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Abstract

Large Language Models (LLMs) perform well
in tabular prediction tasks with limited data,
using their ability to understand instructions
and learn from examples. However, their re-
liance on training data can perpetuate social
biases, leading to unfair outcomes and dispro-
portionately impacting underprivileged groups.
Addressing these biases is critical as LLMs
see wider adoption in tabular data tasks. Tra-
ditional bias mitigation strategies in machine
learning, such as balancing datasets or apply-
ing fairness constraints, are less effective with
LLMs. Our research explores whether bias
in LLMs for tabular data classification can be
mitigated. Through extensive experiments, we
found that using LLMs in a zero-shot setting
introduces bias, and in-context learning slightly
reduces the bias. Meanwhile, fine-tuning and
retrieval augmented generation show limited
effectiveness in bias mitigation. We introduced
three instruction-based prompting strategies
to enhance fairness: Fair Prompting, Gener-
alised Prompting, and Descriptive Prompting.
The results show that combining descriptive
prompting with in-context learning, particu-
larly the Equal Samples Across Demographics
approach, significantly improved fairness met-
rics such as Statistical Parity Ratio and Equal
Opportunity Ratio and yielded accuracy gains
ranging from 3.27% to 15.05% across multiple
datasets, underscoring its potential as a pow-
erful strategy in the ongoing effort to mitigate
bias in LLMs.

1 Introduction

Large Language Models (LLMs) have marked a
substantial leap forward in artificial intelligence
(Zhao et al., 2023a). A prime example is the
Generative Pre-trained Transformer (GPT) model
(Achiam et al., 2023), which has demonstrated its
robust capabilities across diverse tasks, including
machine translation (Xu et al., 2023), text gen-
eration (Li et al., 2024), and complex question-

answering (Fergus et al., 2023). Recently, LLMs
have found applications far beyond their original
uses in language processing. Recent studies have
uncovered the potential of LLMs for predictive tab-
ular data tasks (Fang et al., 2024; Hegselmann et al.,
2023; Slack and Singh, 2023; Yang et al., 2024). In
these studies, tabular data is converted into natural
language and presented to LLLMs with a brief task
description to generate predictions. The findings
conclude that LLMs for tabular data classification
achieve significant performance, demonstrating the
method’s capacity to leverage their encoded prior
knowledge (Slack and Singh, 2023).

However, as LLMs are capable of generating
human-like content, they can perpetuate social bi-
ases present in the extensive datasets they were
trained on, potentially causing significant harm to
underprivileged groups (Abid et al., 2021; Basta
et al., 2019; Ganguli et al., 2022). Undoubtedly,
the issue of LL.M-generated unfair responses and
biases is a multifaceted problem (Gallegos et al.,
2024). With the widespread adoption of LLMs
across various industries and the extensive use of
tabular data in high-stakes domains (Grinsztajn
et al., 2022), it is essential to thoroughly examine
the fairness implications and mitigate biases when
using LL.Ms for tabular data classification. Bias in
traditional machine learning models was addressed
by ensuring datasets were diverse and balanced
through careful data collection and preprocessing.
Fairness constraints and mitigation algorithms were
applied during model training, and outputs were
adjusted to promote fairness, with regular monitor-
ing and audits to maintain accountability (Mehrabi
et al., 2021). However, these strategies are unsuit-
able for LLM in tabular data classification tasks be-
cause LLMs are pre-trained, and biases may arise
from the training dataset. To address this, we pose
the research question: Can bias in LLMs for tabu-
lar data classification be mitigated? If yes, to what
extent? The answer to this question has profound



implications for LLLM applications with the poten-
tial to enhance fairness, equity, and trustworthiness
across various domains. We aim to investigate the
challenge of mitigating biases generated by LLMs
in tabular data classification tasks. Extensive ex-
periments using both open-source and proprietary
models across tabular datasets demonstrate that:

» Using LLMs for tabular data classification can
introduce bias. Experiments in a zero-shot set-
ting show that LLM transfer social biases from
their pre-training data into tabular tasks (details
in Results). This evidence demonstrates that
LLMs adopt social biases from their pre-training
data and frequently rely on these biases when
classifying tabular data, leading to potentially
unfair outcomes.

 In-context learning in LLMs enhances model
performance for classification tasks; however,
it only slightly reduces bias. We develop a
framework of strategies to mitigate bias in LLMs
for tabular data classification, categorising ap-
proaches for clarity and practical use. Providing
LLMs with few-shot examples using strategies
like mitigation through unawareness, counterfac-
tuals, and equal samples across demographics
improves accuracy and F1 score. While fairness
shows some improvement, the overall impact re-
mains limited, highlighting the need for more
robust solutions.

* The effectiveness of fine-tuned model and
Retrieval Augmented Generation (RAG) in
LLMs for tabular data classification is limited
in terms of bias mitigation. We also fine-tuned
the LLMs using an extensive training dataset and
the RAG technique. While this approach con-
tributes to bias reduction, we observed only slight
effects, highlighting the need for more effective
bias mitigation techniques.

To enhance the fairness of LLMs as tabular
data classifiers, we propose three instruction-based
prompting approaches: Fair Prompting, Gen-
eralised Prompting, and Descriptive Prompting.
These strategies guide LLMs toward equitable pre-
dictions. Experiments show descriptive prompting
with in-context learning improves fairness, achiev-
ing Statistical Parity Ratio and Equal Opportunity
Ratio values closer to 1 and accuracy gains of
3.27% to 15.05% across datasets. These strate-
gies advance bias mitigation, marking significant
progress in promoting fairer Al outcomes.

2 Related Work
2.1 LLM for Tabular Data

LLMs have been trained on vast amounts of data,
enabling them to achieve impressive performance
across various downstream tasks (Brown et al.,
2020). Recent studies have used LLMs for tab-
ular data classification (Zhao et al., 2023b; Wang
et al., 2024). For example, the TABLET bench-
mark reveals improved LLM performance from
instructions in tabular data predictions (Slack and
Singh, 2023). Hegselmann et al. (2023) explored
using LLMs for the classification of tabular data
by converting tables to natural language and pro-
viding problem descriptions, finding this method
outperforms traditional techniques and competes
with strong baselines. Yang et al. (2024) enhanced
LLMs’ ability to handle tabular data for classifica-
tion, regression, and imputation tasks by training
Llama-2 on a comprehensive corpus of annotated
tables, demonstrating significant improvements.
However, the research concludes that for LLM-
based tabular data prediction methods, the fairness
metric gap between different subgroups is larger
than that observed in traditional machine learning
models (Ma et al., 2024). Therefore, while it is
established that fairness issues exist in LLMs for
tabular data classification tasks, the methods to mit-
igate this bias remain largely unexplored. To our
knowledge, our work represents one of the most
comprehensive investigations into mitigating bias
when using LLMs to classify tabular data.

2.2 Fairness and Biases in LLMs

While LLMs are rapidly advancing in capabilities
and applications, biased systems can produce dis-
criminatory and stereotypical outcomes, negatively
impacting underprivileged or vulnerable groups
and causing societal harm (Kumar et al., 2022).
LLMs may produce biased or prejudiced responses
when the training data contains stereotyped or dis-
criminatory information (Nadeem et al., 2020). Re-
search has shown that these models frequently dis-
play biases concerning gender (Cai et al., 2024;
Kotek et al., 2023), profession (Nadeem et al.,
2020), race (Haim et al., 2024), and religion (Galle-
gos et al., 2024). Researchers are addressing these
issues by developing improved benchmarks, such
as CrowS-Pairs (Nangia et al., 2020) and RealToxi-
cityPrompts (Gehman et al., 2020), to assess and
mitigate unfairness in LLMs. Additionally, regard-
ing prompt engineering, Chisca et al. (2024) pro-



posed a novel prompt-tuning to reduce these biases
in models, effectively mitigating gender bias with
minimal impact on performance. Ma et al. (2024)
introduced a metric to evaluate bias in prompts
and propose a greedy search strategy to identify
near-optimal prompts. Although there is research
on fairness in LLMs, there remains a significant
gap in studies specifically addressing mitigation
strategies for tabular data classification.

2.3 In-context Learning, Fine-tuning and
RAG for Tabular Data

In-context learning uses examples to guide LLMs
toward desired outputs. Guo et al. (2023) reported
a 30.38% accuracy drop when switching from one-
shot to zero-shot settings, while Chen (2022) found
that increasing shots from one to two improved
performance. This approach is crucial for integrat-
ing contextual information and fairness guidelines
to enhance equitable outcomes. Chhikara et al.
(2024) introduced a framework incorporating fair-
ness rules, demonstrating GPT-4’s superior accu-
racy and fairness using in-context learning. Liu
et al. (2024) highlighted that in-context learning re-
duces fairness gaps between subgroups, and Hu and
Du (2024) showed that including minority samples
in prompts improves fairness without compromis-
ing performance. Fine-tuning involves training pre-
trained LL.Ms on specific datasets to improve ac-
curacy. Zhang et al. (2023) fine-tuned Llama-2 for
better tabular task performance, and similar meth-
ods have been explored (Hegselmann et al., 2023;
Jaitly et al., 2023; Liu et al., 2024; Wang et al.,
2023). Further, RAG adds domain-specific context
to prompts but faces challenges in relevance ex-
traction. Sundar and Heck (2023) addressed this
with a dual-encoder Dense Table Retrieval model
for better table cell ranking. These techniques en-
hance LLM performance, driving the need for a
fairness framework to mitigate bias and assess their
understanding of fairness in classification tasks.

3 Methodology

This section outlines bias mitigation methods for
LLMs in tabular data classification, including de-
tection, in-context learning, fine-tuning, and RAG.
Figure 1 illustrates the methodology, covering tabu-
lar data serialisation and three mitigation strategies.

3.1 Bias Detection

Bias in LLM tabular classifications refers to the
systematic favouritism or discrimination against
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Figure 1: Framework for Bias Mitigation in LLM
Tabular Data Classifications. We serialise the tabular
data, then apply three bias mitigation strategies to im-
prove fairness: (a) in-context learning, (b) fine-tuning,
and (c) retrieval-augmented generation. These strategies
can be used separately or in combination.

45 Male White ?

1. Serialisation

age: 45, sex: Male, race: White,

certain groups based on their demographic charac-
teristics or other attributes (Liu et al., 2024). Such
bias can arise from various sources, including the
source of bias coming from the pre-training step,
model architecture, as well as the societal and his-
torical context in which the models are developed
and deployed (Hegselmann et al., 2023). To detect
and measure this bias, we conduct evaluations from
two perspectives: model utility and fairness.

3.1.1 Model Utility

We evaluate the model using accuracy and F1 score.
Accuracy measures overall performance across sub-
groups, while F1, the harmonic mean of precision
and recall, accounts for imbalances in the datasets.

3.1.2 Fairness Definition

We assess fairness using statistical parity and equal
opportunity. Statistical Parity Ratio (SPR) ensures
that the probability of a positive outcome is similar
across different demographic groups (Garg et al.,
2020). The formula is as follows:

PY=1]A=1)
P(Y =1|A=0)

SPR =

where Y is the predicted outcome, and A is the de-
mographic attribute. Statistical parity requires that
the probability of a positive outcome is the same
across different demographic groups. This met-
ric highlights the relative difference in outcomes,
showing how much more likely one group is to
receive a positive outcome than the other. When
the SPR is less than 1, it suggests potential bias
against the demographic A = 1. On the other



hand, when the SPR is greater than 1, it suggests
potential bias against the demographic A = 0.

Further, the Equal Opportunity Ratio (EOR) en-
sures that individuals who qualify for a positive
outcome have an equal chance of being correctly
identified by the model, regardless of their demo-
graphic group (Garg et al., 2020). The formula is
as follows:

PY=1|Y=1A=1)

EOR = ——
PY=1|Y=1A4=0)

where Y is the predicted outcome, Y is the actual
outcome, and A is the demographic attribute. Equal
opportunity requires that individuals from differ-
ent demographic groups who qualify for a positive
outcome (i.e., Y = 1) should have an equal proba-
bility of being assigned a positive outcome by the
model. This metric highlights the relative differ-
ence in true positive rates, showing how often the
protected group is more likely to have a true pos-
itive prediction than the unprotected group. Both
SPR and FOR, being close to their ideal values
(i.e., 1), are indicators of a fair model with respect
to the specified fairness criteria.

3.2 Framework for Bias Mitigation in LLMs

3.2.1 Serialisation, Prompt Templates and
In-context Learning

Tabular data is organised into rows and columns,
where each column represents a feature and each
row corresponds to an instance. Transforming this
structured data into a format suitable for LLMs in-
volves either flattening the data into sequences by
concatenating all features of each instance (row-
wise) or using embeddings for both categorical and
continuous features. Building on previous studies
on LLMs for tabular data classification (Hegsel-
mann et al., 2023; Slack and Singh, 2023), we for-
mat the feature names and values into strings in the
format “fy : x1,..., fr : xx,” where f represents
the feature names and x represents the correspond-
ing values. After that, we propose three few-shot
prompt strategies, each using n examples extracted
from the training dataset, where n can be any num-
ber depending on the specific case; This study fo-
cuses on scenarios with limited or no training data,
where LLMs perform well by utilising their knowl-
edge for classification (Slack and Singh, 2023).
In this research, we use a ten-shot approach as an
example, with three prompt strategies: 1. Unaware-
ness: Sensitive or protected attributes are removed

from in-context learning. 2. Counterfactual: Sen-
sitive attributes are altered to evaluate and adjust
model predictions for fairness. 3. Equal Samples
Across Demographics: An equal number of sam-
ples from each demographic group is ensured. The
example template is provided in Appendix A.

3.2.2 Fine-Tuning and RAG

We fine-tune on the entire training set to assess its
impact on reducing biases in LLMs. For the Ope-
nAl model, we utilise the publicly available API
from OpenAl for fine-tuning (OpenAl, 2024a). For
open-source models, we employ Low-Rank Adap-
tation (LoRA) fine-tuning. LoRA assumes weight
matrices in the form of low-rank factors, signifi-
cantly reducing the number of trainable parameters
and the computational resources required for fine-
tuning (Hu et al., 2021). The data format and pa-
rameters for fine-tuning are shown in Appendix B.
On the other hand, RAG operates on the principle
that while LLMs are designed to be versatile and
capable of generating a wide range of responses,
they can be significantly enhanced by embedding
relevant context within the prompts, thereby direct-
ing the LLMs towards domain-specific responses
(Fang et al., 2024). This approach improves accu-
racy and relevance by incorporating external knowl-
edge sources. Specifically, the studies in the Re-
lated Work Section on fairness and bias using LLM
for tabular data classification can be classified as
RAG systems for our research.

3.3 Enhancing Fairness with Prompting
Strategies

We introduce three instruction-based prompting
designed to enhance the fairness of LLMs. These
strategies, which can be used alongside in-context
learning, aim to improve both fairness and model
performance. Below, we detail the three strategies,
including exemplar prompts and their integration
into the LLMs, as illustrated in Figure 2:

* Fair Prompting. We hypothesise that explic-
itly instructing the LLMs to consider fairness
can enhance its ability to make equitable predic-
tions (Gallegos et al., 2024). To achieve this goal,
we propose employing instruction-based prompt-
ing by adding the phrase “Ensure fairness for
demographic features, such as gender” to the
prompt input. This instruction aims to guide the
LLM to incorporate fairness considerations into
its decision-making process.



* Generalised Prompting. We also hypothesise
that fairness can be achieved by providing clear
definitions and instructions. To facilitate this, we
propose a method called Generalised Prompting.
This involves appending specific instructions to
the prompt input to guide the model towards fair-
ness. For instance, to achieve both Demographic
Parity and Equal Opportunity, we add the instruc-
tion: “Ensure that the probability of predicting
an income above $50K is equal for both males
and females, and that the probability of correctly
predicting an income above 350K is equal for
both males and females who actually earn above
350K ™. This instruction is designed to guide the
LLM towards making balanced and fair predic-
tions across gender groups.

Descriptive Prompting. We assume that ex-
plicitly detailing the fairness criteria can help in
achieving fairness. We propose using instruction-
based prompting by appending detailed descrip-
tions to the prompt input. For instance, to achieve
both Demographic Parity and Equal Opportunity,
we add the instruction: “Demographic Parity en-
sures that predictions do not favour one group
over another based on attributes like gender or
race. Ensure that the probability of predicting
an income above 350K is equal for males and fe-
males. Equal Opportunity ensures equal chances
of correct classification for positive outcomes
across groups. Ensure that the probability of cor-
rectly classifying individuals earning more than
$50K is the same for males and females”. This
instruction provides a clear directive to the LLM
to maintain fairness in its classifications.

These prompting strategies are appended to the
input text before classification. For instance, if
the original input for a tabular data prediction task
includes demographic and feature values, the corre-
sponding fairness instruction is added as part of the
prompt. This ensures that the model processes both
the input data and the fairness directive together,
influencing the generation of predictions.

4 Experiments

4.1 Dataset

We use four recognised datasets typically employed
to assess fairness in traditional machine learning
models to explore the fairness of LLMs in clas-
sifying tabular data: Adult Income (Adult) (Ko-
havi et al., 1996), Correctional Offender Manage-

/ Fair F i \ / i F i \ /Descriplive Prompting\

age:45, sex: Male, age:45, sex: Male, race:
race: White, ... White, ...

Ensure that the Demographic Parity is a fairness
probability of predicting criterion to ensure that the

an income above $50K
Is equal for both males
and females ...

age:45, sex: Male,
race: White, ...

predictions of a model do not
disproportionately favour one
group over another based on a
Question: Does thi protected attribute...

uestion: Does this
person earn more than
50000 dollars per year?
Yes or no?

Question: Does this
person earn more than
50000 dollars per year?
Yes or no?

Question: Does this person
earn more than 50000 dollars
per year? Yes or no?

Answer:

N /AN /NG /

Figure 2: Overview of fair prompting, generalised
prompting, and descriptive prompting, we use these
to mitigate bias in LLMs for tabular data classification.

ment Profiling for Alternative Sanctions (COM-
PAS) (Angwin et al., 2022), Diabetes (Strack et al.,
2014), and Student Performance (Student) (Cortez
and Silva, 2008). The Adult dataset predicts
whether an individual’s income exceeds $50,000
based on demographic features. The COMPAS
dataset assesses recidivism risk, focusing on race
as a protected attribute. The Diabetes dataset pre-
dicts 30-day hospital readmissions, using gender as
the protected attribute. Lastly, the Student Perfor-
mance dataset predicts final-year grades, with sex
as the protected attribute. Due to the time and cost
constraints associated with LLMs, we randomly
selected 1,000 samples from each dataset as the
test set for experiments if 20% of the dataset ex-
ceeded 1,000 samples; otherwise, we used 20% of
the dataset as the test set. Table 1 provides a sum-
mary of these datasets, highlighting their features
and classification tasks.

Dataset | Features | Label
Adult Work class, hours per | Income:
week, sex, age, occupa- | < 50k or
tion, capital loss, educa- | >50k
tion, capital gain, marital
status, relationship.
COMPAS | Sex, race, age, charge de- | Two-year
gree, priors count, risk. recidivism
(yes/no)
Diabetes | Excludes weight, payer | 30-day read-
code, medical specialty | missions
features due to missing | (yes/no)
data.
Student Includes features on | Grade: Low
Perfor- demographic, academic, | (<10) or High
mance and social factors. (>10)

Table 1: Summary of Datasets, Features, and Labels

4.2 Baselines

Establishing a baseline is essential for comparing
bias mitigation strategies. Previous studies have



shown that users can provide instructions to LLMs
to achieve strong performance on tabular datasets
without additional data collection (Slack and Singh,
2023). In this study, we use a zero-shot setting as
the baseline to evaluate LLM performance with-
out fairness interventions, focusing on their natural
strengths and weaknesses in handling tabular data.

4.3 Models and Setting

The selection criteria for the evaluated LLMs in-
clude accessibility, a balance between open-source
and proprietary solutions, support for tabular data
tasks, and suitability for computationally intensive
experiments or methods requiring advanced rea-
soning. There are numerous LLMs available, in-
cluding both open-source models and proprietary
models. Open-source models, like Llama (Meta,
2024) and Gemma (Google, 2024), are publicly
available and customisable but may lack produc-
tion optimisation and long-term maintenance. In
contrast, proprietary models, such as OpenAl mod-
els (Achiam et al., 2023), are optimised for pro-
duction but are not publicly accessible, customis-
able, or free, requiring trust in the model owner
for data privacy and responsible Al use. We use
GPT-40 as our default LLM and evaluate three
other LLMs (GPT-3.5-Turbo, Meta-Llama-3-8B,
and Gemma-2) to balance open-source and propri-
etary models. For all baselines, we set the model
temperature to 0. The experiments are conducted
on a server equipped with an A40 GPU, boasting
50 GB of memory. Our code and dataset are avail-
able at https://anonymous.4open.science/r/
fairllm-AC4D/.

5 Results

5.1 Bias Introduction in Tabular Data
Classification LLMs

To assess LLLM fairness in tabular classification,
we conducted zero-shot experiments, evaluating
fairness metrics without in-context learning or fine-
tuning. Each experiment was repeated five times
to account for variability, with mean and standard
deviation calculated for robustness.

Figure 3 demonstrates the disparities in predic-
tion metrics for various subgroups across different
datasets when utilising LLMs for tabular data clas-
sification. We use the fifth (last) experiment as
an example to plot the figure. Each subplot de-
picts the performance of the model across different
metrics (Accuracy (ACC), Positive Rate (PR), Neg-
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Figure 3: Disparities in Prediction Metrics Across De-
mographics using LLMs for Tabular Data. Subplots
show metrics (Accuracy (ACC), Positive Rate (PR),
Negative Rate (NR), True Positive Rate (TPR), True
Negative Rate (TNR)) for demographic groups in the
datasets (Adult, COMPAS, Diabetes, Student). Discrep-
ancies highlight bias and fairness issues. Overlapping
dots in the Student dataset indicate identical True Nega-
tive Rate (TNR) for male and female students.

ative Rate (NR), True Positive Rate (TPR), and
True Negative Rate (TNR)) for specified demo-
graphic groups. For instance, the Adult dataset
compares performance metrics between male and
female groups, whereas the COMPAS dataset com-
pares white and black groups. The subplots reveal
noticeable discrepancies in model performance be-
tween these groups. Specifically, significant varia-
tions can be seen in metrics such as PR and TPR,
indicating potential bias in the LLM’s predictions.
Such differences suggest that the model may favour
certain subgroups over others, leading to unfair and
biased outcomes. This highlights the problem of
fairness in LLM-based tabular data classification.
The evidence shows that LLMs inherit social biases
from their pretraining data and use these biases in
classifying tabular data, resulting in potentially un-
fair outcomes. This highlights the importance of
developing strategies to mitigate bias and ensure eq-
uitable performance across all demographic groups.
Appendix C, Table 6, provides the fairness evalu-
ation of LLMs across four datasets in a zero-shot
setting.

5.2 In-context Learning

To evaluate the effectiveness of in-context learn-
ing for improving fairness, we provide LLMs with
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few-shot examples, followed by a test example and
task description to guide predictions, a method we
refer to as the foundation approach. As detailed in
the Serialisation, Prompt Templates and In-context
Learning, the few-shot examples are positioned be-
fore the test example in the prompt. We use ten
randomly selected in-context examples from each
dataset’s training set. Next, we examine the impact
of in-context learning on fairness metrics. Table 2
demonstrate that incorporating few-shot examples
improves accuracy and F1 scores across the four
datasets using GPT-40, indicating that LLMs can
effectively learn input-label mappings within the
provided context. More details for other LLMs are
included in Appendix C, Tables 7, 8, 9, and 10.
Results show that combining few-shot examples
with bias mitigation strategies, such as the “Equal
Samples Across Demographics” approach, reduces
fairness metric gaps between subgroups, particu-
larly in the Adult and COMPAS datasets. However,
these improvements are limited for the Diabetes
and Student datasets, where metrics such as SPR
and EOR remain far from 1. Additionally, standard
deviations in these experiments are higher than the
baseline, indicating variability in outcomes. While
in-context learning paired with targeted bias miti-
gation strategies demonstrates some potential for
enhancing fairness, finding a universal strategy that
consistently balances accuracy and fairness across
datasets remains a challenge. Further exploration
is necessary to refine these methods for broader
applicability.

5.3 Fine-tune and RAG

We present the results of fine-tuning different mod-
els in Appendix C, Table 11. Due to GPT-4 lack
of support for fine-tuning (OpenAl, 2024a), we
focused on fine-tuning the GPT-3.5, Llama3, and
Gemma-2 models. Our results indicate that fine-
tuning these models leads to improvements in both
accuracy and F1 scores. However, the improve-
ment in fairness metrics remains limited. In addi-
tion, we utilised RAG with a dataset comprising
articles from Related Work (i.e., there are 29 arti-
cles). Specifically, we employed OpenAI’s embed-
ding methods (OpenAl, 2024b) for generating high-
quality vector representations of the texts. The re-
sults, detailed in Appendix C, Table 12, show that
while RAG led to slight improvements in accuracy
and F1 scores, the enhancement in fairness metrics
was moderate compared to the in-context learning
strategy employing the “Equal Samples Across De-

Dataset |Type| Acc | F1 | SPR | EOR
F | 0.8185 | 0.6592 | 1.6572 | 1.0690

Adult (0.0154) | (0.0122) | (0.1322) | (0.0163)

U | 0.8631 | 0.7157 | 1.6047 | 1.0829

(0.0040) | (0.0370) | (0.1151) | (0.1014)

E | 0.8769 | 0.7290 | 1.5944 | 1.0773

(0.0120) | (0.0444) | (0.1467) | (0.1009)

C | 0.8442 | 0.6916 | 1.6250 | 1.0934

(0.0193) | (0.0269) | (0.1075) | (0.0928)

F | 0.6973 | 0.6911 | 1.5110 | 1.2437

(0.0069) | (0.0045) | (0.0605) | (0.0580)

COMPAS | ;| "0.6925 | 0.6787 | 1.5542 | 1.4056
(0.0098) | (0.0094) | (0.0541) | (0.1060)

E | 0.7091 | 0.7041 | 1.4672 | 1.2012

(0.0078) | (0.0043) | (0.0864) | (0.0720)

C | 06615 | 0.5498 | 2.5961 | 2.0500

(0.0020) | (0.0037) | (0.0368) | (0.0233)

E | 0.6822 | 0.6809 | 1.4195 | 1.1988

. (0.0384) | (0.0262) | (0.2408) | (0.1359)

Diabetes | ;1" 6849 | 0.6849 | 1.4496 | 12351
(0.0390) | (0.0266) | (0.2456) | (0.1360)

E | 0.6917 | 0.6967 | 1.5123 | 1.3111

(0.0406) | (0.0231) | (0.2404) | (0.1428)

C | 0.6887 | 0.6904 | 1.4804 | 1.2686

(0.0393) | (0.0246) | (0.2498) | (0.1429)

B | 0.8414 | 0.8947 | 0.8688 | 0.8153

Student (0.0246) | (0.0170) | (0.2245) | (0.1920)
U | 0.8463 | 0.8988 | 0.8412 | 0.7793

(0.0228) | (0.0194) | (0.2331) | (0.1916)

E | 0.8492 | 0.9039 | 0.8568 | 0.8202

(0.0231) | (0.0177) | (0.2267) | (0.1878)

C | 0.8407 | 0.8969 | 0.8058 | 0.7352

(0.0234) | (0.0188) | (0.2538) | (0.1954)

Table 2: Fairness evaluation of in-context learning for
GPT-4o0 across datasets. Metrics include accuracy (Acc),
F1 score (F1), statistical parity ratio (SPR), and equality
of opportunity ratio (EOR). F: Foundation, U: Unaware-
ness, E: Equal Samples, C: Counterfactual. Best perfor-
mances are highlighted in bold, with standard deviations
presented below the mean.

mographics” approach. This indicates that while
RAG can enhance performance, its impact on fair-
ness is less pronounced than targeted in-context
learning methods.

5.4 Enhancing Fairness with Prompting
Strategies

The evaluation of fairness metrics for four prompt-
ing strategies, including Fair, Generalised, Descrip-
tive, and Descriptive combined with in-context
learning through Equal Samples Across Demo-
graphics (ESAD), applied to four datasets using
GPT-4o is presented in Table 3. Detailed results
for other LLMs are provided in Appendix C in
Tables 13, 14, 15, and 16.

From the results, we observe that the Descriptive
+ ESAD (i.e. D + E in Table 3) strategy consis-
tently improves fairness across datasets, demon-



strating a clear advantage over standalone Descrip-
tive prompting. Specifically, for the Adult and
COMPAS datasets, employing D + E strategy leads
to significant improvements in metrics such as SPR
and EOR, with values closer to the fairness ideal
of 1. These results substantiate the hypothesis that
combining descriptive fairness instructions with in-
context learning can guide the LLM to make more
balanced predictions. While the impact of ESAD
is more pronounced in Adult and COMPAS, the
Diabetes dataset shows minimal variation in met-
ric values across strategies, likely due to inherent
dataset characteristics that make it less sensitive to
fairness interventions. In the Student dataset, met-
rics like SPR and EOR exhibit the least discrepancy,
with stable values across strategies.

These findings underline the effectiveness of de-
scriptive prompting enhanced with in-context learn-
ing in addressing fairness concerns in LLMs. The
D + E strategy not only brings fairness metrics
like SPR and EOR closer to the ideal value of 1
but also achieves accuracy improvements ranging
from 3.27% to 15.05% across datasets. Importantly,
this approach highlights the adaptability of LLMs
when fairness definitions are explicitly integrated
into input prompts.

Overall, while these results are promising, it is
important to acknowledge that bias in LLMs can-
not be fully mitigated for tabular data classification
task. However, through thoughtful in-context learn-
ing and designed prompting strategies, bias can be
significantly reduced, and fairness can be improved.
The findings from these experiments highlight the
potential of combining descriptive prompts with
in-context learning as a powerful tool in the on-
going effort to create more equitable Al systems.
This approach not only advances fairness in model
predictions but also contributes to the broader goal
of mitigating bias in Al, thereby fostering more
responsible and ethical Al development.

6 Conclusion

This study evaluates several methods to improve
fairness in LLM predictions for tabular datasets.
In-context learning offers a simple approach to
incorporate fairness without retraining, though its
effectiveness depends on selecting suitable exam-
ples, making it less reliable for complex fairness
challenges. Fine-tuning allows direct adjustment
of model parameters to enhance fairness and per-
formance but requires substantial computational

Dataset | Type | Acc | F1 | SPR | EOR
F | 0.8209 | 0.6681 | 1.5836 | 1.2442

Adult (0.0087) | (0.0076) | (0.0367) | (0.0200)
G | 0.8296 | 0.6634 | 1.5778 | 1.1719

(0.0156) | (0.0072) | (0.0337) | (0.0329)

D | 0.8202 | 0.6729 | 1.5820 | 1.1816

(0.0082) | (0.0122) | (0.0182) | (0.0467)

D+E| 09124 | 0.8206 | 1.3792 | 1.1444
(0.0103) | (0.0084) | (0.0362) | (0.0408)

F | 0.6980 | 0.6858 | 1.2810 | 1.0606

(0.0070) | (0.0091) | (0.0767) | (0.0872)

COMPAS | 5 1707001 | 07227 | 1.2093 | 1.0603
(0.0073) | (0.0082) | (0.1012) | (0.0797)

D | 07052 | 0.7245 | 1.1828 | 1.0078

(0.0028) | (0.0060) | (0.0645) | (0.0628)

D+E/| 0.7108 | 0.7336 | 1.1773 | 0.9427
(0.0076) | (0.0032) | (0.0505) | (0.0939)

F | 0.6074 | 0.6339 | 1.2404 | 1.0804

. (0.0051) | (0.0065) | (0.0896) | (0.0527)
Diabetes | | 56146 | 0.6374 | 1.1964 | 1.1189
(0.0054) | (0.0055) | (0.0726) | (0.0730)

D | 06169 | 0.6490 | 1.2018 | 1.0965

(0.0039) | (0.0063) | (0.0971) | (0.0607)

D+E| 0.6239 | 0.6621 | 1.1479 | 1.0995
(0.0082) | (0.0095) | (0.1208) | (0.0663)

F | 0.8078 | 0.8841 | 0.8714 | 1.2834

(0.0063) | (0.0042) | (0.0044) | (0.0528)

Student | 5 1 79'g113 | 0.8882 | 0.8750 | 1.3292
(0.0063) | (0.0052) | (0.0049) | (0.0595)

D | 0.8163 | 0.8932 | 0.8800 | 1.3824

(0.0079) | (0.0065) | (0.0066) | (0.0763)

D+E| 0.8191 | 0.8982 | 0.8847 | 1.4222
(0.0104) | (0.0085) | (0.0068) | (0.0954)

Table 3: Fairness evaluation for GPT-40 across datasets
and different prompt strategies. Metrics include accu-
racy (Acc), F1 score (F1), statistical parity ratio (SPR),
and equality of opportunity ratio (EOR). F: Fair Prompt-
ing, G: Generalised Prompting, D: Descriptive Prompt-
ing, D + E: Descriptive Prompting + Equal Samples
Across Demographics. Best performance is in bold,
with standard deviations shown below the mean.

resources and careful hyperparameter tuning. RAG
integrates external knowledge to guide predictions,
providing flexibility in addressing fairness issues.
However, its success hinges on the quality of
the retrieval process and additional infrastructure
needs. In this study, we propose instruction-based
prompting, which proves to be most effective
when combined with in-context learning strategies
such as ESAD. This approach improves fairness
metrics such as SPR and EOR while achieving ac-
curacy gains across datasets. While these methods
show promise, fully addressing biases in LLMs re-
mains a challenge. Future research should explore
centralized training mechanisms or counting pro-
cedures to ensure that improved individual predic-
tions translate into group-level fairness outcomes
in alignment with defined metrics.



Limitations

This study highlights effective ways to reduce bi-
ases in LLM predictions for tabular data, but sev-
eral challenges remain. Fully eliminating bias is
difficult because LLMs are pre-trained on large
datasets that often contain underlying inequalities.
While the proposed prompting and in-context learn-
ing strategies improve fairness measures like SPR
and EOR, they may not work equally well for all
datasets, especially those with complex fairness
issues. Additionally, the assumption that better
individual predictions automatically lead to fair-
ness at a group level may not always hold true,
as there is no centralised process to ensure fair-
ness across groups. These methods also depend
on the quality of the examples and fairness defini-
tions provided, which can limit their effectiveness
in real-world applications. Future research should
address these limitations by identifying specific
cases where these methods fall short and exploring
additional solutions.

Ethical Considerations

This research uses demographic attributes like gen-
der and race solely to assess and improve fairness
in LLMs, aiming to identify and mitigate biases
that could lead to discriminatory outcomes. These
attributes are used only to evaluate fairness metrics
such as Statistical Parity and Equal Opportunity,
ensuring responsible handling of sensitive informa-
tion. Publicly available datasets were used, adher-
ing to ethical guidelines, with the goal of promoting
equitable Al systems.

References

Abubakar Abid, Maheen Farooqi, and James Zou. 2021.
Large language models associate muslims with vio-
lence. Nature Machine Intelligence, 3(6):461-463.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren
Kirchner. 2022. Machine bias. In Ethics of data and
analytics, pages 254-264. Auerbach Publications.

Christine Basta, Marta R Costa-Jussa, and Noe Casas.
2019. Evaluating the underlying gender bias in
contextualized word embeddings. arXiv preprint
arXiv:1904.08783.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Yuchen Cai, Ding Cao, Rongxi Guo, Yaqin Wen, Gui-
quan Liu, and Enhong Chen. 2024. Locating and mit-
igating gender bias in large language models. arXiv
preprint arXiv:2403.14409.

Wenhu Chen. 2022. Large language models are
few (1)-shot table reasoners. arXiv preprint
arXiv:2210.06710.

Garima Chhikara, Anurag Sharma, Kripabandhu Ghosh,
and Abhijnan Chakraborty. 2024. Few-shot fairness:
Unveiling llm’s potential for fairness-aware classifi-
cation. arXiv preprint arXiv:2402.18502.

Andrei-Victor Chisca, Andrei-Cristian Rad, and
Camelia Lemnaru. 2024. Prompting fairness: Learn-
ing prompts for debiasing large language models. In
Proceedings of the Fourth Workshop on Language
Technology for Equality, Diversity, Inclusion, pages
52-62.

Paulo Cortez and Alice Maria Gongalves Silva. 2008.
Using data mining to predict secondary school stu-
dent performance. Psychology.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang,
Ziqing Hu, Yanjun (Jane) Qi, Scott Nickleach, Diego
Socolinsky, "SHS" Srinivasan Sengamedu, and Chris-
tos Faloutsos. 2024. Large language models (llms) on
tabular data: Prediction, generation, and understand-
ing - a survey. Transactions on Machine Learning
Research.

Suzanne Fergus, Michelle Botha, and Mehrnoosh Os-
tovar. 2023. Evaluating academic answers gener-
ated using chatgpt. Journal of Chemical Education,
100(4):1672-1675.

Isabel O Gallegos, Ryan A Rossi, Joe Barrow,
Md Mehrab Tanjim, Sungchul Kim, Franck Dernon-
court, Tong Yu, Ruiyi Zhang, and Nesreen K Ahmed.
2024. Bias and fairness in large language models: A
survey. Computational Linguistics, pages 1-79.

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda
Askell, Yuntao Bai, Saurav Kadavath, Ben Mann,
Ethan Perez, Nicholas Schiefer, Kamal Ndousse,
et al. 2022. Red teaming language models to re-
duce harms: Methods, scaling behaviors, and lessons
learned. arXiv preprint arXiv:2209.07858.

Pratyush Garg, John Villasenor, and Virginia Foggo.
2020. Fairness metrics: A comparative analysis. In
2020 IEEE international conference on big data (Big
Data), pages 3662-3666. IEEE.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A Smith. 2020. Realtoxici-
typrompts: Evaluating neural toxic degeneration in
language models. arXiv preprint arXiv:2009.11462.


https://www.amazon.science/publications/large-language-models-llms-on-tabular-data-prediction-generation-and-understanding-a-survey
https://www.amazon.science/publications/large-language-models-llms-on-tabular-data-prediction-generation-and-understanding-a-survey
https://www.amazon.science/publications/large-language-models-llms-on-tabular-data-prediction-generation-and-understanding-a-survey
https://www.amazon.science/publications/large-language-models-llms-on-tabular-data-prediction-generation-and-understanding-a-survey
https://www.amazon.science/publications/large-language-models-llms-on-tabular-data-prediction-generation-and-understanding-a-survey

Google. 2024. Gemma open models: Advancing ai ac-
cessibility and performance. https://ai.google.
dev/gemma. Accessed: December 10, 2024.

Léo Grinsztajn, Edouard Oyallon, and Gaél Varoquaux.
2022. Why do tree-based models still outperform
deep learning on typical tabular data? Advances in
neural information processing systems, 35:507-520.

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi
He, and Shi Han. 2023. Gptdgraph: Can large
language models understand graph structured data?
an empirical evaluation and benchmarking. arXiv
preprint arXiv:2305.15066.

Amit Haim, Alejandro Salinas, and Julian Nyarko.
2024. What’s in a name? auditing large language
models for race and gender bias. arXiv preprint
arXiv:2402.14875.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang,
Monica Agrawal, Xiaoyi Jiang, and David Sontag.
2023. Tabllm: Few-shot classification of tabular
data with large language models. In International
Conference on Artificial Intelligence and Statistics,
pages 5549-5581. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Jingyu Hu and Mengnan Du. 2024. Enhancing fairness
in in-context learning: Prioritizing minority samples
in demonstrations. In The Second Tiny Papers Track
at ICLR 2024.

Sukriti Jaitly, Tanay Shah, Ashish Shugani, and
Razik Singh Grewal. 2023. Towards better serializa-
tion of tabular data for few-shot classification. arXiv
preprint arXiv:2312.12464.

Ron Kohavi et al. 1996. Scaling up the accuracy of
naive-bayes classifiers: A decision-tree hybrid. In
Kdd, volume 96, pages 202-207.

Hadas Kotek, Rikker Dockum, and David Sun. 2023.
Gender bias and stereotypes in large language models.
In Proceedings of the ACM collective intelligence
conference, pages 12-24.

Sachin Kumar, Vidhisha Balachandran, Lucille Njoo,
Antonios Anastasopoulos, and Yulia Tsvetkov. 2022.
Language generation models can cause harm: So
what can we do about it? an actionable survey. arXiv
preprint arXiv:2210.07700.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie,
and Ji-Rong Wen. 2024. Pre-trained language mod-
els for text generation: A survey. ACM Computing
Surveys, 56(9):1-39.

Yanchen Liu, Srishti Gautam, Jiaqi Ma, and Himabindu
Lakkaraju. 2024. Confronting llms with traditional
ml: Rethinking the fairness of large language models

10

in tabular classifications. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 3603-3620.

Huan Ma, Changqing Zhang, Yatao Bian, Lemao Liu,
Zhirui Zhang, Peilin Zhao, Shu Zhang, Huazhu Fu,
Qinghua Hu, and Bingzhe Wu. 2024. Fairness-
guided few-shot prompting for large language mod-
els. Advances in Neural Information Processing Sys-
tems, 36.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena,
Kristina Lerman, and Aram Galstyan. 2021. A sur-
vey on bias and fairness in machine learning. ACM
computing surveys (CSUR), 54(6):1-35.

Meta. 2024. Meta llama: Next-generation language
models by meta ai. https://1lama.meta.com. Ac-
cessed: December 10, 2024.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2020.
Stereoset: Measuring stereotypical bias in pretrained
language models. arXiv preprint arXiv:2004.09456.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R Bowman. 2020. Crows-pairs: A chal-
lenge dataset for measuring social biases in masked
language models. arXiv preprint arXiv:2010.00133.

OpenAl. 2024a. Fine-tuning guide: Optimizing mod-
els for custom applications. https://platform.

openai.com/docs/guides/fine-tuning. Ac-
cessed: December 10, 2024.

OpenAl. 2024b. Understanding embeddings: En-
hancing contextual understanding in models.

https://platform.openai.com/docs/guides/
embeddings/what-are-embeddings.  Accessed:
December 10, 2024.

Dylan Slack and Sameer Singh. 2023. Tablet: Learning
from instructions for tabular data. arXiv preprint
arXiv:2304.13188.

Beata Strack, Jonathan P DeShazo, Chris Gennings,
Juan L Olmo, Sebastian Ventura, Krzysztof J Cios,
and John N Clore. 2014. Impact of hbalc mea-
surement on hospital readmission rates: analysis of
70,000 clinical database patient records. BioMed
research international, 2014(1):781670.

Anirudh S Sundar and Larry Heck. 2023. ctbls: Aug-
menting large language models with conversational
tables. arXiv preprint arXiv:2303.12024.

Ruiyu Wang, Zifeng Wang, and Jimeng Sun. 2023.
Unipredict: Large language models are universal tab-
ular predictors. arXiv preprint arXiv:2310.03266.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Mar-
tin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly
Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu
Lee, et al. 2024. Chain-of-table: Evolving tables in
the reasoning chain for table understanding. arXiv
preprint arXiv:2401.04398.


https://ai.google.dev/gemma
https://ai.google.dev/gemma
https://ai.google.dev/gemma
https://llama.meta.com
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
https://platform.openai.com/docs/guides/embeddings/what-are-embeddings

Haoran Xu, Young Jin Kim, Amr Sharaf, and
Hany Hassan Awadalla. 2023. A paradigm shift
in machine translation: Boosting translation perfor-
mance of large language models. arXiv preprint
arXiv:2309.11674.

Yazheng Yang, Yuqi Wang, Sankalok Sen, Lei Li, and
Qi Liu. 2024. Unleashing the potential of large lan-
guage models for predictive tabular tasks in data sci-
ence. arXiv preprint arXiv:2403.20208.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun.
2023. Tablellama: Towards open large generalist
models for tables. arXiv preprint arXiv:2311.09206.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqgian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023a. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Yilun Zhao, Haowei Zhang, Shengyun Si, Linyong Nan,
Xiangru Tang, and Arman Cohan. 2023b. Investi-
gating table-to-text generation capabilities of large
language models in real-world information seeking
scenarios. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing:
Industry Track, pages 160-175.

Appendix

A Prompt Templates for In-context
Learning

Unawareness Example

Given the following individual’s profile details, predict
if their salary is over $50,000.
ONLY respond with "yes’ or 'no’.

Example: Age: 52, Education: Doctorate, Occupation:
Prof-specialty, Capital Gain: 15000, Capital Loss: 0,
Hours per Week: 50. The answer is yes.

.

Counterfactual Example

Given the following individual’s profile details, predict
if their salary is over $50,000.

J

ONLY respond with "yes’ or 'no’.

Example: Age: 40, Education: Masters, Occupation:
Tech-support, Hours per Week: 45, Sex: Male. The
answer is no.

/
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Equal Samples Across Demographics Example

Given the following individuals’ profile details, predict
if their salary is over $50,000. ONLY respond with *yes’

or 'no’.

Example 1: Age: 29 Education: Bachelors Occupation:
Admin-clerical Hours per Week: 40 Sex: Male. The
answer is no.

Example 2: Age: 29 Education: Bachelors Occupation:
Admin-clerical Hours per Week: 40 Sex: Female. The
answer is no.

\-

B Fine-Tuning

We used 1,000 samples as the test set when 20%
of the dataset exceeded 1,000 samples; otherwise,
20% was used. For fine-tuning, the training set was
further split 80:20 for training and evaluation. An
example data format is shown below:

]

D Answer

0

Question

Age: 31 Workclass:Federal-gov ...
Age: 31 Workclass:Private ...
Age: 45 Workclass:Private ...
Age: 31 Workclass:Private ...

AWK =

1
0
0

Table 4: The format of data for fine-tuning

Category | Details

Warmup Steps: 0

Batch Size per Device: 2

Gradient Accumulation Steps: 1
Gradient Checkpointing: Enabled
Maximum Steps: 500

Learning Rate: le-5 (suitable for fine-
tuning)

BF16: Enabled

Optimiser: paged_adamw_38bit

General

Logging Steps: 25 (reporting loss interval)
Logging Directory: ./logs

Save Strategy: Save checkpoints at logging
steps

Save Steps: 100

Evaluation Strategy: Evaluate at logging
steps

Evaluation Steps: 100

Do Evaluation: Perform at the end of train-
ing

Report to: tensorboard (optional tracking)

Run Name: Combines run name and cur-
rent date/time

Logging

Data Collator | Tokeniser: No masked language modelling

(mlm=False)

Configuration|Use Cache: Disabled to silence warnings

Table 5: Training and evaluation configurations for fine-
tuning. The table outlines general settings, logging and
saving configurations, data collator settings, and model
configurations.



C Fairness Evaluation

Data |Metric| GPT-40|GPT-3.5|Llama-3| Gemma-2
Acc | 0.7931 | 0.7180 | 0.6600 | 0.7063

Adult (0.0131)[(0.0200) | (0.0196) | (0.0181)
Fl | 0.6275 | 0.5801 | 0.5478 | 0.5767
(0.0216)](0.0238) | (0.0174) | (0.0067)

SPR | 1.7617 | 2.3131 | 1.2330 | 1.8147
(0.1620)| (0.4047) | (0.0542) | (0.1410)

EOR | 1.3900 | 1.3458 | 1.1106 | 1.1382
(0.1678)](0.2540) | (0.0170) | (0.0844)

Acc | 0.6623 | 0.6101 | 0.5978 | 0.6042
(0.0072)|(0.0050) | (0.0112) | (0.0198)

COMPAS| &1 10,5601 | 0.6470 | 0.6614 | 0.5328
(0.0088)|(0.0096) | (0.0130) | (0.0249)

SPR | 2.8726 | 2.6732 | 1.5263 | 1.9018
(0.3612)[(0.1517)| (0.0361) | (0.0977)

EOR | 2.4246 | 1.9533 | 1.1503 | 1.5084
(0.2581)[(0.1380) | (0.0178) | (0.1211)

Acc | 0.5707 | 0.5046 | 0.4866 | 0.4892

. (0.0220)] (0.0045) | (0.0126) | (0.0087)
Diabetes | gy 170 5806 | 0.0118 | 0.6002 | 0.6350
(0.0239)|(0.0041) | (0.0070) | (0.0187)

SPR | 0.9925 | 0.9401 | 0.9235 | 0.9469
(0.0153)|(0.0183) | (0.0227)| (0.0274)

EOR | 0.9678 | 0.9565 | 0.9667 | 0.9601
(0.0129)|(0.3385) | (0.0279) | (0.0155)

Acc | 0.8358 | 0.7908 | 0.8600 | 0.8588
Student (0.0259) | (0.0220) | (0.0436) | (0.0376)
F1 | 0.8927 | 0.8577 | 0.9235 | 0.9206
(0.0186)|(0.0150) | (0.0261)| (0.0218)

SPR | 0.8972 | 0.9590 | 0.9836 | 0.9996
(0.2329)|(0.1506) | (0.0247) | (0.0575)

EOR | 0.8506 | 0.9965 | 1.0060 | 1.0240
(0.1834)|(0.0831) | (0.0575)| (0.0576)

Table 6: Fairness evaluation across datasets. Metrics
include accuracy (Acc), F1 score, statistical parity ratio
(SPR), and equality of opportunity ratio (EOR).
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F1

0.5874
(0.0075)
0.6032
(0.0069)
0.6265
(0.0057)
0.6283
(0.0063)

0.5623
(0.0084)
0.5876
(0.0108)
0.5452
(0.0108)
0.5487
(0.0080)

0.5874
(0.0082)
0.5750
(0.0057)
0.5687
(0.0138)
0.5777
(0.0107)

Model | Type |
GPT-3.5 F

Acc |

0.7697
(0.0079)
0.7879
(0.0053)
0.7893
(0.0054)
0.7567
(0.0042)

0.6170
(0.0065)
0.6449
(0.0094)
0.6513
(0.0119)
0.6466
(0.0205)

0.7171
(0.0151)
0.6606
(0.0118)
0.6569
(0.0135)
0.6712
(0.0097)

| SPR | EOR

1.9836 | 1.3037
(0.1263) | (0.0837)
0.4290 | 0.6877
(0.0727) | (0.0640)
2.0226 | 1.2567
(0.1218) | (0.0475)
2.5463 | 1.2766
(0.0669) | (0.0498)

1.8415 | 1.1953
(0.0744) | (0.0753)
1.9572 | 1.2930
(0.0682) | (0.0853)
1.2890 | 1.2428
(0.0678) | (0.0911)
1.4667 | 1.2633
(0.1338) | (0.1132)

1.4658 | 1.2779
(0.0958) | (0.0945)
1.5492 | 1.4366
(0.0705) | (0.0699)
1.3985 | 1.4435
(0.0366) | (0.0742)
1.7938 | 1.2818
(0.1073) | (0.0631)

U

E

Llama-3

Gemma-2

A W c

Table 7: Fairness evaluation for in-context learning on
the Adult dataset. Metrics evaluated are accuracy (Acc),
F1 score (F1), statistical parity ratio (SPR), and equal-
ity of opportunity ratio (EOR). Standard deviations are
displayed below the mean. Types: F (Foundation), U
(Unawareness), E (Equal Samples Across Demograph-
ics), C (Counterfactual).



Model |Type| Acc | F1 | SPR | EOR Model |Type| Acc | F1 | SPR | EOR
GPT-3.5 F | 0.6399 | 0.6239 | 1.9073 | 1.7210 GPT-3.5 F | 0.5114 | 0.0160 | 0.9818 | 0.9758
(0.0055) | (0.0096) | (0.0854) | (0.0887) (0.0063) | (0.0044) | (0.0313) | (0.3371)

U | 0.6316 | 0.6364 | 1.8991 | 1.6056 U | 05191 | 0.0221 | 1.0253 | 1.0064

(0.0072) | 0.0091) | (0.0715) | (0.0506) (0.0096) | (0.0055) | (0.0245) | (0.3208)

E | 0.6511 | 0.5400 | 1.6130 | 1.3242 E | 0.5235 | 0.0264 | 1.0513 | 1.0508

(0.0069) | (0.0072) | (0.0917) | (0.1252) (0.0110) | 0.0058) | (0.0263) | (0.3055)

C | 0.6338 | 0.5386 | 1.6240 | 1.3122 C | 0.5290 | 0.0300 | 1.0846 | 1.1009

(0.0074) | (0.0065) | (0.0581) | (0.0691) (0.0108) | (0.0082) | (0.0417) | (0.3111)

Llama-3 F | 0.6253 | 0.6854 | 1.5334 | 1.6107 Llama-3 F | 0.5097 | 0.0163 | 0.9743 | 1.0001
(0.0120) | (0.0073) | (0.0656) | (0.0816) (0.0064) | (0.0073) [ (0.0208) | (0.3513)

U | 0.6266 | 0.6869 | 1.6377 | 1.5910 U | 05142 | 0.0205 | 1.0146 | 1.0216

(0.0082) | (0.0070) | (0.1313) | (0.0976) (0.0075) | (0.0062) | (0.0390) | (0.3696)

E | 0.6322 | 0.6865 | 1.5586 | 1.6391 E | 0.5219 | 0.0293 | 1.0872 | 1.0789

(0.0075) | (0.0054) | (0.0713) | (0.1215) (0.0093) | (0.0077) | (0.0668) | (0.3574)

C | 0.6317 | 0.6938 | 1.6348 | 1.5942 C | 0.5187 | 0.0269 | 1.0485 | 1.0464

(0.0080) | (0.0065) | (0.1236) | (0.0989) (0.0078) | (0.0073) | (0.0494) | (0.3611)

Gemma-2| F | 0.6097 | 0.5543 | 1.8808 | 1.5162 Gemma-2| F | 0.5097 | 0.0163 | 0.9743 | 1.0001
(0.0039) | (0.0096) | (0.0960) | (0.1026) (0.0064) | (0.0073) [ (0.0208) | (0.3513)

U | 0.6157 | 0.5535 | 1.8876 | 1.5591 U | 0.5127 | 0.0204 | 1.0186 | 1.0421

(0.0044) [ (0.0079) [ (0.0958) | (0.1319) (0.0065) | (0.0082) [ (0.0212) | (0.3432)

E | 0.6240 | 0.5510 | 1.8152 | 1.4852 E | 0.5221 | 0.0298 | 1.0935 | 1.1074

(0.0098) | (0.0053) [ (0.0443) | (0.1055) (0.0070) [ (0.0099) | (0.0188) | (0.3343)

C | 0.6382 | 0.6098 | 1.9162 | 1.6313 C | 0.5162 | 0.0254 | 1.0661 | 1.0741

(0.0124) [ (0.0347) [ (0.1106) | (0.1412) (0.0076) | (0.0091) | (0.0207) | (0.3298)

Table 8: Fairness evaluation for in-context learning on
the COMPAS dataset. Metrics evaluated include accu-
racy (Acc), F1 score (F1), statistical parity ratio (SPR),
and equality of opportunity ratio (EOR). Standard de-
viations are shown below the mean. Types: F (Foun-
dation), U (Unawareness), E (Equal Samples Across
Demographics), and C (Counterfactual).
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Table 9: Fairness evaluation for in-context learning on
the Diabetes dataset. Metrics evaluated include accuracy
(Acc), F1 score (F1), statistical parity ratio (SPR), and
equality of opportunity ratio (EOR). Standard deviations
are shown below the mean. Types: F (Foundation), U
(Unawareness), E (Equal Samples Across Demograph-
ics), and C (Counterfactual).



Model |Type| Acc | F1 | SPR | EOR

GPT-3.5 | F | 0.7943 | 0.8625 | 0.9413 | 0.9729
(0.0213) | (0.0148) | (0.1427) | (0.0873)
U | 0.8006 | 0.8662 | 0.9115 | 0.9458
(0.0219) | (0.0156) | (0.1432) | (0.0807)
E | 0.8050 | 0.8692 | 0.8803 | 0.9013
(0.0240) | (0.0156) | (0.1535) | (0.0760)
C | 0.8050 | 0.8692 | 0.8803 | 0.9013
(0.0240) | (0.0156) | (0.1535) | (0.0760)

0.8631 | 0.9288 | 0.9698 | 0.9637
(0.0438) | (0.0255) | (0.0234) | (0.0728)
0.8661 | 0.9317 | 0.9412 | 0.9321
(0.0415) | (0.0243) | (0.0309) | (0.0673)
0.8727 | 0.9374 | 0.9173 | 0.9106
(0.0414) | (0.0240) | (0.0436) | (0.0573)
0.8652 | 0.9317 | 0.8576 | 0.8596
(0.0416) | (0.0238) | (0.0630) | (0.0728)

0.8621 | 0.9254 | 0.9678 | 0.9812
(0.0386) | (0.0226) | (0.0649) | (0.0454)
0.8667 | 0.9313 | 0.8689 | 0.8703
(0.0395) | (0.0210) | (0.0796) | (0.0702)
0.8761 | 0.9391 | 0.9251 | 0.9378
(0.0394) | (0.0245) | (0.0690) | (0.0566)
0.8703 | 0.9364 | 0.9023 | 0.9147
(0.0391) | (0.0228) | (0.0785) | (0.0609)

Llama-3

1

a m C

1

Gemma-2

a m C

Table 10: Fairness evaluation for in-context learning on
the Student dataset. Metrics evaluated include accuracy
(Acc), F1 score (F1), statistical parity ratio (SPR), and
equality of opportunity ratio (EOR). Standard deviations
are shown below the mean. Types: F (Foundation), U
(Unawareness), E (Equal Samples Across Demograph-
ics), and C (Counterfactual).
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Dataset | Model | Acc | F1 | SPR | EOR
GPT-3.5 | 0.7180 | 0.5801 | 2.3131 | 1.3458
Adult (0.0200) | (0.0238) | (0.4047) | (0.2540)

Llama-3 | 0.6600 | 0.5478 | 1.2330 | 1.1106
(0.0196) | (0.0174) | (0.0542) | (0.0170)
Gemma-2 | 0.7063 | 0.5767 | 1.8147 | 1.1382
(0.0181) | (0.0067) | (0.1410) | (0.0844)

GPT-3.5 | 0.6116 | 0.6458 | 2.7982 | 2.1265
COMPAS (0.0029) | (0.0021) | (0.0195) | (0.0084)
Llama-3 | 0.6115 | 0.6449 | 2.8073 | 2.1417
(0.0021) | (0.0022) | (0.0344) | (0.0231)
Gemma-2 | 0.6103 | 0.6479 | 2.7963 | 2.1365
(0.0032) | (0.0007) | (0.0182) | (0.0054)

GPT-3.5 | 0.5086 | 0.0167 | 0.9953 | 1.5987
Diabetes (0.0032) | (0.0023) | (0.0189) | (0.0313)
Llama-3 | 0.5025 | 0.6458 | 1.0050 | 0.9901
(0.0044) | (0.0025) | (0.0253) | (0.0310)
Gemma-2 | 0.5013 | 0.6497 | 1.0042 | 0.9860
(0.0040) | (0.0021) | (0.0274) | (0.0182)

GPT-3.5 | 0.7906 | 0.8759 | 0.8548 | 0.9194
Student (0.0058) | (0.0058) | (0.0371) | (0.0564)
Llama-3 | 0.8200 | 0.9114 | 1.0360 | 1.4869
(0.0066) | (0.0082) | (0.0233) | (0.0658)
Gemma-2 | 0.8825 | 0.9299 | 1.1000 | 1.0924
(0.0045) | (0.0067) | (0.0450) | (0.0280)

Table 11: Fairness evaluation for fine-tuning across
datasets. Metrics include accuracy (Acc), F1 score (F1),
statistical parity ratio (SPR), and equality of opportunity
ratio (EOR). The standard deviation is shown below the
mean value.



Dataset | Model | Acc | F1 | SPR | EOR
GPT-4o | 0.8252 | 0.6682 | 1.5004 | 1.1650

Adult (0.0115)| (0.0130) | (0.0833) | (0.0886)
GPT-3.5 | 0.7188 | 0.6293 | 1.8903 | 1.1745

(0.0048) | (0.0059) | (0.0841) | (0.0356)

Llama-3 | 0.7140 | 0.5950 | 1.1435 | 1.0003

(0.0092) | (0.0104) | (0.0558) | (0.0762)

Gemma-2| 0.6945 | 0.5915 | 1.0749 | 1.0506
(0.0046) | (0.0062) | (0.0727) | (0.0237)

GPT-4o | 0.6139 | 0.6458 | 2.8172 | 2.1308

(0.0019) | (0.0026) | (0.0275) | (0.0127)

COMPAS| pr3s | 08252 | 0.6682 | 1.5004 | 1.1650
(0.0115)| (0.0130) | (0.0833) | (0.0886)

Llama-3 | 0.6135 | 0.6443 | 2.8225 | 2.1465

(0.0021) | (0.0017) | (0.0217) | (0.0285)

Gemma-2| 0.6110 | 0.6475 | 2.7975 | 2.1155
(0.0026) | (0.0014) | (0.0178) | (0.0161)

GPT-4o | 0.5069 | 0.0183 | 0.9885 | 1.6049

. (0.0052) | (0.0014) | (0.0203) | (0.0368)
Diabetes | p135 | 06059 | 0.6204 | 1.0307 | 1.0037
(0.0028) | (0.0037) | (0.0167) | (0.0255)

Llama-3 | 0.5008 | 0.6469 | 0.9983 | 1.0142

(0.0030) | (0.0030) | (0.0304) | (0.0250)

Gemma-2| 0.4982 | 0.6463 | 1.0050 | 1.0106
(0.0025) | (0.0034) | (0.0210) | (0.0181)

GPT-4o | 0.8358 | 0.8927 | 0.8972 | 0.8506

Student (0.0259) | (0.0186) | (0.2329) | (0.1834)
GPT-3.5 | 0.7908 | 0.8577 | 0.9590 | 0.9965

(0.0220) | (0.0150) | (0.1506) | (0.0831)

Llama-3 | 0.8600 | 0.9235 | 0.9836 | 1.0060

(0.0436) | (0.0261) | (0.0247) | (0.0575)

Gemma-2| 0.8588 | 0.9206 | 0.9996 | 1.0240
(0.0376) | (0.0218) | (0.0575) | (0.0576)

Table 12: Fairness evaluation for RAG across datasets.
Metrics include accuracy (Acc), F1 score (F1), statisti-
cal parity ratio (SPR), and equality of opportunity ratio
(EOR). Standard deviations are shown below the mean

values.
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Model |Type| Acc | F1 | SPR | EOR

GPT3.5 | F | 0.8346 | 0.5666 | 2.1110 | 1.5923
(0.0121) | (0.0110) | (0.0904) | (0.0824)
G | 0.7966 | 0.6331 | 2.0430 | 2.4656
(0.0042) | (0.0095) | (0.0739) | (0.0622)
D | 08256 | 0.5819 | 2.0433 | 1.5528
(0.0044) | (0.0499) | (0.0558) | (0.0529)
D+E| 0.8711 | 0.6852 | 1.9605 | 1.4166
(0.0042) | (0.0058) | (0.0359) | (0.0415)

Llama-3 | F | 0.7032 | 0.5876 | 1.4483 | 1.2389
(0.0079) | (0.0030) | (0.0918) | (0.0912)
G | 07072 | 0.5951 | 1.4260 | 1.2288
(0.0095) | (0.0048) | (0.0816) | (0.0974)
D | 07014 | 0.5989 | 1.4140 | 1.2034
(0.0082) | (0.0049) | (0.0860) | (0.0867)
D+E| 0.7175 | 0.6064 | 1.4054 | 1.2597
(0.0125) | (0.0069) | (0.0887) | (0.0993)

Gemma-2| F | 0.6911 | 0.5762 | 1.4483 | 1.2389
(0.0073) | (0.0119) | (0.0534) | (0.0648)
G | 0.6951 | 0.5790 | 1.4483 | 1.2389
(0.0094) | (0.0101) | (0.0511) | (0.0515)
D | 0.6987 | 0.5835 | 1.4483 | 1.2389
(0.0098) | (0.0090) | (0.0536) | (0.0570)
D+E| 0.7025 | 0.5898 | 1.4483 | 1.2389
(0.0124) | (0.0094) | (0.0635) | (0.0650)

Table 13: Fairness evaluation for different prompt strate-
gies on the Adult dataset. Metrics evaluated are accu-
racy (Acc), F1 score (F1), statistical parity ratio (SPR),
and equality of opportunity ratio (EOR). Standard de-
viations are displayed below the mean. Types: F (Fair
Prompting), G (Generalised Prompting), D (Descrip-
tive Prompting), D + E (Descriptive Prompting + Equal
Samples Across Demographics).



Model | Type| Acc |AUROC| SPR | EOR Model |Type| Acc | F1 | SPR | EOR
GPT-3.5 F 0.6062 | 0.6563 | 2.7335 | 1.9775 GPT-3.5 F 0.5215 | 0.0566 | 1.1513 | 1.1185
(0.0038) | (0.0051) | (0.0522) | (0.0641) (0.0089) | (0.0079) | (0.0809) | (0.0720)

G 0.6108 | 0.6615 | 2.6718 | 1.9219 G 0.5261 | 0.0546 | 0.9882 | 1.1068

(0.0044) | (0.0049) | (0.0760) | (0.0604) (0.0055) | (0.0039) | (0.0449) | (0.0739)

D 0.6158 | 0.6659 | 2.5993 | 1.8840 D 0.5246 | 0.0647 | 0.9514 | 1.0485

(0.0069) | (0.0050) | (0.0781) | (0.0465) (0.0063) | (0.0062) | (0.0760) | (0.0730)

D+E| 0.6203 | 0.6715 | 2.5668 | 1.8204 D+E| 0.5274 | 0.0705 | 0.8196 | 0.9887
(0.0074) | (0.0069) |(0.0749)|(0.0503) (0.0080) | (0.0084) [ (0.0431) | (0.0614)

Llama-3 F 0.6216 | 0.6862 | 1.5505 | 1.2590 Llama-3 F 0.5446 | 0.0777 | 1.2166 | 1.1180
(0.0070) | (0.0064) | (0.0522) | (0.0677) (0.0070) | (0.0089) | (0.0644) | (0.0251)

G 0.6111 | 0.6655 | 1.5076 | 1.2346 G 0.5557 | 0.0858 | 1.2292 | 1.1484

(0.0057) | (0.0081) | (0.0747) | (0.0619) (0.0069) | (0.0095) | (0.0493) | (0.0430)

D 0.6111 | 0.6655 | 1.4451 | 1.1794 D 0.5588 | 0.0904 | 1.2661 | 1.1627

(0.0057) | (0.0081) | (0.0950) | (0.0599) (0.0048) | (0.0070) | (0.0765) | (0.0676)

D+E| 0.6111 | 0.6655 | 1.4153 | 1.1258 D+E| 05677 | 0.0960 | 1.2925 | 1.2083
(0.0057) | (0.0081) [ (0.1031) | (0.0366) (0.0082) | (0.0067) | (0.0944) | (0.0845)

Gemma-2| F 0.6270 | 0.6629 | 1.4483 | 1.2389 Gemma-2| F 0.5184 | 0.0437 | 1.4483 | 1.2389
(0.0100) | (0.0044) | (0.0667) | (0.0979) (0.0048) | (0.0053) [ (0.0209) | (0.0864)

G 0.6322 | 0.6674 | 1.4413 | 1.2311 G 0.5198 | 0.0529 | 1.4413 | 1.2312

(0.0110) | (0.0051) | (0.0678) | (0.0968) (0.0060) | (0.0065) | (0.0883) | (0.0822)

0.6368 | 0.6718 | 1.4023 | 1.2189 D 0.5397 | 0.0750 | 1.4343 | 1.2307

(0.0099) | (0.0072) | (0.0711) | (0.0972) (0.0034) | (0.0031) | (0.0516) | (0.0607)

D+E| 0.6411 | 0.6780 | 1.4001 | 1.2081 D+E| 0.5446 | 0.0789 | 1.4321 | 1.2102
(0.0116) | (0.0085) | (0.0703) | (0.0992) (0.0055) | (0.0037) | (0.0875) | (0.0798)

Table 14: Fairness evaluation for different prompt strate-
gies on the COMPAS dataset. Metrics evaluated are
accuracy (Acc), AUROC, statistical parity ratio (SPR),
and equality of opportunity ratio (EOR). Standard de-
viations are displayed below the mean. Types: F (Fair
Prompting), G (Generalised Prompting), D (Descrip-
tive Prompting), D + E (Descriptive Prompting + Equal
Samples Across Demographics).
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Table 15: Fairness evaluation for different prompt strate-
gies on the Diabetes dataset. Metrics evaluated are
accuracy (Acc), F1 score (F1), statistical parity ratio
(SPR), and equality of opportunity ratio (EOR). Stan-
dard deviations are displayed below the mean. Types:
F (Fair Prompting), G (Generalised Prompting), D (De-
scriptive Prompting), D + E (Descriptive Prompting +
Equal Samples Across Demographics).



Model | Type| Acc | F1 | SPR | EOR
GPT-3.5 F 0.7921 | 0.9644 | 0.8672 | 1.2946
(0.0052) | (0.0061) | (0.0039) | (0.0494)

G 0.7956 | 0.9707 | 0.8697 | 1.3369

(0.0061) | (0.0054) | (0.0026) | (0.0694)

D 0.8018 | 0.9752 | 0.8747 | 1.3745

(0.0061) | (0.0082) | (0.0023) | (0.0612)

D+E| 0.8047 | 0.9773 | 0.8793 | 1.4144

(0.0058) | (0.0090) | (0.0030) | (0.0799)

Llama-3 F 0.8082 | 0.5355 | 0.9071 | 0.8459
(0.0038) | (0.0034) | (0.0046) | (0.0372)

G 0.8130 | 0.5386 | 0.9112 | 0.8831

(0.0045) | (0.0032) | (0.0030) | (0.0598)

D 0.8144 | 0.8890 | 0.8730 | 1.3084

(0.0071) | (0.0060) | (0.0050) | (0.0410)

D+E| 0.8144 | 0.8890 | 0.8730 | 1.3084

(0.0071) | (0.0060) | (0.0050) | (0.0410)

Gemma-2| F 0.8385 | 0.6295 | 0.9063 | 1.2301
(0.0056) | (0.0048) | (0.0048) | (0.0300)

G 0.8432 | 0.6347 | 0.9090 | 1.2772

(0.0057) | (0.0049) | (0.0065) | (0.0228)

D 0.8144 | 0.8890 | 0.8730 | 1.3084

(0.0071) | (0.0060) | (0.0050) | (0.0410)

D+E| 0.8174 | 0.8899 | 0.8799 | 1.3088

(0.0078) | (0.0081) | (0.0059) | (0.0423)

Table 16: Fairness evaluation for different prompt strate-
gies on the Student dataset. Metrics evaluated are accu-
racy (Acc), F1 score (F1), statistical parity ratio (SPR),
and equality of opportunity ratio (EOR). Standard de-
viations are displayed below the mean. Types: F (Fair
Prompting), G (Generalised Prompting), D (Descrip-
tive Prompting), D + E (Descriptive Prompting + Equal

Samples Across Demographics).

17



	Introduction
	Related Work
	LLM for Tabular Data
	Fairness and Biases in LLMs
	In-context Learning, Fine-tuning and RAG for Tabular Data

	Methodology
	Bias Detection
	Model Utility
	Fairness Definition

	Framework for Bias Mitigation in LLMs
	Serialisation, Prompt Templates and In-context Learning
	Fine-Tuning and RAG

	Enhancing Fairness with Prompting Strategies

	Experiments
	Dataset
	Baselines
	Models and Setting

	Results
	Bias Introduction in Tabular Data Classification LLMs
	In-context Learning
	Fine-tune and RAG
	Enhancing Fairness with Prompting Strategies

	Conclusion
	Prompt Templates for In-context Learning
	Fine-Tuning
	Fairness Evaluation

