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Abstract

Recent studies have revealed various manifestations
of position bias in transformer architectures, from the
“lost-in-the-middle” phenomenon to attention sinks, yet
a comprehensive theoretical understanding of how at-
tention masks and positional encodings shape these
biases remains elusive. This paper presents a graph-
theoretic framework for analyzing position bias in
multi-layer attention. Modeling attention masks as
directed graphs, we quantify how tokens interact with
contextual information based on their sequential po-
sitions. We uncover two key insights: First, causal
masking inherently biases attention toward earlier posi-
tions, as tokens in deeper layers attend to increasingly
more contextualized representations of earlier tokens.
Second, we characterize the competing effects of the
causal mask and relative positional encodings, such as
the decay mask and rotary positional encoding (RoPE):
while both mechanisms introduce distance-based de-
cay within individual attention maps, their aggregate
effect across multiple attention layers—coupled with
the causal mask—leads to a trade-off between the long-
term decay effects and the cumulative importance of
early sequence positions. Through controlled numeri-
cal experiments, we not only validate our theoretical
findings but also reproduce position biases observed
in real-world LLMs. Our framework offers a princi-
pled foundation for understanding positional biases in
transformers, shedding light on the complex interplay
of attention mechanism components and guiding more
informed architectural design.

1. Introduction
The attention mechanism is central to transformer architec-
tures (Vaswani et al., 2017), which form the backbone of
state-of-the-art foundation models, including large language
models (LLMs). Its success lies in its ability to dynamically
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weigh input elements based on their relevance, enabling ef-
ficient handling of complex dependencies (Bahdanau et al.,
2015; Kim et al., 2017). However, despite this widespread
success, many questions remain unanswered regarding how
these mechanisms process information and the artifacts they
may introduce. Developing a deeper theoretical understand-
ing of their inner workings is essential – not only to better
interpret existing models but also to guide the design of
more robust and powerful architectures.

One particularly intriguing aspect that demands such a the-
oretical investigation is position bias, i.e., the bias of the
model to focus on certain regions of the input, which sig-
nificantly impacts the performance and reliability of trans-
formers and LLMs (Hou et al., 2024; Wang et al., 2024;
Zheng et al., 2023). For instance, these models often suffer
from the “lost-in-the-middle” problem, where retrieval ac-
curacy significantly degrades for information positioned in
the middle of the input sequence compared to information
at the beginning or end (Guo & Vosoughi, 2024; Liu et al.,
2024; Zhang et al., 2024). Similarly, in-context learning is
highly sensitive to the order of illustrative examples: simply
shuffling independently and identically distributed (i.i.d.) ex-
amples can lead to significant performance degradation (Lu
et al., 2022; Min et al., 2022; Zhao et al., 2021). Moreover,
recent research has also revealed that attention sinks (Gu
et al., 2025; Guo et al., 2024; Xiao et al., 2024) – posi-
tions that attract disproportionately high attention weights –
arise at certain positions regardless of semantic relevance,
suggesting an inherent positional bias.

These empirical findings suggest that while transformers ef-
fectively encode and process positional information through
the combined use of attention masks and positional encod-
ings (PEs) (Fang et al., 2025; Wang et al., 2024), these
design elements also appear to introduce systematic posi-
tional biases, often independent of semantic content. This
raises a fundamental and intriguing question about the role
of positional information in attention mechanisms:

How do attention masks and positional encodings
shape position bias in transformers?

To address the question, we develop a graph-theoretic frame-
work for analyzing attention score distributions in multi-
layer attention settings. Related to the empirical tool of
attention rollout (Abnar & Zuidema, 2020) and building
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Table 1: Summary of our results and their connections to empirical observations on position bias reported in the literature.

Empirical Observations on Position Bias Our Results

Positional information induced by the causal mask (Barbero et al., 2024a; Kazemnejad et al., 2023; Wang et al., 2024) Theorem 4.1, Section 5.2
Decay effects induced by relative PEs (Su et al., 2023) Lemma 4.4-4.6, Section 5.1

Interplay between the causal mask and relative PEs (Wang et al., 2024) Theorem 4.5-4.7, Section 5.1
Attention sinks (Gu et al., 2025; Xiao et al., 2024) Theorem 4.1-4.3, Appendix K.2

The “lost-in-the-middle” phenomenon (Guo & Vosoughi, 2024; Liu et al., 2024) Section 5.2

upon the theoretical analysis of attention from a graph per-
spective (Barbero et al., 2024a; Wu et al., 2023; 2024), we
model attention masks as directed graphs, enabling rigorous
mathematical analysis of attention patterns. This approach
proves particularly powerful for studying multi-layer atten-
tion mechanisms, as it allows us to precisely quantify how
each token’s contextual representation is composed from in-
formation at different positions in the sequence. By tracking
the information flow through the attention layers, we can
systematically examine how positional biases emerge and
propagate across layers, providing insights into the complex
interplay between attention masks, PEs, and the network’s
depth.

Our contributions are summarized as follows:

• We develop a graph-theoretic framework that unifies
and advances understanding of position bias in trans-
formers, offering deeper insights into diverse empirical
observations documented in the literature (Table 1).

• We show that causal masking in transformers inher-
ently biases attention toward earlier positions in deep
networks. This happens as tokens in deeper layers
attend to increasingly more contextualized representa-
tions of earlier tokens, thereby amplifying the influence
of initial positions. We derive analogous results for the
sliding-window mask and the prefix mask, highlighting
the generalizability of our framework.

• We uncover a nuanced interaction between causal
masking and relative PEs, such as decay masks and
rotary positional encoding (RoPE). Our findings high-
light a trade-off in multi-layer attention networks,
where local decay effects within individual layers are
counterbalanced by the cumulative importance of early
sequence positions. These results provide a deeper
understanding of how PE and masking interact in deep
attention-based architectures, with design implications
about how to balance local and global context.

• We support our theoretical findings with experiments,
empirically validating that deeper attention layers am-
plify the bias toward earlier parts of the sequence, while
relative PEs partially mitigate this effect. Through
carefully controlled numerical experiments, we fur-
ther investigate the role of data in shaping position bias
and how causal masking implicitly leverages positional
information.

2. Related Work
Position bias in transformers Position bias in trans-
former models has emerged as a critical challenge across
diverse applications. In information retrieval and ranking,
Guo & Vosoughi (2024); Hou et al. (2024); Liu et al. (2024);
Zheng et al. (2023) demonstrated systematic degradation of
performance due to positional dependencies. Similarly, in
in-context learning, model performance can vary dramat-
ically based solely on the order of examples (Fang et al.,
2025; Lu et al., 2022; Min et al., 2022; Zhao et al., 2021).
While mitigation strategies such as novel PEs (Kazemnejad
et al., 2023; Zhang et al., 2024), alternative masking tech-
niques (Fang et al., 2025; Wang et al., 2024) and bootstrap-
ping (Hou et al., 2024) have been proposed, they remain
task-specific and empirically driven. This gap between em-
pirical observations and theoretical understanding highlights
the need for a rigorous analysis of how transformers process
and integrate positional information through attention.

The effect of attention masks and PEs in transformers
The role of attention masks and PEs in transformers has
been explored from various perspectives. Yun et al. (2020b)
analyzed the function approximation power of transformers
under different masking schemes, while Wu et al. (2023;
2024) investigated the role of attention masks in mitigating
rank collapse. Moreover, Gu et al. (2025) empirically exam-
ined how attention masks affect the emergence of attention
sinks. As for PEs, Kazemnejad et al. (2023) studied their
role in length generalization, and Barbero et al. (2024b) ana-
lyzed RoPE’s use of feature dimensions. Additionally, Wang
et al. (2024) empirically observed that both causal masking
and RoPE introduce position dependencies in LLMs. De-
spite these advances, fundamental questions remain about
the mechanisms through which attention masks and PEs
enable transformers to process and integrate positional in-
formation, as well as the nature of the systematic positional
biases that emerge as a result.

3. Problem Setup
Notation We use the shorthand [n] := {1, . . . , n}. For
a matrix M , we denote its i-th row by Mi,: and its j-th
column by M:,j . Throughout the analysis in the paper,
we formalize the attention mask to be a directed graph G.
Formally, we represent a directed graph with N nodes by G
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and let E(G) be the set of directed edges of G. A directed
edge (j, i) ∈ E(G) from node j to i in G means that in
the attention mechanism, token j serves as a direct context
for token i or token i attends to token j. The set Ni of all
neighbors of node i is then {k : (k, i) ∈ E(G)}. We say a
node v is reachable from node u in a directed graph G if
there is a directed path (u, n1), (n1, n2), ..., (nk, v) from u
to v. In the attention mechanism, this means that token u
serves as a direct or indirect context for token v.

Furthermore, we will be using the following graph-theoretic
terminology (see Figure 1 for a schematic illustration):

Definition 3.1 (Center Node). A node v from which every
node in the directed graph G is reachable is called a center
node.

3.1. (Masked) Attention Mechanism

Given the representation X ∈ RN×d of N tokens,
the raw attention score matrix is computed as Z =
XWQ(XWK)⊤/

√
dQK , where WQ,WK ∈ Rd×d′

are the
query and the key matrix, respectively, and

√
dQK is a tem-

perature term to control the scale of raw attention scores.
Without loss of generality, we assume dQK = 1 in our anal-
ysis. To enforce a masked attention, we create a sparse atten-
tion matrix A ∈ RN×N based on Z whose sparsity pattern
is specified by a directed graph G: we normalize Zij among
all allowed token attention interactions (k, i) ∈ E(G) such
that if (j, i) ∈ E(G),

Aij = softmaxG(Zij) =
exp(Zij)∑

k∈Ni
exp(Zik)

,

and Aij = 0 otherwise.

3.2. Attention Update

For our analysis, we consider single-head (masked) self-
attention networks (SANs). The layerwise update rule can
be written as

A(t) = softmaxG(t)

(
X(t)W

(t)
Q (X(t)W

(t)
K )⊤/

√
dQK

)
X(t+1) = A(t)X(t)W

(t)
V , (1)

where W (t)
V ∈ Rd×d′

is the value matrix. For simplicity,
throughout the paper, we assume that d = d′ and G(t) = G.
Yet the results can be easily generalized to the case where
masks are time-varying and satisfy regularity conditions.

3.3. Relative Positional Encoding

Decay Mask The decay mask represents the relative dis-
tance between two tokens by introducing an explicit bias
favoring more recent tokens. Formally, it can be written as:

Dij =

{
−(i− j)m if j ≤ i

0 otherwise .

Then applying the decay mask is essentially

A
(t)
decay = softmaxG(X

(t)W
(t)
Q (X(t)W

(t)
K )⊤ +D) . (2)

Note that while the decay mask formulation follows AL-
iBi (Press et al., 2022), it can be generalized to more com-
plex variants such as KERPLE (Chi et al., 2022).

Rotary Positional Encoding (RoPE) Another way to en-
code the relative positional information is through RoPE (Su
et al., 2023), which applies a rotation to query and key em-
beddings by an angle proportional to the token’s position
index within the sequence. Formally, the rotation operation
applied to each query or key Xi,:W{Q,K} can be written as

(X̂{Q,K})i,: = Xi,:W{Q,K}R
d
Θ,i (3)

where

Rd
Θ,i =



cos iθ1 sin iθ1 0 0 · · · 0 0
− sin iθ1 cos iθ1 0 0 · · · 0 0

0 0 cos iθ2 sin iθ2 · · · 0 0
0 0 − sin iθ2 cos iθ2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 cos iθd/2 sin iθd/2
0 0 0 0 − sin iθd/2 cos iθd/2



is the rotation matrix with a set of pre-defined base rotational
angles Θ = {0 ≤ θ1 ≤ · · · ≤ θd/2}. Then the raw attention
scores under RoPE ZRoPE become

(ZRoPE)ij = (Xi,:WQR
d
θ,i)(Xj,:WKR

d
θ,j)

⊤

= Xi,:WQR
d
θ,i−jW

⊤
KX

⊤
j,:,

which distorts the original raw attention scores based on the
relative token distances. The final attention scores under
RoPE are calculated as A(t)

RoPE = softmaxG

(
Z

(t)
RoPE

)
.

4. Main Results
In the transformer model, the attention mechanism is the
sole module that allows tokens to interact with one another
and incorporate contextual information from the sequence.
It iteratively refines the contextual representation of each to-
ken across layers, allowing information to flow and accumu-
late based on relevance. This concept of contextualization
through attention has its origins in the development of at-
tention mechanisms, which predate transformers (Bahdanau
et al., 2015; Kim et al., 2017). From the perspective of con-
textualization, the attention mechanism can be expressed in
the following form (Kim et al., 2017):

X
(t+1)
i,: =

N∑
j=1

(A(t) · · ·A(0))ij︸ ︷︷ ︸
P(t)(zi=j|X(0))

· X(0)
j,: W

(0)
V · · ·W (t)

V︸ ︷︷ ︸
f(t)(X(0)

zi,:
)

, (4)

where zi is a categorical latent variable with a sample space
{1, . . . , N} that selects the input Xj,: to provide context for
token i. In this formulation, A(t) represents the attention
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matrix at layer t, P(t)(zi = j | X(0)) denotes the cumulative
probability of selecting input token j as the context for token
i at depth t , and f (t)(·) is a learned transformation function.

This probabilistic formulation reveals two key aspects of the
attention mechanism: it acts as both a context selector and a
feature aggregator. As a selector, it assigns probabilities P(t)

that quantify the relevance of each token j to target token
i at depth t. As an aggregator, it combines these selected
contexts weighted by their respective probabilities P(t) to
form the contextualized representation X(t). Since position
bias fundamentally manifests as systematic preferences in
how tokens select and incorporate context from different
positions, analyzing the attention mechanism’s behavior is
crucial for understanding these biases. By examining how
attention masks and PEs affect the probability distribution
P(t), we can investigate how position-dependent patterns
emerge and propagate through multi-layer attention in trans-
formers.

Attention rollout The quantity analyzed in our frame-
work, P(t)(zi = j | X(0)), coincides with the attention roll-
out metric proposed by Abnar & Zuidema (2020). However,
our work was developed independently, and the motivation
is fundamentally different: whereas attention rollout serves
as an empirical visualization tool applied to specific input
sequences, we treat the same quantity as a theoretical object
and analyze it across arbitrary inputs to reveal the model’s
inductive biases.

Finally, we adopt the following assumptions in our analysis:

A1 There exists C ∈ R such that

max
t∈N

{
∥W (t)

Q ∥2, ∥W (t)
K ∥2

}
≤ C .

A2 The sequence
{
∥
∏k

t=0W
(t)
V ∥2

}∞
k=0

is bounded.

A1 assumes that the key and query weight matrices are
bounded, which is crucial for efficient attention computation
in practice (Alman & Song, 2023), whereas A2 is to ensure
boundedness of the node representations’ trajectories X(t)

for all t ≥ 0 (Wu et al., 2024).

4.1. Attention Masks: A Graph-Theoretic View

We first analyze the case without PEs, focusing on the effect
of attention masks. A graph-theoretic perspective offers a
powerful framework for analyze multi-layer attention: the
flow of attention across tokens can be represented as paths
in a directed graph defined by the mask, where each path
captures how information is transmitted between tokens
(see Figure 1 for an illustration). The number of steps in a
path corresponds to the number of layers. By accounting
for all such paths, we can quantify the cumulative influence
of each token in the context computation of other tokens.

Causal

Prefix

Sliding-window

Figure 1: Three types of attention masks and their correspond-
ing directed graphs G used in the analysis (self-loops are omitted
for clarity). A directed edge from token j to i indicates that i
attends to j. The center node(s) (Definition 3.1), highlighted in
yellow, represent tokens that can be directly or indirectly attended
to by all other tokens in the sequence. As depicted in the top row,
the graph-theoretic formulation captures both direct and indirect
contributions of tokens to the overall context, providing a compre-
hensive view of the token interactions under multi-layer attention.

Through the graph-theoretic view, our first result states that
for a causal mask G, as tokens in deeper layers attend to
increasingly more contextualized representations of earlier
tokens, the context of each token converges exponentially
toward the first token in the sequence.

Theorem 4.1. Let G be the causal mask. Under A1-A2,
given X(0) ∈ RN×d, for every token i ∈ [N ],

lim
t→∞

P(t)(zi = 1|X(0)) = 1 .

Moreover, there exist 0 < C, ϵ < 1 where Nϵ < 1 such that

P(t)(zi = j|X(0)) ≤ C(1− (j − 1)ϵ)t .

for all 1 < j ≤ i and t ≥ 0.

Theorem 4.1 reveals that in multi-layer causal attention,
positional bias toward earlier sequence positions intensi-
fies with depth – regardless of semantic content. This phe-
nomenon arises from the nature of multi-layer attention:
starting from the second layer, tokens no longer attend to
raw inputs but instead to contextualized tokens, i.e., repre-
sentations transformed by prior attention layers. Combined
with the sequential structure of the causal mask, this iter-
ative process amplifies the role of earlier tokens, as they
influence later ones not only as direct context but also in-
directly through intermediate tokens along the path. We
discuss a few intriguing implications below.

4



On the Emergence of Position Bias in Transformers

The role of softmax The key property that leads to the
above result is that the softmax operation in the attention
mechanism cannot fundamentally disconnect any directed
edge in the graph G. As a result, center nodes (Defini-
tion 3.1), which appear in the context directly or indirectly
for all tokens in the sequence, will eventually gain a dom-
inant role in the context as their direct and indirect contri-
butions propagate through the graph. Empirically, Gu et al.
(2025); Xiao et al. (2024) found that changing softmax to
ReLU, which can disconnect edges in the graph, indeed
mitigates the emergence of attention sinks.

How No PE induces positional information Previous
works have observed that the causal mask alone amplifies
the position bias (Wang et al., 2024; Yu et al., 2024). Despite
these observations, it remains insufficiently understood how
the causal mask captures positional information and what in-
formation is being captured. One hypothesis in Kazemnejad
et al. (2023) suggests that the causal mask may be simu-
lating either an absolute PE or a relative PE with specific
weight matrices.

Theorem 4.1 offers a different perspective. The causal mask
results in earlier tokens being utilized more frequently dur-
ing computation, inducing a sequential order. This bias
aligns with the token order in the sequence. To validate this
perspective, we present additional experimental results in
Section 5.2, providing empirical evidence that the causal
mask is not simulating any PE but instead just exhibits a
bias toward the earlier parts of a sequence.

Trade-off between representation power and position
bias Theorem 4.1 also highlights a trade-off between rep-
resentational power and positional bias as the depth of
attention layers increases. While numerous studies have
demonstrated that deeper attention models are crucial for
improving representation power (Li et al., 2024b; Merrill &
Sabharwal, 2022; Sanford et al., 2024; Yun et al., 2020a),
our findings reveal that these benefits come at a cost. As
the model depth increases, the initial tokens in a sequence
are utilized more frequently, amplifying the positional bias
toward the beginning of the sequence. This trade-off un-
derscores the importance of carefully balancing depth and
positional bias in the design of attention-based architectures.

Theorem 4.1 on the causal mask can be generalized to en-
compass other types of attention masks, notably the sliding-
window mask (Beltagy et al., 2020; Jiang et al., 2023) and
the prefix mask (Lewis et al., 2020; Raffel et al., 2020). In
the sliding-window mask, each token is allowed to attend to
a fixed number of preceding tokens. Let w denote the width
of the sliding-window, representing the maximal number of
tokens each token can access. The following result shows
how limiting the context window size affects the propaga-
tion of contextual information in attention mechanism.

Theorem 4.2. Let G be the sliding-window mask with width
w ≥ 2. Under A1-A2, given X(0) ∈ RN×d, for every token
i ∈ [N ],

lim
t→∞

P(t)(zi = 1|X(0)) = 1 .

Moreover, there exist 0 < C, ϵ < 1 where Nϵ⌈
N−1
w−1 ⌉ < 1

such that

P(t)(zi = j|X(0)) ≤ C(1− (j − 1)ϵ⌈
N−1
w−1 ⌉)t/(2⌈

N−1
w−1 ⌉) .

for all 1 < j ≤ i and t ≥ 0.

The above result suggests that a smaller window size w
helps mitigate the model’s bias toward early tokens in the
sequence. However, such a moderating effect has its limit –
the contextual information will still exponentially converge
toward the first token over successive layers, though at a
rate determined by the ratio between the sequence length N
and the window size w.

Finally, for the case of a prefix mask, where the first K
tokens in the sequence serve as a prefix and all subsequent
tokens attend to them, contextual information exponentially
converges toward these K tokens rather than being dom-
inated by just the first one, with each of these K tokens
having a non-trivial influence.

Theorem 4.3. Let G be the prefix mask with the first K
tokens being the prefix tokens. Under A1-A2, given X(0) ∈
RN×d, for every token i ∈ [N ],

lim
t→∞

P(t)(zi ∈ [K]|X(0)) = 1 ,

and there exists κ > 0 such that

lim inf
t→∞

P(t)(zi = k|X(0)) ≥ κ. ∀k ∈ [K] .

Moreover, there exist 0 < C, ϵ < 1 where Nϵ < 1 such that

P(t)(zi = j|X(0)) ≤ C(1− (j −K)ϵ)t .

for all K < j ≤ i and t ≥ 0.

Attention sink and center node The above result con-
nects the emergence of attention sinks to the structural role
of center nodes in the graph G defined by the mask. Specifi-
cally, in Gu et al. (2025), the authors observed two interest-
ing phenomena: 1) when using the sliding-window mask,
attention sinks still appear on the absolute first token in the
sequence, but not on the first token within each context win-
dow; 2) when using the prefix mask, attention sinks emerge
on all prefix tokens, rather than just on the first token.

These empirical results align well with Theorems 4.2 and
4.3. Our results suggest that the absolute first token and
the prefix tokens act as center nodes for the sliding-window
mask and prefix mask, respectively. The context for each
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token, after multi-layer attention, exponentially converges
to these center nodes. This connection between attention
sinks and center nodes suggests that attention sinks are not
arbitrary artifacts but arise naturally from the underlying
graph structure induced by the attention mask.

4.2. Relative PEs: A Competing Decay Effect

Having analyzed how attention masks bias the model toward
the beginning of the sequence, we now shift our focus to
studying PEs, the other key mechanism for representing
positional information in transformers.

Relative PE, as the name suggests, incorporates positional
information by modifying the original attention scores in
a way that reflects the relative positions of tokens. Among
these, the decay mask (Press et al., 2022) explicitly intro-
duces a distance-based decay effect into the attention mech-
anism. We begin by examining the effect of the decay mask
on individual attention layers.

Lemma 4.4. Consider the decay mask in (2) where G is
causal. Under A1-A2, given X(0) ∈ RN×d, there exists
Cmax, Cmin > 0 such that for all j ≤ i ∈ [N ] and t ≥ 0,

Cmine
−(i−j)m ≤ (A

(t)
decay)ij ≤ Cmaxe

−(i−j)m.

Lemma 4.4 demonstrates that the decay mask introduces
an exponential decay effect into each attention map, with
the strength of the effect determined by the token distances.
However, while this result characterizes the behavior of
individual attention layers, the interaction between layers
in a multi-layer setting leads to more intricate behaviors.
Building on Lemma 4.4 , Theorem 4.5 examines the cumu-
lative effect of the decay mask across multiple layers when
combined with the causal mask.

Theorem 4.5. Consider the decay mask in (2) where G is
causal. Fix T ≥ 0. Under A1-A2, given X(0) ∈ RN×d, it
holds for all j ≤ i ∈ [N ] and t ≤ T ,

P(t)
decay

(zi = j|X(0)) = Θ

((
t+ i− j

i− j

)
e−(i−j)m

)
.

Notably, if we denote

L(x) = log

((
t+ x

x

)
e−xm

)
,

then L(x) is not a monotone function of the distance x
between two tokens. More precisely, under Stirling’s ap-
proximation, the critical point, where the highest attention
score occurs, is at x∗ = t/(em − 1) . This means that in-
creasing the decay strength m decreases x∗, making the
model more biased towards recent tokens, whereas increas-
ing the number of attention layers increases x∗, making the
model more biased towards initial tokens.

Compared to Lemma 4.4, while the decay mask imposes a
stronger decay effect on earlier tokens within individual
attention layers, these tokens gain more cumulative im-
portance across multiple layers. This trade-off between
layer-wise decay and cross-layer accumulation transforms
the initially monotonic decay pattern within each attention
map into a more intricate, non-monotonic behavior when
aggregated throughout the network.

4.3. A Closer Look at RoPE

Having analyzed the effect of the decay mask, which directly
incorporates a distance-based decay into the attention score
calculation, we now turn our attention to another popular
form of relative positional encoding: RoPE (Su et al., 2023).

RoPE’s inherent complexity has made a clear theoretical
understanding challenging. However, recent empirical ob-
servations in Barbero et al. (2024b) suggest that in practice,
LLMs tend to predominantly utilize feature dimensions that
rotate slowly. This phenomenon introduces additional struc-
ture, enabling a more refined analysis of RoPE’s effects by
focusing on these slowly rotating feature dimensions. For
simplicity and without loss of generality, we consider the
case where only the slowest-rotating feature dimensions
with base rotational angle θ1 are used by the model, i.e.
effectively reducing the embedding dimension to d = 2.
See Appendix I for more results on the general case d ≥ 2.

Recall from (3) that RoPE operates by rotating the original
query and key embeddings by an angle proportional to the
token’s position index within the sequence. Similar to the
decay mask, which incorporates distance-based decay into
attention scores, RoPE adjusts raw attention scores via these
rotations. To formalize this relationship mathematically, we
define the original angle between query q(t)i := X

(t)
i,: W

(t)
Q

and key k
(t)
j := X

(t)
j,: W

(t)
K as ϕ(t)i,j . Then the following

result analyzes how RoPE’s position-dependent rotations
systematically modify the computation of attention scores.
Lemma 4.6. Let G be the causal mask and d = 2. Suppose
for t ≥ 0, ∥q(t)i ∥2, ∥k(t)j ∥2 > 0, and |ϕ(t)i,j | ≤ δθ1, where
δ > 0 and (δ +N − 1)θ1 ≤ π. Then under A1-A2, given
X(0) ∈ RN×d, there exists Cmax, Cmin,c, c

′ > 0 such that
for all j ≤ i ∈ [N ],

Cmine
−c(i−j)2θ2

1 ≤ (A
(t)
RoPE)ij ≤ Cmaxe

−c′(i−j)2θ2
1 .

The result shows that by solely leveraging feature dimen-
sions that rotate slowly, RoPE effectively induces a distance-
based decay effect, which aligns with the intuition in Su
et al. (2023). However, it is worth noting that the decay
effect induced by RoPE is significantly smaller compared
to that of the decay mask (Lemma 4.4). This is because
the base rotational angle θ1 is typically chosen to be small,
i.e. ≈ 1/10000 per token (Dubey & et al., 2024; Su et al.,
2023), resulting in a more gradual decay.
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However, similar to the case of the decay mask, when con-
sidering the effect of RoPE across multiple layers of atten-
tion, the long-term decay effects within individual layers are
counteracted by the increasing influence of earlier tokens
given by the causal mask.
Theorem 4.7. Fix T > 0. Under the same conditions as
in Lemma 4.6 for t ≤ T , given X(0) ∈ RN×d, there exists
c > 0 such that for all j ≤ i ∈ [N ] and t ≤ T ,

P(t)
RoPE

(zi = j|X(0)) = Θ

((
t+ i− j

i− j

)
e−c(i−j)2θ2

1

)
.

Again, if we write

L(x) = log

((
t+ x

x

)
e−x2θ2

1

)
,

then, by implicit differentiation, the critical point x∗ is an
increasing function of the depth t and a decreasing function
of the base rotational angle θ1 (see Appendix H). This im-
plies that increasing the base rotational angle θ1 reduces the
optimal distance x∗, amplifying the long-term decay effect
and causing tokens to focus more on nearby tokens. In con-
trast, increasing the number of attention layers t increases
x∗ and hence deeper models become more biased toward
initial tokens.

5. Experiments
In this section, we validate our theoretical findings via care-
fully designed numerical experiments1. To ensure a con-
trolled setup that enables precise manipulation of positional
biases in the data, we adopt the synthetic data-generating
process and simplified self-attention network framework
proposed in Reddy (2024). This setup allows us to system-
atically isolate and examine the effects of different compo-
nents on the emergence of position bias.

Task structure Following Reddy (2024), we adopt the
following information retrieval task: The model is trained
to predict the label yquery of a target xquery using the cross-
entropy loss, given an alternating sequence of n items and
n labels: x1, y1, . . . , xn, yn, xquery. The sequence is embed-
ded in d dimensions. Each xi is sampled from a Gaussian
mixture model with K classes, and yi is the corresponding
class label assigned prior to training from the total L labels
(L ≤ K). The burstiness B is the number of occurrences
of xi from a particular class in an input sequence. Impor-
tantly, at least one item in the context belongs to the same
class as the query. To control position bias in the training
data, xquery can either be explicitly assigned to the class of a
specific xi, introducing position-dependent bias in the data,
or randomly assigned to the class of any xi, simulating a
scenario without position bias in the data.

1Our code is available at github.com/xinyiwu98/position-bias-
in-attention.

Tracking position bias To quantify position bias, we eval-
uate model performance using sequences containing novel
classes not seen during training. Specifically, by generat-
ing new class centers for the Gaussian mixture and ran-
domly assigning one of the L existing labels to these novel
classes, we ensure that the model relies on contextual infor-
mation rather than memorized class features. Crucially, we
can systematically vary the position of the correct answer
within test sequences to measure retrieval accuracy changes,
thereby isolating and quantifying position-dependent biases
in the model’s behavior.

Network architecture The input sequences are passed
through an attention-only network followed by a classifier.
Each attention layer has one attention head. The classifier is
then a three-layer MLP with ReLU activations and a softmax
layer which predicts the probabilities of the L labels.

Following Reddy (2024), we set n = 8 and d = 64. Ad-
ditional experimental details are provided in Appendix J.
Despite our use of a simplified experimental setup, we ob-
serve the emergence of key phenomena documented in real-
world LLMs, such as the “lost-in-the-middle” phenomenon
(Section 5.2) and the formation of attention sinks (Ap-
pendix K.2). This convergence between our controlled envi-
ronment and real-world observations validates our choice of
abstraction, suggesting that we have preserved the essential
mechanisms driving position bias while enabling systematic
investigation.

5.1. The Effects of Depth and Relative PEs

To investigate the position bias arising solely from the archi-
tectural design of the attention mechanism, we use training
sequences without positional bias, where the position of
xi sharing the same class as xquery is uniformly random in
{1, 2, . . . , n}. To evaluate the position bias in the trained
model, we construct test sequences of the form [a, b]. Here,
the bolded term a explicitly marks the correct position, en-
suring ya matches yquery, while position b serves as a base-
line. In these sequences, xa and xb are identical vectors,
allowing us to control for the influence of semantic infor-
mation on the model’s retrieval accuracy. We then measure
the retrieval accuracy gap between pairs of sequences where
the content at positions a and b is identical, but the correct
position varies. This gap, defined as [a, b]−[b, a], quantifies
the model’s positional preference independent of semantic
information. To perform this evaluation, we construct three
pairs of test sets, each containing 10, 000 sequences: [first,
middle] vs. [middle, first], [first, last] vs. [last, first], and
[middle, last] vs. [last, middle]. Here “first” (position 1),
“middle” (position n/2), and “last” (position n) denote fixed
positions within a sequence.

Figure 2 shows the average results over five runs, where a vs.
b denotes the gap [a, b]− [b, a]. The magnitude of each bar
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Figure 2: Position bias arising solely from the architectural design of the attention mechanism, with no positional bias in the training
data. a vs. b denotes the gap for the case [a, b]− [b, a], where bar magnitude indicates gap size, positive indicates bias toward earlier
position, and negative indicates bias toward later position. Deeper attention amplifies the bias toward earlier tokens, regardless of the PE
used. Furthermore, decay mask introduce stronger distance-based decay effects that increase focus on recent tokens than RoPE.
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Figure 3: Position bias when trained on data biased toward the first and last positions. Compared with no mask, a causal mask without
PE indeed introduces positional dependencies. However, pure causal mask captures positional bias only at the first position but not at
the last, whereas both sin PE and RoPE successfully capture biases at both ends. Moreover, the performance under PEs also displays a
“lost-in-the-middle” pattern, which is absent under other types of positional bias in the training data (see Appendix K.1 for more details).

represents the size of the performance gap, and the sign of
each bar reflects the direction of the bias: a positive sign in-
dicates a bias toward earlier positions, while a negative sign
indicates a bias toward later positions. We highlight several
key observations. First, increasing model depth consistently
amplifies the bias toward earlier parts of the sequence, re-
gardless of the PE used. Also note that the performance gap
between the middle and last positions is notably smaller than
that involving the first position. This aligns with our theory,
which suggests that as the model focuses more on the initial
part of the sequence, information near the sequence’s end
becomes less distinguishable, consistent with the patterns
observed in Barbero et al. (2024a). Furthermore, both the
decay mask and RoPE introduce distance-based decay ef-
fects that reduce the bias toward the beginning induced by
the causal mask and increase the focus on recent tokens.
However, the decay effect induced by the decay mask is sub-
stantially more pronounced than that by RoPE, as predicted
by our theory.

5.2. Can Causal Mask Induce Usable Positional
Information?

Next, we empirically examine how the causal mask lever-
ages positional information. Kazemnejad et al. (2023) hy-
pothesized that without PE (No PE), the causal mask can
implicitly simulate absolute or relative PE through specific

weight matrix configurations. To test this hypothesis, we
train models on sequences with positional bias at either the
beginning or the end. Specifically, in the training data, xquery
is assigned to the class of x1 or xn with equal probability.
We then evaluate two types of attention masks: no mask
(G is complete) and causal, and three types of PEs: No
PE (Kazemnejad et al., 2023), absolute sinusoidal PE (sin
PE) (Vaswani et al., 2017), and relative PE using RoPE. For
evaluation, we construct six types of test sets as described
in Section 5.1, each with 10, 000 sequences.

Figure 3 shows the average results using a 2-layer network
over five runs. Notably, in the left subplot, the causal mask
without PE demonstrates a clear position bias toward the
first position compared to the no mask without PE. This
indicates that the causal mask indeed introduces a notion
of position. However, when strong positional biases are
present in the training data, both sin PE and RoPE allow
the model to effectively capture these biases at both ends,
regardless of the mask used. In contrast, a causal mask
without PE only enables the model to learn a position bias at
the beginning of the sequence. If the hypothesis by Kazem-
nejad et al. (2023) were correct, that the causal mask uses
positional information by simulating PEs, then the model
should be able to capture positional bias at any location.
This discrepancy suggests that the causal mask does not in-
herently implement PE but instead introduces a bias toward

8



On the Emergence of Position Bias in Transformers

earlier positions via iterative attention, capturing positional
bias only when it aligns with this predisposition.

The role of data in creating positional bias It is worth
noting that in Figure 3, we observe the “lost-in-the-middle”
phenomenon (Liu et al., 2024), where information retrieval
accuracy follows a U-shape relative to the position of the
answer, with performance at the beginning of the sequence
slightly better than at the end. More experimental results
under different types of positional bias in the training data
can be found in Appendix K.1. Notably, this phenomenon
does not occur when the training data lacks positional bias
(Figure 2) or contains other types of positional bias consid-
ered (Appendix K.1). This suggests that specific types of
positional bias in the training data also play a role in how
the model learns to prioritize positions within a sequence.

6. Conclusion
In this paper, we study position bias in transformers through
a probabilistic and graph-theoretic lens, developing a theo-
retical framework that quantifies how positional information
influences context construction across multi-layer attention.
Our analysis reveals two key findings about position bias
in transformers: the causal mask’s inherent bias toward ear-
lier tokens, as deeper layers increasingly attend to these
positions through iterative attention, and the interplay be-
tween causal masking and relative positional encodings,
which results in a nuanced, non-monotonic balance between
distance-based decay effects and the cumulative influence
of earlier positions. These findings open several promising
directions for future work. One potential direction is lever-
aging these insights to design bias-free transformers, miti-
gating positional biases to improve model robustness and
generalization capabilities. Alternatively, our framework
can also inform the strategic exploitation of positional bias
in specific applications, such as emphasizing early positions
for text summarization or prioritizing recent interactions in
recommendation systems. Another important direction is to
extend our analysis to other transformer components—such
as value projections and MLPs—which may interact with
attention in nontrivial ways, as suggested by analyses based
on vector norms (Kobayashi et al., 2020). By deepening our
understanding of how architectural choices in transformers
shape positional dependencies, our work provides a foun-
dation for designing attention mechanisms with predictable
and task-aligned positional properties.
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A. Proof of Theorem 4.1
A.1. Auxiliary results

Lemma A.1. Under A1-A2, there exists ϵ > 0 such that A(t)
ij ≥ ϵ for all t ≥ 0, (j, i) ∈ E.

Proof. Writing (1) recursively, we get that the token trajectories

X(t+1) = A(t)...A(0)X(0)W
(0)
V ...W

(t)
V , (5)

stay uniformly bounded for all t ≥ 0 by A2. Then it follows from A1 that there exists C ∈ R such that for all t ≥ 0,∥∥∥∥(X(t)W
(t)
Q

)
i,:

∥∥∥∥
2

=
∥∥∥X(t)

i,: W
(t)
Q

∥∥∥
2
≤ C ,∥∥∥∥(X(t)W

(t)
K

)
i,:

∥∥∥∥
2

=
∥∥∥X(t)

i,: W
(t)
K

∥∥∥
2
≤ C .

(6)

Hence for all i, j ∈ [N ],
−C2 ≤ (X(t)W

(t)
Q (X(t)W

(t)
K )⊤)ij ≤ C2 .

This implies that there exists ϵ > 0 such that A(t)
ij ≥ ϵ for all (j, i) ∈ E.

A.2. Proof of Theorem 4.1

We denote P (t) := A(t) · · ·A(0). It suffices to show that there exists 0 < C < 1 and 0 < ϵ < 1 such that

P
(t)
ij ≤ C(1− (j − 1)ϵ)t (7)

for all 1 < j ≤ i and t ≥ 0.

The proof will go by induction:

Base case By Lemma A.1, it follows that
P

(0)
ij ≤ (1− ϵ)

for all 1 < j ≤ i. Then let C := 1− ϵ.

Induction step Assume that (7) holds, it follows that for all 1 < j ≤ i.

P
(t+1)
ij =

i∑
k=j

A
(t)
ik P

(t)
kj ≤ (1− (j − 1)ϵ)C(1− (j − 1)ϵ)t = C(1− (j − 1)ϵ)t+1 .

From above, we conclude the theorem.

B. Proof of Theorem 4.2
For t0 ≤ t1, we denote

A(t1:t0) = A(t1) . . . A(t0) .

Without loss of generality, we assume in the following proof that N − 1 can be divided by w − 1.

B.1. Auxiliary results

Lemma B.1. Let G be the sliding-window mask with the window size w ≥ 2. Then there exists c > 0 such that for all
t0 ≥ 0,

c ≤ A
(t0+N−1

w−1 −1:t0)
ij ≤ 1 , ∀j ≤ i ∈ [N ] .
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Proof. Given the connectivity pattern of the sliding-window mask G and Lemma A.1, it follows that for all t0 ≥ 0,

A(t0+
N
w −1:t0) is a lower triangular matrix. Moreover, since A(

t0+
N
w −1:t0)

ij counts the aggregate probability of the walks of

length N−1
w−1 between token i and token j where by Lemma A.1, each walk has probability at least ϵ

N−1
w−1 .

Thus we conclude that there exists c > 0 such that for all t0 ≥ 0,

A
(t0+N

w −1:t0)
ij ≥ c, ∀j ≤ i ∈ [N ] .

B.2. Proof of Theorem 4.2

For k ≥ 0, denote

Ã(k) = A((k+1)(N−1
w−1 )−1:k(N−1

w−1 ))

and

P̃ (k) = Ã(k) · · · Ã(0) .

Then by Lemma B.1 and Theorem 4.1, we get that there exists 0 < C < 1 and 0 < c < 1 such that for all k ≥ 0

P̃
(k)
ij ≤ C(1− (j − 1)c)k , ∀j ≤ i ∈ [N ] .

Denote Q(t)
j = max

1≤i≤N
P

(t)
ij and Q̃(k)

j = max
1≤i≤N

P̃
(k)
ij . Then it follows that for all k ≥ 0,

Q̃
(k)
j ≤ C(1− (j − 1)c)k.

Observe that

∀i ∈ [N ], P
(t)
ij ≤ Q

(t)
j , (8)

and

∀j ∈ [N ], Q
(t+1)
j ≤ Q

(t)
j . (9)

Let qj = (1− (j − 1)c)
1

2N−1
w−1 . Then for all k ≥ 1 and 0 ≤ r < N−1

w−1 ,

q
k(N−1

w−1 )+r

j ≥ (1− (j − 1)c)k.

This implies that for all t ≥ N−1
w−1 ,

P
(t)
ij ≤ qtj = C(1− (j − 1)c)t/(2

N−1
w−1 ) .

As for t < N−1
w−1 , notice that P (0)

ij ≤ 1− ϵ for all j ≤ i ∈ [N ] by Lemma A.1. Then by 8 and 9, we deduce that

P
(t)
ij ≤ (1− ϵ)

t+1
N−1
w−1 , ∀j ≤ i ∈ [N ].

We thus conclude the statement.
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C. Proof of Theorem 4.3
First note that the first and third statements:

lim
t→∞

P(t)(zi ∈ [K]|X(0)) = 1 , (10)

for all ∈ [N ] and

P(t)(zi = j|X(0)) ≤ C(1− (j −K)ϵ)t .

for all K < j ≤ i and t ≥ 0, follow immediately from Theorem 4.1 by regarding the first K tokens as a super node in the
causal graph G and aggregate the edges accordingly. Thus it suffices to show that there exists κ > 0 such that

lim inf
t→∞

P(t)(zi = k|X(0)) ≥ κ. ∀k ∈ [K] . (11)

For t > 0, consider

P
(t)
ik =

N∑
l=1

P
(t:1)
il A

(0)
lk .

Then for k1, k2 ∈ [K],
P

(t)
ik1

P
(t)
ik2

=

∑max{i,K}
l=1 P

(t:1)
il A

(0)
lk1∑max{i,K}

l=1 P
(t:1)
il A

(0)
lk2

,

which then follows
P

(t)
ik1

P
(t)
ik2

≥ min
1≤l≤min{i,K}

A
(0)
lk1

A
(0)
lk2

.

Then by Lemma A.1, there exists C > 0 such that for all k1, k2 ∈ [K],

C ≤ lim inf
t→∞

P
(t)
ik1

P
(t)
ik2

.

Since limt→∞
∑K

k=1 P
(t)
ik = 1 by (10), we deduce (11) as desired.

D. Proof of Lemma 4.4
Fix t ≥ 0. Let

Z
(t)
ij = (X(t)W

(t)
Q )i,:(X

(t)W
(t)
K ):,j .

Following from Lemma A.1, there exists Imin, Imax ∈ R such that for all j ≤ i ∈ [N ],

Z
(t)
ij ∈ [Imin, Imax].

Consider the denominator in the softmax(·) operation in the calculation of (A(t)
decay)ij :

i∑
k=1

eZ
(t)
ik −(i−k)m ≥ eImin

i∑
k=0

e−(i−k)m

= eImin
1− e−(i+1)m

1− e−m

≥ eImin
1− e−2m

1− e−m

= eImin(1 + e−m)

14
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and
i∑

k=1

eZ
(t)
ik −(i−k)m ≤ eImax

∞∑
k=0

e−km

=
eImax

1− e−m

It follows that

(A
(t)
decay)ij ≤

eImax−(i−j)m

eImin(1 + e−m)
= Cmaxe

−(i−j)m

and

(A
(t)
decay)ij ≥

eImin−(i−j)m

eImax/(1− e−m)
= Cmine

−(i−j)m

where Cmax := e(Imax−Imin)/(1 + e−m) and Cmin := (1− e−m)e(Imin−Imax).

E. Proof of Theorem 4.5
Note that in the causal graph G, there are

(
t+i−j
i−j

)
paths of length t+ 1 from token j to token i.

Since going from token j to token i in the causal graph, the connectivity patterns ensure that the token indices along the path
are non-decreasing, i.e. if we denote the directed path as (j, l1), (l1, l2), ..., (lt, i), it holds that j ≤ l1 ≤ l2 ≤ ... ≤ lt ≤ i.
Together with Lemma 4.4, we conclude the theorem statement.

F. Proof of Lemma 4.6
Fix t ≥ 0. Denote the angle after rotation to be ψ(t)

i,j . Then it follows from the definition of RoPE that

ψ
(t)
i,j = ϕ

(t)
i,j − (i− j)θ1 .

Thus
|ψ(t)

i,j | = |ϕ(t)i,j − (i− j)θ1| ≥ ||(i− j)θ1| − |ϕ(t)i,j || ≥ |(i− j)− δ|θ1 .

|ψ(t)
i,j | = |ϕ(t)i,j − (i− j)θ1| ≤ |(i− j)θ1|+ |ϕ(t)i,j | ≤ (i− j + δ)θ1 .

Let the original query i and key j embeddings be q(t)i := X
(t)
i,: W

(t)
Q and k(t)j := X

(t)
j,: W

(t)
K , respectively, and the correspond-

ing query i and key j embeddings after rotation be q′(t)i and k′(t)j , respectively.

Since ⟨q′(t)i , k
′(t)
j ⟩ = ∥q(t)i ∥2∥k(t)j ∥2 cosψ(t)

i,j , it follows from that there exists Cmin, Cmax ≥ 0 such that for all i, j ∈ [N ],

Cmin cos((i− j + δ)θ1) ≤ ⟨q′(t)i , k
′(t)
j ⟩ ≤ Cmax cos(|(i− j)− δ|θ1) .

Since for |x| ≤ π there exists c > 0 such that 1− x2/2 ≤ cosx ≤ 1− x2/c, we get that

Cmin

(
1− ((i− j) + δ)2θ21

2

)
≤ ⟨q′(t)i , k

′(t)
j ⟩ ≤ Cmax

(
1− ((i− j)− δ)2θ21

c

)
.

and hence

Cmin

(
1− δ2θ21 − (i− j)2θ21

)
≤ ⟨q′(t)i , k

′(t)
j ⟩ ≤ Cmax

(
1− ((i− j)2/2− δ2)θ21

c

)
.

Consider Y (t)
i =

∑i
k=1 e

⟨q′(t)i ,k
′(t)
j ⟩. Then by (6), we get that there exists Ymax, Ymin > 0 such that

Ymax ≤ Y
(t)
i ≤ Ymin .

We thus conclude the statement.
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G. Proof of Theorem 4.7
Notice that

(P
(t)
RoPE)ij =

∑
l1≤···≤lt−1∈[N ]t−1

A
(t−1)
ilt−1

A
(t−2)
lt−1lt−2

· · ·A(0)
l1j

(12)

Given that when G is the causal graph, due to the connectivity the directed path of length t from token j to token i must
be non-decreasing, i.e. j ≤ l1 ≤ l2 ≤ · · · ≤ lt−1 ≤ i, and there would be in total

(
t+i−j
i−j

)
such paths. For each such path

j ≤ l1 ≤ l2 ≤ · · · ≤ lt−1 ≤ i, notice that by Lemma 4.6, we get that fix T ≥ 0, there exists Cmin, Cmax > 0 such that

A
(t−1)
i,lt−1

A
(t−2)
lt−1,lt−2

· · ·A(0)
l1,j

≥ Cmine
−c((i−lt−1)

2+(lt−1−lt−2)
2+···+(l1−j)2)θ2

1 (13)

and
A

(t−1)
i,lt−1

A
(t−2)
lt−1,lt−2

· · ·A(0)
l1,j

≤ Cmaxe
−c′((i−lt−1)

2+(lt−1−lt−2)
2+···+(l1−j)2)θ2

1 (14)

From (13), since j ≤ l1 ≤ l2 ≤ · · · ≤ lt−1 ≤ i, we further get that

A
(t−1)
i,lt−1

A
(t−2)
lt−1,lt−2

· · ·A(0)
l1,j

≥ Cmine
−c(i−j)2θ2

1 , (15)

and similarly

A
(t−1)
i,lt−1

A
(t−2)
lt−1,lt−2

· · ·A(0)
l1,j

≤ Cmaxe
− c′

2 (i−j)2θ2
1 . (16)

H. Implicit differentiation of x with respect to θ1 and t

Recall that under RoPE,

L(x) = log

((
t+ x

x

)
e−x2θ2

1

)
.

Then by Stirling’s approximation,

L(x) ≈ ((t+ x) log(t+ x)− (t+ x))− (x log x− x)− θ21x
2 ,

and thus

L′(x) = log

(
t+ x

x

)
− 2θ1x .

Taking implicit differentiation of t:

∂

∂t
log

(
t+ x

x

)
=

−t
x(x+ t)

∂x

∂t
+

1

x+ t

and
∂

∂t
2θ1x = 2θ1

∂x

∂t
.

So let
1

x+ t
= (2θ1 +

t

(x+ t)x
)
∂x

∂t

and thus
∂x

∂t
=

1

2θ1(x+ t) + t
x

> 0 .

Taking implicit differentiation of θ1:

∂

∂θ1
log

(
t+ x

x

)
=

−t
x(x+ t)

∂x

∂θ1
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and
∂

∂θ1
2θ1x = 2x+ 2

∂x

∂θ1
θ1.

So let (
2θ1 +

t

x(x+ t)

)
∂x

∂θ1
= −2x ,

and thus
∂x

∂θ1
=

−2x

2θ1 +
t

x(x+t)

< 0 .

Hence we observe that x∗ is an increasing function of t and a decreasing function of θ1. This implies that increasing the base
rotational angle θ1 reduces the optimal distance x∗, amplifying the long-term decay effect and causing tokens to focus more
on nearby tokens. In contrast, increasing the number of attention layers t increases x∗ and hence deeper models become
more biased toward initial tokens.

I. The effect of RoPE: case for d ≥ 2

In this section, we present a generalized version of Theorem 4.7 for the case d ≥ 2.

Let the query q and key k be vectors in Rd, where d is even, and let ϕ be the angle between q and k, which we assume to be
well-defined, with:

cosϕ =
⟨q, k⟩

∥q∥2∥k∥2
.

Define the length-2 segments of query q and and key k as

ql = (q2l−1, q2l), kl = (q2l−1, q2l),

for l ∈ [d/2], and let ϕl be the angle between ql and kl, with:

cosϕl =
⟨ql, kl⟩

∥ql∥2∥kl∥2
.

Without loss of generality, we make the following assumption:

A3 There exists βq, βk > 0 such that ∥q(t)l ∥2 ≥ βq∥q(t)∥2 and ∥k(t)l ∥2 ≥ βk∥k(t)∥2 for all l ∈ [d/2] for all t ≥ 0.

The condition means that all segments makes a nontrivial contribution to the norm. In practice, since LLMs tend to tend to
predominantly utilize feature dimensions that rotate slowly (Barbero et al., 2024b), the effective d/2 tends to be a small
number.

Given the pre-defined set of base rotational angles Θ = {0 ≤ θ1 ≤ · · · ≤ θd/2}, we reparametrize as θi = αiθ1.

I.1. Results

We present the general version of Lemma 4.6 and Theorem 4.7 as follows:

Lemma I.1. Let G be the causal mask and A1-A3 hold. Suppose for t ≥ 0, ∥qi∥2, ∥kj∥2 > 0, and |ϕ(t)i,j | ≤ δθ1, where
δ > 0 and (√

1

βqβk
δπ + 2(N − 1)αd/2

)
θ ≤ 2π .

Then there exists Cmax, Cmin, c, c
′ > 0 such that

Cmine
−c

∑d/2
l=1(i−j)2α2

l θ
2
1 ≤ (A

(t)
RoPE)i,j ≤ Cmaxe

−c′
∑d/2

l=1(i−j)2α2
l θ

2
1 .
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Theorem I.2. Fix T > 0. Under the same conditions as in Lemma I.1 for t ≤ T , there exists c > 0 such that for all t ≤ T ,

(P
(t)
RoPE)i,j = Θ

((
t+ i− j

i− j

)
e−c

∑d/2
l=1(i−j)2α2

l θ
2
1

)
.

I.2. Proofs of Lemma I.1

We first show the following auxiliary result:

Lemma I.3. Under A3, it holds that

|ϕl| ≤
π

2

√
1

βqβk
|ϕ| ,

for all l ∈ [d/2].

Proof. By definition, since
d/2∑
l=1

∥ql∥2∥kl∥2 cosϕl = ∥q∥2∥k∥2 cosϕ ,

then the Cauchy–Schwarz inequality implies that

d/2∑
l=1

∥ql∥2∥kl∥2(1− cosϕl) ≤ ∥q∥2∥k∥2(1− cosϕ) . (17)

By A3, (17) becomes
d/2∑
l=1

(1− cosϕl) ≤
1

βqβk
(1− cosϕ) .

Given the trigonometric identity 1− cos 2x = 2 sin2 x, we get that

d/2∑
l=1

sin2
(
ϕl
2

)
≤ 1

βqβk
sin2

(
ϕ

2

)
. (18)

Notice for all x ∈ R,
sin2 x ≤ x2 , (19)

and for all |x| ≤ π/2,
4

π2
x2 ≤ sin2 x . (20)

Apply (19) and (20) to (18), we get that
d/2∑
i=1

ϕ2l ≤ π2

4βqβk
ϕ2 .

Hence for all l ∈ [d/2], it follows that

|ϕl| ≤
π

2

√
1

βqβk
|ϕ| .

Denote the angle after rotation to be ψi,j,l. Then it follows that

ψi,j,l = ϕi,j,l − (i− j)αlθ1 .
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It follows similarly as in the proof of Lemma 4.6 that

Cmin

(
1− δ′2θ2 − (i− j)2α2

l θ
2
1

)
≤ ⟨(q′i)l, (k′j)l⟩ ≤ Cmax

(
1− ((i− j)2α2

l /2− δ′2)θ21
c

)
,

where δ′ = π
2

√
1

βqβk
δ, for all l ∈ [d/2].

Since

⟨q′i, k′j⟩ =
d/2∑
l=1

⟨(q′i)l, (k′j)l⟩,

we conclude the statement.

I.3. Proof of Theorem I.2

The result is a direct corollary of Lemma 4.6 and Theorem 4.7.

J. Experiments
Here we provide more details on the numerical experiments presented in Section 5. All models were implemented with
PyTorch (Paszke et al., 2019).

Parameterizing the data distribution As defined in Section 5, the input data distribution is modulated by tuning various
parameters. In addition to the parameters described in the main text, for the Gaussian mixture with K classes, each class k
is defined by a d-dimensional vector µk whose components are sampled i.i.d. from a normal distribution with mean zero
and variance 1/d. Then the value of xi is given by µk+γη√

1+γ2
, where η is drawn from the same distribution as the µk’s and γ

sets the within-class variability. Each class is assigned to one of L labels (L ≤ K). The contents of the labels are drawn
prior to training from the same distribution as the µk’s.

In Reddy (2024), the author found that different configurations of the data generating process give rise to different learning
regimes. To enable better information retrieval ability of the model, we choose the configuration suggested by Reddy (2024)
that corresponds to the difficult in-weight learning and easy in-context-learning regime to ensure the information retrieval
ability of the model. Specifically, we set γ = 0.75, K = 2048, L = 32, and B = 4.

Relative PE hyperparameters For the decay mask, we set m = − log(0.8) ≈ 0.223. For RoPE, we set θi =
10000−2(i−1)/d, as in Su et al. (2023).

Compute We trained all of our models on a Tesla V100 GPU.

Training details In all experiments, we used the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of
10−3, a weight decay of 10−6, a batch size of 128, and trained for 100, 000 iterations.

K. Additional Experimental Results
K.1. The role of training data on positional bias

In this section, we present additional experimental results building on the experiment described in Section 5.2, but focusing
on cases where positional bias in the training sequences is introduced at other positions. Specifically, we consider three
types of training sequences where xquery is assigned the class of 1) x1 (the first position), 2) xn/2 (the middle position), or 3)
xn (the last position). The corresponding results are shown in Figure 4, Figure 5, and Figure 6, respectively.

Observe that, compared with no mask, the causal mask without PEs indeed introduces a sense of position across all cases.
Specifically, it enables the model to learn a positional bias favoring the beginning of the sequence, as earlier tokens tend to
receive more attention through the mechanism of iterative attention. In contrast, both sin PE and RoPE allow the model to
effectively capture different positional biases regardless of their location in the training sequences.

19



On the Emergence of Position Bias in Transformers

first vs. middle first vs. last middle vs. last
0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

 G
ap

-0.003 -0.001 -0.001

0.092
0.115

0.016

No PE

first vs. middle first vs. last middle vs. last

0.529 0.530

0.003

0.554 0.557

0.004

sin PE

first vs. middle first vs. last middle vs. last

0.164 0.163

-0.003

0.123 0.138

0.011

RoPE
no mask
causal mask

Figure 4: Position bias exhibited by the model when trained on data biased toward the first position.
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Figure 5: Position bias exhibited by the model when trained on data biased toward the middle position.
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Figure 6: Position bias exhibited by the model when trained on data biased toward the last position.

Interestingly, when comparing this behavior to the case shown in Figure 3, we note that the “lost-in-the-middle” phenomenon
only emerges when the training sequences are biased toward both the beginning and the end. This suggests that specific
types of positional bias in the training data play a crucial role in shaping how the model learns to process and prioritize
positions within a sequence.

As the structure of positional bias in natural language remains unclear, this observation raises the following question:

Does positional bias in natural language sequences shape the “lost-in-the-middle” phenomenon in a similar way to
what we observe in this simplified case?

This question connects to broader inquiries about the parallels between artificial and human attention. In neuroscience, the
primacy-recency effect highlights that human attention often gravitates toward the beginning and end of sequences (Glanzer
& Cunitz, 1966; Li et al., 2024a), a phenomenon that may have influenced the structure of human languages, where critical
information is frequently placed in these positions (Halliday, 2004). As demonstrated in Section 5.2, when such patterns are
present in training data, attention-based architectures seem to develop analogous biases (Hollenstein et al., 2021), aligning
with natural language characteristics for improved performance. This raises deeper, perhaps philosophical questions: To
what extent are these biases intrinsic to effective sequential processing? How closely should neural networks emulate human
cognitive patterns? Investigating these connections can deepen our understanding of both human and artificial intelligence
while guiding the design of more effective machine learning models.
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K.2. Attention sinks

Despite our use of a simplified experimental setup in this work, we observe the emergence of key phenomena documented
in more complex settings. In addition to the “lost-in-the-middle” phenomenon discussed in Section 5.2 and Appendix K.1,
in this section, we report the formation of attention sinks in our setting.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.23 0.77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.29 0.41 0.29 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.12 0.38 0.12 0.38 0 0 0 0 0 0 0 0 0 0 0 0 0

0.14 0.27 0.14 0.27 0.19 0 0 0 0 0 0 0 0 0 0 0 0

0.15 0.18 0.15 0.18 0.18 0.17 0 0 0 0 0 0 0 0 0 0 0

0.12 0.17 0.12 0.17 0.15 0.17 0.12 0 0 0 0 0 0 0 0 0 0

0.055 0.18 0.055 0.18 0.12 0.17 0.055 0.18 0 0 0 0 0 0 0 0 0

0.073 0.14 0.073 0.14 0.1 0.14 0.073 0.14 0.1 0 0 0 0 0 0 0 0

0.091 0.11 0.091 0.11 0.1 0.1 0.091 0.11 0.1 0.1 0 0 0 0 0 0 0

0.074 0.1 0.074 0.1 0.093 0.1 0.074 0.1 0.093 0.1 0.074 0 0 0 0 0 0

0.036 0.12 0.036 0.12 0.082 0.11 0.036 0.12 0.082 0.11 0.036 0.12 0 0 0 0 0
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Causal: Layer 1
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Figure 7: Example of the emergence of attention sinks in our experimental setting. In particular, the sequences used for training and
inference are all free of position bias.

Figure 7 shows an example of the attention maps of a two-layer self-attention networks under the causal mask without PEs,
where the sequences used for training and inference are all free of position bias. We observe the similar phenomenon of
attention sinks as reported in Xiao et al. (2024).

More quantitatively, following Gu et al. (2025), we calculate their metric for measuring the emergence of attention sinks,
over 10, 000 sequences free of position bias. Specifically, denote the adjacency matrix of the mask G to be M . Then the
metric for attention sink at token j is calculated as

Attention Sinkj =
1

T

T−1∑
t=0

1∑N
i=1Mij

N∑
i=1

1{A(t)
ij > τ} .

The threshold τ we choose is 0.2. The results for the causal mask, the sliding-window masks (with w = 5, 9, 13), and the
prefix masks (with K = 2, 4, 6) are shown in Figure 8, Figure 9, and Figure 10, respectively. In particular, we make the
following observations:

1. Attention sinks emerge on the absolute first token under the causal mask.

2. Attention sinks tend to emerge on the absolute first token when the window size w is larger, under the sliding-window
mask.

3. Attention sinks emerge on the K prefix tokens, not just on the first token alone, under the prefix mask.

All of these phenomena have been observed in real-world LLMs in Gu et al. (2025). This alignment between our controlled
setup and real-world observations affirms the validity of our abstraction, indicating that we have captured the key mechanisms
underlying position bias while facilitating a systematic analysis.
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Figure 8: Attention sinks emerge on the first token under the causal attention mask.
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Sliding Window, w=5
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Sliding Window, w=9
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Figure 9: Attention sinks tend to emerge on the absolute first token when the context window size w is larger, under the sliding-window
mask.
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Prefix, K=2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Token Index

0

1

2

3

4

At
te

nt
io

n 
Si

nk
 (%

)

Prefix, K=4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Token Index

0.0

0.1

0.2

0.3

0.4

At
te

nt
io

n 
Si

nk
 (%

)

Prefix, K=6

Figure 10: Attention sinks emerge on the K prefix tokens, not just on the first token alone, under the prefix mask.
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