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Abstract

Large Language Models (LLMs) perform well001
in tabular prediction tasks with limited data,002
using their ability to understand instructions003
and learn from examples. However, their re-004
liance on training data can perpetuate social005
biases, leading to unfair outcomes and dispro-006
portionately impacting underprivileged groups.007
Addressing these biases is critical as LLMs008
see wider adoption in tabular data tasks. Tra-009
ditional bias mitigation strategies in machine010
learning, such as balancing datasets or apply-011
ing fairness constraints, are less effective with012
LLMs. Our research explores whether bias013
in LLMs for tabular data classification can be014
mitigated. Through extensive experiments, we015
found that using LLMs in a zero-shot setting016
introduces bias, and in-context learning slightly017
reduces the bias. Meanwhile, fine-tuning and018
retrieval augmented generation show limited019
effectiveness in bias mitigation. We introduced020
three instruction-based prompting strategies021
to enhance fairness: Fair Prompting, Gener-022
alised Prompting, and Descriptive Prompting.023
The results show that combining descriptive024
prompting with in-context learning, particu-025
larly the Equal Samples Across Demographics026
approach, significantly improved fairness met-027
rics such as Statistical Parity Ratio and Equal028
Opportunity Ratio and yielded accuracy gains029
ranging from 3.27% to 15.05% across multiple030
datasets, underscoring its potential as a pow-031
erful strategy in the ongoing effort to mitigate032
bias in LLMs.033

1 Introduction034

Large Language Models (LLMs) have marked a035

substantial leap forward in artificial intelligence036

(Zhao et al., 2023a). A prime example is the037

Generative Pre-trained Transformer (GPT) model038

(Achiam et al., 2023), which has demonstrated its039

robust capabilities across diverse tasks, including040

machine translation (Xu et al., 2023), text gen-041

eration (Li et al., 2024), and complex question-042

answering (Fergus et al., 2023). Recently, LLMs 043

have found applications far beyond their original 044

uses in language processing. Recent studies have 045

uncovered the potential of LLMs for predictive tab- 046

ular data tasks (Fang et al., 2024; Hegselmann et al., 047

2023; Slack and Singh, 2023; Yang et al., 2024). In 048

these studies, tabular data is converted into natural 049

language and presented to LLMs with a brief task 050

description to generate predictions. The findings 051

conclude that LLMs for tabular data classification 052

achieve significant performance, demonstrating the 053

method’s capacity to leverage their encoded prior 054

knowledge (Slack and Singh, 2023). 055

However, as LLMs are capable of generating 056

human-like content, they can perpetuate social bi- 057

ases present in the extensive datasets they were 058

trained on, potentially causing significant harm to 059

underprivileged groups (Abid et al., 2021; Basta 060

et al., 2019; Ganguli et al., 2022). Undoubtedly, 061

the issue of LLM-generated unfair responses and 062

biases is a multifaceted problem (Gallegos et al., 063

2024). With the widespread adoption of LLMs 064

across various industries and the extensive use of 065

tabular data in high-stakes domains (Grinsztajn 066

et al., 2022), it is essential to thoroughly examine 067

the fairness implications and mitigate biases when 068

using LLMs for tabular data classification. Bias in 069

traditional machine learning models was addressed 070

by ensuring datasets were diverse and balanced 071

through careful data collection and preprocessing. 072

Fairness constraints and mitigation algorithms were 073

applied during model training, and outputs were 074

adjusted to promote fairness, with regular monitor- 075

ing and audits to maintain accountability (Mehrabi 076

et al., 2021). However, these strategies are unsuit- 077

able for LLM in tabular data classification tasks be- 078

cause LLMs are pre-trained, and biases may arise 079

from the training dataset. To address this, we pose 080

the research question: Can bias in LLMs for tabu- 081

lar data classification be mitigated? If yes, to what 082

extent? The answer to this question has profound 083
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implications for LLM applications with the poten-084

tial to enhance fairness, equity, and trustworthiness085

across various domains. We aim to investigate the086

challenge of mitigating biases generated by LLMs087

in tabular data classification tasks. Extensive ex-088

periments using both open-source and proprietary089

models across tabular datasets demonstrate that:090

• Using LLMs for tabular data classification can091

introduce bias. Experiments in a zero-shot set-092

ting show that LLM transfer social biases from093

their pre-training data into tabular tasks (details094

in Results). This evidence demonstrates that095

LLMs adopt social biases from their pre-training096

data and frequently rely on these biases when097

classifying tabular data, leading to potentially098

unfair outcomes.099

• In-context learning in LLMs enhances model100

performance for classification tasks; however,101

it only slightly reduces bias. We develop a102

framework of strategies to mitigate bias in LLMs103

for tabular data classification, categorising ap-104

proaches for clarity and practical use. Providing105

LLMs with few-shot examples using strategies106

like mitigation through unawareness, counterfac-107

tuals, and equal samples across demographics108

improves accuracy and F1 score. While fairness109

shows some improvement, the overall impact re-110

mains limited, highlighting the need for more111

robust solutions.112

• The effectiveness of fine-tuned model and113

Retrieval Augmented Generation (RAG) in114

LLMs for tabular data classification is limited115

in terms of bias mitigation. We also fine-tuned116

the LLMs using an extensive training dataset and117

the RAG technique. While this approach con-118

tributes to bias reduction, we observed only slight119

effects, highlighting the need for more effective120

bias mitigation techniques.121

To enhance the fairness of LLMs as tabular122

data classifiers, we propose three instruction-based123

prompting approaches: Fair Prompting, Gen-124

eralised Prompting, and Descriptive Prompting.125

These strategies guide LLMs toward equitable pre-126

dictions. Experiments show descriptive prompting127

with in-context learning improves fairness, achiev-128

ing Statistical Parity Ratio and Equal Opportunity129

Ratio values closer to 1 and accuracy gains of130

3.27% to 15.05% across datasets. These strate-131

gies advance bias mitigation, marking significant132

progress in promoting fairer AI outcomes.133

2 Related Work 134

2.1 LLM for Tabular Data 135

LLMs have been trained on vast amounts of data, 136

enabling them to achieve impressive performance 137

across various downstream tasks (Brown et al., 138

2020). Recent studies have used LLMs for tab- 139

ular data classification (Zhao et al., 2023b; Wang 140

et al., 2024). For example, the TABLET bench- 141

mark reveals improved LLM performance from 142

instructions in tabular data predictions (Slack and 143

Singh, 2023). Hegselmann et al. (2023) explored 144

using LLMs for the classification of tabular data 145

by converting tables to natural language and pro- 146

viding problem descriptions, finding this method 147

outperforms traditional techniques and competes 148

with strong baselines. Yang et al. (2024) enhanced 149

LLMs’ ability to handle tabular data for classifica- 150

tion, regression, and imputation tasks by training 151

Llama-2 on a comprehensive corpus of annotated 152

tables, demonstrating significant improvements. 153

However, the research concludes that for LLM- 154

based tabular data prediction methods, the fairness 155

metric gap between different subgroups is larger 156

than that observed in traditional machine learning 157

models (Ma et al., 2024). Therefore, while it is 158

established that fairness issues exist in LLMs for 159

tabular data classification tasks, the methods to mit- 160

igate this bias remain largely unexplored. To our 161

knowledge, our work represents one of the most 162

comprehensive investigations into mitigating bias 163

when using LLMs to classify tabular data. 164

2.2 Fairness and Biases in LLMs 165

While LLMs are rapidly advancing in capabilities 166

and applications, biased systems can produce dis- 167

criminatory and stereotypical outcomes, negatively 168

impacting underprivileged or vulnerable groups 169

and causing societal harm (Kumar et al., 2022). 170

LLMs may produce biased or prejudiced responses 171

when the training data contains stereotyped or dis- 172

criminatory information (Nadeem et al., 2020). Re- 173

search has shown that these models frequently dis- 174

play biases concerning gender (Cai et al., 2024; 175

Kotek et al., 2023), profession (Nadeem et al., 176

2020), race (Haim et al., 2024), and religion (Galle- 177

gos et al., 2024). Researchers are addressing these 178

issues by developing improved benchmarks, such 179

as CrowS-Pairs (Nangia et al., 2020) and RealToxi- 180

cityPrompts (Gehman et al., 2020), to assess and 181

mitigate unfairness in LLMs. Additionally, regard- 182

ing prompt engineering, Chisca et al. (2024) pro- 183
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posed a novel prompt-tuning to reduce these biases184

in models, effectively mitigating gender bias with185

minimal impact on performance. Ma et al. (2024)186

introduced a metric to evaluate bias in prompts187

and propose a greedy search strategy to identify188

near-optimal prompts. Although there is research189

on fairness in LLMs, there remains a significant190

gap in studies specifically addressing mitigation191

strategies for tabular data classification.192

2.3 In-context Learning, Fine-tuning and193

RAG for Tabular Data194

In-context learning uses examples to guide LLMs195

toward desired outputs. Guo et al. (2023) reported196

a 30.38% accuracy drop when switching from one-197

shot to zero-shot settings, while Chen (2022) found198

that increasing shots from one to two improved199

performance. This approach is crucial for integrat-200

ing contextual information and fairness guidelines201

to enhance equitable outcomes. Chhikara et al.202

(2024) introduced a framework incorporating fair-203

ness rules, demonstrating GPT-4’s superior accu-204

racy and fairness using in-context learning. Liu205

et al. (2024) highlighted that in-context learning re-206

duces fairness gaps between subgroups, and Hu and207

Du (2024) showed that including minority samples208

in prompts improves fairness without compromis-209

ing performance. Fine-tuning involves training pre-210

trained LLMs on specific datasets to improve ac-211

curacy. Zhang et al. (2023) fine-tuned Llama-2 for212

better tabular task performance, and similar meth-213

ods have been explored (Hegselmann et al., 2023;214

Jaitly et al., 2023; Liu et al., 2024; Wang et al.,215

2023). Further, RAG adds domain-specific context216

to prompts but faces challenges in relevance ex-217

traction. Sundar and Heck (2023) addressed this218

with a dual-encoder Dense Table Retrieval model219

for better table cell ranking. These techniques en-220

hance LLM performance, driving the need for a221

fairness framework to mitigate bias and assess their222

understanding of fairness in classification tasks.223

3 Methodology224

This section outlines bias mitigation methods for225

LLMs in tabular data classification, including de-226

tection, in-context learning, fine-tuning, and RAG.227

Figure 1 illustrates the methodology, covering tabu-228

lar data serialisation and three mitigation strategies.229

3.1 Bias Detection230

Bias in LLM tabular classifications refers to the231

systematic favouritism or discrimination against232

Figure 1: Framework for Bias Mitigation in LLM
Tabular Data Classifications. We serialise the tabular
data, then apply three bias mitigation strategies to im-
prove fairness: (a) in-context learning, (b) fine-tuning,
and (c) retrieval-augmented generation. These strategies
can be used separately or in combination.

certain groups based on their demographic charac- 233

teristics or other attributes (Liu et al., 2024). Such 234

bias can arise from various sources, including the 235

source of bias coming from the pre-training step, 236

model architecture, as well as the societal and his- 237

torical context in which the models are developed 238

and deployed (Hegselmann et al., 2023). To detect 239

and measure this bias, we conduct evaluations from 240

two perspectives: model utility and fairness. 241

3.1.1 Model Utility 242

We evaluate the model using accuracy and F1 score. 243

Accuracy measures overall performance across sub- 244

groups, while F1, the harmonic mean of precision 245

and recall, accounts for imbalances in the datasets. 246

3.1.2 Fairness Definition 247

We assess fairness using statistical parity and equal 248

opportunity. Statistical Parity Ratio (SPR) ensures 249

that the probability of a positive outcome is similar 250

across different demographic groups (Garg et al., 251

2020). The formula is as follows: 252

SPR =
P (Ŷ = 1 | A = 1)

P (Ŷ = 1 | A = 0)

where Ŷ is the predicted outcome, and A is the de- 253

mographic attribute. Statistical parity requires that 254

the probability of a positive outcome is the same 255

across different demographic groups. This met- 256

ric highlights the relative difference in outcomes, 257

showing how much more likely one group is to 258

receive a positive outcome than the other. When 259

the SPR is less than 1, it suggests potential bias 260

against the demographic A = 1. On the other 261
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hand, when the SPR is greater than 1, it suggests262

potential bias against the demographic A = 0.263

Further, the Equal Opportunity Ratio (EOR) en-
sures that individuals who qualify for a positive
outcome have an equal chance of being correctly
identified by the model, regardless of their demo-
graphic group (Garg et al., 2020). The formula is
as follows:

EOR =
P (Ŷ = 1 | Y = 1, A = 1)

P (Ŷ = 1 | Y = 1, A = 0)

where Ŷ is the predicted outcome, Y is the actual264

outcome, and A is the demographic attribute. Equal265

opportunity requires that individuals from differ-266

ent demographic groups who qualify for a positive267

outcome (i.e., Y = 1) should have an equal proba-268

bility of being assigned a positive outcome by the269

model. This metric highlights the relative differ-270

ence in true positive rates, showing how often the271

protected group is more likely to have a true pos-272

itive prediction than the unprotected group. Both273

SPR and EOR, being close to their ideal values274

(i.e., 1), are indicators of a fair model with respect275

to the specified fairness criteria.276

3.2 Framework for Bias Mitigation in LLMs277

3.2.1 Serialisation, Prompt Templates and278

In-context Learning279

Tabular data is organised into rows and columns,280

where each column represents a feature and each281

row corresponds to an instance. Transforming this282

structured data into a format suitable for LLMs in-283

volves either flattening the data into sequences by284

concatenating all features of each instance (row-285

wise) or using embeddings for both categorical and286

continuous features. Building on previous studies287

on LLMs for tabular data classification (Hegsel-288

mann et al., 2023; Slack and Singh, 2023), we for-289

mat the feature names and values into strings in the290

format “f1 : x1, . . . , fk : xk,” where f represents291

the feature names and x represents the correspond-292

ing values. After that, we propose three few-shot293

prompt strategies, each using n examples extracted294

from the training dataset, where n can be any num-295

ber depending on the specific case; This study fo-296

cuses on scenarios with limited or no training data,297

where LLMs perform well by utilising their knowl-298

edge for classification (Slack and Singh, 2023).299

In this research, we use a ten-shot approach as an300

example, with three prompt strategies: 1. Unaware-301

ness: Sensitive or protected attributes are removed302

from in-context learning. 2. Counterfactual: Sen- 303

sitive attributes are altered to evaluate and adjust 304

model predictions for fairness. 3. Equal Samples 305

Across Demographics: An equal number of sam- 306

ples from each demographic group is ensured. The 307

example template is provided in Appendix A. 308

3.2.2 Fine-Tuning and RAG 309

We fine-tune on the entire training set to assess its 310

impact on reducing biases in LLMs. For the Ope- 311

nAI model, we utilise the publicly available API 312

from OpenAI for fine-tuning (OpenAI, 2024a). For 313

open-source models, we employ Low-Rank Adap- 314

tation (LoRA) fine-tuning. LoRA assumes weight 315

matrices in the form of low-rank factors, signifi- 316

cantly reducing the number of trainable parameters 317

and the computational resources required for fine- 318

tuning (Hu et al., 2021). The data format and pa- 319

rameters for fine-tuning are shown in Appendix B. 320

On the other hand, RAG operates on the principle 321

that while LLMs are designed to be versatile and 322

capable of generating a wide range of responses, 323

they can be significantly enhanced by embedding 324

relevant context within the prompts, thereby direct- 325

ing the LLMs towards domain-specific responses 326

(Fang et al., 2024). This approach improves accu- 327

racy and relevance by incorporating external knowl- 328

edge sources. Specifically, the studies in the Re- 329

lated Work Section on fairness and bias using LLM 330

for tabular data classification can be classified as 331

RAG systems for our research. 332

3.3 Enhancing Fairness with Prompting 333

Strategies 334

We introduce three instruction-based prompting 335

designed to enhance the fairness of LLMs. These 336

strategies, which can be used alongside in-context 337

learning, aim to improve both fairness and model 338

performance. Below, we detail the three strategies, 339

including exemplar prompts and their integration 340

into the LLMs, as illustrated in Figure 2: 341

• Fair Prompting. We hypothesise that explic- 342

itly instructing the LLMs to consider fairness 343

can enhance its ability to make equitable predic- 344

tions (Gallegos et al., 2024). To achieve this goal, 345

we propose employing instruction-based prompt- 346

ing by adding the phrase “Ensure fairness for 347

demographic features, such as gender” to the 348

prompt input. This instruction aims to guide the 349

LLM to incorporate fairness considerations into 350

its decision-making process. 351
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• Generalised Prompting. We also hypothesise352

that fairness can be achieved by providing clear353

definitions and instructions. To facilitate this, we354

propose a method called Generalised Prompting.355

This involves appending specific instructions to356

the prompt input to guide the model towards fair-357

ness. For instance, to achieve both Demographic358

Parity and Equal Opportunity, we add the instruc-359

tion: “Ensure that the probability of predicting360

an income above $50K is equal for both males361

and females, and that the probability of correctly362

predicting an income above $50K is equal for363

both males and females who actually earn above364

$50K”. This instruction is designed to guide the365

LLM towards making balanced and fair predic-366

tions across gender groups.367

• Descriptive Prompting. We assume that ex-368

plicitly detailing the fairness criteria can help in369

achieving fairness. We propose using instruction-370

based prompting by appending detailed descrip-371

tions to the prompt input. For instance, to achieve372

both Demographic Parity and Equal Opportunity,373

we add the instruction: “Demographic Parity en-374

sures that predictions do not favour one group375

over another based on attributes like gender or376

race. Ensure that the probability of predicting377

an income above $50K is equal for males and fe-378

males. Equal Opportunity ensures equal chances379

of correct classification for positive outcomes380

across groups. Ensure that the probability of cor-381

rectly classifying individuals earning more than382

$50K is the same for males and females”. This383

instruction provides a clear directive to the LLM384

to maintain fairness in its classifications.385

These prompting strategies are appended to the386

input text before classification. For instance, if387

the original input for a tabular data prediction task388

includes demographic and feature values, the corre-389

sponding fairness instruction is added as part of the390

prompt. This ensures that the model processes both391

the input data and the fairness directive together,392

influencing the generation of predictions.393

4 Experiments394

4.1 Dataset395

We use four recognised datasets typically employed396

to assess fairness in traditional machine learning397

models to explore the fairness of LLMs in clas-398

sifying tabular data: Adult Income (Adult) (Ko-399

havi et al., 1996), Correctional Offender Manage-400

Figure 2: Overview of fair prompting, generalised
prompting, and descriptive prompting, we use these
to mitigate bias in LLMs for tabular data classification.

ment Profiling for Alternative Sanctions (COM- 401

PAS) (Angwin et al., 2022), Diabetes (Strack et al., 402

2014), and Student Performance (Student) (Cortez 403

and Silva, 2008). The Adult dataset predicts 404

whether an individual’s income exceeds $50,000 405

based on demographic features. The COMPAS 406

dataset assesses recidivism risk, focusing on race 407

as a protected attribute. The Diabetes dataset pre- 408

dicts 30-day hospital readmissions, using gender as 409

the protected attribute. Lastly, the Student Perfor- 410

mance dataset predicts final-year grades, with sex 411

as the protected attribute. Due to the time and cost 412

constraints associated with LLMs, we randomly 413

selected 1,000 samples from each dataset as the 414

test set for experiments if 20% of the dataset ex- 415

ceeded 1,000 samples; otherwise, we used 20% of 416

the dataset as the test set. Table 1 provides a sum- 417

mary of these datasets, highlighting their features 418

and classification tasks. 419

Dataset Features Label

Adult Work class, hours per
week, sex, age, occupa-
tion, capital loss, educa-
tion, capital gain, marital
status, relationship.

Income:
≤ 50k or
>50k

COMPAS Sex, race, age, charge de-
gree, priors count, risk.

Two-year
recidivism
(yes/no)

Diabetes Excludes weight, payer
code, medical specialty
features due to missing
data.

30-day read-
missions
(yes/no)

Student
Perfor-
mance

Includes features on
demographic, academic,
and social factors.

Grade: Low
(<10) or High
(≥10)

Table 1: Summary of Datasets, Features, and Labels

4.2 Baselines 420

Establishing a baseline is essential for comparing 421

bias mitigation strategies. Previous studies have 422
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shown that users can provide instructions to LLMs423

to achieve strong performance on tabular datasets424

without additional data collection (Slack and Singh,425

2023). In this study, we use a zero-shot setting as426

the baseline to evaluate LLM performance with-427

out fairness interventions, focusing on their natural428

strengths and weaknesses in handling tabular data.429

4.3 Models and Setting430

The selection criteria for the evaluated LLMs in-431

clude accessibility, a balance between open-source432

and proprietary solutions, support for tabular data433

tasks, and suitability for computationally intensive434

experiments or methods requiring advanced rea-435

soning. There are numerous LLMs available, in-436

cluding both open-source models and proprietary437

models. Open-source models, like Llama (Meta,438

2024) and Gemma (Google, 2024), are publicly439

available and customisable but may lack produc-440

tion optimisation and long-term maintenance. In441

contrast, proprietary models, such as OpenAI mod-442

els (Achiam et al., 2023), are optimised for pro-443

duction but are not publicly accessible, customis-444

able, or free, requiring trust in the model owner445

for data privacy and responsible AI use. We use446

GPT-4o as our default LLM and evaluate three447

other LLMs (GPT-3.5-Turbo, Meta-Llama-3-8B,448

and Gemma-2) to balance open-source and propri-449

etary models. For all baselines, we set the model450

temperature to 0. The experiments are conducted451

on a server equipped with an A40 GPU, boasting452

50 GB of memory. Our code and dataset are avail-453

able at https://anonymous.4open.science/r/454

fairllm-AC4D/.455

5 Results456

5.1 Bias Introduction in Tabular Data457

Classification LLMs458

To assess LLM fairness in tabular classification,459

we conducted zero-shot experiments, evaluating460

fairness metrics without in-context learning or fine-461

tuning. Each experiment was repeated five times462

to account for variability, with mean and standard463

deviation calculated for robustness.464

Figure 3 demonstrates the disparities in predic-465

tion metrics for various subgroups across different466

datasets when utilising LLMs for tabular data clas-467

sification. We use the fifth (last) experiment as468

an example to plot the figure. Each subplot de-469

picts the performance of the model across different470

metrics (Accuracy (ACC), Positive Rate (PR), Neg-471

Figure 3: Disparities in Prediction Metrics Across De-
mographics using LLMs for Tabular Data. Subplots
show metrics (Accuracy (ACC), Positive Rate (PR),
Negative Rate (NR), True Positive Rate (TPR), True
Negative Rate (TNR)) for demographic groups in the
datasets (Adult, COMPAS, Diabetes, Student). Discrep-
ancies highlight bias and fairness issues. Overlapping
dots in the Student dataset indicate identical True Nega-
tive Rate (TNR) for male and female students.

ative Rate (NR), True Positive Rate (TPR), and 472

True Negative Rate (TNR)) for specified demo- 473

graphic groups. For instance, the Adult dataset 474

compares performance metrics between male and 475

female groups, whereas the COMPAS dataset com- 476

pares white and black groups. The subplots reveal 477

noticeable discrepancies in model performance be- 478

tween these groups. Specifically, significant varia- 479

tions can be seen in metrics such as PR and TPR, 480

indicating potential bias in the LLM’s predictions. 481

Such differences suggest that the model may favour 482

certain subgroups over others, leading to unfair and 483

biased outcomes. This highlights the problem of 484

fairness in LLM-based tabular data classification. 485

The evidence shows that LLMs inherit social biases 486

from their pretraining data and use these biases in 487

classifying tabular data, resulting in potentially un- 488

fair outcomes. This highlights the importance of 489

developing strategies to mitigate bias and ensure eq- 490

uitable performance across all demographic groups. 491

Appendix C, Table 6, provides the fairness evalu- 492

ation of LLMs across four datasets in a zero-shot 493

setting. 494

5.2 In-context Learning 495

To evaluate the effectiveness of in-context learn- 496

ing for improving fairness, we provide LLMs with 497
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few-shot examples, followed by a test example and498

task description to guide predictions, a method we499

refer to as the foundation approach. As detailed in500

the Serialisation, Prompt Templates and In-context501

Learning, the few-shot examples are positioned be-502

fore the test example in the prompt. We use ten503

randomly selected in-context examples from each504

dataset’s training set. Next, we examine the impact505

of in-context learning on fairness metrics. Table 2506

demonstrate that incorporating few-shot examples507

improves accuracy and F1 scores across the four508

datasets using GPT-4o, indicating that LLMs can509

effectively learn input-label mappings within the510

provided context. More details for other LLMs are511

included in Appendix C, Tables 7, 8, 9, and 10.512

Results show that combining few-shot examples513

with bias mitigation strategies, such as the “Equal514

Samples Across Demographics” approach, reduces515

fairness metric gaps between subgroups, particu-516

larly in the Adult and COMPAS datasets. However,517

these improvements are limited for the Diabetes518

and Student datasets, where metrics such as SPR519

and EOR remain far from 1. Additionally, standard520

deviations in these experiments are higher than the521

baseline, indicating variability in outcomes. While522

in-context learning paired with targeted bias miti-523

gation strategies demonstrates some potential for524

enhancing fairness, finding a universal strategy that525

consistently balances accuracy and fairness across526

datasets remains a challenge. Further exploration527

is necessary to refine these methods for broader528

applicability.529

5.3 Fine-tune and RAG530

We present the results of fine-tuning different mod-531

els in Appendix C, Table 11. Due to GPT-4 lack532

of support for fine-tuning (OpenAI, 2024a), we533

focused on fine-tuning the GPT-3.5, Llama3, and534

Gemma-2 models. Our results indicate that fine-535

tuning these models leads to improvements in both536

accuracy and F1 scores. However, the improve-537

ment in fairness metrics remains limited. In addi-538

tion, we utilised RAG with a dataset comprising539

articles from Related Work (i.e., there are 29 arti-540

cles). Specifically, we employed OpenAI’s embed-541

ding methods (OpenAI, 2024b) for generating high-542

quality vector representations of the texts. The re-543

sults, detailed in Appendix C, Table 12, show that544

while RAG led to slight improvements in accuracy545

and F1 scores, the enhancement in fairness metrics546

was moderate compared to the in-context learning547

strategy employing the “Equal Samples Across De-548

Dataset Type Acc F1 SPR EOR

Adult

F 0.8185 0.6592 1.6572 1.0690
(0.0154) (0.0122) (0.1322) (0.0163)

U 0.8631 0.7157 1.6047 1.0829
(0.0040) (0.0370) (0.1151) (0.1014)

E 0.8769 0.7290 1.5944 1.0773
(0.0120) (0.0444) (0.1467) (0.1009)

C 0.8442 0.6916 1.6250 1.0934
(0.0193) (0.0269) (0.1075) (0.0928)

COMPAS

F 0.6973 0.6911 1.5110 1.2437
(0.0069) (0.0045) (0.0605) (0.0580)

U 0.6925 0.6787 1.5542 1.4056
(0.0098) (0.0094) (0.0541) (0.1060)

E 0.7091 0.7041 1.4672 1.2012
(0.0078) (0.0043) (0.0864) (0.0720)

C 0.6615 0.5498 2.5961 2.0500
(0.0020) (0.0037) (0.0368) (0.0233)

Diabetes

E 0.6822 0.6809 1.4195 1.1988
(0.0384) (0.0262) (0.2408) (0.1359)

U 0.6849 0.6849 1.4496 1.2351
(0.0390) (0.0266) (0.2456) (0.1360)

E 0.6917 0.6967 1.5123 1.3111
(0.0406) (0.0231) (0.2404) (0.1428)

C 0.6887 0.6904 1.4804 1.2686
(0.0393) (0.0246) (0.2498) (0.1429)

Student

B 0.8414 0.8947 0.8688 0.8153
(0.0246) (0.0170) (0.2245) (0.1920)

U 0.8463 0.8988 0.8412 0.7793
(0.0228) (0.0194) (0.2331) (0.1916)

E 0.8492 0.9039 0.8568 0.8202
(0.0231) (0.0177) (0.2267) (0.1878)

C 0.8407 0.8969 0.8058 0.7352
(0.0234) (0.0188) (0.2538) (0.1954)

Table 2: Fairness evaluation of in-context learning for
GPT-4o across datasets. Metrics include accuracy (Acc),
F1 score (F1), statistical parity ratio (SPR), and equality
of opportunity ratio (EOR). F: Foundation, U: Unaware-
ness, E: Equal Samples, C: Counterfactual. Best perfor-
mances are highlighted in bold, with standard deviations
presented below the mean.

mographics” approach. This indicates that while 549

RAG can enhance performance, its impact on fair- 550

ness is less pronounced than targeted in-context 551

learning methods. 552

5.4 Enhancing Fairness with Prompting 553

Strategies 554

The evaluation of fairness metrics for four prompt- 555

ing strategies, including Fair, Generalised, Descrip- 556

tive, and Descriptive combined with in-context 557

learning through Equal Samples Across Demo- 558

graphics (ESAD), applied to four datasets using 559

GPT-4o is presented in Table 3. Detailed results 560

for other LLMs are provided in Appendix C in 561

Tables 13, 14, 15, and 16. 562

From the results, we observe that the Descriptive 563

+ ESAD (i.e. D + E in Table 3) strategy consis- 564

tently improves fairness across datasets, demon- 565
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strating a clear advantage over standalone Descrip-566

tive prompting. Specifically, for the Adult and567

COMPAS datasets, employing D + E strategy leads568

to significant improvements in metrics such as SPR569

and EOR, with values closer to the fairness ideal570

of 1. These results substantiate the hypothesis that571

combining descriptive fairness instructions with in-572

context learning can guide the LLM to make more573

balanced predictions. While the impact of ESAD574

is more pronounced in Adult and COMPAS, the575

Diabetes dataset shows minimal variation in met-576

ric values across strategies, likely due to inherent577

dataset characteristics that make it less sensitive to578

fairness interventions. In the Student dataset, met-579

rics like SPR and EOR exhibit the least discrepancy,580

with stable values across strategies.581

These findings underline the effectiveness of de-582

scriptive prompting enhanced with in-context learn-583

ing in addressing fairness concerns in LLMs. The584

D + E strategy not only brings fairness metrics585

like SPR and EOR closer to the ideal value of 1586

but also achieves accuracy improvements ranging587

from 3.27% to 15.05% across datasets. Importantly,588

this approach highlights the adaptability of LLMs589

when fairness definitions are explicitly integrated590

into input prompts.591

Overall, while these results are promising, it is592

important to acknowledge that bias in LLMs can-593

not be fully mitigated for tabular data classification594

task. However, through thoughtful in-context learn-595

ing and designed prompting strategies, bias can be596

significantly reduced, and fairness can be improved.597

The findings from these experiments highlight the598

potential of combining descriptive prompts with599

in-context learning as a powerful tool in the on-600

going effort to create more equitable AI systems.601

This approach not only advances fairness in model602

predictions but also contributes to the broader goal603

of mitigating bias in AI, thereby fostering more604

responsible and ethical AI development.605

6 Conclusion606

This study evaluates several methods to improve607

fairness in LLM predictions for tabular datasets.608

In-context learning offers a simple approach to609

incorporate fairness without retraining, though its610

effectiveness depends on selecting suitable exam-611

ples, making it less reliable for complex fairness612

challenges. Fine-tuning allows direct adjustment613

of model parameters to enhance fairness and per-614

formance but requires substantial computational615

Dataset Type Acc F1 SPR EOR

Adult

F 0.8209 0.6681 1.5836 1.2442
(0.0087) (0.0076) (0.0367) (0.0200)

G 0.8296 0.6634 1.5778 1.1719
(0.0156) (0.0072) (0.0337) (0.0329)

D 0.8202 0.6729 1.5820 1.1816
(0.0082) (0.0122) (0.0182) (0.0467)

D + E 0.9124 0.8206 1.3792 1.1444
(0.0103) (0.0084) (0.0362) (0.0408)

COMPAS

F 0.6980 0.6858 1.2810 1.0606
(0.0070) (0.0091) (0.0767) (0.0872)

G 0.7091 0.7227 1.2093 1.0603
(0.0073) (0.0082) (0.1012) (0.0797)

D 0.7052 0.7245 1.1828 1.0078
(0.0028) (0.0060) (0.0645) (0.0628)

D + E 0.7108 0.7336 1.1773 0.9427
(0.0076) (0.0032) (0.0505) (0.0939)

Diabetes

F 0.6074 0.6339 1.2404 1.0804
(0.0051) (0.0065) (0.0896) (0.0527)

G 0.6146 0.6374 1.1964 1.1189
(0.0054) (0.0055) (0.0726) (0.0730)

D 0.6169 0.6490 1.2018 1.0965
(0.0039) (0.0063) (0.0971) (0.0607)

D + E 0.6239 0.6621 1.1479 1.0995
(0.0082) (0.0095) (0.1208) (0.0663)

Student

F 0.8078 0.8841 0.8714 1.2834
(0.0063) (0.0042) (0.0044) (0.0528)

G 0.8113 0.8882 0.8750 1.3292
(0.0063) (0.0052) (0.0049) (0.0595)

D 0.8163 0.8932 0.8800 1.3824
(0.0079) (0.0065) (0.0066) (0.0763)

D + E 0.8191 0.8982 0.8847 1.4222
(0.0104) (0.0085) (0.0068) (0.0954)

Table 3: Fairness evaluation for GPT-4o across datasets
and different prompt strategies. Metrics include accu-
racy (Acc), F1 score (F1), statistical parity ratio (SPR),
and equality of opportunity ratio (EOR). F: Fair Prompt-
ing, G: Generalised Prompting, D: Descriptive Prompt-
ing, D + E: Descriptive Prompting + Equal Samples
Across Demographics. Best performance is in bold,
with standard deviations shown below the mean.

resources and careful hyperparameter tuning. RAG 616

integrates external knowledge to guide predictions, 617

providing flexibility in addressing fairness issues. 618

However, its success hinges on the quality of 619

the retrieval process and additional infrastructure 620

needs. In this study, we propose instruction-based 621

prompting, which proves to be most effective 622

when combined with in-context learning strategies 623

such as ESAD. This approach improves fairness 624

metrics such as SPR and EOR while achieving ac- 625

curacy gains across datasets. While these methods 626

show promise, fully addressing biases in LLMs re- 627

mains a challenge. Future research should explore 628

centralized training mechanisms or counting pro- 629

cedures to ensure that improved individual predic- 630

tions translate into group-level fairness outcomes 631

in alignment with defined metrics. 632
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Limitations633

This study highlights effective ways to reduce bi-634

ases in LLM predictions for tabular data, but sev-635

eral challenges remain. Fully eliminating bias is636

difficult because LLMs are pre-trained on large637

datasets that often contain underlying inequalities.638

While the proposed prompting and in-context learn-639

ing strategies improve fairness measures like SPR640

and EOR, they may not work equally well for all641

datasets, especially those with complex fairness642

issues. Additionally, the assumption that better643

individual predictions automatically lead to fair-644

ness at a group level may not always hold true,645

as there is no centralised process to ensure fair-646

ness across groups. These methods also depend647

on the quality of the examples and fairness defini-648

tions provided, which can limit their effectiveness649

in real-world applications. Future research should650

address these limitations by identifying specific651

cases where these methods fall short and exploring652

additional solutions.653

Ethical Considerations654

This research uses demographic attributes like gen-655

der and race solely to assess and improve fairness656

in LLMs, aiming to identify and mitigate biases657

that could lead to discriminatory outcomes. These658

attributes are used only to evaluate fairness metrics659

such as Statistical Parity and Equal Opportunity,660

ensuring responsible handling of sensitive informa-661

tion. Publicly available datasets were used, adher-662

ing to ethical guidelines, with the goal of promoting663

equitable AI systems.664
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Appendix870

A Prompt Templates for In-context871

Learning872

Unawareness Example

Given the following individual’s profile details, predict
if their salary is over $50,000.

ONLY respond with ’yes’ or ’no’.

Example: Age: 52, Education: Doctorate, Occupation:
Prof-specialty, Capital Gain: 15000, Capital Loss: 0,
Hours per Week: 50. The answer is yes.

873

Counterfactual Example

Given the following individual’s profile details, predict
if their salary is over $50,000.

ONLY respond with ’yes’ or ’no’.

Example: Age: 40, Education: Masters, Occupation:
Tech-support, Hours per Week: 45, Sex: Male. The
answer is no.

874

Equal Samples Across Demographics Example

Given the following individuals’ profile details, predict
if their salary is over $50,000. ONLY respond with ’yes’

or ’no’.

Example 1: Age: 29 Education: Bachelors Occupation:
Admin-clerical Hours per Week: 40 Sex: Male. The
answer is no.

Example 2: Age: 29 Education: Bachelors Occupation:
Admin-clerical Hours per Week: 40 Sex: Female. The
answer is no.

875

B Fine-Tuning 876

We used 1,000 samples as the test set when 20% 877

of the dataset exceeded 1,000 samples; otherwise, 878

20% was used. For fine-tuning, the training set was 879

further split 80:20 for training and evaluation. An 880

example data format is shown below: 881

ID Question Answer
1 Age: 31 Workclass:Federal-gov ... 0
2 Age: 31 Workclass:Private ... 1
3 Age: 45 Workclass:Private ... 0
4 Age: 31 Workclass:Private ... 0

Table 4: The format of data for fine-tuning

Category Details

General

Warmup Steps: 0
Batch Size per Device: 2
Gradient Accumulation Steps: 1
Gradient Checkpointing: Enabled
Maximum Steps: 500
Learning Rate: 1e-5 (suitable for fine-
tuning)
BF16: Enabled
Optimiser: paged_adamw_8bit

Logging

Logging Steps: 25 (reporting loss interval)
Logging Directory: ./logs
Save Strategy: Save checkpoints at logging
steps
Save Steps: 100
Evaluation Strategy: Evaluate at logging
steps
Evaluation Steps: 100
Do Evaluation: Perform at the end of train-
ing
Report to: tensorboard (optional tracking)
Run Name: Combines run name and cur-
rent date/time

Data Collator Tokeniser: No masked language modelling
(mlm=False)

Configuration Use Cache: Disabled to silence warnings

Table 5: Training and evaluation configurations for fine-
tuning. The table outlines general settings, logging and
saving configurations, data collator settings, and model
configurations.
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C Fairness Evaluation882

Data Metric GPT-4o GPT-3.5 Llama-3 Gemma-2

Adult

Acc 0.7931 0.7180 0.6600 0.7063
(0.0131) (0.0200) (0.0196) (0.0181)

F1 0.6275 0.5801 0.5478 0.5767
(0.0216) (0.0238) (0.0174) (0.0067)

SPR 1.7617 2.3131 1.2330 1.8147
(0.1620) (0.4047) (0.0542) (0.1410)

EOR 1.3900 1.3458 1.1106 1.1382
(0.1678) (0.2540) (0.0170) (0.0844)

COMPAS

Acc 0.6623 0.6101 0.5978 0.6042
(0.0072) (0.0050) (0.0112) (0.0198)

F1 0.5601 0.6470 0.6614 0.5328
(0.0088) (0.0096) (0.0130) (0.0249)

SPR 2.8726 2.6732 1.5263 1.9018
(0.3612) (0.1517) (0.0361) (0.0977)

EOR 2.4246 1.9533 1.1503 1.5084
(0.2581) (0.1380) (0.0178) (0.1211)

Diabetes

Acc 0.5707 0.5046 0.4866 0.4892
(0.0220) (0.0045) (0.0126) (0.0087)

F1 0.5896 0.0118 0.6002 0.6350
(0.0239) (0.0041) (0.0070) (0.0187)

SPR 0.9925 0.9401 0.9235 0.9469
(0.0153) (0.0183) (0.0227) (0.0274)

EOR 0.9678 0.9565 0.9667 0.9601
(0.0129) (0.3385) (0.0279) (0.0155)

Student

Acc 0.8358 0.7908 0.8600 0.8588
(0.0259) (0.0220) (0.0436) (0.0376)

F1 0.8927 0.8577 0.9235 0.9206
(0.0186) (0.0150) (0.0261) (0.0218)

SPR 0.8972 0.9590 0.9836 0.9996
(0.2329) (0.1506) (0.0247) (0.0575)

EOR 0.8506 0.9965 1.0060 1.0240
(0.1834) (0.0831) (0.0575) (0.0576)

Table 6: Fairness evaluation across datasets. Metrics
include accuracy (Acc), F1 score, statistical parity ratio
(SPR), and equality of opportunity ratio (EOR).

Model Type Acc F1 SPR EOR

GPT-3.5 F 0.7697 0.5874 1.9836 1.3037
(0.0079) (0.0075) (0.1263) (0.0837)

U 0.7879 0.6032 0.4290 0.6877
(0.0053) (0.0069) (0.0727) (0.0640)

E 0.7893 0.6265 2.0226 1.2567
(0.0054) (0.0057) (0.1218) (0.0475)

C 0.7567 0.6283 2.5463 1.2766
(0.0042) (0.0063) (0.0669) (0.0498)

Llama-3 F 0.6170 0.5623 1.8415 1.1953
(0.0065) (0.0084) (0.0744) (0.0753)

U 0.6449 0.5876 1.9572 1.2930
(0.0094) (0.0108) (0.0682) (0.0853)

E 0.6513 0.5452 1.2890 1.2428
(0.0119) (0.0108) (0.0678) (0.0911)

C 0.6466 0.5487 1.4667 1.2633
(0.0205) (0.0080) (0.1338) (0.1132)

Gemma-2 F 0.7171 0.5874 1.4658 1.2779
(0.0151) (0.0082) (0.0958) (0.0945)

U 0.6606 0.5750 1.5492 1.4366
(0.0118) (0.0057) (0.0705) (0.0699)

E 0.6569 0.5687 1.3985 1.4435
(0.0135) (0.0138) (0.0366) (0.0742)

C 0.6712 0.5777 1.7938 1.2818
(0.0097) (0.0107) (0.1073) (0.0631)

Table 7: Fairness evaluation for in-context learning on
the Adult dataset. Metrics evaluated are accuracy (Acc),
F1 score (F1), statistical parity ratio (SPR), and equal-
ity of opportunity ratio (EOR). Standard deviations are
displayed below the mean. Types: F (Foundation), U
(Unawareness), E (Equal Samples Across Demograph-
ics), C (Counterfactual).
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Model Type Acc F1 SPR EOR

GPT-3.5 F 0.6399 0.6239 1.9073 1.7210
(0.0055) (0.0096) (0.0854) (0.0887)

U 0.6316 0.6364 1.8991 1.6056
(0.0072) (0.0091) (0.0715) (0.0506)

E 0.6511 0.5400 1.6130 1.3242
(0.0069) (0.0072) (0.0917) (0.1252)

C 0.6338 0.5386 1.6240 1.3122
(0.0074) (0.0065) (0.0581) (0.0691)

Llama-3 F 0.6253 0.6854 1.5334 1.6107
(0.0120) (0.0073) (0.0656) (0.0816)

U 0.6266 0.6869 1.6377 1.5910
(0.0082) (0.0070) (0.1313) (0.0976)

E 0.6322 0.6865 1.5586 1.6391
(0.0075) (0.0054) (0.0713) (0.1215)

C 0.6317 0.6938 1.6348 1.5942
(0.0080) (0.0065) (0.1236) (0.0989)

Gemma-2 F 0.6097 0.5543 1.8808 1.5162
(0.0039) (0.0096) (0.0960) (0.1026)

U 0.6157 0.5535 1.8876 1.5591
(0.0044) (0.0079) (0.0958) (0.1319)

E 0.6240 0.5510 1.8152 1.4852
(0.0098) (0.0053) (0.0443) (0.1055)

C 0.6382 0.6098 1.9162 1.6313
(0.0124) (0.0347) (0.1106) (0.1412)

Table 8: Fairness evaluation for in-context learning on
the COMPAS dataset. Metrics evaluated include accu-
racy (Acc), F1 score (F1), statistical parity ratio (SPR),
and equality of opportunity ratio (EOR). Standard de-
viations are shown below the mean. Types: F (Foun-
dation), U (Unawareness), E (Equal Samples Across
Demographics), and C (Counterfactual).

Model Type Acc F1 SPR EOR

GPT-3.5 F 0.5114 0.0160 0.9818 0.9758
(0.0063) (0.0044) (0.0313) (0.3371)

U 0.5191 0.0221 1.0253 1.0064
(0.0096) (0.0055) (0.0245) (0.3208)

E 0.5235 0.0264 1.0513 1.0508
(0.0110) (0.0058) (0.0263) (0.3055)

C 0.5290 0.0300 1.0846 1.1009
(0.0108) (0.0082) (0.0417) (0.3111)

Llama-3 F 0.5097 0.0163 0.9743 1.0001
(0.0064) (0.0073) (0.0208) (0.3513)

U 0.5142 0.0205 1.0146 1.0216
(0.0075) (0.0062) (0.0390) (0.3696)

E 0.5219 0.0293 1.0872 1.0789
(0.0093) (0.0077) (0.0668) (0.3574)

C 0.5187 0.0269 1.0485 1.0464
(0.0078) (0.0073) (0.0494) (0.3611)

Gemma-2 F 0.5097 0.0163 0.9743 1.0001
(0.0064) (0.0073) (0.0208) (0.3513)

U 0.5127 0.0204 1.0186 1.0421
(0.0065) (0.0082) (0.0212) (0.3432)

E 0.5221 0.0298 1.0935 1.1074
(0.0070) (0.0099) (0.0188) (0.3343)

C 0.5162 0.0254 1.0661 1.0741
(0.0076) (0.0091) (0.0207) (0.3298)

Table 9: Fairness evaluation for in-context learning on
the Diabetes dataset. Metrics evaluated include accuracy
(Acc), F1 score (F1), statistical parity ratio (SPR), and
equality of opportunity ratio (EOR). Standard deviations
are shown below the mean. Types: F (Foundation), U
(Unawareness), E (Equal Samples Across Demograph-
ics), and C (Counterfactual).
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Model Type Acc F1 SPR EOR

GPT-3.5 F 0.7943 0.8625 0.9413 0.9729
(0.0213) (0.0148) (0.1427) (0.0873)

U 0.8006 0.8662 0.9115 0.9458
(0.0219) (0.0156) (0.1432) (0.0807)

E 0.8050 0.8692 0.8803 0.9013
(0.0240) (0.0156) (0.1535) (0.0760)

C 0.8050 0.8692 0.8803 0.9013
(0.0240) (0.0156) (0.1535) (0.0760)

Llama-3 F 0.8631 0.9288 0.9698 0.9637
(0.0438) (0.0255) (0.0234) (0.0728)

U 0.8661 0.9317 0.9412 0.9321
(0.0415) (0.0243) (0.0309) (0.0673)

E 0.8727 0.9374 0.9173 0.9106
(0.0414) (0.0240) (0.0436) (0.0573)

C 0.8652 0.9317 0.8576 0.8596
(0.0416) (0.0238) (0.0630) (0.0728)

Gemma-2 F 0.8621 0.9254 0.9678 0.9812
(0.0386) (0.0226) (0.0649) (0.0454)

U 0.8667 0.9313 0.8689 0.8703
(0.0395) (0.0210) (0.0796) (0.0702)

E 0.8761 0.9391 0.9251 0.9378
(0.0394) (0.0245) (0.0690) (0.0566)

C 0.8703 0.9364 0.9023 0.9147
(0.0391) (0.0228) (0.0785) (0.0609)

Table 10: Fairness evaluation for in-context learning on
the Student dataset. Metrics evaluated include accuracy
(Acc), F1 score (F1), statistical parity ratio (SPR), and
equality of opportunity ratio (EOR). Standard deviations
are shown below the mean. Types: F (Foundation), U
(Unawareness), E (Equal Samples Across Demograph-
ics), and C (Counterfactual).

Dataset Model Acc F1 SPR EOR

Adult
GPT-3.5 0.7180 0.5801 2.3131 1.3458

(0.0200) (0.0238) (0.4047) (0.2540)
Llama-3 0.6600 0.5478 1.2330 1.1106

(0.0196) (0.0174) (0.0542) (0.0170)
Gemma-2 0.7063 0.5767 1.8147 1.1382

(0.0181) (0.0067) (0.1410) (0.0844)

COMPAS
GPT-3.5 0.6116 0.6458 2.7982 2.1265

(0.0029) (0.0021) (0.0195) (0.0084)
Llama-3 0.6115 0.6449 2.8073 2.1417

(0.0021) (0.0022) (0.0344) (0.0231)
Gemma-2 0.6103 0.6479 2.7963 2.1365

(0.0032) (0.0007) (0.0182) (0.0054)

Diabetes
GPT-3.5 0.5086 0.0167 0.9953 1.5987

(0.0032) (0.0023) (0.0189) (0.0313)
Llama-3 0.5025 0.6458 1.0050 0.9901

(0.0044) (0.0025) (0.0253) (0.0310)
Gemma-2 0.5013 0.6497 1.0042 0.9860

(0.0040) (0.0021) (0.0274) (0.0182)

Student
GPT-3.5 0.7906 0.8759 0.8548 0.9194

(0.0058) (0.0058) (0.0371) (0.0564)
Llama-3 0.8200 0.9114 1.0360 1.4869

(0.0066) (0.0082) (0.0233) (0.0658)
Gemma-2 0.8825 0.9299 1.1000 1.0924

(0.0045) (0.0067) (0.0450) (0.0280)

Table 11: Fairness evaluation for fine-tuning across
datasets. Metrics include accuracy (Acc), F1 score (F1),
statistical parity ratio (SPR), and equality of opportunity
ratio (EOR). The standard deviation is shown below the
mean value.
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Dataset Model Acc F1 SPR EOR

Adult

GPT-4o 0.8252 0.6682 1.5004 1.1650
(0.0115) (0.0130) (0.0833) (0.0886)

GPT-3.5 0.7188 0.6293 1.8903 1.1745
(0.0048) (0.0059) (0.0841) (0.0356)

Llama-3 0.7140 0.5950 1.1435 1.0003
(0.0092) (0.0104) (0.0558) (0.0762)

Gemma-2 0.6945 0.5915 1.0749 1.0506
(0.0046) (0.0062) (0.0727) (0.0237)

COMPAS

GPT-4o 0.6139 0.6458 2.8172 2.1308
(0.0019) (0.0026) (0.0275) (0.0127)

GPT-3.5 0.8252 0.6682 1.5004 1.1650
(0.0115) (0.0130) (0.0833) (0.0886)

Llama-3 0.6135 0.6443 2.8225 2.1465
(0.0021) (0.0017) (0.0217) (0.0285)

Gemma-2 0.6110 0.6475 2.7975 2.1155
(0.0026) (0.0014) (0.0178) (0.0161)

Diabetes

GPT-4o 0.5069 0.0183 0.9885 1.6049
(0.0052) (0.0014) (0.0203) (0.0368)

GPT-3.5 0.6059 0.6204 1.0307 1.0037
(0.0028) (0.0037) (0.0167) (0.0255)

Llama-3 0.5008 0.6469 0.9983 1.0142
(0.0030) (0.0030) (0.0304) (0.0250)

Gemma-2 0.4982 0.6463 1.0050 1.0106
(0.0025) (0.0034) (0.0210) (0.0181)

Student

GPT-4o 0.8358 0.8927 0.8972 0.8506
(0.0259) (0.0186) (0.2329) (0.1834)

GPT-3.5 0.7908 0.8577 0.9590 0.9965
(0.0220) (0.0150) (0.1506) (0.0831)

Llama-3 0.8600 0.9235 0.9836 1.0060
(0.0436) (0.0261) (0.0247) (0.0575)

Gemma-2 0.8588 0.9206 0.9996 1.0240
(0.0376) (0.0218) (0.0575) (0.0576)

Table 12: Fairness evaluation for RAG across datasets.
Metrics include accuracy (Acc), F1 score (F1), statisti-
cal parity ratio (SPR), and equality of opportunity ratio
(EOR). Standard deviations are shown below the mean
values.

Model Type Acc F1 SPR EOR

GPT-3.5 F 0.8346 0.5666 2.1110 1.5923
(0.0121) (0.0110) (0.0904) (0.0824)

G 0.7966 0.6331 2.0430 2.4656
(0.0042) (0.0095) (0.0739) (0.0622)

D 0.8256 0.5819 2.0433 1.5528
(0.0044) (0.0499) (0.0558) (0.0529)

D + E 0.8711 0.6852 1.9605 1.4166
(0.0042) (0.0058) (0.0359) (0.0415)

Llama-3 F 0.7032 0.5876 1.4483 1.2389
(0.0079) (0.0030) (0.0918) (0.0912)

G 0.7072 0.5951 1.4260 1.2288
(0.0095) (0.0048) (0.0816) (0.0974)

D 0.7014 0.5989 1.4140 1.2034
(0.0082) (0.0049) (0.0860) (0.0867)

D + E 0.7175 0.6064 1.4054 1.2597
(0.0125) (0.0069) (0.0887) (0.0993)

Gemma-2 F 0.6911 0.5762 1.4483 1.2389
(0.0073) (0.0119) (0.0534) (0.0648)

G 0.6951 0.5790 1.4483 1.2389
(0.0094) (0.0101) (0.0511) (0.0515)

D 0.6987 0.5835 1.4483 1.2389
(0.0098) (0.0090) (0.0536) (0.0570)

D + E 0.7025 0.5898 1.4483 1.2389
(0.0124) (0.0094) (0.0635) (0.0650)

Table 13: Fairness evaluation for different prompt strate-
gies on the Adult dataset. Metrics evaluated are accu-
racy (Acc), F1 score (F1), statistical parity ratio (SPR),
and equality of opportunity ratio (EOR). Standard de-
viations are displayed below the mean. Types: F (Fair
Prompting), G (Generalised Prompting), D (Descrip-
tive Prompting), D + E (Descriptive Prompting + Equal
Samples Across Demographics).
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Model Type Acc AUROC SPR EOR

GPT-3.5 F 0.6062 0.6563 2.7335 1.9775
(0.0038) (0.0051) (0.0522) (0.0641)

G 0.6108 0.6615 2.6718 1.9219
(0.0044) (0.0049) (0.0760) (0.0604)

D 0.6158 0.6659 2.5993 1.8840
(0.0069) (0.0050) (0.0781) (0.0465)

D + E 0.6203 0.6715 2.5668 1.8204
(0.0074) (0.0069) (0.0749) (0.0503)

Llama-3 F 0.6216 0.6862 1.5505 1.2590
(0.0070) (0.0064) (0.0522) (0.0677)

G 0.6111 0.6655 1.5076 1.2346
(0.0057) (0.0081) (0.0747) (0.0619)

D 0.6111 0.6655 1.4451 1.1794
(0.0057) (0.0081) (0.0950) (0.0599)

D + E 0.6111 0.6655 1.4153 1.1258
(0.0057) (0.0081) (0.1031) (0.0366)

Gemma-2 F 0.6270 0.6629 1.4483 1.2389
(0.0100) (0.0044) (0.0667) (0.0979)

G 0.6322 0.6674 1.4413 1.2311
(0.0110) (0.0051) (0.0678) (0.0968)

D 0.6368 0.6718 1.4023 1.2189
(0.0099) (0.0072) (0.0711) (0.0972)

D + E 0.6411 0.6780 1.4001 1.2081
(0.0116) (0.0085) (0.0703) (0.0992)

Table 14: Fairness evaluation for different prompt strate-
gies on the COMPAS dataset. Metrics evaluated are
accuracy (Acc), AUROC, statistical parity ratio (SPR),
and equality of opportunity ratio (EOR). Standard de-
viations are displayed below the mean. Types: F (Fair
Prompting), G (Generalised Prompting), D (Descrip-
tive Prompting), D + E (Descriptive Prompting + Equal
Samples Across Demographics).

Model Type Acc F1 SPR EOR

GPT-3.5 F 0.5215 0.0566 1.1513 1.1185
(0.0089) (0.0079) (0.0809) (0.0720)

G 0.5261 0.0546 0.9882 1.1068
(0.0055) (0.0039) (0.0449) (0.0739)

D 0.5246 0.0647 0.9514 1.0485
(0.0063) (0.0062) (0.0760) (0.0730)

D + E 0.5274 0.0705 0.8196 0.9887
(0.0080) (0.0084) (0.0431) (0.0614)

Llama-3 F 0.5446 0.0777 1.2166 1.1180
(0.0070) (0.0089) (0.0644) (0.0251)

G 0.5557 0.0858 1.2292 1.1484
(0.0069) (0.0095) (0.0493) (0.0430)

D 0.5588 0.0904 1.2661 1.1627
(0.0048) (0.0070) (0.0765) (0.0676)

D + E 0.5677 0.0960 1.2925 1.2083
(0.0082) (0.0067) (0.0944) (0.0845)

Gemma-2 F 0.5184 0.0437 1.4483 1.2389
(0.0048) (0.0053) (0.0209) (0.0864)

G 0.5198 0.0529 1.4413 1.2312
(0.0060) (0.0065) (0.0883) (0.0822)

D 0.5397 0.0750 1.4343 1.2307
(0.0034) (0.0031) (0.0516) (0.0607)

D + E 0.5446 0.0789 1.4321 1.2102
(0.0055) (0.0037) (0.0875) (0.0798)

Table 15: Fairness evaluation for different prompt strate-
gies on the Diabetes dataset. Metrics evaluated are
accuracy (Acc), F1 score (F1), statistical parity ratio
(SPR), and equality of opportunity ratio (EOR). Stan-
dard deviations are displayed below the mean. Types:
F (Fair Prompting), G (Generalised Prompting), D (De-
scriptive Prompting), D + E (Descriptive Prompting +
Equal Samples Across Demographics).
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Model Type Acc F1 SPR EOR

GPT-3.5 F 0.7921 0.9644 0.8672 1.2946
(0.0052) (0.0061) (0.0039) (0.0494)

G 0.7956 0.9707 0.8697 1.3369
(0.0061) (0.0054) (0.0026) (0.0694)

D 0.8018 0.9752 0.8747 1.3745
(0.0061) (0.0082) (0.0023) (0.0612)

D + E 0.8047 0.9773 0.8793 1.4144
(0.0058) (0.0090) (0.0030) (0.0799)

Llama-3 F 0.8082 0.5355 0.9071 0.8459
(0.0038) (0.0034) (0.0046) (0.0372)

G 0.8130 0.5386 0.9112 0.8831
(0.0045) (0.0032) (0.0030) (0.0598)

D 0.8144 0.8890 0.8730 1.3084
(0.0071) (0.0060) (0.0050) (0.0410)

D + E 0.8144 0.8890 0.8730 1.3084
(0.0071) (0.0060) (0.0050) (0.0410)

Gemma-2 F 0.8385 0.6295 0.9063 1.2301
(0.0056) (0.0048) (0.0048) (0.0300)

G 0.8432 0.6347 0.9090 1.2772
(0.0057) (0.0049) (0.0065) (0.0228)

D 0.8144 0.8890 0.8730 1.3084
(0.0071) (0.0060) (0.0050) (0.0410)

D + E 0.8174 0.8899 0.8799 1.3088
(0.0078) (0.0081) (0.0059) (0.0423)

Table 16: Fairness evaluation for different prompt strate-
gies on the Student dataset. Metrics evaluated are accu-
racy (Acc), F1 score (F1), statistical parity ratio (SPR),
and equality of opportunity ratio (EOR). Standard de-
viations are displayed below the mean. Types: F (Fair
Prompting), G (Generalised Prompting), D (Descrip-
tive Prompting), D + E (Descriptive Prompting + Equal
Samples Across Demographics).
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