1

2
WT

2 ΛΣxxW
T
1

⇔ WT
2 W2 = W1W

T
1 ,

(125)

where in the last line we substituted Equation (122). Let

cSVD(W2) = ABCT and cSVD(W1) = DEFT (126)

be the cSVD of the network weights, then

WT
2 W2 = W1W

T
1

⇔ CBATABCT = DEFTFEDT

⇔ CB2CT = DE2DT .

(127)
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Since C and D are (semi-)orthonormal matrices and B and E are diagonal matrices with strictly positive entries it follows
that

C = D and B2 = E2 ⇔ B = E. (128)

It further follows that W1 and W2 must be of identical rank. In the following we denote C and D as R, and B and E as G
and write

W1 = RGFT and W2 = AGRT , (129)

where R is an arbitrary (semi-)orthogonal matrix. Finally, let

cSVD(Σxx) = JKJT (130)

and
cSVD(ΣyxΣ

+
xx) = USVT (131)

denote the cSVD of the input covariance matrix and a least-squares solution. Then, starting from Equation (124) and using
Equation (122), we get

W2W1Σxx = Σyx

⇔ −1

2
W2W

T
2 ΛΣxxΣxx = Σyx

⇔ −1

2
W2W

T
2 ΛJK2JT = Σyx

⇔ −1

2
W2W

T
2 ΛJKJT = ΣyxJK

−1JT

⇔ −1

2
W2W

T
2 ΛΣxx = ΣyxΣ

+
xx

⇔ W2W1 = USVT

⇔ AGRTRGFT = USVT

⇔ AG2FT = USVT ,

(132)

from which it follows that
A = U, FT = VT and G2 = S ⇔ G =

√
S (133)

and therefore that
W2 = U

√
SRT and W1 = R

√
SVT . (134)

E. Hidden-layer representations
Proposition E.1. Let cSVD(X) = ABCT , then GLS are identical to LSS when operating on inputs X as any GLS
(Equation (69)) can be written as

Ω2Ω1X = Σyx(Σxx)
+X+ Z(I−AAT )X

⇔ Ω2Ω1X = Σyx(Σxx)
+X+ Z(I−AAT )ABCT

⇔ Ω2Ω1X = Σyx(Σxx)
+X+ Z(ABCT −ABCT )

⇔ Ω2Ω1X = Σyx(Σxx)
+X.

(135)

As a consequence, hidden-layer representations of the training data in GLS and LSS can be analysed by means of studying
the LSS only.

Proof of Corollary 3.9. Following Proposition E.1 and given the parametrisation of Ω1 as derived in Theorems 3.1 and 3.3,
we derive

RSM = XTΩT
1 Ω1X

= XT (V
√
SQT +PT

i Γ
T
1 +PT

u Γ
T
2 )(Q

√
SVT + Γ1Pi + Γ2Pu)X

= XT (V
√
SQTQ

√
SVT +V

√
SQTΓ1Pi +PT

i Γ
T
1 Q

√
SVT +PT

i Γ
T
1 Γ1Pi)X

(136)
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Proof of Corollary 3.11. Let
cSVD(X) = ABCT , (137)

then given the subset of Ω1 as defined in Theorem 3.5 we derive

XT (X+TO
√
NRT + ΓT )(R

√
NOTX+ + Γ)X =XTX+TO

√
NRTR

√
NOTX+X

= CBATAB−1CTONOTCB−1ATABCT

= CCTONOTCCT

=ONOT ,

(138)

where in the last step we used that
YXTX+T = YCCT . (139)

Proof of Corollary 3.12. Given the subset of Ω1 as defined in Theorem 3.7 we derive

XTV
√
SRTR

√
SVTX =XTVSVTX . (140)

F. Secondary error
Proof of Theorem 5.1. Let the secondary error be denoted by

GMSE =
1

2Q

Q∑
n=1

||W2W1x̃n − ỹn||22, (141)

where input vectors x̃n and corresponding target values ỹn come from a secondary dataset D̃ = {(x̃n, ỹn)}Qn=1 with a total
of Q input-output pairs. We want to find the point on the solution manifold of the primary task such that GMSE is minimised.
We therefore substitute the GLS (see Equation (69)) into the secondary error

GMSE =
1

2Q

Q∑
n=1

∣∣∣∣(ΣyxΣ
+
xx + ZPu

)
x̃n − ỹn

∣∣∣∣2
2
, (142)

where Z ∈ RNo×Ni is an arbitrary matrix and Pu = I−AAT . Thus ZPu, which describes all possible transformations of
the network function that lie in the unoccupied input space of the primary task is the only degree of freedom. Thus, we have
to find Z̃, which minimises the error. To this end, we define

cSVD(PuX̃) = DEFT , (143)

and continue with

∂GMSE

∂Z̃
=

1

Q

Q∑
n=1

((
ΣyxΣ

+
xx + Z̃Pu

)
x̃n − ỹn

)
x̃T
nPu = 0

⇔
((

ΣyxΣ
+
xx + Z̃Pu

)
Σ̃xx − Σ̃yx

)
Pu = 0

⇔ Z̃PuΣ̃xxPu =
(
Σ̃yx −ΣyxΣ

+
xxΣ̃xx

)
Pu

⇔ Z̃PuX̃X̃TPu =
(
Ỹ −ΣyxΣ

+
xxX̃

)
X̃TPu

⇔ Z̃DE2DT =
(
Ỹ −ΣyxΣ

+
xxX̃

)
FEDT

⇔ Z̃ =
(
Ỹ −ΣyxΣ

+
xxX̃

)
FE−1DT + Γ̃(I−DDT )

⇔ Z̃ =
(
Ỹ −ΣyxΣ

+
xxX̃

)(
PuX̃

)+

+ Γ̃(I−DDT ),

(144)

where Γ̃ ∈ RNo×Ni is an arbitrary matrix. Note that Γ̃(I−DDT )Pu describes all possible transformations that lie in the
null spaces of both X and X̃, and therefore have no effect on the processing of either the primary or secondary data.
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G. Input and parameter noise
Proof of Theorem 5.6. Let ξxn

denote vectors and Ξ1 and Ξ2 denote matrices whose entries are i.i.d. and drawn from a
zero-centred random distribution with variance σ2

x, σ2
Ω1

and σ2
Ω2

respectively. Then, we can write the expected mean-squared
error under additive input noise and parameter noise as

〈
1

2P

P∑
n=1

|| (Ω2 +Ξ2) (Ω1 +Ξ1)
(
xn + ξxn

)
− yn||22

〉

=
1

2P

P∑
n=1

〈
||Ω2Ω1xn − yn︸ ︷︷ ︸

a

+
(
Ω2Ω1 +W2Ξ1+︸ ︷︷ ︸

b

Ξ2W1 +Ξ2Ξ1

)
ξxn

+
(
W2Ξ1 +Ξ2W1+︸ ︷︷ ︸

b

Ξ2Ξ2

)
xn︸ ︷︷ ︸

b

||22
〉

=
1

2P

P∑
n=1

aTa+
1

2P

P∑
n=1

2aT
〈
b
〉
+

1

2P

P∑
n=1

〈
bTb

〉
.

(145)

In the following we solve each of the three summands independently. Using the definition of a linear solution (Definition 2.3),
we derive

1

2P

P∑
n=1

aTa

=
1

2P

P∑
n=1

xT
nΩ

T
1 Ω

T
2 Ω2Ω1xn − 1

2P

P∑
n=1

xT
nΩ

T
1 Ω

T
2 yn − 1

2P

P∑
n=1

yT
nΩ2Ω1xn +

1

2P

P∑
n=1

yT
nyn (146)

=
1

2
Tr(ΩT

1 Ω
T
2 Ω2Ω1Σxx)− Tr(ΩT

1 Ω
T
2 Σyx) +

1

2
Tr(Σyy)

= − 1

2
Tr(ΩT

1 Ω
T
2 Ω2Ω1Σxx(Σxx)

+ΣT
xx) +

1

2
Tr(Σyy)

= − 1

2
Tr(Σyx(Σxx)

+ΣT
yx) +

1

2
Tr(Σyy)

= c,

which is a noise-independent constant that only depends on the statistics of the training data. Next, using the assumption
that the noise is zero-centred, we derive that

1

2P

P∑
n=1

2aT
〈
b
〉
= 0 (147)

using that

〈
b
〉
=

〈(
Ω2Ω1 +Ω2Ξ1 +Ξ2Ω1 +Ξ2Ξ1

) 〈
ξxn

〉
+

(
Ω2Ξ1 +Ξ2Ω1 +Ξ2Ξ2

)
xn

〉
= 0 . (148)

Which leaves us with the third term, which we can write as

1

2P

P∑
n=1

〈
bTb

〉
=

1

2P

P∑
n=1

(〈
ξTxn

(...)ξxn

〉
+ (149)

〈
ξTxn

(...)xn

〉
+
〈
xT
n (...)ξxn

〉
+ xT

n

〈
(...)

〉
xn

)
. (150)
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In the following, we solve each of the four summands independently. We begin with〈
ξTxn

(
ΩT

1 Ω
T
2 Ω2Ω1 +ΩT

1 Ω
T
2 Ω2

〈
Ξ1

〉
+

ΩT
1 Ω

T
2

〈
Ξ2

〉
Ω1 +ΩT

1 Ω
T
2

〈
Ξ2

〉〈
Ξ1

〉
+〈

ΞT
1

〉
ΩT

2 Ω2Ω1 +
〈
ΞT

1 Ω
T
2 Ω2Ξ1

〉
+〈

ΞT
1

〉
ΩT

2

〈
Ξ2

〉
Ω1 +

〈
ΞT

1 Ω
T
2

〈
Ξ2

〉
Ξ1

〉
+

ΩT
1

〈
ΞT

2

〉
Ω2Ω1 +ΩT

1

〈
ΞT

2

〉
Ω2

〈
Ξ1

〉
+

ΩT
1

〈
ΞT

2 Ξ2

〉
Ω1 +ΩT

1

〈
ΞT

2 Ξ2

〉〈
Ξ1

〉
+〈

ΞT
1

〉〈
ΞT

2

〉
Ω2Ω1 +

〈
ΞT

1

〈
ΞT

2

〉
Ω2Ξ1

〉
+〈

ΞT
1

〉〈
ΞT

2 Ξ2

〉
Ω1 +

〈
ΞT

1 Ξ
T
2 Ξ2Ξ1

〉)
ξxn

〉
,

(151)

where we used that noise is i.i.d.. Using that noise is zero-centred, we note that summands 2-5, 7-10, and 12-15 resolve to 0,
which leaves us with summands 1, 6, 11, and 16 which we solve using Equations (53), (57), (59) and (63), as〈

ξTxn
ΩT

1 Ω
T
2 Ω2Ω1ξxn

〉
= Tr

(
ΩT

1 Ω
T
2 Ω2Ω1

〈
ξxn

ξTxn

〉)
= σ2

x||Ω2Ω1||2F ,

(152)

〈
ξTxn

〈
ΞT

1 Ω
T
2 Ω2Ξ1

〉
ξxn

〉
= Tr

(〈
ΞT

1 Ω
T
2 Ω2Ξ1

〉〈
ξxn

ξTxn

〉)
= σ2

x Tr
(
ΩT

2 Ω2

〈
Ξ1Ξ

T
1

〉)
= σ2

xσ
2
1Ni||Ω2||2F ,

(153)

〈
ξTxn

ΩT
1

〈
ΞT

2 Ξ2

〉
Ω1ξxn

〉
= Tr

(
ΩT

1

〈
ΞT

2 Ξ2

〉
Ω1

〈
ξxn

ξTxn

〉)
= σ2

x Tr
(
Ω1Ω

T
1

〈
ΞT

2 Ξ2

〉)
= σ2

xσ
2
2No||Ω1||2F ,

(154)

and 〈
ξTxn

ΞT
1 Ξ

T
2 Ξ2Ξ1ξxn

〉
= Tr

(〈
ΞT

1 Ξ
T
2 Ξ2Ξ1

〉〈
ξxn

ξTxn

〉)
= σ2

x Tr
(〈

Ξ1Ξ
T
1

〉〈
ΞT

2 Ξ2

〉)
σ2
xσ

2
1Niσ

2
2No Tr (INh

)

σ2
xσ

2
1Niσ

2
2NoNh.

(155)

We continue by noting that 〈
ξTxn

(...)xn

〉
= Tr

(〈
(...)

〉
xn

〈
ξTxn

〉)
= 0 (156)
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and 〈
xT
n (...)ξxn

〉
= Tr

(〈
(...)

〉〈
ξxn

〉
xT
n

)
= 0. (157)

Finally, we solve

xT
n

(〈
ΞT

1 Ω
T
2 Ω2Ξ1

〉
+

〈
ΞT

1

〉
ΩT

2

〈
Ξ2

〉
Ω1+〈

ΞT
1 Ω

T
2

〈
Ξ2

〉
Ξ1

〉
+ΩT

1

〈
ΞT

2

〉
Ω2

〈
Ξ1

〉
+

ΩT
1

〈
ΞT

2 Ξ2

〉
Ω1 +ΩT

1

〈
ΞT

2 Ξ2

〉〈
Ξ1

〉
+〈

ΞT
1

〈
ΞT

2

〉
Ω2Ξ1

〉
+

〈
ΞT

1

〉〈
ΞT

2 Ξ2

〉
Ω1+〈

ΞT
1 Ξ

T
2 Ξ2Ξ1

〉)
xn,

(158)

where we again used that that noise is i.i.d.. Using that noise is zero-centred, we note that summands 2-4, and 6-8 are equal
to 0. Which leaves us with summands 1, 5, and 9, which we solve using Equations (57) and (63) as

xT
n

〈
ΞT

1 Ω
T
2 Ω2Ξ1

〉
xn

= σ2
1 Tr(Ω

T
2 Ω2)x

T
n Ixn

= σ2
1 ||Ω2||2F Tr(xnx

T
n ),

(159)

xT
nΩ

T
1

〈
ΞT

2 Ξ2

〉
Ω1x

= Noσ
2
2 Tr(Ω

T
1 Ω1xnx

T
n ),

(160)

and

xT
n

〈
ΞT

1 Ξ
T
2 Ξ2Ξ1

〉
x

= σ2
1 Tr

(〈
ΞT

2 Ξ2

〉)
xT
nxn

= σ2
1Noσ

2
2 Tr(I) Tr(xnx

T
n )

= σ2
1Noσ

2
2Nh Tr(xnx

T
n ).

(161)

Resubstitution into Equation (149) then yields

1

2P

P∑
n=1

〈
bTb

〉
=

σ2
x

2

(
||Ω2Ω1||2F + σ2

1Ni||Ω2||2F+

σ2
2No||Ω1||2F + σ2

1Niσ
2
2NoNh

)
+

1

2P

(
σ2
1 ||Ω2||2F ||X||2F +Noσ

2
2 ||Ω1X||2F (162)

+Nhσ
2
1Noσ

2
2 ||X||2F

)
,

Substituting Equations (146), (147) and (162) back into Theorem 5.6 concludes the proof.

Proof of Theorem 5.2. Let ξn ∈ RNi denote a random vector with independent and identically distributed, zero-centred
entries with variance σ2

x. Then the expected mean squared error over the training data when adding such a random
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perturbation to each input is 〈
1

2P

P∑
n=1

||Ω2Ω1(xn + ξn)− yn||22

〉

=
1

2P

P∑
n=1

〈
||Ω2Ω1xn − yn︸ ︷︷ ︸

a

+Ω2Ω1ξn︸ ︷︷ ︸
b

||22

〉
(163)

=
1

2P

P∑
n=1

aTa+
1

2P

P∑
n=1

2aT ⟨b⟩+ 1

2P

P∑
n=1

〈
bTb

〉
.

The first summand is identical to Equation (146), the second summand is

1

2P

P∑
n=1

2aT ⟨b⟩

=
1

2P

P∑
n=1

2(Ω2Ω1xn − yn)
TΩ2Ω1 ⟨ξn⟩

= 0

(164)

and for the third summand, using Equations (53) and (57) we get

1

2P

P∑
n=1

〈
bTb

〉
=

1

2P

P∑
n=1

〈
ξTnΩ

T
1 Ω

T
2 Ω2Ω1ξn

〉
=

1

2P

P∑
n=1

Tr
(
ΩT

1 Ω
T
2 Ω2Ω1

〈
ξnξ

T
n

〉)
=

1

2P

P∑
n=1

σ2
x Tr

(
ΩT

1 Ω
T
2 Ω2Ω1

)
(165)

=
σ2
x

2
||Ω2Ω1||2F .

Substituting Equations (146), (164) and (165) back into Equation (163), then concludes the proof.

Proof of Theorem 5.4. The expected mean squared error over the training data of a linear solution (Definition 2.3) under
additive, independent and identically distributed zero-centred parameter noise with variance σ2

1 and σ2
2 is〈

1

2P

P∑
n=1

|| (Ω2 +Ξ2) (Ω1 +Ξ1)xn − yn||22

〉

=
1

2P

P∑
n=1

〈
||Ω2Ω1xn − yn︸ ︷︷ ︸

a

+Ω2Ξ1xn+︸ ︷︷ ︸
b

Ξ2Ω1xn +Ξ2Ξ1xn︸ ︷︷ ︸
b

||22
〉

=
1

2P

P∑
n=1

aTa+
1

2P

P∑
n=1

2aT ⟨b⟩+ 1

2P

P∑
n=1

〈
bTb

〉
.

The first summand is again identical to Equation (146) and the second summand is

1

2P

P∑
n=1

2aT ⟨b⟩ = 0 (166)

since
⟨b⟩ = ⟨Ω2Ξ1xn +Ξ2Ω1xn +Ξ2Ξ1xn⟩ = Ω2 ⟨Ξ1⟩xn + ⟨Ξ2⟩Ω1xn + ⟨Ξ2Ξ1⟩xn = 0 . (167)
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Which leaves us with the third term, which is identical to Equation (158) which equals

1

2P

P∑
n=1

〈
bTb

〉
=

1

2P

P∑
n=1

xT
n

(
σ2
1 ||Ω2||2F I+Noσ

2
2Ω

T
1 Ω1 +Nhσ

2
1Noσ

2
2I
)
xn

=
1

2

(
σ2
1 ||Ω2||2F Tr(Σxx) +Noσ

2
2 Tr(Ω

T
1 Ω1Σxx) +Nhσ

2
1Noσ

2
2 Tr(Σxx)

)
.

Substituting Equations (146) and (166) and ?? back into ??, then concludes the proof.
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