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ABSTRACT

Spectral Graph Neural Networks (GNNs) are gaining attention for their ability to
surpass the limitations of message-passing GNNs. They rely on the supervision
from the downstream task to learn spectral filters that capture the useful frequency
information of the graph signal. However, some works empirically show that the
preferred graph frequency is related to the graph homophily level. This relationship
between graph frequency and graphs with homophily/heterophily has not been
systematically analyzed and considered in existing spectral GNNs. To mitigate this
gap, we conduct theoretical and empirical analyses which reveal that low-frequency
importance is positively correlated with the homophily ratio, while high-frequency
importance is negatively correlated. Motivated by this, we propose a shape-ware
regularization on a Newton Interpolation-based spectral filter which can (i) learn
arbitrary polynomial spectral filter and (ii) incorporate prior knowledge about the
desired shape of the corresponding homophily level. Comprehensive experiments
demonstrate that NewtonNet can achieve graph spectral filters with desired shapes
and superior performance on both homophilous and heterophilous datasets. The
code can be found at https://anonymous.4open.science/r/NewtonNet-8115.

1 INTRODUCTION

Graphs are pervasive in the real world, such as social networks (Wu et al., 2020), biological
networks (Fout et al., 2017), and recommender systems (Wu et al., 2022). GNNs (Veličković et al.;
Hamilton et al., 2017) have witnessed great success in various tasks such as node classification (Kipf
& Welling, 2017), link prediction (Zhang & Chen, 2018), and graph classification (Zhang et al.,
2018). Existing GNNs can be broadly categorized into spatial GNNs and spectral GNNs. Spatial
GNNs (Veličković et al.; Klicpera et al., 2018; Abu-El-Haija et al., 2019) propagate and aggregate
information from neighbors. Hence, it learns similar representations for connected neighbors. Spectral
GNNs (Bo et al., 2023) learn a filter on the Laplacian matrix. The filter output is the amplitude of
each frequency in the graph spectrum, which ultimately determines the learned representations.

In real-world scenarios, different graphs can have different homophily ratios. In homophilous graphs,
nodes from the same class tend to be connected; while in heterophilous graphs, nodes from different
classes tend to be connected. Several studies (Zhu et al., 2020a; Ma et al., 2022; Xu et al., 2022) have
shown that heterophilous graphs pose a challenge for spatial GNNs based on message-passing as
they implicitly assume the graph follows homophily assumption. Many works are proposed from the
spatial perspective to address the heterophily problem (Zheng et al., 2022). Spectral GNNs (Bo et al.,
2023; Levie et al., 2018) with learnable filters have shown great potential in addressing heterophily
problems as they can learn spectral filters from the graph, which can alleviate the issue of aggregating
noisy information from neighbors of different features/classes.

Recent works (Bo et al., 2021; Zhu et al., 2020a; Liu et al., 2022) have empirically shown that, in
general, homophilous graphs contain more low-frequency information in graph spectrum and low-pass
filter works well on homophilous graphs; while heterophilous graphs contain more high-frequency
information and high-pass filter is preferred. However, they mostly provide empirically analysis
without theoretical understanding. In addition, graphs can be in various homophily ratios instead
of simply heterophily and homophily, which needs further analysis and understanding. However,
there lacks a systematic investigation and theoretical understanding between the homophily ratio of a
graph and the frequency that would be beneficial for representation learning of the graph.

To fill the gap, we systematically analyze the impact of amplitudes of each frequency on graphs with
different homophily ratios. We observe that low-frequency importance is positively correlated with
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the homophily ratio, while high-frequency importance is negatively correlated with the homophily
ratio. Meanwhile, middle-frequency importance increases and then decreases as the homophily ratio
increases. We also provide theoretical analysis to support our observations.

These observations suggest that an effective spectral GNN should be able to learn filters that can adapt
to the homophily ratio of the graph, i.e., encouraging more important frequencies and discouraging
frequencies with lower importance based on the graph ratio. However, this is a non-trivial task and
existing spectral GNNs cannot satisfy the goal as they solely learn on downstream tasks and are not
aware of the behaviors of the learned filter. As a result, existing spectral GNNs have the following
problems: (i) they cannot adapt to varying homophily ratios, resulting in their inability to encourage
and discourage different frequencies; and (ii) when only weak supervision is provided, there are not
sufficient labels for the models to learn an effective filter, which degrades the performance.

To address the challenges, we propose a novel framework NewtonNet, which can learn filters that can
encourage important frequencies while discourage non-important frequencies based on homophily
ratio. Specifically, NewtonNet introduces a set of learnable points of filters supervised by label
information, which gives the basic shape of the filter. It then adopts Newton Interpolation (Hildebrand,
1987) on those interpolation points to get the complete filter. As the points are learnable, NewtonNet
can approximate arbitrary filters. As those interpolation points determine the shape of the filter, to
adapt the filter to the homophily ratio, we design a novel shape-aware regularization on the points
to encourage beneficial frequencies and discourage harmful frequencies to achieve an ideal filter
shape. Experiments show that NewtonNet outperforms spatial and spectral GNNs on various datasets.

Our main contributions are: (1) We are the first to establish a well-defined relationship between
graph frequencies and homophily ratios. We empirically and theoretically show that the more
homophilous the graph is, the more beneficial the low-frequency is; while the more heterophilous the
graph is, the more beneficial the high-frequency is. (2) We propose a novel framework NewtonNet
using Newton Interpolation with shape-aware regularization that can learn better filter encourages
beneficial frequency and discourages harmful frequency, resulting in better node representations. (3)
Extensive experiments demonstrate the effectiveness of NewtonNet in various settings.

2 PRELIMINARIES

Notations and Definitions. Let G = (V, E ,X) be an attributed undirected graph, where V =
{v1, ..., vN} is the set of N nodes, and E ⊆ V × V is the set of edges. X = {x1, ...,xN} ∈ RN×F

is the node feature matrix, where xi is the node features of node vi and F is the feature dimension.
A ∈ RN×N is the adjacency matrix, where Aij = 1 if (vi, vj) ∈ E ; otherwise Aij = 0. VL =
V − VU ⊆ V is the training set with known class labels YL = {yv,∀v ∈ VL}, where VU is the
unlabeled node sets. We use fθ(·) to denote the feature transformation function parameterized by θ
and g(·) to denote the filter function. D is a diagonal matrix with Dii =

∑
i Aij . The normalized

graph Laplacian matrix is given by L = I−D−1/2AD−1/2. We use (s, t) to denote a node pair and
x̃ ∈ RN×1 to denote a graph signal, which can be considered as a feature vector.

Homophily Ratio measures the ratio of edges connecting nodes with the same label to all the edges,
i.e., h(G) = |{(s,t)∈E:ys=yt}|

|E| . Graphs with high homophily and low heterophily have homophily
ratios near 1, while those with low homophily and high heterophily have ratios near 0.

Graph Spectral Learning. For an undirected graph, the Laplacian matrix L is a positive semidefinite
matrix. Its eigendecomposition is L = UΛU⊤, where U = [u1, · · · ,uN ] is the eigenvector matrix
and Λ = diag([λ1, · · · , λN ]) is the diagonal eigenvalue matrix. Given a graph signal x̃, its graph
Fourier transform is x̂ = U⊤x̃, and inverse transform is x̃ = Ux̂. The graph filtering is given as

z = U diag [g (λ1) , . . . , g (λN )]U⊤x̃ = Ug(Λ)U⊤x̃, (1)

where g is the spectral filter to be learned. However, eigendecomposition is computationally expensive
with cubic time complexity. Thus, a polynomial function is usually adopted to approximate filters to
avoid eigendecomposition, i.e., Eq. 1 is reformulated as a polynomial of L as

z = Ug(Λ)U⊤x̃ = U
(∑K

k=0
θkΛ

k
)
U⊤x̃ =

(∑K

k=0
θkL

k
)
x̃ = g(L)x̃, (2)

where g is polynomial function and θk are the coefficients of the polynomial.
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3 IMPACT OF FREQUENCIES ON GRAPHS WITH VARIOUS HOMOPHILY RATIOS

In this section, we first provide a theoretical analysis of the influence of different frequencies on
graphs with various homophily ratios. We then perform preliminary experiments, which yield
consistent results with our theoretical proof. Specifically, we find that low-frequency is beneficial
while high-frequency is harmful to homophilous graphs; the opposite is true for heterophilous graphs.
Our findings pave us the way for learning better representations based on the homophily ratio.

3.1 THEORETICAL ANALYSIS OF FILTER BEHAVIORS

Several studies (Bo et al., 2021; Zhu et al., 2020a) have empirically shown that low-frequency
information plays a crucial role in homophilous graphs, while high-frequency information is more
important for heterophilous graphs. However, none of them provide theoretical evidence to support
this observation. To fill this gap, we theoretically analyze the relationship between homophily ratio
and graph frequency. Specifically, we examine two graph filters that exhibit distinct behaviors in
different frequency regions and explore their impacts on graphs with varying homophily ratios.
Lemma 1. For a graph G with N nodes, C classes, and N/C nodes for each class, if we randomly
connect nodes to form the edge set E , the expected homophily ratio is E(h(G)) = 1

C .

The proof is in Appendix A.1. Lemma 1 reveals that if the edge set is constructed by random sampling,
the expected homophily ratio of the graph is 1/C. Hence, for a graph G, if h(G) > 1/C, it is more
prone to generate homophilous edges than in the random case. If h(G) < 1/C, heterophilous edges
are more likely to form.
Theorem 1. Let G = {V, E} be an undirected graph. 0 ≤ λ1 · · · ≤ λN are eigenval-
ues of its Laplacian matrix L. Let g1 and g2 be two spectral filters satisfying the follow-
ing two conditions: (1) g1(λi) < g2(λi) for 1 ≤ i ≤ m; and g1(λi) > g2(λi) for
m + 1 ≤ i ≤ N , where 1 < m < N ; and (2) They have the same norm of output values
∥[g1(λ1), · · · , g1(λN )]⊤∥22 = ∥[g2(λ1), · · · , g2(λN )]⊤∥22. For a graph signal x, x(1) = g1(L)x
and x(2) = g2(L)x are the corresponding representations after filters g1 and g2. Let ∆s =∑

(s,t)∈E

[
(x

(1)
s − x

(1)
t )2 − (x

(2)
s − x

(2)
t )2

]
be the difference between the total distance of connected

nodes got by g1 and g2, where x1
s denotes the s-th element of x(1)

s . Then we have E[∆s] > 0.

Note that in the theorem, we assume g1 and g2 have the same norm to avoid trivial solutions. The proof
of the theorem and the discussion of this assumption is in Appendix A.2. Theorem 1 reveals that if g1
has higher amplitude in the high-frequency region and lower amplitude in the low-frequency region
compared to g2, it will result in less similarity in representations of connected nodes. In contrast, g2
increases the representation similarity of connected nodes. As most edges in heterophilous graphs are
heterophilous edges, g1 is preferred to increase distances between heterophilously connected nodes.
In contrast, homophilous graphs prefer g2 to decrease distances between homophilously connected
nodes. Next, we theoretically prove the claim that low-frequency is beneficial for the prediction of
homophilous graphs, while high-frequency is beneficial for heterophilous graphs.
Theorem 2. Let G = {V, E} be a balanced undirected graph with N nodes, C classes, and N/C
nodes for each class. Pin is the set of possible pairs of nodes from the same class. Pout is the
set of possible pairs of nodes from different classes. g1 and g2 are two filters same as Theorem 1.
Given an arbitrary graph signal x, let d(1)in =

∑
(s,t)∈Pin

(
x
(1)
s − x

(1)
t

)2
be the total intra-class

distance, d(1)out =
∑

(s,t)∈Pout

(
x
(1)
s − x

(1)
t

)2
be the total inter-class distance, and d̄

(1)
in = d

(1)
in /|Pin|

be the average intra-class distance while d̄
(1)
out = d

(1)
out/|Pout| be the average inter-class distance.

∆d̄(1) = d̄
(1)
out − d̄

(1)
in is the difference between average inter-distance and intra-class distance. d(2)out,

d
(2)
out, d̄

(2)
in , d̄(2)out, and ∆d̄(2) are corresponding values defined similarly on x(2). If E[∆s] > 0, we

have: (1) when h > 1
C , E[∆d̄(1)] < E[∆d̄(2)]; and (2) when h < 1

C , E[∆d̄(1)] > E[∆d̄(2)].

The proof is in Appendix A.3. In Theorem 2, ∆d̄ shows the discriminative ability of the learned
representation, where a large ∆d̄ indicates that representations of intra-class nodes are similar,
while representations of inter-class nodes are dissimilar. As g1 and g2 are defined as described in
Theorem 1, we can guarantee E[∆s] > 0. Hence, homophilous graphs with h > 1/C favor g1; while
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Figure 1: (a) Candidate filters. Blue, orange, and green dashed lines show the choices of amplitudes
of low, middle, and high-frequency, respectively. We vary the amplitude of low, middle, and high-
frequency among {0, 0.4, 0.8, 1.2, 1.6, 2.0}, which gives 63 candidate filters. The solid line shows
one candidate filter with g(λlow = 0.4), g(λmid = 1.6) and g(λhigh) = 0.8. (b) The frequency
importance of low, middle, and high on graphs with various homophily ratios.

heterophilous graphs with h < 1/C favor g2. This theorem shows that the transition phase of a
balanced graph is 1/C, where the transition phase is the point whether lower or higher frequencies
are more beneficial changes.

Theorem 1 and Theorem 2 together guide us to the desired filter shape. When h > 1/C, the filter
should involve more low-frequency and less high-frequency. When h < 1/C, the filter need to
decrease the low-frequency and increase the high-frequency to be more discriminative.

3.2 EMPIRICAL ANALYSIS OF VARYING HOMOPHILY RATIOS

With the theoretical understanding, in this subsection, we further empirically analyze and verify the
influence of high- and low- frequencies on node classification performance on graphs with various
homophily ratios, which help us to design better GNN for node classification. As high-frequency and
low-frequency are relative concepts, there is no clear division between them. Therefore, to make the
granularity of our experiments better and to make our candidate filters more flexible, we divide the
graph spectrum into three parts: low-frequency 0 ≤ λlow < 2

3 , middle-frequency 2
3 ≤ λmid < 4

3 ,
and high-frequency 4

3 ≤ λhigh ≤ 2. We perform experiments on synthetic datasets generated by
contextual stochastic block model (CSBM) (Deshpande et al., 2018), which is a popular model that
allows us to create synthetic attributed graphs with controllable homophily ratios (Ma et al., 2022;
Chien et al., 2021). A detailed description of CSBM is in Appendix D.1.

To analyze which parts of frequencies in the graph spectrum are beneficial or harmful for graphs
with different homophily ratios, we conduct the following experiments. We first generate synthetic
graphs with different homophily ratios as {0, 0.05, 0.10, · · · , 1.0}. Then for each graph, we conduct
eigendecomposition as L = UΛU⊤ and divide the eigenvalues into three parts: low-frequency
0 ≤ λlow < 2

3 , middle-frequency 2
3 ≤ λmid < 4

3 , and high-frequency 4
3 ≤ λhigh ≤ 2, because

three-part provides more flexibility of the filter. As shown in Fig. 1(a), we vary the output values
of the filter, i.e., amplitudes of g(λlow), g(λmid), and g(λhigh) among {0, 0.4, 0.8, 1.2, 1.6, 2.0}
respectively, which leads to 63 combinations of output values of the filter. Then we get trans-
formed graph Laplacian g(L) = Ug(Λ)U⊤. For each filter, we use g(L) as a convolutional
matrix to learn node representation as Z = g(L)fθ(X), where fθ is the feature transforma-
tion function implemented by an MLP. In summary, the final node representation is given by
z = U diag [g(λlow), g(λmid), g(λhigh)]U

⊤fθ(x). By varying the amplitudes of each part of
frequency, we vary how much a certain frequency is included in the representations. For example, the
larger the value of g(λlow) is, the more low-frequency information is included in z. We then add a
Softmax layer on top of Z to predict the label of each node. For each synthetic graph, we split the
nodes into 2.5%/2.5%/95% for train/validation/test. For each filter, we conduct semi-supervised node
classification on each synthetic graph and record the classification performance.

Frequency Importance. With the above experiments, to understand which filter works best for
which homophily ratio, for each homophily ratio, we first select filters that give top 5% performance
among the 63 filters. Let Fh = {[gih(λlow), g

i
h(λmid), g

i
h(λhigh)]}Ki=1 be the set of the best filters

for homophily ratio h, where [gih(λlow), g
i
h(λmid), g

i
h(λhigh)] means the i-th best filter for h and K
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is the number of best filters. Then, importance scores of low, middle, and high frequency are given as

Ilow
h =

1

|Fh|
∑|Fh|

i=1
gih(λlow), Imid

h =
1

|Fh|
∑|Fh|

i=1
gih(λmid), Ihigh

h =
1

|Fh|
∑|Fh|

i=1
gih(λhigh). (3)

The importance score of a certain frequency shows how much that frequency should be involved in
the representation to achieve the best performance. The findings in Fig. 1(b) reveal two important
observations: (i) as the homophily ratio increases, there is a notable increase in the importance
of low-frequency, a peak and subsequent decline in the importance of middle-frequency, and a
decrease in the importance of high-frequency; (ii) the transition phase occurs around the homophily
ratio of 1/2 as there are two distinct classes, resulting in a significant shift in the importance of
frequencies. The frequency importance of graphs generated with other parameters is in Appendix E.3.
These observations guide us in designing the spectral filter. For high-homophily graphs, we want
to preserve more low-frequency while removing high frequencies. For low-homophily graphs, more
high frequencies and fewer low frequencies are desired. For graphs with homophily ratios near the
transition phase, we aim the model to learn adaptively.

4 THE PROPOSED FRAMEWORK NEWTONNET

Figure 2: The overall framework.

The preceding theoretical and emperical analy-
sis show that the decision to include more or less
of a specific frequency is contingent upon the
homophily ratio. Hence, it is desirable for the
model to learn this ratio and encourage or dis-
courage low, middle, or high-frequency accord-
ingly. However, existing spectral methods ei-
ther use predefined filters or let the model freely
learn a filter solely based on labels, which lacks an efficient mechanism to promote or discourage low,
middle, or high-frequency based on homophily ratio, especially when the label is sparse. Therefore,
the regularization of spectral filter values poses a significant challenge for existing methods. To
address the challenge, we propose a novel framework NewtonNet, which can regularize spectral filter
values and encourage or discourage different frequencies according to the homophily ratio. The basic
idea of NewtonNet is to introduce some points {(q0, t0), · · · , (qn, tK)} of the graph filter, where
{qi} are fixed and {ti} are learnable. Fig. 2 shows the case when K = 5. These points give the basic
shape of the filter, and we adopt Newton Interpolation to approximate the filter function based on
these points. As those points are learnable, we can approximate any filters. To incorporate the prior
knowledge, we propose a novel shape-aware regularization to regularize those learnable points to
adapt to the homophily ratio of the graph. The filter is then used to learn node representation and
optimized for node classification. Next, we introduce the details.

4.1 NEWTON INTERPOLATION AND NEWTONNET

In order to learn flexible filters and incorporate prior knowledge in Section 3 in the filter, i.e.,
encouraging or discouraging different frequencies based on the homophily ratio, we first propose
to adopt a set of K + 1 learnable points S = {(q0, t0), · · · , (qn, tK)} of the filter. Interpolated
points q = [q0, · · · , qK ] are fixed and distributed equally among low, middle, and high-frequency
depending on their values. The corresponding values t = [t0, · · · , tK ] are learnable and updated
in each epoch of training. These learnable points gives the basic shape of a filter. Then we can use
interpolation method to approximate a filter function g by passing these points such that g(qk) = tk,
where 0 ≤ k ≤ K. This gives us two advantages: (i) As t determines the basic shape of a filter g and
is learnable, we can learn arbitrary filter by learning t that minimizes the node classification loss; and
(ii) As the filter g is determined by t, it allows us to add regularization on t to encourage beneficial
and discourage harmful frequencies based on homophily ratio.

Specifically, with these points, we adopt Newton Interpolation (Hildebrand, 1987) to learn the filter,
which is a widely-used method for approximating a function by fitting a polynomial on a set of given
points. Given K + 1 points and their values S = {(q0, t0), · · · , (qn, tK)} of an unknown function g,
where qk are pairwise distinct, g can be interpolated based on Newton Interpolation as follows.
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Definition 1 (Divided Differences). The divided differences ĝt defined on t are given recursively as

ĝt[qk] = tk, 0 ≤ k ≤ K

ĝt[qk, · · · , qk+j ] =
ĝt[qk+1, · · · , qk+j ]− ĝt[qk, · · · , qk+j−1]

qk+j − qk
, 1 ≤ j ≤ K, 0 ≤ k ≤ K − j.

(4)

Lemma 2 (Newton Interpolation). g(x) can be interpolated by Newton interpolation as:

g(q) ≈ ĝ(q) =
∑K

k=0
[aknk(q)] =

∑K

k=0

{
ĝt[q0, · · · , qk]

∏k−1

i=0
(q − qi)

}
, (5)

where nk(q) =
∏k−1

i=0 (q− qi) are Newton polynomial basis and ak = ĝt[q0, · · · , qk] are coefficients.

Eq. 5 satisfies g(qk) = tk and K is the power of the polynomial. As mentioned in Eq. 2, we directly
apply the spectral filter g on Laplacian L to get the final representations. Then Eq. 5 is reformulated
as g(L) =

∑K
k=0

{
ĝt[q0, · · · , qk]

∏k−1
i=0 (L− qiI)

}
, where I is the identity matrix.

Following (Chien et al., 2021), to increase the expressive power, the node features are firstly trans-
formed by a transformation layer fθ, then a convolutional matrix learned by NewtonNet is applied to
transformed features, which is shown in Fig. 2. Mathematically, NewtonNet can be formulated as:

Z =
∑K

k=0

{
ĝt[q0, · · · , qk]

∏k−1

i=0
(L− qiI)

}
fθ(X), (6)

where fθ is a feature transformation function, and we use a two-layer MLP in this paper. q0, · · · , qK
can be any points ∈ [0, 2]. We use the equal-spaced points, i.e., qi = 2i/K. qi controls different
frequencies depending on its value. t0, · · · , tK are learnable filter output values and are randomly ini-
tialized. By learning ti, we are not only able to learn arbitrary filters, but can also apply regularization
on ti’s to adapt the filter based on homophily ratio, which will be discussed in Section 4.2. With the
node representation zv of node v, v’s label distribution probability is predicted as ŷv = softmax(zv).

4.2 SHAPE-AWARE REGULARIZATION

As {t0, · · · , tk} determines the shape of filter g, we can control the filter shape by adding constraints
on learned function values. As shown in Fig. 2, we slice t into three parts

tlow = [t0, · · · , ti−1], tmid = [ti, · · · , tj−1], thigh = [tj , · · · , tK ], 0 < i < j < K, (7)

which represent the amplitude of low, middle, and high-frequency, respectively. In this paper,
we set K = 5, i = 2, j = 4 so that we have six learnable points and two for each frequency.
According to the analysis results in Section 3, as the homophily ratio increases, we design the
following regularizations. (i) For low-frequency, the amplitude should decrease, and we discourage
low-frequency before the transition phase and encourage it after the transition phase. Thus, we add a
loss term as

(
1
C − h

)
∥tlow∥22 to regularize the amplitudes of low-frequency. When the homophily

ratio is smaller than the transition phase 1/C, the low-frequency is harmful; therefore, the loss
term has a positive coefficient. In contrast, when the homophily ratio is larger than the transition
phase, the low-frequency is beneficial, and we give a positive coefficient for the loss term. (ii)
For high-frequency, the amplitude should decrease, and we encourage the high-frequency before
the transition phase and discourage it after the transition phase. Similarly, the regularization for
high-frequency is

(
h− 1

C

)
∥thigh∥22. (iii) For middle-frequency, we observe that it has the same

trend as the low-frequency before the transition phase and has the same trend as the high-frequency
after the transition phase in Fig. 1 (b). Therefore, we have the regularization

∣∣h− 1
C

∣∣ ∥tmid∥22. These
three regularization work together to determine the shape based on homophily ratio h. Then the
shape-aware regularization can be expressed as

min
θ,t

LSR = γ1

(
1

C
− h

)
∥tlow∥22 + γ2

∣∣∣∣h− 1

C

∣∣∣∣ ∥tmid∥22 + γ3

(
h− 1

C

)
∥thigh∥22, (8)

where γ1, γ2, γ3 > 0 are scalars to control contribution of the regularizers, respectively. h is the
learned homophily ratio, calculated and updated according to the labels learned in every epoch. The
final objective function of NewtonNet is

min
θ,t

L = LCE + LSR, (9)
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where LCE =
∑

v∈VLℓ(ŷv,yv) is classification loss on labeled nodes and ℓ(·, ·) denotes cross
entropy loss. The training algorithm of NewtonNet is in Appendix B.

Compared with other approximation and interpolation methods This Newton Interpolation
method has its advantages compared with approximation methods, e.g., ChebNet (Defferrard et al.,
2016), GPRGNN (Chien et al., 2021), and BernNet (He et al., 2021b). Both interpolation and ap-
proximation are common methods to approximate a polynomial function. However, the interpolation
function passes all the given points accurately, while approximation methods minimize the error
between the function and given points. We further discuss the difference between interpolation and
approximation methods in Appendix C. This difference makes us be able to readily apply shape-aware
regularization on learned t. However, approximation methods do not pass given points accurately, so
we cannot make points learnable to approximate arbitrary functions and apply regularization.

Compared to other interpolation methods like ChebNetII (He et al., 2022), Newton interpolation
offers greater flexibility in choosing interpolated points. In Eq. 6, qi values can be freely selected
from the range [0, 2], allowing adaptation to specific graph properties. In contrast, ChebNetII uses
fixed Chebyshev points for input values, limiting precision in narrow regions and requiring increased
complexity (larger K) to address this limitation. Additionally, ChebNetII can be seen as a special
case of NewtonNet when Chebyshev points are used as qi values (He et al., 2022).

Complexity Analysis NewtonNet exhibits a time complexity of O(KEF + NF 2) and a space
complexity of O(KE+F 2+NF ), where E represents the number of edges. Notably, the complexity
scales linearly with K. A detailed analysis is provided in Appendix B.1.

5 RELATED WORK

Spatial GNNs. Existing GNNs can be categorized into spatial and spectral-GNNs. Spatial
GNNs (Kipf & Welling, 2016; Veličković et al.; Klicpera et al., 2018; Hamilton et al., 2017) adopt
message-passing mechanism, which updates a node’s representation by aggregating the message from
its neighbors. For example, GCN (Kipf & Welling, 2017) uses a weighted average of neighbors’ repre-
sentations as the aggregate function. APPNP (Klicpera et al., 2018) first transforms features and then
propagates information via personalized PageRank. However, The message-passing GNNs (Gilmer
et al., 2017) rely on the homophily and thus fail on heterophilous graphs as they smooth over nodes
with different labels and make the representations less discriminative. Many works (Zhu et al., 2020a;
Xu et al., 2022; Abu-El-Haija et al., 2019; He et al., 2021a; Wang et al., 2021; Dai et al., 2022; Zhu
et al., 2021a) design network structures from a spatial perspective to address this issue. H2GCN
(Zhu et al., 2020a) aggregates information for ego and neighbor representations separately instead of
mixing them together. LW-GCN (Dai et al., 2022) proposes the label-wise aggregation strategy to
preserve information from heterophilous neighbors. Some other works (Veličković et al., 2019; Zhu
et al., 2020b; Xu et al., 2021; Xiao et al.) also focus on self-supervised learning on graphs.

Spectral GNNs. Spectral GNNs (Bo et al., 2023; 2021; Li et al., 2021; Zhu et al., 2021b) learn a
polynomial function of graph Laplacian served as the convolutional matrix. Recently, more works
consider the relationship between heterophily and graph frequency. To name a few, Bo et al. (2021)
maintains a claim that besides low-frequency signal, the high-frequency signal is also useful for
heterophilous graphs. Li et al. (2021) states that high-frequency components contain important
information for heterophilous graphs. Zhu et al. (2020a) claims high frequencies contain more
information about label distributions than low frequencies. Therefore, learnable spectral GNNs (He
et al., 2021b; 2022; Chien et al., 2021; Levie et al., 2018) that can approximate arbitrary filters
perform inherently well on heterophily. The methods used to approximate the polynomial function
vary among them, such as the Chebyshev polynomial for ChebNet (Defferrard et al., 2016), Bernstein
polynomial for BernNet (He et al., 2021b), Jacobi polynomial for JacobiConv (Wang & Zhang,
2022), and Chebyshev interpolation for ChebNetII (He et al., 2022). Other spectral methods design
non-polynomial filters or transform the basis (Bo et al., 2023).

6 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness of the proposed NewtonNet
and address the following research questions: RQ1 How effective is NewtonNet on datasets of
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Table 1: Node classification performance (Accuracy(%) ± Std.) under full-supervised setting
Cora Cite. Pubm. Cham. Squi. Croc. Texas Corn. Penn94 Gamer Genius

MLP 73.28±1.9 70.95±2.1 86.08±0.7 48.86±2.3 32.27±1.0 65.37±1.0 75.79±8.4 75.79±8.4 74.18±0.3 65.24±0.2 86.80±0.1
GCN 87.86±2.1 75.47±1.0 87.00±0.6 66.12±3.7 54.65±2.7 72.95±0.6 54.21±10.2 54.21±6.5 83.23±0.2 66.58±0.2 80.28±0.0

Mixhop 87.81±1.7 74.32±1.3 88.50±0.7 64.39±0.6 49.95±1.9 73.63±0.8 70.00±8.7 73.16±2.6 84.09±0.2 67.27±0.2 88.39±0.4
APPNP 89.04±1.5 77.04±1.4 88.84±0.4 56.60±1.7 37.00±1.5 67.42±0.9 76.84±4.7 80.53±4.7 75.91±0.2 66.76±0.2 87.19±0.2
ChebNet 88.32±2.0 75.47±1.0 89.62±0.3 62.94±2.2 43.07±0.7 72.01±1.0 81.05±3.9 82.63±5.7 82.63±0.3 67.57±0.2 86.69±0.2

GPRGNN 89.20±1.6 77.48±1.9 89.50±0.4 71.15±2.1 55.18±1.3 69.68±1.0 86.37±1.1 83.16±4.9 84.08±0.2 64.44±0.3 87.41±0.1
BernNet 89.76±1.6 77.49±1.4 89.47±0.4 72.19±1.6 55.43±1.1 69.70±0.9 85.26±6.4 84.21±8.6 83.04±0.1 62.90±0.2 86.52±0.1

ChebNetII 88.51±1.5 75.83±1.3 89.51±0.6 69.91±2.3 52.83±0.8 67.86±1.6 84.74±3.1 81.58±8.0 83.52±0.2 62.53±0.2 86.49±0.1
JacobiConv 88.98±0.7 75.76±1.9 89.55±0.5 73.87±1.6 57.56±1.8 67.69±1.1 84.17±6.8 75.56±6.1 83.28±0.1 67.68±0.2 88.03±0.4
GloGNN++ 88.11±1.8 74.68±1.3 89.12±0.2 73.94±1.8 56.58±1.7 69.25±1.1 82.22±4.5 81.11±4.4 84.94±0.2 67.50±0.3 89.31±0.1
NewtonNet 89.39±1.4 77.87±1.9 89.68±0.5 74.47±1.5 61.58±0.8 75.70±0.4 87.11±3.8 86.58±5.3 84.56±0.1 67.92±0.3 88.20±0.1

various domains and sizes with varying degrees of homophily and heterophily? RQ2 How does
NewtonNet compare to other baselines under weak supervision? RQ3 To what extent does shape-
aware regularization contribute to the performance of NewtonNet? RQ4 Is the learned filter shape
consistent with our analysis on homophilous and heterophilous graphs?

6.1 EXPERIMENTAL SETUP

We use node classification to evaluate the performance. Here we briefly introduce the dataset,
baselines, and settings in the experiments. We give details in Appendix D.
Datasets. To evaluate NewtonNet on graphs with various homophily ratios, we adopt three ho-
mophilous datasets (Sen et al., 2008): Cora, Citeseer, Pubmed, and six heterophilous datasets (Pei
et al., 2020; Rozemberczki et al., 2021; Traud et al., 2012; Lim et al., 2021), Chameleon, Squirrel,
Crocodile, Texas, Cornell, Penn94, Twitch-gamer, and Genius. Details are in Appendix D.2.
Baselines. We compare NewtonNet with representative baselines, including (i) non-topology method:
MLP; (ii) spatial methods: GCN (Kipf & Welling, 2017), Mixhop (Abu-El-Haija et al., 2019),
APPNP (Klicpera et al., 2018), GloGNN++ (Li et al., 2022); and (iii) spectral methods: ChebNet (Def-
ferrard et al., 2016), GPRGNN (Chien et al., 2021), BernNet (He et al., 2021b), ChebNetII (He et al.,
2022), JacobiConv (Wang & Zhang, 2022). Details of methods are in Appendix D.3.
Settings. We adopt the commonly-used split of 60%/20%/20% for train/validation/test sets. For
a fair comparison, for each method, we select the best configuration of hyperparameters using the
validation set and report the mean accuracy and variance of 10 random splits on the test.

6.2 NODE CLASSIFICATION PERFORMANCE ON HETEROPHILY AND HOMOPHILY GRAPHS

Table 1 shows the results on node classification, where boldface denotes the best results and underline
denotes the second-best results. We observe that learnable spectral GNNs outperform other baselines
since spectral methods can learn beneficial frequencies for prediction under supervision, while spatial
methods and predetermined spectral methods only obtain information from certain frequencies.
NewtonNet achieves state-of-the-art performance on eight of nine datasets with both homophily and
heterophily, and it achieves the second-best result on Cora. This is because NewtonNet efficiently
learns the filter shape through Newton interpolation and shape-aware regularization.

6.3 PERFORMANCE WITH WEAK SUPERVISION

(a) Chameleon (b) Squirrel

Figure 3: The accuracy on Chameleon and Squirrel
datasets as the training set ratio varies.

As we mentioned before, learning filters solely
based on the downstream tasks may lead to sub-
optimal performance, especially when there are
rare labels. Thus, this subsection delves into the
impact of the training ratio on the performance
of various GNNs. We keep the validation and
test set ratios fixed at 20%, and vary the training
set ratio from 0.1 to 0.6. We select several best-
performing baselines and plot their performance
on the Chameleon and Squirrel datasets in Fig. 3.
From the figure, we observe: (1) When the training ratio is large, spectral methods perform well
because they have sufficient labels to learn a filter shape. Conversely, when the training ratio is small,
some spectral methods do not perform as well as GCN as there are not enough labels for the models
to learn the filter; (2) NewtonNet consistently outperforms all baselines. When the training ratio is
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(a) NewtonNet on
Citeseer

(b) ChebNetII on
Citeseer

(c) BernNet on
Citeseer

(d) NewtonNet on
Penn94

(e) ChebNetII on
Penn94

(f) BernNet on
Penn94

Figure 5: Learned filters on Citeseer and Penn94.

large, NewtonNet can filter out harmful frequencies while encouraging beneficial ones, leading to
representations of higher quality. When the training ratio is small, the shape-aware regularization of
NewtonNet incorporates prior knowledge to provide guidance in learning better filters.

6.4 ABLATION STUDY

Figure 4: Ablation Study

Next, we study the effect of shape-aware regularization on node classi-
fication performance. We show the best result of NewtonNet with and
without shape-aware regularization, where we use the same search space
as in Section 6.2. Fig. 4 gives the results on five datasets. From the
figure, we can observe that the regularization contributes more to the
performance on heterophilous datasets (Chameleon, Squirrel, Crocodile)
than on homophilous datasets (Cora, Citeseer). The reason is as fol-
lows. Theorem 2 and Fig. 1(b) show that the importance of frequencies
changes significantly near the transition phase, 1/C. Cora and Citeseer
have homophily ratios of 0.81 and 0.74, while they have 7 and 6 classes, respectively. Since Cora and
Citeseer are highly homophilous datasets whose homophily ratios are far from the transition faces,
almost only low frequencies are beneficial, and thus the filter shapes are easier to learn. By contrast,
the homophily ratios of Chameleon, Squirrel, and Crocodile are 0.24, 0.22, and 0.25, respectively,
while they have five classes. Their homophily ratios are around the transition phase; therefore, the
model relies more on shape-aware regularization to guide the learning process. We also conduct the
hyperparameter analysis for γ1, γ2, γ3, and K in Appendix E.1.

6.5 ANALYSIS OF LEARNED FILTERS

Here we present the learned filters of NewtonNet on Citeseer and Chameleon and compare them
with those learned by BernNet and ChebNetII. In Fig. 5, we plot the average filters by calculating
the average temperatures of 10 splits. On the homophilous graph Citeseer, NewtonNet encourages
low-frequency and filters out middle and high-frequency, which is beneficial for the representations
of homophilous graphs. In contrast, ChebNetII and BernNet do not incorporate any shape-aware
regularization, and their learning processes include middle and high-frequency, harming the rep-
resentations of homophilous graphs. On the heterophilous dataset Penn94, the filter learned by
NewtonNet contains more high-frequency and less-frequency, while harmful frequencies are included
in the filters learned by ChebNetII and BernNet. These results reveal that NewtonNet, with its
shape-aware regularization, can learn a filter shape with beneficial frequencies while filtering out
harmful frequencies. More results of the learned filters can be found in Appendix E.4. We also
present the learned homophily ratio in Appendix E.2.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel framework NewtonNet for learning spectral filters GNNs. Newton-
Net incorporates prior knowledge about the desired shape of spectral filters based on the homophily
ratio of the dataset. The empirical and theoretical analysis reveals that low-frequency is positively cor-
related with the homophily ratio, while high-frequency is negatively correlated. NewtonNet utilizes
Newton Interpolation with shape-aware regularization to learn arbitrary polynomial spectral filters
that adapt to different homophily levels. Experimental results on real-world datasets demonstrate the
effectiveness of the proposed framework. In the paper, we propose one possible regularization for
filter and we leave the exploration of other regularizers as future work.
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A DETAILED PROOFS

A.1 PROOF OF LEMMA 1

Lemma 1. For a graph G with N nodes, C classes, and N/C nodes for each class, if we randomly
connect nodes to form the edge set E , the expected homophily ratio is E(h(G)) = 1

C .

Proof. We first randomly sample a node s from V , assuming its label is ys. Then we sample another
node t. Because the classes are balanced, we have

P(ys = yt) =
1

C
,

P(ys ̸= yt) =
C − 1

C
.

(10)

Therefore, if each node pair in E is sampled randomly, we have

E(h) =
1

|E|
· |E| · 1

C
=

1

C
, (11)

which completes the proof.

A.2 PROOF OF THEOREM 1

Theorem 1. Let G = {V, E} be an undirected graph. 0 ≤ λ1 · · · ≤ λN are eigenval-
ues of its Laplacian matrix L. Let g1 and g2 be two spectral filters satisfying the follow-
ing two conditions: (1) g1(λi) < g2(λi) for 1 ≤ i ≤ m; and g1(λi) > g2(λi) for
m + 1 ≤ i ≤ N , where 1 < m < N ; and (2) They have the same norm of output values
∥[g1(λ1), · · · , g1(λN )]⊤∥22 = ∥[g2(λ1), · · · , g2(λN )]⊤∥22. For a graph signal x, x(1) = g1(L)x
and x(2) = g2(L)x are the corresponding representations after filters g1 and g2. Let ∆s =∑

(s,t)∈E

[
(x

(1)
s − x

(1)
t )2 − (x

(2)
s − x

(2)
t )2

]
be the difference between the total distance of connected

nodes got by g1 and g2, where x1
s denotes the s-th element of x(1)

s . Then we have E[∆s] > 0.

Proof. 1. Given the eigendecomposition of Laplacian L = UΛU⊤, because u0, · · · ,uN−1 are
orthonormal eigenvectors, any unit graph signal x can be expresses as the linear combination of the
eigenvectors:

x =

N∑
i=1

ciui, (12)

where ci = uT
i x are the coefficients of each eigenvector. Then, we have

x(1) = g1(L)x = Ug1(Λ)U⊤x =

(
N∑
i=1

g1(λi)uiu
⊤
i

)(
N∑
i=1

ciui

)
=

N∑
i=1

g1(λi)ciui,

x(2) = g2(L)x = Ug2(Λ)U⊤x =

(
N∑
i=1

g2(λi)uiu
⊤
i

)(
N∑
i=1

ciui

)
=

N∑
i=1

g2(λi)ciui.

(13)

Note that λi and ui are the eigenvalues and eigenvectors of original Laplacian L. Moreover, we have

c = U⊤x ci = u⊤
i x. (14)

Eq. 14 demonstrates that each element of c is determined independently by the product of each
eigenvalue and x. We have −1 = −∥ui∥2∥x∥2 ≤ c2i ≤ ∥ui∥2∥x∥2 = 1. Furthermore, because x
is an arbitrary unit graph signal, it can achieve any value with ∥x∥2 = 1. It’s reasonable for us to
assume that ci’s are independently identically distributed with mean 0.

13



Under review as a conference paper at ICLR 2024

2. For any graph signal x, its smoothness is the total distance between the connected nodes, which is
given by, ∑

(s,t)∈E

(xs − xt)
2 = x⊤Lx,

∑
(s,t)∈E

(x(1)
s − x

(2)
t )2 = x(1)⊤Lx(1),

∑
(s,t)∈E

(x(2)
s − x

(2)
t )2 = x(2)⊤Lx(2).

(15)

Note that the smoothness score of an eigenvector equals the corresponding eigenvalue:

λi = u⊤
i Lui =

∑
(s,t)∈E

(ui,s − ui,t)
2. (16)

Then we plug in Eq. 12 and Eq. 13 into Eq. 15 to get,

∑
(s,t)∈E

(xs − xt)
2 =

(
N∑
i=1

ciu
⊤
i

)(
N∑
i=1

λiuiu
⊤
i

)(
N∑
i=1

ciui

)
=

N∑
i=1

c2iλi, (17)

∑
(s,t)∈E

(x(1)
s − x

(1)
t )2 =

(
N∑
i=1

g1(λi)ciu
⊤
i

)(
N∑
i=1

λiuiu
⊤
i

)(
N∑
i=1

g1(λi)ciui

)
=

N∑
i=1

c2iλig
2
1(λi).

(18)∑
(s,t)∈E

(x(2)
s − x

(2)
t )2 =

(
N∑
i=1

g2(λi)ciu
⊤
i

)(
N∑
i=1

λiuiu
⊤
i

)(
N∑
i=1

g2(λi)ciui

)
=

N∑
i=1

c2iλig
2
2(λi).

(19)

3. For i.i.d. random variables ci and any i < j, we have

E[c2i ] = E[c2j ]
⇒ λiE[c2i ] = E[λic

2
i ] ≤ E[λjc

2
j ] = λjE[c2j ]

(20)

We are interested in the expected difference between the total distance of connected nodes got by g1
and g2. Let ∆s denote difference between the total distance of connected nodes got by g1 and g2, i.e.,

∆s =
∑

(s,t)∈E

[
(x(1)

s − x
(1)
t )2 − (x(2)

s − x
(2)
t )2

]
(21)

Then, the expected difference between the total distance of connected nodes got by g1 and g2 is

E [∆s] = E

 ∑
(s,t)∈E

(x(1)
s − x

(1)
t )2

− E

 ∑
(s,t)∈E

(x(2)
s − x

(2)
t )2


= E

[
N∑
i=1

c2iλig
2
1(λi)

]
− E

[
N∑
i=1

c2iλig
2
2(λi)

]

=

N∑
i=1

{[
g21(λi)− g22(λi)

]
λiE

[
c2i
]}

(22)

4. We assume ∥[g1(λ1), · · · , g1(λN )]⊤∥22 = ∥[g2(λ1), · · · , g2(λN )]⊤∥22 so that g1 and g2 have the
same ℓ2-norms. We make this assumption to avoid some trivial solutions. For example, if we simply
multiply the representation x with a constant, the value in Eq. 17 will also be enlarged and reduced,
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but the discriminative ability is unchanged. Therefore, we have

N∑
i=1

g21 (λi) =

N∑
i=1

g22 (λi)

⇒
m∑
i=1

g21 (λi) +

N∑
i=m+1

g21 (λi) =

m∑
i=1

g22 (λi) +

N∑
i=m+1

g22 (λi)

⇒ 0 <

m∑
i=1

[
g22 (λi)− g21 (λi)

]
=

N∑
i=m+1

[
g21 (λi)− g22 (λi)

]
,

(23)

because g1(λi) < g2(λi) for 1 ≤ i ≤ m and g1(λi) > g2(λi) for m+ 1 ≤ i ≤ N . By applying the
results in Eq. 23 and Eq. 20, we have

0 <

m∑
i=1

{[
g22 (λi)− g21 (λi)

]
λi

}
< λm

m∑
i=1

[
g22 (λi)− g21 (λi)

]
< λm+1

m∑
i=1

[
g22 (λi)− g21 (λi)

]
= λm+1

N∑
i=m+1

[
g21 (λi)− g22 (λi)

]
<

N∑
i=m+1

{[
g21 (λi)− g22 (λi)

]
λi

}
.

(24)

Then we can derive that
N∑
i=1

{[
g21 (λi)− g22 (λi)

]
λi

}
> 0

⇒
N∑
i=1

{[
g21(λi)− g22(λi)

]
λiE

[
c2i
]}

= E [∆s] > 0

⇒E
[ ∑
(s,t)∈E

(x(1)
s − x

(1)
t )2

]
> E

[ ∑
(s,t)∈E

(x(2)
s − x

(2)
t )2

]
(25)

which completes our proof.

A.3 PROOF OF THEOREM 2

Theorem 2. Let G = {V, E} be a balanced undirected graph with N nodes, C classes, and N/C
nodes for each class. Pin is the set of possible pairs of nodes from the same class. Pout is the
set of possible pairs of nodes from different classes. g1 and g2 are two filters same as Theorem 1.
Given an arbitrary graph signal x, let d(1)in =

∑
(s,t)∈Pin

(
x
(1)
s − x

(1)
t

)2
be the total intra-class

distance, d(1)out =
∑

(s,t)∈Pout

(
x
(1)
s − x

(1)
t

)2
be the total inter-class distance, and d̄

(1)
in = d

(1)
in /|Pin|

be the average intra-class distance while d̄
(1)
out = d

(1)
out/|Pout| be the average inter-class distance.

∆d̄(1) = d̄
(1)
out − d̄

(1)
in is the difference between average inter-distance and intra-class distance. d(2)out,

d
(2)
out, d̄

(2)
in , d̄(2)out, and ∆d̄(2) are corresponding values defined similarly on x(2). If E[∆s] > 0, we

have: (1) when h > 1
C , E[∆d̄(1)] < E[∆d̄(2)]; and (2) when h < 1

C , E[∆d̄(1)] > E[∆d̄(2)].

Proof. In graph G, the number of possible homophilous (intra-class) edges (including self-loop) is,

|Pin| =
C

2

N

C

(
N

C

)
=

N2

2C
. (26)

The number of possible heterophilous (inter-class) edges is,

|Pout| =
C

2

N

C

(
C − 1

C
N

)
=

N2

2

(
C − 1

C

)
. (27)
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Therefore, we have

d̄
(i)
in =

d
(i)
in

|Pin|
=

2Cd
(i)
in

N2
, i ∈ {1, 2} (28)

d̄
(i)
out =

d
(i)
out

|Pout|
=

2Cd
(i)
out

N2(C − 1)
, i ∈ {1, 2} (29)

∆d̄(i) = d̄
(i)
out − d̄

(i)
in

=
2Cd

(i)
out

N2(C − 1)
− 2Cd

(i)
in

N2

=
2C

(C − 1)N2

[
d
(i)
out − (C − 1)d

(i)
in

] (30)

Ein denotes the set of edges connecting nodes from the same class (intra-class edges). Eout denotes
the set of edges connecting nodes from different classes (inter-class edges). There are |E| edges,
h · |E| homophilous edges, and (1− h) · |E| heterophilous edges. In expectation, each edge has the
same difference of the distance of connected nodes got by g1 and g2, i.e.,

E [∆s] = E

 ∑
(s,t)∈E

[
(x(1)

s − x
(1)
t )2 − (x(2)

s − x
(2)
t )2

]
E [h∆s] = E

 ∑
(s,t)∈E
ys=yt

[
(x(1)

s − x
(1)
t )2 − (x(2)

s − x
(2)
t )2

]
E [(1− h)∆s] = E

 ∑
(s,t)∈E
ys ̸=yt

[
(x(1)

s − x
(1)
t )2 − (x(2)

s − x
(2)
t )2

]
(31)

If we solely consider the direct influence of graph convolution on connected nodes, the relationship
between d′ and d can be expressed as follows:

E
[
d̄
(1)
out − d̄

(2)
out

]
= (1− h)E [∆s] and E

[
d̄
(1)
in − d̄

(2)
in

]
= hE [∆s] (32)

E
[
∆d̄(1) −∆d̄(2)

]
= E

[
2C

(C − 1)N2

[
(d

(1)
out − d

(2)
out)− (C − 1)(d

(1)
in − d

(2)
in )
]]

=
2C

(C − 1)N2
[(1− h)E[∆s]− (C − 1)hE[∆s]]

=
2C

(C − 1)N2
[E[∆s](1− Ch)]

(33)

Because 2C
(C−1)N2 > 0, then we have

(1) when h > 1
C , if ∆s < 0, then E[∆d̄(1)] > E[∆d̄(2)]; if ∆s > 0, then E[∆d̄(1)] < E[∆d̄(2)].

(2) when h < 1
C , if ∆s < 0, then E[∆d̄(1)] < E[∆d̄(2)]; if ∆s > 0, then E∆d̄(1)] > E[∆d̄(2)].

B TRAINING ALGORITHM OF NEWTONNET

We show the training algorithm of NewtonNet in Algorithm 1. We first randomly initialize θ, h, and
{t0, · · · , tK}. We update h according to the predicted labels of each iteration. We update the learned
representations and θ, and {t0, · · · , tK} accordingly until convergence or reaching max iteration.
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Algorithm 1 Training Algorithm of NewtonNet

Input: G = (V, E ,X), YL, K, {q0, · · · , qK}, γ1, γ2, γ3,
Output: θ, h, {t0, · · · , tK}

1: Randomly initialize θ, h, {t0, · · · , tK}
2: repeat
3: Update representations z by Eq. 6
4: Update predicted labels ŷv

5: Update h with predicted labels
6: L ← Eq. 9
7: Update θ and {t0, . . . , tK}
8: until convergence or reaching max iteration

B.1 COMPLEXITY ANALYSIS

Time complexity. According to Blakely et al. (2021), the time complexity of GCN is O(L(EF +
NF 2)), where E is the number of edges, and L is the number of layers. One-layer GCN has
the formula Xl+1 = σ(AXlWl). O(NF 2) is the time complexity of feature transformation, and
O(EF ) is the time complexity of neighborhood aggregation. Following GPRGNN, ChebNetII, and
BernNet, NewtonNet uses the "first transforms features and then propagates" strategy. According
to Eq. 6, the feature transformation part is implemented by an MLP with time O(NF 2). And the
propagation part has the time complexity with O(KEF ). In other words, NewtonNet has a time
complexity O(KEF +NF 2), which is linear to K. BernNet’s time complexity is quadratic to K.
We summarize the time complexity in Table 2.

Table 2: Time and space complexity.

Method Time Complexity Space Complexity
MLP O(NF 2) O(NF 2)
GCN O(L(EF +NF 2)) O(E + LF 2 + LNF )

GPRGNN O(KEF +NF 2) O(E + F 2 +NF )
ChebNetII O(KEF +NF 2) O(E + F 2 +NF )
BernNet O(K2EF +NF 2) O(KE + F 2 +NF )

NewtonNet O(KEF +NF 2) O(KE + F 2 +NF )

Table 3: Running Time (ms/epoch) of each method.

Method Chameleon Pubmed Penn94 Genius
MLP 1.909 2.283 6.119 10.474
GCN 2.891 3.169 22.043 20.159

Mixhop 3.609 4.299 19.702 27.041
GPRGNN 4.807 4.984 10.572 12.522

ChebNetII (K=5) 4.414 4.871 9.609 12.189
ChebNetII (K=10) 7.352 7.447 13.661 15.346

BernNet (K=5) 8.029 11.730 19.719 20.168
BernNet (K=10) 20.490 20.869 49.592 43.524

NewtonNet (K=5) 6.6135 7.075 17.387 17.571
NewtonNet (K=10) 12.362 13.042 25.194 30.836

To examine our analysis, Table 3 shows the running time of each method. We employ 5 different
masks with 2000 epochs and calculate the average time of each epoch. We observe that (1) For
the spectral methods, NewtonNet, ChebNetII, and GPRGNN run more quickly than BernNet since
their time complexity is linear to K while BernNet is quadratic; (2) NewtonNet cost more time than
GPRGNN and ChebNetII because it calculates a more complex polynomial; (3) On smaller datasets
(Chameleon, Pubmed), GCN runs faster than NewtonNet. On larger datasets (Penn94, Genius),
NewtonNet and other spectral methods are much more efficient than GCN. This is because we only
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transform and propagate the features once, but in GCN, we stack several layers to propagate to more
neighbors. In conclusion, NewtonNet is scalable on large datasets.

Space complexity. Similarly, GCN has a space complexity O(E + LF 2 + LNF ). O(F 2) is for
the weight matrix of feature transformation while O(NF ) is for the feature matrix. O(E) is caused
by the sparse edge matrix. NewtonNet has the space complexity O(KE + F 2 + NF ) because it
pre-calculates (L− qiI) in Equation 6. We compare the space complexity in Table 2 and the memory
used by each model in Table 4. On smaller datasets, NewtonNet has a similar space consumption with
GCN. However, NewtonNet and other spectral methods are more space efficient than GCN on larger
datasets because we do not need to stack layers. Therefore, NewtonNet has excellent scalability.

Table 4: Memory usage (MB) of each method.

Method Chameleon Pubmed Penn94 Genius
MLP 1024 1058 1862 1390
GCN 1060 1114 3320 2012

Mixhop 1052 1124 2102 2536
GPRGNN 1046 1060 1984 1370
ChebNetII 1046 1080 1982 1474
BernNet 1046 1082 2026 1544

NewtonNet 1048 1084 2292 1868

(a) Approximation. (b) Interpolation.

Figure 6: Difference between approximation and interpolation.

C APPROXIMATION VS INTERPOLATION

Approximation and interpolation are two common curve fitting methods (Hildebrand, 1987).
Given an unknown continuous function f̂(x), and its values at n + 1 known points
{(x0, f̂(x0)), · · · , (xn, f̂(xn))}, we want to use g(x) to fit unknown f̂(x). Approximation methods
aim to minimize the error between the original function and estimated function |f̂(x)− g(x)|; while
interpolation methods aim to fit the data and make f̂(xi) = g(xi), i = 0, · · · , n. In other words,
the interpolation function passes every known point exactly, but the approximation function finds
minimal error among the known points. Fig. 6 shows the difference. The property of interpolation
allows us to learn the function values directly in our model, which is discussed in Section 4.

D EXPERIMENTAL DETAILS

D.1 SYNTHETIC DATASETS

In this paper, we employ contextual stochastic block model (CSBM) (Deshpande et al., 2018) to
generate synthetic datasets. CSBM provides a model to generate synthetic graphs with controllable
inter-class and intra-class edge probability. It assumes features of nodes from the same class conform
to the same distribution. Assume there are two equal-size classes {c0, c1} with n nodes for each class.
CSBM generates edges and features by:

P(Aij = 1) =

{
1
n (d+ σ

√
d) when yi = yj

1
n (d− σ

√
d) when yi ̸= yj

xi =

√
µ

n
viu +

wi√
F

(34)
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where d is the average node degree, µ is mean value of Gaussian distribution, F is the feature
dimension, entries of wi ∈ Rp has independent standard normal distributions, and u ∼ N (0, IF /F ).
We can control homophily ratio h by changing σ =

√
d(2h− 1), −

√
d ≤ σ ≤

√
d. When σ = −

√
d,

it is a totally heterophilous graph; when σ =
√
d, it is a totally homophilous graph. Following (Chien

et al., 2021), we adopt d = 5, µ = 1 in this paper. We vary σ to generate graphs with different
homophily levels. In Fig. 1(b), we adopt 2n = 3000, F = 3000 to generate the synthetic dataset. We
vary the number of nodes 2n and number of features F to generate different CSBM datasets and
show their frequency importance in Fig. 9.

D.2 REAL-WORLD DATASETS

Citation Networks (Sen et al., 2008): Cora, Citeseer, and PubMed are citation network datasets. Cora
consists of seven classes of machine learning papers, while CiteSeer has six. Papers are represented
by nodes, while citations between two papers are represented by edges. Each node has features
defined by the words that appear in the paper’s abstract. Similarly, PubMed is a collection of abstracts
from three types of medical papers.

WebKB (Pei et al., 2020): Cornell, Texas, and Wisconsin are three sub-datasets of WebKB. They are
collected from a set of websites of several universities’ CS departments and processed by (Pei et al.,
2020). For each dataset, a node represents a web page and an edge represents a hyperlink. Node
features are the bag-of-words representation of each web page. We aim to classify the nodes into one
of the five classes, student, project, course, staff, and faculty.

Wikipedia Networks (Rozemberczki et al., 2021): Chameleon, Squirrel, and Crocodile are three
topics of Wikipedia page-to-page networks. Articles from Wikipedia are represented by nodes, and
links between them are represented by edges. Node features indicate the occurrences of specific
nouns in the articles. Based on the average monthly traffic of the web page, the nodes are divided
into five classes.

Social Networks (Lim et al., 2021): Penn94 (Traud et al., 2012) is a social network of friends among
university students on Facebook in 2005. The network consists of nodes representing individual
students, each with their reported gender identified. Additional characteristics of the nodes include
their major, secondary major/minor, dormitory or house, year of study, and high school attended.

Twitch-gamers (Rozemberczki & Sarkar, 2021) is a network graph of Twitch accounts and their
mutual followers. Node attributes include views, creation date, language, and account status. The
classification is binary and to predict whether the channel has explicit content.

Genius (Lim & Benson, 2021) is from the genius.com social network, where nodes represent users
and edges connect mutual followers. Node attributes include expertise scores, contribution counts,
and user roles. Some users are labeled "gone," often indicating spam. Our task is to predict these
marked nodes.

Table 5: Statistics of real-world datasets.

Dataset Citation Wikipedia WebKB Social
Cora Cite. Pubm. Cham. Squi. Croc. Texas Corn. Penn94 Genius Gamer

Nodes 2708 3327 19717 2277 5201 11,631 183 183 41554 421,961 168,114
Edges 5429 4732 44338 36101 217,073 360040 309 295 1,362,229 984,979 6,797,557

Attributes 1433 3703 500 2325 2089 128 1703 1703 4814 12 7
Classes 7 6 3 5 5 5 5 5 2 2 2

h 0.81 0.74 0.80 0.24 0.22 0.25 0.11 0.31 0.47 0.62 0.55

D.3 BASELINES

We compare our method with various state-of-the-art methods for both spatial and spectral methods.
First, we compare the following spatial methods:

• MLP: Multilayer Perceptron predicts node labels using node attributes only without incorporating
graph structure information.

• GCN (Kipf & Welling, 2017): Graph Convolutional Network is one of the most popular MPNNs
using 1-hop neighbors in each layer.
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• MixHop (Abu-El-Haija et al., 2019): MixHop mixes 1-hop and 2-hop neighbors to learn higher-
order information.

• APPNP (Klicpera et al., 2018): APPNP uses the Personalized PageRank algorithm to propagate
the prediction results of GNN to increase the propagation range.

• GloGNN++ (Li et al., 2022): GloGNN++ is a method for creating node embeddings by aggregating
information from global nodes in a graph using coefficient matrices derived through optimization
problems.

We also compare with recent state-of-the-art spectral methods:

• ChebNet (Defferrard et al., 2016): ChebNet uses Chebyshev polynomial to approximate the filter
function. It is a more generalized form of GCN.

• GPRGNN (Chien et al., 2021): GPRGNN uses Generalized PageRank to learn weights for
combining intermediate results.

• BernNet (He et al., 2021b): ChebNet uses Bernstein polynomial to approximate the filter function.
It can learn arbitrary target functions.

• ChebNetII (He et al., 2022): ChebNet uses Chebyshev interpolation to approximate the filter
function. It mitigates the Runge phenomenon and ensures the learned filter has a better shape.

• JacobiConv (Wang & Zhang, 2022): JacobiConv uses Jacobi basis to study the expressive power
of spectral GNNs.

D.4 SETTINGS

We run all of the experiments with 10 random splits and report the average performance with the stan-
dard deviation. For full-supervised learning, we use 60%/20%/20% splits for the train/validation/test
set. For a fair comparison, for each method, we select the best configuration of hyperparameters
using the validation set and report the mean accuracy and variance of 10 random splits on the test.
For NewtonNet, we choose K = 5 and use a MLP with two layers and 64 hidden units for encoder
fθ. We search the learning rate of encoder and propagation among {0.05, 0.01, 0.005}, the weight
decay rate among {0, 0.0005}, the dropout rate for encoder and propagation among {0.0, 0.1, 0.3,
0.5, 0.7, 0.9}, and γ1, γ2, γ3 among {0, 1, 3, 5}. For other baselines, we use the original code and
optimal hyperparameters from authors if available. Otherwise, we search the hyperparameters within
the same search space of NewtonNet.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 HYPERPARAMETER ANALYSIS

In our hyperparameter sensitivity analysis on the Citeseer and Chameleon datasets, we investigated
the effects of varying the values of γ1, γ2, and γ3 among{0, 0.01, 0.1, 1, 10, 100}. The accuracy
results were plotted in Figure 7. We made the following observations. For the Chameleon dataset,
increasing the value of γ1 resulted in improved performance, as it effectively discouraged low-
frequency components. As for γ2, an initial increase led to performance improvements since it
balanced lower and higher frequencies. However, further increases in γ2 eventually led to a decline in
performance. On the other hand, increasing γ3 had a positive effect on performance, as it encouraged
the inclusion of more high-frequency components.

Regarding the Citeseer dataset, we found that increasing the values of γ1, γ2, and γ3 initially improved
performance. However, there was a point where further increases in these regularization terms caused
a decrease in performance. This can be attributed to the fact that excessively large regularization
terms overshadowed the impact of the cross entropy loss, thus hindering the model’s ability to
learn effectively. We also observe that the change of Chameleon is more than that in Citeseer, so
heterophilous graphs need more regularization.

We also investigate the sensitivity of the parameter K. While keeping the remaining optimal
hyperparameters fixed, we explore different values of K within the set {2, 5, 8, 11, 14}. The
corresponding accuracy results are presented in Fig. 8. In both datasets, we observe a pattern of
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(a) Citeseer (b) Chameleon

Figure 7: Hyperparameter Analysis for γ1, γ2, and γ3
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Figure 8: Hyperparameter Analysis for K.

increasing performance followed by a decline. This behavior can be attributed to the choice of K.
If K is set to a small value, the polynomial lacks the necessary power to accurately approximate
arbitrary functions. Conversely, if K is set to a large value, the polynomial becomes susceptible to
the Runge phenomenon (He et al., 2022).

E.2 LEARNED HOMOPHILY RATIO

Table 6 presents the real homophily ratio alongside the learned homophily ratio for each dataset. The
close proximity between the learned and real homophily ratios indicates that our model can estimate
the homophily ratio accurately so that it can further guide the learning of spectral filter.

E.3 MORE RESULTS OF FREQUENCY IMPORTANCE

In Fig. 9, we present more results of frequency importance on CSBM datasets with different numbers
of nodes and features. We fix d = 5 and µ = 1 in Eq. 34 and vary the number of nodes and features
among {800, 1000, 1500, 2000, 3000}. We can get similar conclusions as in Section 3.2.

E.4 LEARNED FILTERS

The learned filters of NewtonNet, BernNet, and ChebNetII for each dataset are illustrated in Fig. 10 to
Fig. 18. Our observations reveal that NewtonNet exhibits a distinct ability to promote or discourage
specific frequencies based on the homophily ratio. In the case of homophilous datasets, NewtonNet
emphasizes low-frequency components while suppressing middle and high frequencies. Conversely,
for heterophilous datasets, the learned spectral filter of NewtonNet emphasis more on high-frequency
components compared to other models.
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(a) 800 Nodes, 800 Features (b) 800 Nodes, 1000 Features (c) 800 Nodes, 1500 Features

(d) 800 Nodes, 2000 Features (e) 1000 Nodes, 1000 Features (f) 1000 Nodes, 2000 Features

(g) 1000 Nodes, 3000 Features (h) 1500 Nodes, 800 Features (i) 1500 Nodes, 1500 Features

(j) 2000 Nodes, 1000 Features (k) 2000 Nodes, 1500 Features (l) 2000 Nodes, 2000 Features

(m) 2000 Nodes, 3000 Features (n) 3000 Nodes, 1000 Features (o) 3000 Nodes, 2000 Features

Figure 9: Frequency importance on CSBM model with different hyperparameters.
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Table 6: The real homophily ratio and learned homophily ratio in Table 1

Cora Cite. Pubm. Cham. Squi. Croc. Texas Corn. Penn.
Real 0.81 0.74 0.80 0.24 0.22 0.25 0.11 0.20 0.47

Learned 0.83 0.79 0.83 0.27 0.23 0.28 0.12 0.33 0.51

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 10: Learned filters on Cora.

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 11: Learned filters on Citeseer.

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 12: Learned filters on Pubmed.

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 13: Learned filters on Chameleon.
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(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 14: Learned filters on Squirrel.

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 15: Learned filters on Crocodile.

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 16: Learned filters on Texas.

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 17: Learned filters on Cornell.

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 18: Learned filters on Penn94.
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