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ABSTRACT

The adaptation of large language models (LLMs) to chemistry has shown promising
performance in molecular understanding tasks, such as generating a text descrip-
tion from a molecule. However, proper reasoning based on molecular structural
information remains a significant challenge, e.g., even advanced LLMs such as
GPT-4o struggle to identify functional groups which are crucial for inferring the
molecular property of interest. To address this limitation, we propose STRUCTCOT,
a structure-aware chain-of-thought (CoT) that enhances LLMs’ understanding of
molecular structures by explicitly injecting the key structural features of molecules.
Moreover, we introduce two fine-tuning frameworks for adapting the existing
LLMs to use our STRUCTCOT. Our experiments demonstrate that incorporating
STRUCTCOT with our fine-tuning frameworks leads to consistent improvements
in both molecular understanding tasks.

1 INTRODUCTION

Large language models (LLMs; Touvron et al., 2023; OpenAI & et al., 2024; Raffel et al., 2020) have
demonstrated remarkable performance across various tasks. To leverage their strong capabilities in
chemistry, several prior works (Edwards et al., 2022; Christofidellis et al., 2023a; Fang et al., 2024;
Pei et al., 2023) have proposed chemical LLMs that have shown superior performance in molecular
understanding tasks such as molecule captioning (Mol2Text) and text-based molecule generation
(Text2Mol) (Edwards et al., 2022), which are crucial for designing new molecules.

Reasoning based on molecular structures plays an important role in molecular understanding tasks in
practice. For example, chemists are likely to consider a molecule toxic if it contains a phenol group
due to the formation of phenoxyl radicals and the compound’s ability to interact with biological
membranes (Hansch et al., 2000). However, despite its significance, there exists a lack of studies on
the role of reasoning in LLM-based molecular understanding. In other domains such as arithmetic
and commonsense reasoning, chain-of-thought (CoT; Wei et al., 2022; Kojima et al., 2022) has shown
that explicitly incorporating such reasoning steps significantly improves the performance of LLMs.
In detail, CoT aims to generate intermediate reasoning steps before arriving at a final answer.

One might consider the naive adaptation of CoT prompting to include molecular structural information
in reasoning. However, we observe this to be ineffective because even state-of-the-art LLMs (OpenAI
& et al., 2024; Touvron et al., 2023) struggle to capture the structural details of molecules, as described
in Figure 1 and Section 3.2. This hinders their ability to perform reasoning effectively in molecular
understanding tasks. While some prior works (Ouyang et al., 2024; Jin et al., 2024; M. Bran et al.,
2024) have proposed CoTs for chemistry, they are either not applicable or exhibit limited performance
in molecular understanding tasks.

In this paper, we propose STRUCTCOT, a chain-of-thought that progressively sketches the structural
features of molecules to solve molecular understanding tasks. STRUCTCOT consists of six key
structural elements, ranging from the primary structure to the smaller components. We propose to
explicitly inject the appropriate structural information with STRUCTCOT to enhance the language
models’ understanding of molecules, which compensates for the lack of structural information.

Moreover, we propose two different fine-tuning frameworks to apply STRUCTCOT depending on
the input and output of the given molecular understanding task, as illustrated in Figure 2. Both
approaches share the same outline, including a reasoning module that generates STRUCTCOT and an
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🧑: You are now working as an expert in chemistry and 
drug discovery.

Given the SMILES representation of a molecule, your job 
is to predict the structural information of the molecule.

The structural information of the molecule caption 
includes the molecular formula, the length of longest 
carbon chain, the number of aromatic rings, the IUPAC 
name of all the rings, all the functional groups, the 
number of chiral centers with S and R configuration each.

Input: CC1=C(C2=C(C3=C1OC4=C([C@@H]
3C(C)C)C(=O)C(C(=C4C)OC)(C)C)O[C@@H]
(CC2=O)C5=CC=CC=C5)O.

- The molecular formula is C29H32O13.
C30H32IO6

- The longest carbon chain length is 6. 
3

- It includes 2 aromatic rings.

- The functional groups present in the molecule include 
ketone, ether, hydroxyl, and methoxy groups.

+ alcohol, alkene, aromatic, ester, phenol

- It includes 2 benzene rings and 1 furan ring.

1 1 cyclohexa-1,3-diene ring, 
1 4H-pyran ring, 1 3,4-dihydro-2H-pyran ring

- The molecule has 2 chiral centers with S configuration.
1 S and 1 R configuration

:

Figure 1: The failure case of GPT-4o for the inference of structural information given the
molecular SMILES. The red color indicates the wrong generated structural information while the
green color indicates the correct answer. Note that we visualize the molecular graph for illustration
purposes; GPT-4o does not take them as inputs.

answering module that generates the output using the input combined with STRUCTCOT. On the one
hand, for the molecule captioning task, we use external tools like RDKit (Landrum et al., 2024) as the
reasoning module, since they can precisely determine the structural information from the molecule.
Therefore, one attaches a perfectly accurate STRUCTCOT to the input Simplified Molecular Input
Line Entry System (SMILES; Weininger, 1988) and lets the answering module generate the output.

On the other hand, for the text-based molecule generation task, one cannot acquire the exact
STRUCTCOT as the molecule is not provided. Therefore, we propose to finetune the LLMs as
the reasoning module that generates STRUCTCOT (Ho et al., 2023; Fu et al., 2023a; Magister et al.,
2023). Then, we fine-tune the answering module to generate the answer given the text description
and the acquired STRUCTCOT. Moreover, we incorporate a novel matching-ratio-based rejection
sampling into the answering module, which forces the structure of the generated molecule to align
with the structural information in STRUCTCOT. Notably, the proposed rejection sampling leverages
the deterministic nature of structural information for a given molecule.

As a result, incorporating our proposed method into both chemistry LLMs (Edwards et al., 2022;
Christofidellis et al., 2023a) and general LLMs (Touvron et al., 2023; OpenAI & et al., 2024) leads to
consistent performance improvements. Specifically, when incorporated with MolT5-large (Edwards
et al., 2022) and Text+Chem T5 (Christofidellis et al., 2023a), our method achieves competitive
performance with recent baselines in both tasks. In summary, our key contributions are as follows:

• We present the limitations of LLMs in understanding molecular structures by analyzing their
capability to infer structural information.

• We introduce STRUCTCOT, a chain-of-thought that progressively sketches the structural
information of molecules, for the reasoning of molecular understanding.

• We design a framework to incorporate STRUCTCOT for molecule captioning by fine-tuning
the answering module with the deterministic and perfectly accurate STRUCTCOT.

• We design a framework to incorporate STRUCTCOT for text-based molecule generation by
applying CoT fine-tuning for the reasoning module, fine-tuning the answering module, and
a novel matching ratio-based rejection sampling which further improves the performance.

• We validate the efficacy of STRUCTCOT and our fine-tuning framework by showing consis-
tent improvements across chemical and general LLMs.

2 RELATED WORK

Large language models for chemistry. General-purpose large language models (generalist LLMs)
often struggle to solve basic chemistry problems and molecular understanding tasks (White et al.,
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The longest carbon 
chain is 3 carbons long. 
The molecule contains 2 

aromatic rings. 
The molecule has 2
chiral centers.

The molecule is an 
organic

heterotetracyclic
compound that is ... It 

has a role as a 
metabolite and 

antineoplastic agent. 
... 

CC1=C(C2=C(C3=C1OC4=C([
C@@H]3C(C)C)C(=O)C(C(=C
4C)OC)(C)C)O[C@@H](CC2=

O)C5=CC=CC=C5)O

(a) Molecule captioning (Mol2Text)

The molecule is an 
organic

heterotetracyclic
compound that is ... 

The longest carbon 
chain is 3 carbons long. 
The molecule contains 2

aromatic rings. 
The molecule has 2
chiral centers.

CC1=C(C2=C(C3=
C1OC4=C([C@@H]
3C(C)C)C(=O)C(
C(=C4C)OC)(C)C
)O[C@@H](CC2=O
)C5=CC=CC=C5)O

CC(=O)C[C@@H]1
CCCN1C

C1=CC2=C(C=C1C
(=O)O)OC(=N2)C
3=CC(=CC(=C3)C

l)Cl

Chain 
length: 1
Aromatic 
ring: 3
Chiral 

centers: 2

Chain 
length: 3
Aromatic 
ring: 0
Chiral 

centers: 1

⭕

⭕

Chain 
length: 3
Aromatic 
ring: 2
Chiral 

centers: 2 ⭕

❌

❌

❌

❌

⭕

❌

(b) Text-based molecule generation (Text2Mol)

Figure 2: Overview of the Fine-tuning Framework of STRUCTCOT. Light gray boxes represent
SMILES strings; gray boxes represent text descriptions; colored boxes represent STRUCTCOT. The
yellow ones are the reasoning module, and the red ones are the answering module. In (b), colors
indicate each STRUCTCOT and the corresponding structural information elements. The third SMILES
is selected after matching ratio-based rejection sampling for having the highest matching ratio (3/3).

2023; Castro Nascimento & Pimentel, 2023; Guo et al., 2023). To address this issue, prior works
have introduced specialist LLMs, i.e., chemical LLMs, by pre-training models on molecule-related
texts (Edwards et al., 2022; Christofidellis et al., 2023b; Liu et al., 2023a; Pei et al., 2023), through
instruction tuning (Fang et al., 2024; Cao et al., 2023), and using retrieval-based in-context learning (Li
et al., 2024a). Additionally, some works have improved LLMs by incorporating graph or 3D
coordinate information (Liu et al., 2023b; Li et al., 2024b; Liu et al., 2024). Our work focuses on
reasoning processes that are broadly applicable to these specialist LLMs as well as generalist LLMs.

Chain-of-thought reasoning. Chain-of-thought (CoT) aims to generate intermediate reasoning steps
before arriving at a final answer (Wei et al., 2022; Kojima et al., 2022). CoT not only enhances
the reasoning capabilities of LLMs but also improves the overall quality of generated answers.
Most prior works generated CoTs via few-shot learning based on the manually written CoTs (Wei
et al., 2022) or by prompting LLMs with “Let’s think step by step.” (Kojima et al., 2022). In
addition, several approaches have proposed to further enhance CoT, including techniques such as
self-consistency (Wang et al., 2023), least-to-most prompting (Zhou et al., 2023), complexity-based
prompting (Fu et al., 2023b), and self-polish (Xi et al., 2023). However, the ability to perform
complex reasoning remains limited to extremely large language models (>100B parameters).

To address this challenge, various approaches have been introduced to distill knowledge from very
large language models to smaller ones (<10B). Specifically, Ho et al. (2023); Fu et al. (2023a);
Magister et al. (2023) employed the larger models as teacher models to generate CoTs for fine-tuning
smaller student models. Nevertheless, even recent LLMs struggle to generate appropriate CoTs that
demonstrate a correct understanding of molecular structures (as described in Figure 1 and Section 3.2),
restricting the efficacy of LLMs in generating appropriate CoTs for molecular understanding tasks.

Chain-of-thought reasoning for chemistry. Recently, a few works have extended CoT reasoning
to address chemistry-related problems. For instance, Ouyang et al. (2024) proposed to employ
the program-of-thoughts (PoT; Chen et al., 2023) to handle chemical question-answering tasks.
Additionally, Jin et al. (2024) presented the protein chain of thought (ProCoT) to replicate the
signaling pathways in the context of the protein-protein interaction (PPI) problem. Despite these
advances, none of these works target molecular understanding tasks such as molecule captioning and
text-based molecule generation. We note that M. Bran et al. (2024) provided CoT comparable to ours,
but their CoTs are less focused on molecule structural reasoning, e.g., they propose CoTs based on
tools like LitSearch/WebSearch, PatentCheck, ReactionPlanner, and SMILES2Price. Moreover, it
shows limited performance improvements in molecule understanding tasks as observed in ??.

3 STRUCTURE AS MILESTONES OF LLM-BASED CHEMICAL REASONING

In this section, we emphasize the importance of incorporating molecular structural information into
the reasoning of LLMs for molecular understanding. We first outline key structural information
essential for understanding the chemical and physical properties of a molecule, providing specific
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6
Solubility:

Higher à Lower

O Formula: C4H10O O

O Chain length: 4 O

O Aromatic ring: No O

O Ring: No O

O Functional group: hydroxyl O

O Chirality: S or R O

Benzene
Stability:

Lower à Higher

Cyclobutane
Ring-opening

reaction: X à O

Amino
Oxidation resistance:

Lower à Higher

R chiral center
Diff. Interact. with 
chiral substances

C3H8O
Boiling point:
99.4◦C à 82.3◦C

Figure 3: Illustration of the Importance of Structural Information. This illustrates an example of
replacing each structural information (described with a dashed box) of the molecule. From left to
right and top to bottom, the described structural information are molecular formula, longest carbon
chain length, aromatic ring, ring compounds, functional group, and chirality.

examples. Then, we show that even the state-of-the-art LLMs, such as GPT-4o (OpenAI & et al.,
2024) and Llama3-8B-Instruct (Touvron et al., 2023), often fail to accurately infer crucial structural
details from the molecule or the text description of the molecule. This observation implies that
recent LLMs may struggle to implicitly reason these foundational structural elements when tackling
molecular tasks, highlighting the potential benefits of explicitly integrating such information through
a chain-of-thought approach.

3.1 EXAMPLES OF IMPORTANT STRUCTURAL INFORMATION

Humans typically analyze a molecule by progressively mapping its structure, starting with primary
elements like rings and long carbon chains, and then identifying smaller components such as func-
tional groups and chiral centers. Reflecting this approach, we identify six key elements of molecular
structure that are critical for chemical reasoning. To highlight the importance of these structural
elements, we demonstrate how even slight modifications in molecular structure can lead to significant
changes in chemical or physical properties, as shown in Figure 3.

Molecular formula. The molecular formula provides essential information about a molecule’s
composition, specifying the number and type of atoms present. This information is critical because,
for example, it directly determines the molecular weight. To illustrate, although 2-Butanol (C4H10O)
and 2-Propanol (C3H8O) are composed of the same type of atoms, i.e., carbon, hydrogen, and oxygen,
their differing molecular formulas result in distinct molecular weights (74.1g/mol for 2-Butanol
and 60.1g/mol for 2-Propanol). These differences lead to the change in boiling points, 99.4◦C and
82.3◦C, respectively, as shown in the gray part of Figure 3.

Longest carbon chain. The longest carbon chain (excluding atoms in ring systems) forms the
molecular backbone where functional groups are attached. The length of this chain significantly
influences properties like solubility. For example, extending the carbon chain of 2-Butanol from four
to six carbons creates 2-Hexanol, which exhibits reduced solubility. This is illustrated in the green
section of Figure 3.

Aromatic rings. Aromatic rings, such as benzene or pyridine, play a critical role in determining the
stability and electronic properties of molecules. For instance, adding a benzene ring to 2-Butanol
yields 1-Phenyl-2-Propanol, which has enhanced stability and greater oxidation resistance. This
transformation is shown in the blue section of Figure 3.

Ring compounds. Similar to the longest carbon chain, ring structures often serve as the backbone
where functional groups are attached. The ring system significantly affects molecular behavior and
reactions. For example, although 2-Butanol and Cyclobutanol share the same number of carbons and
oxygen, the ring in Cyclobutanol introduces a tendency toward ring-opening reactions, as depicted in
the yellow section of Figure 3.
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Llama3
-M2S

GPT-4o
-M2S

Llama3
-T2S

GPT-4o
-T2S

0.0

0.2
Ac

cu
ra

cy

Molecular formula

Llama3
-M2S

GPT-4o
-M2S

Llama3
-T2S

GPT-4o
-T2S

0.0

0.1

0.2
Longest carbon chain

Llama3
-M2S

GPT-4o
-M2S

Llama3
-T2S

GPT-4o
-T2S

0.0

0.5

Aromatic rings

Llama3
-M2S

GPT-4o
-M2S

Llama3
-T2S

GPT-4o
-T2S

0.0

0.2

0.4

Ac
cu

ra
cy

Ring compound

Llama3
-M2S

GPT-4o
-M2S

Llama3
-T2S

GPT-4o
-T2S

0.0

0.2

Functional groups

Llama3
-M2S

GPT-4o
-M2S

Llama3
-T2S

GPT-4o
-T2S

0.0

0.2

0.4

Chirality

Figure 4: Analysis of LLMs’ Understanding of Structural Information. Colors indicate the
architectures of the language models, with green and blue representing LLaMA3-8B and GPT-4,
respectively. Patterns denote the input types: crossed patterns represent SMILES representations
(Molecule2Structure), and diagonally crossed patterns represent molecule captions (Text2Structure).

Functional groups. Functional groups, e.g., hydroxyl, amino, ester, etc., play a pivotal role in
determining the chemical reactivity of molecules. For example, alcohols with a hydroxyl group (-OH)
are prone to oxidize more while the molecules with an amino group (-NH2) are generally resistant
to oxidation under mild conditions. A single replacement of a hydroxyl (-OH) group in 2-Butanol
with an amino (-NH2) group leads to 2-Butanamine, which has increased oxidation resistance, as
described in the red part of Figure 3.

Chiral centers. Chirality refers to the stereochemical property of a molecule that makes it non-
superimposable on its mirror image, leading to different chemical behaviors. The chirality is
determined by the chiral centers and their configurations, i.e., R- and S-configuration 1, which
describe the spatial arrangement of the groups around the chiral centers. This leads to different
interactions between other molecules with chirality. For instance, (R)-2-Butanol and (S)-2-Butanol
may interact differently with other chiral substances. This is described in the purple part of Figure 3.

3.2 RECENT LARGE LANGUAGE MODELS DO NOT UNDERSTAND STRUCTURAL INFORMATION

Next, we demonstrate that even recent LLMs, i.e., GPT-4o (OpenAI & et al., 2024) and LlaMA3-8B-
Instruct (Touvron et al., 2023), fail to infer important structural information from the given molecule
and the text description of the molecule. We evaluate the LLMs by querying the structural information
from the SMILES string (Weininger, 1988) and the text description, which can be considered as a
simple task that could be solved by someone with a bachelor’s degree in chemistry.

As shown in Figure 4, both GPT-4o and LlaMA3-8B-Instruct fail to capture the structural information
accurately. First, when the SMILES string is provided, both models perform best in counting the
number of aromatic rings, with accuracies around 50% and 75%, respectively. However, their
accuracies are significantly lower for other structural information. This implies that LLMs cannot
fully understand the molecular structures given the molecular string. We provide an example of a
failure case in Figure 1.

Similarly, when the text description is given, both models also fail to achieve a high accuracy in
inferring the structural information. This indicates that LLMs cannot properly understand the structure
of molecules even when provided with the text description of molecules. These observation highlight
the potential benefits of explicilty incorporating structural CoT to enhance molecular comprehension.
Note that we provide the detailed experimental settings and prompts for the analysis in Appendix A.1.

4 STRUCTCOT: STRUCTURE-AWARE COTS FOR MOLECULES

In this section, we describe our framework to enhance the capability of language models to perform
reasoning using structure-aware CoTs of molecules (STRUCTCOT). Although our method is broadly
applicable, we focus on two tasks commonly used to evaluate the ability of LLMs to understand

1The names of R and S come from the Latin word Rectus and Sinister, which means right and left, respectively.
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The longest carbon chain is 3 
carbons long.

The molecule contains 
2 aromatic rings.

It includes
1 cyclohexa-1,3-diene ring,

1 4H-pyran ring,
2 benzene rings, and 

1 3,4-dihydro-2H-pyran ring.

The functional groups present in 
the molecule include alcohol, 
alkene, aromatic, ester, ether, 

ketone, organic, and phenol groups.

The molecule has 2 chiral centers: 
1 with S configuration and 1 with 

R configuration.

The molecular formula is C30H32O6.

Figure 5: The Six New Elements of STRUCTCOT: molecular formula, longest carbon chain
length, aromatic rings, ring compounds, functional groups, and chirality. The same color
indicates the CoT and the corresponding structural information of the molecule. The order of the
STRUCTCOT follows the order mentioned in the title of the figure, which progressively sketches the
structure of molecules.

chemical knowledge (Edwards et al., 2022). The first task is molecule captioning (Mol2Text), where
the goal is to generate a text description from an input molecule’s SMILES representation. The second
task is text-based molecule generation (Text2Mol), where the LLM aims to generate a molecule that
corresponds to a given textual description.

We incorporate our STRUCTCOT through a two-stage procedure of reasoning and answering. In the
reasoning step, a reasoning module generates STRUCTCOT that will be used as additional structural
information for understanding the molecule. Next, in the answering step, an answering module
generates the answer from the input augmented with the generated CoTs. Note that we separate
the two different architectures for each task since the reasoning module differs by the task: (1) one
has access to the ground-truth reasoner for molecule captioning and (2) one needs to additionally
fine-tune the reasoning module for improved reasoning capability for text-based molecule generation.

The rest of this section is organized as follows. First, in Section 4.1, we introduce STRUCTCOT,
the structure-aware CoTs inspired by the significance of structural information explained in Sec-
tion 3.1. Then, in Section 4.2 and Section 4.3, we present the fine-tuning process to incorporate the
STRUCTCOT into both molecule captioning and text-based molecule generation tasks.

4.1 STRUCTCOT

We introduce STRUCTCOT, a structure-aware CoT designed to enhance language models’ understand-
ing of molecular structures. Each component of STRUCTCOT follows the six important structural
information introduced in Section 3.1 and illustrated in Figure 5.

Molecular formula is expressed as “The molecular formula is X1N1 · · ·XMNM .”, where Xm and
Nm represent the m-th atom type and the associated number of atoms, respectively.

Length of the longest carbon chain takes the following form: “The longest carbon chain length is
N carbons long.”, where N denotes the length of the longest carbon chain of the molecule.

Number of aromatic rings takes the following form: “The molecule contains X aromatic ring(s).”,
where X denotes the number of aromatic rings in the molecule.

Types of ring compounds is expressed as “It includes N1 X1 rings, · · · , NMXM ring(s).”, where
Xm, Nm represents the International Union of Pure Applied Chemistry (IUPAC) name of the ring
compound and the number of the rings, respectively.

Types of functional groups is expressed as “The functional groups present in the molecule include
X1, X2, · · · , and XN group.”, where Xn denotes the name of the functional group.2

Number and types of chiral centers is formulated as follows: “The molecule has N chiral centers:
NS with S configuration and NR with R configuration.”, where N = NS + NR, and NS and NR
denotes the number of chiral centers of S and R configurations, respectively.

2Note that we consider a wider range of functional groups compared to that of M. Bran et al. (2024).
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4.2 MOLECULE CAPTIONING

Molecule captioning aims to generate an accurate and detailed text description of a given molecular
SMILES string. We incorporate our STRUCTCOT scheme through (1) using external tools like
RDKit (Landrum et al., 2024) as a ground-truth reasoning module and (2) fine-tuning the answering
module LLM with the generated CoT as an additional input. We provide the description in Figure 2a.

Reasoning module. One can obtain the true structural information of the given molecule from
RDKit, which allows us to guide the answering module without uncertainty. This is natural as the
structural information is deterministic given the molecule. Consequently, the obtained true structural
information is used as STRUCTCOT. For this task, we consider the molecular weight CoT and IUPAC
name CoTs (M. Bran et al., 2024) in addition to the CoTs described in Section 4.1.

Answering module. With the molecule and the acquired CoT as an input, we fine-tune the LLMs to
generate the description of the molecule. In the experiments, we mainly consider chemical LLMs, i.e.,
MolT5 (Edwards et al., 2022) and ChemT5 (Christofidellis et al., 2023a), as the answering module.

4.3 TEXT-BASED MOLECULE GENERATION

Text-based molecule generation is the reverse process of molecule captioning, intending to generate
the corresponding molecular string based on the given description. Following the two-stage framework
that separates rationale generation and answer inference (Zhang et al., 2024), we first generate
STRUCTCOT using the fine-tuned reasoning module and then attach this to the input and employ this
as an input for the answering module. We provide the description in Figure 2b.

Notably, we selectively use CoT elements in STRUCTCOT. This is because the reasoning modules
need to generate CoTs of sufficient quality for the answering module, but this is not possible for some
types of CoTs. Therefore, we evaluate the abilities of the reasoning module to correctly generate the
CoTs and exclude those with low accuracy (presented in Table 2), specifically the molecular formula
CoT and the two CoTs proposed by M. Bran et al. (2024).

Reasoning module. For the reasoning module, following Ho et al. (2023); Fu et al. (2023a); Magister
et al. (2023), we enable CoT reasoning of the models by fine-tuning the reasoning module on the
STRUCTCOT as the molecule is not given. This is in contrast to the molecule captioning task where
the exact structural information can be extracted from external tools with the given molecule. We
mainly fine-tune the chemical LLMs, i.e., MolT5 and ChemT5 for this module.

Answering module. For the answering module, similar to that of molecule captioning, we fine-
tune a chemical LLM to generate an appropriate molecule given the text description and generated
STRUCTCOT. Moreover, we propose the matching ratio-based rejection sampling, which forces the
generated molecule to align with STRUCTCOT, as described in the following.

The proposed matching ratio-based rejection sampling aims to match the structural information of the
generated molecule with the given STRUCTCOT. In detail, we generate multiple k molecules using
beam search and then score each molecule based on the matching ratio, which counts the number
of matching structural information elements between STRUCTCOT and the generated molecule.
Finally, we choose the best-scoring molecule as the final output. This approach also leverages the
deterministic nature of structural information, i.e., we can easily compare the alignment between
each structural information and the generated molecule. Notably, this differs from the prior works
with iterative approaches (Wang et al., 2023; Xi et al., 2023; Sun et al., 2024), as we focus on the
alignment between CoT and generated answer without needing to generate multiple rationales.

5 EXPERIMENTS

In this section, we present our experiments on molecule captioning and text-based molecule generation
tasks, including the experimental results, setting details, and ablation studies. We first explain
the common settings shared by both tasks. Note that we provide the experimental results on a
retrosynthesis task in Appendix B.4.

Dataset. Following prior works (Edwards et al., 2022; Christofidellis et al., 2023a), we employ the
widely used CHEBI-20 dataset (Edwards et al., 2021), which consists of 33,010 pairs of molecular
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Table 1: Molecule Captioning Performance. ∆ denotes the performance difference between the
original model and the one incorporated with STRUCTCOT. Teal color indicates the improvement.

BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
Models Metric ∆ Metric ∆ Metric ∆ Metric ∆ Metric ∆ Metric ∆

Baselines (without CoTs)

RNN 0.251 - 0.176 - 0.450 - 0.278 - 0.394 - 0.363 -

T5-base 0.511 - 0.423 - 0.607 - 0.451 - 0.550 - 0.539 -

Transformer 0.061 - 0.027 - 0.204 - 0.087 - 0.186 - 0.114 -

MolXPT 0.594 - 0.505 - 0.660 - 0.511 - 0.597 - 0.626 -

BioT5 0.635 - 0.556 - 0.692 - 0.559 - 0.633 - 0.656 -

Specialists (fine-tuning)

MolT5-base 0.540 - 0.457 - 0.634 - 0.485 - 0.578 - 0.569 -
+STRUCTCOT 0.592 0.052 0.507 0.050 0.667 0.043 0.523 0.038 0.606 0.028 0.619 0.050

MolT5-large 0.594 - 0.508 - 0.654 - 0.510 - 0.594 - 0.614 -
+STRUCTCOT 0.645 0.051 0.567 0.059 0.699 0.045 0.568 0.058 0.639 0.045 0.666 0.052

ChemT5-small 0.553 - 0.462 - 0.633 - 0.481 - 0.574 - 0.583 -
+STRUCTCOT 0.601 0.048 0.513 0.050 0.664 0.031 0.519 0.038 0.603 0.029 0.624 0.042

ChemT5-base 0.580 - 0.490 - 0.647 - 0.498 - 0.586 - 0.604
+STRUCTCOT 0.639 0.059 0.560 0.070 0.687 0.040 0.553 0.055 0.626 0.040 0.657 0.053

Generalists (without fine-tuning)

Llama3 0.211 - 0.117 - 0.367 - 0.183 - 0.308 - 0.257 -
+STRUCTCOT 0.259 0.048 0.158 0.041 0.401 0.034 0.208 0.025 0.324 0.016 0.341 0.084

GPT-4o 0.232 - 0.128 - 0.389 - 0.183 - 0.307 - 0.291 -
+STRUCTCOT 0.286 0.054 0.174 0.046 0.405 0.016 0.199 0.016 0.313 0.006 0.341 0.050

Mol-Instructions 0.217 - 0.143 - 0.337 - 0.196 - 0.291 - 0.254 -
+STRUCTCOT 0.347 0.130 0.275 0.132 0.601 0.264 0.518 0.322 0.593 0.302 0.520 0.266

SMILES and their text descriptions. We also use the same train/validation/test split of 80%/10%/10%.
Note that for experiments involving Mol-Instructions (Fang et al., 2024), we used the Mol-Instructions
dataset as provided in their work.

Baselines. We verify the performance enhancement of STRUCTCOT in two settings: specialist and
generalist models. On the one hand, we employed two popular specialist models, i.e., chemical LLMs:
MolT5 (Edwards et al., 2022) and Text+CHem T5 (ChemT5; Christofidellis et al., 2023a). To validate
the efficacy of our method across various model sizes, we used small (77M) and base (252M) for
ChemT5 and base and large (800M) for MolT5. On the other hand, we employed three recent large
language models: Llama3-8B-Instruct (Touvron et al., 2023), GPT-4o (OpenAI & et al., 2024)3, and
Mol-Instructions (Fang et al., 2024) as our generalist models. Additionally, we include five baselines
including RNN (Jain & Medsker, 1999), Transformer (Vaswani et al., 2017), T5 (Raffel et al., 2020),
MolXPT (Liu et al., 2023a), and BioT5 (Pei et al., 2023) to compare the absolute performance.

5.1 MOLECULE CAPTIONING

Figure 6: Comparison of with and with-
out STRUCTCOT (MolT5-base). Incorporating
STRUCTCOT improved the performance faster.

Experimental setup and metrics. For special-
ist models, we follow the method proposed in
Section 4.2. For the generalist models without
any domain-specific instruction tuning (Llama3
and GPT-4o), we cannot guarantee that the gen-
erated descriptions align with those in our train-
ing data. Therefore, we apply 10-shot learning
by attaching CoTs in the same way as for the
specialist models. Lastly, for Mol-Instructions,
we do not apply fine-tuning or few-shot learning
but prompt the model with instructions enriched
with CoTs. Performance is evaluated by comparing the generated captions with the ground-truth
captions using six metrics: BLEU-2, BLEU-4 (Papineni et al., 2002), ROUGE-1, ROUGE-2, ROUGE-

3We used gpt-4o-2024-05-13.
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Table 2: Reasoning Accuracy for Each Structural Information.
Models Form. Chain Arom. Ring Func. Chiral. Weight Name

Specialists (fine-tuning)

MolT5-base 0.458 0.922 0.926 0.930 0.957 0.798 0.606 0.512

ChemT5-small 0.447 0.920 0.930 0.926 0.954 0.788 0.634 0.495
ChemT5-base 0.475 0.925 0.931 0.930 0.960 0.799 0.641 0.525

Generalists

Llama3 0.084 0.174 0.593 0.362 0.137 0.450 0.435 0.015

GPT-4o 0.298 0.235 0.718 0.464 0.298 0.485 0.728 0.040

Table 3: Text-based Molecule Generation Performance. The teal color indicates the improvement
while the red color indicates the reduction.

BLEU Exact Levenshtein ↓ MACCS FTS RDK FTS Morgan FTS FCD↓ Validity
Models Met. ∆ Met. ∆ Met. ∆ Met. ∆ Met. ∆ Met. ∆ Met. ∆ Met. ∆

Baselines (without CoTs)

RNN 0.652 - 0.005 - 38.09 - 0.591 - 0.400 - 0.362 - 4.55 - 0.542 -

Transformer 0.499 - 0.000 - 57.66 - 0.480 - 0.320 - 0.217 - 11.32 - 0.906 -

T5-base 0.762 - 0.069 - 24.95 - 0.731 - 0.605 - 0.545 - 2.48 - 0.660 -

MolXPT - - 0.215 - - - 0.859 - 0.757 - 0.667 - 0.45 - 0.983

BioT5 0.867 - 0.413 - 15.10 - 0.886 - 0.801 - 0.734 - 0.43 - 1.000

Specialists (fine-tuning)

MolT5-base 0.769 - 0.081 - 24.46 - 0.721 - 0.588 - 0.529 - 2.18 - 0.772 -
+STRUCTCOT 0.863 0.094 0.385 0.304 13.91 10.55 0.918 0.197 0.843 0.255 0.783 0.254 0.29 1.89 0.983 0.211

MolT5-large 0.854 - 0.311 - 16.07 - 0.834 - 0.746 - 0.684 - 1.20 - 0.905 -
+STRUCTCOT 0.886 0.032 0.391 0.080 12.98 3.09 0.906 0.072 0.822 0.076 0.765 0.081 0.35 0.085 0.947 0.042

ChemT5-small 0.739 - 0.157 - 28.54 - 0.859 - 0.736 - 0.660 - 0.07 - 0.776 -
+STRUCTCOT 0.874 0.135 0.381 0.224 13.22 15.32 0.918 0.059 0.845 0.109 0.787 0.127 0.29 0.22 0.976 0.200

ChemT5-base 0.750 - 0.212 - 27.39 - 0.874 - 0.767 - 0.697 - 0.06 - 0.792 -
+STRUCTCOT 0.878 0.128 0.421 0.209 12.76 14.63 0.924 0.050 0.856 0.089 0.804 0.107 0.26 0.20 0.982 0.190

L (Banerjee & Lavie, 2005), and METEOR (Banerjee & Lavie, 2005). We provide detailed experi-
mental settings and prompts in Appendix A.2.

Results. We report the experimental results in Table 1. We observe that adding STRUCTCOT
consistently improves performance for both specialist and generalist models. Surprisingly, despite
BioT5 being pre-trained on a larger dataset and sharing the same model size, our method, when
incorporated with ChemT5-base, achieves competitive results without any additional pre-training
data. We provide an example generated sample in Figure 7 and more examples in Appendix B.1.
Moreover, our approach shows faster performance improvement, as illustrated in Figure 6.

5.2 TEXT-BASED MOLECULE GENERATION

Experimental setup and metrics. We follow the fine-tuning framework proposed in Section 4.3. The
performance is evaluated by comparing the generated molecules with the reference molecules using
eight metrics: SMILES comparison metrics (BLEU, Exact, and Levenshtein distance (Miller et al.,
2009)), fingerprint similarity metrics (MACCS FTS (Durant et al., 2002), RDK FTS (Schneider et al.,
2015), and Morgan FTS (Rogers & Hahn, 2010)), a molecular distribution metric (Fréchet ChemNet
Distance (FCD) (Preuer et al., 2018)), and the validity of the generated molecule. We provide detailed
experimental settings and prompts in Appendix A.3. Notably, we do not report the performance of
generalist models in the main text because their reasoning accuracy is very low, as shown in Table 2.
This low accuracy implies that their reasoning would not guide the answer appropriately, even in the
few-shot learning setting. However, we include these results in Appendix B.2 for completeness. We
share the model weights for the reasoning and the answering modules when experimenting on the
MolT5-large, since it leads to slightly better performance.

Reasoning accuracy. We first measure the reasoning accuracy to filter out low-accuracy reasoning
components that may misguide the answer module. Specifically, the accuracies for molecular formula,
longest carbon chain length, number of aromatic rings, chirality, and IUPAC names are computed by
exact match. The accuracies for ring compounds and functional groups are computed by the ratio of
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Ground TruthChemT5-base + OursChemT5-baseMolT5-base + OursMolT5-baseInput
The molecule is an 
organosulfonate oxoanion resulting
from the removal of a proton from
both of the sulfo groups of 5-[(4-
acetamido-2-sulfophenyl) 
diazenyl]-6-amino-4-hydroxy 
naphthalene-2-sulfonic acid. It is
a conjugate base of a lissamine
fast red (acid form).

The molecule is an 
organosulfonate oxoanion obtained
by deprotonation of the sulfo
groups of 5-[(4-acetamido-2-
sulfophenyl)diazenyl]-6-amino-4-
hydroxynaphthalene-2-sulfonic 
acid. It is a conjugate base of a p-
acetamido-2-sulfobenzene-1-
sulfonic acid.

The molecule is an 
organosulfonate oxoanion obtained
by deprotonation of the sulfo
groups of 7-amino-4-[(4-
acetamido-2-sulfophenyl) 
diazenyl]-6-amino-4-hydroxy 
naphthalene-2-sulfonic acid. It is
a conjugate base of a 7-amino-4-
[(4-acetamido-2-sulfophenyl) 
diazenyl]-6-amino-4-hydroxyna 
phthalene-2-sulfonic acid.

The molecule is an 
organosulfonate oxoanion obtained
by deprotonation of the sulfo
groups of 5-[(4-acetamido-2-
sulfophenyl)diazenyl]-6-amino-4-
hydroxynaphthalene-2-sulfonic 
acid. It is a conjugate base of a 5-
[(4-acetamido-2-sulfophenyl) 
diazenyl]-6-amino-4-hydroxy 
naphthalene-2-sulfonic acid.

The molecule is an 
organosulfonate oxoanion obtained
by deprotonation of the sulfo
groups of 4-amino-5-[(4-
acetamido-5-sulfophenyl) 
diazenyl]naphthalene-2,7-
disulfonic acid. It is a conjugate
base of a 4-amino-5-[(4-acetamido-
5-sulfophenyl)diazenyl] 
naphthalene-2,7-disulfonic acid.

The molecule is a benzodioxole
that consists of piperidine
bearing 1,3-benzodioxol-5-
yloxy)methyl and 4-fluorophenyl 
substituents at positions 3 and 4 
respectively; the (3S,4R)-
diastereomer. Highly potent and 
selective 5-HT uptake inhibitor
that binds with high affinity to the 
serotonin transporter (Ki = 0.05 
nM. …

Figure 7: Examples of generated samples. A Mol2Text sample is at the top and a Text2Mol sample
is at the bottom. We provide more examples in Appendix B.1 and Appendix B.2.

intersection between the set of true and generated CoTs. Lastly, the accuracy for molecular weight is
considered correct if the generated weight is within 95% to 105% of the true weight.

The reasoning accuracies are provided in Table 2. Our results show that our fine-tuned specialist
reasoning modules exhibit superior reasoning accuracy compared to larger generalist models, un-
derscoring their ability to understand molecular structures effectively. However, even our reasoning
modules failed to achieve high accuracy in molecular formula, molecular weight, and IUPAC name.
Therefore, we filter out these three STRUCTCOT components.

Results. The experimental results are reported in Table 3. Incorporating our generated STRUCTCOT
to the molecular description always improved performance. In particular, incorporating STRUCTCOT
into the ChemT5-base achieves state-of-the-art performance compared to the recent baselines, vali-
dating the efficacy of our CoTs. Surprisingly, our STRUCTCOT even improves the performance of
smaller models beyond that of the vanilla larger models, e.g., MolT5-base+STRUCTCOT showed
superior performance to MolT5-large. We provide an example generated sample in Figure 7 and
more examples in Appendix B.1.

5.3 ABLATION STUDY

We conduct ablation studies on matching ratio-based rejection sampling and each structural compo-
nent, as well as an experiment comparing our method to ChemCrow. Due to limited space, we present
the results of the structural component analysis and the comparison to ChemCrow in Appendix B.3.

20 125 250
0.20

0.25

0.30

0.35

0.40
Exact

20 125 250
Epochs

0.85

0.90

0.95

1.00
Validity

20 125 250
0.87

0.89

0.91

0.93
MACCS FTS

W/o rej. samp. (k = 1)
k = 5
k = 10
K = 20

Figure 8: Ablation study on k of matching Ratio-
based Rejection Sampling.

Matching ratio-based rejection sampling.
Here, we discuss the efficacy of matching ratio-
based rejection sampling and the impact of the
number of samples k in text-based molecule
generation. We compare the results of ChemT5-
small, both without (k = 1) and with the re-
jection sampling (k ∈ {5, 10, 20}). As demon-
strated in Figure 8, the rejection sampling im-
proves performance by encouraging the output to follow the given STRUCTCOT. Notably, increasing
k beyond 5 does not further improve performance, implying that a choice of k = 5 is sufficient.

6 CONCLUSION

In this paper, we introduced STRUCTCOT, a structure-aware chain-of-thought framework that en-
hances language models’ understanding of molecular structures by explicitly incorporating key
structural features. Our analysis demonstrated that recent large language models struggle to accu-
rately infer structural information from molecular representations like SMILES strings or textual
descriptions, highlighting the need for explicit structural reasoning. By fine-tuning domain-specific
specialist models with STRUCTCOT, we achieved consistent improvements in molecule captioning
and text-based molecule generation tasks. This work underscores the effectiveness of small, domain-
specific models in capturing molecular structures, and offers a solution for molecular reasoning.
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REPRODUCIBILITY

All experimental code related to this paper is available at https://anonymous.4open.
science/r/MolStructCoT. Detailed insights regarding the experiments, encompassing dataset
and model specifics, are available in Section 5. For intricate details like hyperparameters, consult
Appendix A.
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A EXPERIMENTAL DETAILS

In this section, we provide the details of the experiments. All experimental code related to this paper
is available at https://anonymous.4open.science/r/MolStructCoT.

A.1 STRUCTURE INFORMATION ANALYSIS

Here, we describe the detailed settings for the analysis in Section 3.1. To evaluate the understanding
of two recent LLMs: Llama3-8B-Instruct (Touvron et al., 2023) and GPT-4o (OpenAI & et al., 2024),
we prompt the LLMs to infer the structural information from the given molecular SMILES string and
text description of the molecule.

Prompts given SMILES string. First, we asked LLMs to infer the structural information from the
SMILES string, with the prompt described in Table 5.

Table 4: Prompts for structure information analysis given SMILES string.

Head prompt: You are now working as an excellent expert in chemistry and drug discovery.
Given the SMILES representation of a molecule, your job is to predict the structural information
of the molecule.
The structural information of the molecule caption includes the molecular formula, the length of
the longest carbon chain, the number of aromatic rings, the IUPAC name of all the rings, all the
functional groups, the number of chiral centers with S and R configurations each, the molecular
weight, the IUPAC name of the molecule.
The functional group and ring IUPAC names should be on the list. The number of chiral centers
should also be format {"S": , "R": }.
Your response should only be in the JSON format following {"molecular formula": , "functional
group": , "longest carbon chain length": , "aromatic ring": , "ring IUPAC name":, "chiral": {"S": ,
"R": }, "weight": , "IUPAC name": }.
THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE. DO NOT
CHANGE THE JSON KEY NAMES.

Input prompt: Input: <SMILES>

Prompts given text description of molecules. Next, we asked LLMs to infer the structural informa-
tion from the text description of the molecule, with the prompt described in Table 4.

Table 5: Prompts for structure information analysis given text description.

Head prompt: You are now working as an excellent expert in chemistry and drug discovery.
Given the caption of a molecule, your job is to predict the structural information of the molecule.
The molecule caption is a sentence that describes the molecule, which mainly describes the
moleculeś structures, properties, and production.
The structural information of the molecule caption includes the molecular formula, the length of
the longest carbon chain, the number of aromatic rings, the IUPAC name of all the rings, all the
functional groups, the number of chiral centers with S and R configurations each, the molecular
weight, the IUPAC name of the molecule.
The functional group and ring IUPAC names should be on the list. The number of chiral centers
should also be format {"S": , "R": }.
Your response should only be in the JSON format following {"molecular formula": , "functional
group": , "longest carbon chain length": , "aromatic ring": , "ring IUPAC name":, "chiral": {"S": ,
"R": }, "weight": , "IUPAC name": }.
THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE. DO NOT
CHANGE THE JSON KEY NAMES.

Input prompt: Input: <Description>
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A.2 MOLECULE CAPTIONING

Here, we describe the detailed settings for the experiments of molecule captioning in Section 5.1.
Note that we used four A100-80GB GPUs for fine-tuning.

Hyperparameters. The hyperparameters for the specialist models are provided in Table 6. Note that
MolT5-large was not trained for the same number of epochs as the other models due to limited time
constraints.

Hyperparameter MolT5-base MolT5-large ChemT5-small ChemT5-base

Batch size 8 4 8 8
Learning rate 2e−4 2e−4 6e−4 6e−4

Epochs 250 220 250 250
Warmup ratio 0 0 0.1 0.1
Weight decay 0.01 0.01 0 0
Lr scheduler linear linear linear linear

Table 6: Hyperparameters for molecule captioning.

Prompts. The prompts used for the generalist models are described in Table 10. We primarily
followed the prompt presented by Li et al. (2024a).

Head prompt: You are now working as an excellent expert in chemistry and drug discovery.
Given the SMILES representation of a molecule and structural description of the molecule, your
job is to predict the caption of the molecule.
The molecule caption is a sentence that describes the molecule, which mainly describes the
molecule’s structures, properties, and production.

Example 1:
Instruction: Given the SMILES representation of a molecule, predict the caption of the molecule.
Input: <SMILES><STRUCTCOT >
Your output should be: {"caption": <Description>}
. . .
Example k:
Instruction: Given the SMILES representation of a molecule, predict the caption of the molecule.
Input: <SMILES><STRUCTCOT >
Your output should be: {"caption": <Description>}

Your response should only be in the JSON format above; THERE SHOULD BE NO OTHER
CONTENT INCLUDED IN YOUR RESPONSE.

Input prompt: Input: <SMILES><STRUCTCOT >

Table 7: Prompts for generalist models in text-based molecule generation task.
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A.3 TEXT-BASED MOLECULE GENERATION

Here, we described the detailed settings for the experiments of text-based molecule generation in
Section 4.3. Note that we also used four A100-80GB GPUs for fine-tuning.

Hyperparameters. The hyperparameters for the reasoning and answering module for the specialist
models are provided in Table 8 and Table 9, respectively. Note that MolT5-large was not trained for
the same number of epochs as the other models due to limited time constraints.

Table 8: Hyperparameters for the reasoning module of text-based molecule generation.

Hyperparameter MolT5-base ChemT5-small ChemT5-base

Batch size 8 8 8
Learning rate 1e−3 6e−4 6e−4

Epochs 250 250 250
Warmup ratio 0.1 0 0
Weight decay 0 0 0
Lr scheduler cosine linear linear

Table 9: Hyperparameters for the answering module of text-based molecule generation.

Hyperparameter MolT5-base MolT5-large ChemT5-small ChemT5-base

Batch size 8 4 8 8
Learning rate 1e−3 1e−3 6e−4 6e−4

Epochs 250 140 250 250
Warmup ratio 0.1 0.1 0 0
Weight decay 0 0 0 0
Lr scheduler cosine cosine linear linear

Prompts. The prompts used for the generalist models are described in Table 7. We also primarily
followed the prompt presented by Li et al. (2024a).

Table 10: Prompts for the generalist models in molecule captioning task.

Head prompt: You are now working as an excellent expert in chemistry and drug discovery.
Given the caption of a molecule, your job is to predict the SMILES representation of the molecule.
The molecule caption is a sentence that describes the molecule, which mainly describes the
molecule’s structures, properties, and production.
You can infer the molecule SMILES representation from the caption.
Before you infer the molecule SMILES representation, YOU SHOULD FIRST GENERATE the
molecular formula, the length of the longest carbon chain, the number of aromatic rings, the
IUPAC name of all the rings, all the functional groups, the number of chiral centers with S and R
configurations each, the molecular weight, the IUPAC name of the molecule.

Example 1: Instruction: Given the caption of a molecule, predict the SMILES representation of
the molecule.
Input: <Description><STRUCTCOT >
Your output should be: {"molecule": <SMILES>}
. . .
Example k: Instruction: Given the caption of a molecule, predict the SMILES representation of
the molecule.
Input: <Description><STRUCTCOT >
Your output should be: {"molecule": <SMILES>}

You should FIRST generate the structural information following the examples above, and then
provide the JSON format of the molecule SMILES based on that.
NOTE THAT THE SMILES REPRESENTATION MUST BE IN THE JSON format above
{"molecule": }. THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR JSON.
DO NOT CHANGE THE JSON KEY NAME.

Input prompt: Input: <Description>
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A.4 ABLATION STUDY

Here, we describe the detailed settings for the ablation study.

Prompts for ChemCrow. The prompts used for ChemCrow (M. Bran et al., 2024) are described in
Table 11 and Table 12. Notably, it was not able to apply few-shot learning for ChemCrow as it was
not applicable as the original prompt proposed in ChemCrow does not include any few-shot setting.

Table 11: Prompts for molecule captioning with ChemCrow.

Head prompt: Given the SMILES representation of a molecule and structural description of the
molecule, your job is to predict the caption of the molecule.
"Final Answer" follows the format: Final Answer: {"caption": }

Input prompt: The SMILES representation of the molecule is as follows: : <SMILES>

Table 12: Prompts for text-based molecule generation with ChemCrow.

Head prompt: Given the caption of a molecule, your job is to predict the SMILES representation
of the molecule.
The molecule caption is a sentence that describes the molecule, which mainly describes the
molecule’s structures, properties, and production.
You can infer the molecule SMILES representation from the caption.
"Final Answer" follows the format: Final Answer: {"molecule": }

Input prompt: The caption is as follows: <Description>
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B ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results including several concrete examples of
generated samples.

B.1 MOLECULE CAPTIONING

Here, we show the samples of molecule captioning, i.e., generated text descriptions of given molecules
in Figure 9. Notably, we show the generated samples from base-sized models for fair comparison.

Ground TruthChemT5-base + OursChemT5-baseMolT5-base + OursMolT5-baseInput
The molecule is a 1,3,4-
oxadiazole substituted by a 2-
chlorophenyl group at position 2 
and a 5-methyl-2-thienyl group at 
position 5. It is a member of 
thiophenes, a member of 1,3,4-
oxadiazoles and a member of 
monochlorobenzenes.

The molecule is a member of the 
class of 1,3,4-oxadiazoles that is
1,3,4-oxadiazole which is
substituted at positions 2 and 5 by 
2-chlorophenyl and 5-methyl-2-
(thiophen-2-yl)-1,3,4-oxadiazol-5-yl 
groups, respectively. It is a 
member of 1,3,4-oxadiazoles, a 
member of monochlorobenzenes
and a member of thiophenes.

The molecule is a 2,2'-bithiophene 
that is 1,3,4-oxadiazole bearing
2,2'-bithiophen-5-yl and 5-methyl-
2-chlorophenyl groups at positions 
2 and 5 respectively. It is a 
member of 1,3,4-oxadiazoles and 
a member of monochlorobenzenes.

The molecule is a 1,3,4-
oxadiazole that is 1,3,4-
oxadiazole substituted by a 2-
chlorophenyl group at position 2, a 
5-methylthiophen-2-yl group at 
position 5 and a 2-chlorophenyl 
group at position 2. It is a member
of 1,3,4-oxadiazoles and a 
member of monochlorobenzenes.

The molecule is a member of the 
class of 1,2,4-thiazoles that is
1,2,4-thiazole which is substituted
at positions 3 and 5 by 4-
chlorophenyl and 4-methylphenyl 
groups, respectively. It is a 
member of 1,2,4-thiazoles, a 
member of monochlorobenzenes
and a member of 
monochlorobenzenes.

The molecule is an 
organosulfonate oxoanion resulting
from the removal of a proton from
both of the sulfo groups of 5-[(4-
acetamido-2-
sulfophenyl)diazenyl]-6-amino-4-
hydroxynaphthalene-2-sulfonic 
acid. It is a conjugate base of a 
lissamine fast red (acid form).

The molecule is an 
organosulfonate oxoanion
obtained by deprotonation of the 
sulfo groups of 5-[(4-acetamido-
2-sulfophenyl)diazenyl]-6-amino-
4-hydroxynaphthalene-2-
sulfonic acid. It is a conjugate
base of a p-acetamido-2-
sulfobenzene-1-sulfonic acid.

The molecule is an 
organosulfonate oxoanion
obtained by deprotonation of the 
sulfo groups of 7-amino-4-[(4-
acetamido-2-
sulfophenyl)diazenyl]-6-amino-4-
hydroxynaphthalene-2-sulfonic 
acid. It is a conjugate base of a 7-
amino-4-[(4-acetamido-2-
sulfophenyl)diazenyl]-6-amino-4-
hydroxynaphthalene-2-sulfonic 
acid.

The molecule is an 
organosulfonate oxoanion
obtained by deprotonation of the 
sulfo groups of 5-[(4-acetamido-
2-sulfophenyl)diazenyl]-6-amino-
4-hydroxynaphthalene-2-
sulfonic acid. It is a conjugate
base of a 5-[(4-acetamido-2-
sulfophenyl)diazenyl]-6-amino-4-
hydroxynaphthalene-2-sulfonic 
acid.

The molecule is an 
organosulfonate oxoanion
obtained by deprotonation of the 
sulfo groups of 4-amino-5-[(4-
acetamido-5-
sulfophenyl)diazenyl]naphthalen
e-2,7-disulfonic acid. It is a 
conjugate base of a 4-amino-5-[(4-
acetamido-5-
sulfophenyl)diazenyl]naphthalene-
2,7-disulfonic acid.

The molecule is a palmitate ester 
resulting from the formal
condensation of the carboxy group 
of palmitic acid with the hydroxy 
group of tetradecan-1-ol. It has a role
as a bacterial metabolite and a fungal
xenobiotic metabolite. It is a 
hexadecanoate ester and a wax ester. 
It derives from a tetradecan-1-ol.

The molecule is a palmitate ester 
resulting from the formal
condensation of the carboxy group 
of palmitic acid with the hydroxy 
group of tetradecan-1-ol. It is a wax 
ester and a hexadecanoate ester. It 
derives from a tetradecan-1-ol.

The molecule is a wax ester obtained
by the formal condensation of 
palmityl alcohol with dodecan-1-ol. 
It is a wax ester and an octadecanoate
ester. It derives from a dodecan-1-ol.

The molecule is a palmitate ester 
resulting from the formal
condensation of palmitic acid with
tetradecan-1-ol. It is a hexadecanoate
ester and a wax ester. It derives from a 
hexadecanoic acid.

The molecule is a palmitate ester 
resulting from the formal
condensation of palmitic acid with
palmityl alcohol. It has a role as a 
bacterial metabolite. It is a wax ester 
and a wax ester. It derives from a 
hexadecan-1-ol.

Figure 9: The generated samples of molecule captioning.
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B.2 TEXT-BASED MOLECULE GENERATION

Here, we show the samples of text-based molecule generation, i.e., generated molecules for the given
text description in Figure 10. Notably, we show the generated samples from base-sized models for
fair comparison.

Ground TruthChemT5-base + OursChemT5-baseMolT5-base + OursMolT5-baseInput
The molecule is an ammonium ion 
resulting from the protonation of 
the nitrogen of alvarine. It is a 
conjugate acid of an alverine.

The molecule is a quinolone 
consisting of quinolin-4(1H)-one 
carrying a heptyl substituent at 
position 2 and a hydroxy group at 
position 3. It has a role as a 
signalling molecule.

The molecule is a benzodioxole
that consists of piperidine bearing
1,3-benzodioxol-5-yloxy)methyl
and 4-fluorophenyl substituents at 
positions 3 and 4 respectively; the 
(3S,4R)-diastereomer. Highly
potent and selective 5-HT uptake
inhibitor that binds with high affinity
to the serotonin transporter (Ki = 
0.05 nM). Ki values are 1.1, 350 
and 1100 nM for inhibition of [3H]-
5-HT, [3H]-l-NA and [3H]-DA 
uptake respectively. Displays 
minimal affinity for alpha1-, alpha2-
or beta-adrenoceptors, 5-HT2A, 5-
HT1A, D2 or H1 receptors at 
concentrations below 1000 nM, 
however displays weak affinity for 
muscarinic ACh receptors (Ki = 42 
nM). Antidepressant and anxiolytic
in vivo. It has a role as an 
antidepressant, an anxiolytic drug, 
a serotonin uptake inhibitor, a 
hepatotoxic agent and a P450 
inhibitor. It is a member of 
piperidines, a member of 
benzodioxoles, an organofluorine
compound and an aromatic ether. 
It derives from a 
monofluorobenzene. It is a 
conjugate base of a 
paroxetinium(1+).

Figure 10: The generated samples of text-based molecule generation.

Additionally, we provide the results of generalist models in Table 13. Note that it is natural to show
no consistent enhancement for generalist models as they lack reasoning ability as shown in Table 2.

Table 13: Text-based Molecule Generation Performance for generalist models. The teal color
indicates the improvement while the red color indicates the reduction.

BLEU Exact Levenshtein ↓ MACCS FTS RDK FTS Morgan FTS FCD↓ Validity
Models Met. ∆ Met. ∆ Met. ∆ Met. ∆ Met. ∆ Met. ∆ Met. ∆ Met. ∆

Generalists (10-shot learning)

Llama3 0.251 - 0.007 - 117.30 - 0.586 - 0.352 - 0.276 - 13.11 - 0.629 -
+STRUCTCOT 0.259 0.008 0.008 0.001 109.77 7.53 0.579 0.007 0.279 0.073 0.344 0.068 4.47 8.64 0.669 0.040

GPT-4o 0.521 - 0.079 - 40.87 - 0.797 - 0.496 - 0.583 - 3.67 - 0.881 -
+STRUCTCOT 0.509 0.012 0.088 0.009 41.68 0.081 0.783 0.014 0.498 0.002 0.571 0.012 1.57 2.10 0.846 0.035
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B.3 ABLATION STUDY

Comparison to ChemCrow. To validate the efficacy of our STRUCTCOT, we compare our method
with ChemCrow (M. Bran et al., 2024), which has employed CoTs for various chemical tasks. The
comparative results are provided in Table 14 and Table 16. One can observe that ChemCrow shows
limited performance in both molecule captioning and text-based molecule generation tasks. It is
notable that the comparison may not be entirely appropriate, as ChemCrow is primarily designed
for practical synthesis tasks, as the reviewer mentioned. Nevertheless, we included comparisons
with ChemCrow to provide additional insights, as they share a similar motivation: enriching large
language models (LLMs) with a chemistry-aware chain-of-thoughts.

Table 14: Comparison to ChemCrow in molecule captioning. The specialist model indicates our
results from MolT5-large while the generalist model indicates the one from GPT-4o.

Models BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

ChemCrow (GPT-4o) 0.162 0.078 0.299 0.097 0.211 0.225
Ours (GPT-4o) 0.249 0.139 0.386 0.179 0.300 0.303

Ours (ChemT5-base) 0.639 0.560 0.687 0.553 0.626 0.657

Table 15: Comparison to ChemCrow in text-based molecule generation. The specialist model
indicates our results from GPT-4o while the generalist model indicates the one from .

Models BLEU Exact Levenshtein ↓ MACCS FTS RDK FTS Morgan FTS FCD ↓ Validity

ChemCrow (GPT-4o) 0.306 0.194 56.46 0.772 0.632 0.555 2.31 0.851
Ours (GPT-4o) 0.509 0.088 41.68 0.783 0.498 0.571 1.57 0.846

Ours (ChemT5-base) 0.878 0.421 12.76 0.924 0.856 0.804 0.26 0.982

Structural component. To verify the effectiveness of each component, we evaluated the performance
of molecule captioning on ChemT5-small using each structural information component individually.
We provide the results in Figure 11. We observe that the molecular formula and chirality contribute
the largest performance improvements. Additionally, incorporating each single component resulted in
better performance compared to the baseline model without any Chain-of-Thought (CoT) integration.
Notably, combining all the proposed structural elements yielded the best results, validating the
effectiveness of our comprehensive approach.
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Figure 11: The impact of each structural component.
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Additional molecular descriptors. In addition to the proposed six structural components, we
conducted experiments using three more advanced molecular descriptors: the Morgan fingerprint
and two electronic properties—topological polar surface area (TPSA) and molar refractivity (MR).
Specifically, the Morgan fingerprint encodes local substructures within a specified radius; TPSA
represents the sum of the surface areas of all polar atoms and their attached hydrogen atoms; and MR
quantifies the total polarizability of a molecule.

To verify the effectiveness of each additional descriptor, we evaluated the performance of molecule
captioning using ChemT5-small. We provide the results in Figure 12. We observed that incorporating
all three additional descriptors together did not further improve the performance of StructCoT,
although applying each additional descriptor individually improved performance. This validates the
importance of structural information and the sufficiency of our proposed structural components.
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Figure 12: The impact of additional molecular descriptors.
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B.4 RETROSYNTHESIS

Here, we present additional experimental results on retrosynthesis with Mol-Instructions (Fang
et al., 2024). We incorporate STRUCTCOT by prompting the model with the target molecule and
STRUCTCOT. We observe that incorporating our STRUCTCOT not only improved the molecular
captioning and text-based molecule generation tasks but also more complicated retrosynthesis task.

Table 16: Comparison to Mol-Instructions in retrosynthesis.
Models BLEU Exact Levenshtein ↓ MACCS FTS RDK FTS Morgan FTS ↓ Validity

Mol-Instructions 0.009 0.705 31.23 0.283 0.487 0.230 1.000
+ STRUCTCOT 0.016 0.502 31.21 0.315 0.493 0.273 1.000
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