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Abstract001

Recent advancements in AI-generated content002
(AIGC) have heightened concerns about harm-003
ful outputs, such as misinformation and ma-004
licious misuse. Existing detection methods005
face two key limitations: (1) lacking real-006
world AIGC scenarios and corresponding risk007
datasets, and (2) both traditional and multi-008
modal large language models (MLLMs) strug-009
gle to detect risks in AIGC. Towards this010
end, we introduce AIGUARD, the first bench-011
mark for AIGC risk detection in real-world012
e-commerce. It includes 253,420 image-text013
pairs (i.e., the risk content and risk descrip-014
tion) across four critical categories: abnormal015
body, violating physical laws, disharmonious016
background, and illegal message. To effec-017
tively detect these risks, we propose distill-018
ing text annotations into dense soft prompts019
and identifying risk content through image020
soft prompt matching during inference. Ex-021
periments on the benchmark show that this022
method achieves a 9.68% higher recall than023
leading multimodal models while using only024
25% of the training resources and improv-025
ing inference speed by 37.8 times. For026
further research, our benchmark and code027
are available at https://anonymous.4open.028
science/r/aigc-dataset-anonymous.029

1 Introduction030

Recent advancements in AIGC have significantly031

improved creative workflows in text (Zhang et al.,032

2024; Achiam et al., 2023), image (Saharia033

et al., 2022; Koh et al., 2024), and video gener-034

ation (Blattmann et al., 2023; Liu et al., 2024b),035

demonstrating substantial commercial potential.036

According to the AI index report (Clark and Per-037

rault, 2024), in 2024, 42% of surveyed companies038

reduced their operating costs due to AI technology039

and 59% increased their revenue. For example,040

platforms like Google Ads1 and Alimama2 now041

1https://ads.google.com/home/
2https://www.alimama.com/index.htm
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Are there any abnormal human 
struture in the picture?

No, There are no obvious abnormalities in the
human structure visible in this image ...

Is there any illegal hidden 
information in the picture?

There is no visible or explicit information
suggesting any illegal hidden content...

The person has
abnormal feet.

Hidden text about "make
fake certificate".

Are there any unreasonable phenomena such 
as objects floating in the air in the picture?

Yes, there is an unreasonable phenomenon in
the picture. The two knives leaning against the
knife holder appear to be defying gravity ...

The knife is suspended in
the air.

Figure 1: Online E-commerce platforms with the risky
AIGC content, e.g., “Abnormal foot” or “Make fake
certificate”, that evade the system detection. However,
current MLLMs lack knowledge and have limited capa-
bility to detect the risk of AIGC content.

use AI-power tools to automate creative processes 042

that previously required weeks of human effort. 043

While these systems offer significant advan- 044

tages, the associated risks require careful attention. 045

On one hand, the inherent randomness of genera- 046

tive models can lead to outputs such as hallucina- 047

tions (Ji et al., 2023; Li et al., 2023b) or toxic con- 048

tent (Wen et al., 2023; Smith et al., 2022), which 049

can undermine reliability and erode user trust. On 050

the other hand, these systems also pose the risk 051

of being misused in illegal domains. For exam- 052

ple, malicious users might exploit these systems to 053

generate risky content that evades detection, such 054

as biased materials or illegal items for criminal ac- 055

tivities like selling counterfeit or regulated prod- 056

ucts (Nadeem et al., 2021; Smith et al., 2022; Qu 057

et al., 2023). As shown in Figure 1, real-world 058

online e-commerce systems might contain AIGC 059

risk content, such as “abnormal foot” and “make 060

fake certificate”, which is too sophisticated to be 061

detected by the system. These issues pose signif- 062

icant threats to user safety, create legal risks for 063

platforms, thus demanding immediate attention. 064
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The solutions to this challenge can be divided065

into two directions. The first focus is on detect-066

ing real-world risky content, such as pornog-067

raphy, hate speech, or sensitive political mate-068

rial (Pavlopoulos et al., 2020; Ratkiewicz et al.,069

2011; Clarke et al., 2023). These approaches for070

this detection have evolved from rule-based meth-071

ods (Warner and Hirschberg, 2012; Gitari et al.,072

2015), to deep learning (Gambäck and Sikdar,073

2017; Markov et al., 2023), and now leverage pre-074

trained models and large language models (Cohen075

et al., 2023; Pan et al., 2023). However, AIGC076

risks, such as disproportion or object suspension,077

are more complex than risks like pornography or078

hate speech. Detecting these subtle issues requires079

more world knowledge of MLLMs.080

With the development of large language models081

(LLMs), the second focus is on controllable gen-082

eration, which aims to align models with human083

preferences and ethical guidelines. Due to the dif-084

ficulty of annotating training data, these methods085

primarily rely on reinforcement learning methods,086

such as reinforcement learning from human feed-087

back (Ouyang et al., 2022), process reward mod-088

eling (Lightman et al.), and group relative policy089

optimization (Shao et al., 2024; Mu et al., 2024).090

Consequently, the heavy computational demands091

of reinforcement learning limit their adaptability092

to intentional misuse by malicious users.093

The weakness of existing methods is pri-094

marily due to limitations in available datasets.095

Existing datasets often concentrate on specific096

model safety issues, such as evaluating hallucina-097

tions (Hartvigsen et al., 2022; Wang et al., 2023a;098

Li et al., 2023a) or detecting toxic content (Shen099

et al., 2025; Podolak et al., 2024; Tang et al.,100

2025), while overlooking sophisticated risks, such101

as hidden illegal messages or disharmonious back-102

ground. This narrow focus weakens detection103

methods. Additionally, MLLMs excel at under-104

standing real-world content but struggle to recog-105

nize risky AIGC outputs, as illustrated in Figure 1,106

where models like Qwen2-VL-7B fail to detect107

such risks. This limitation arises because MLLMs108

are primarily trained on standard real-world data109

and lack exposure to risky or adversarial AIGC ex-110

amples (Schuhmann et al., 2022).111

To address these challenges, we introduce AI-112

GUARD, the first comprehensive benchmark for113

detecting risks in AIGC within real-world e-114

commerce scenarios. Our dataset comprises real-115

world adversarial examples and industrial risks116

(e.g., product flaws), accompanied by expert anno- 117

tations and detailed risk descriptions. It includes 118

253,420 image-text pairs, with text descriptions 119

categorizing risks into four critical types: abnor- 120

mal body, violating physical laws, disharmonious 121

background, and illegal message. We also propose 122

a lightweight detection method based on the pre- 123

trained BLIP model (Li et al., 2022). Risk de- 124

tection is optimized by distilling human annota- 125

tions into soft prompts through image soft prompt 126

matching and causal risk decoding tasks. Dur- 127

ing inference, risks are identified by matching im- 128

ages with the soft prompts, achieving high ac- 129

curacy at minimal computational cost. This ap- 130

proach enables efficient detection of AIGC risks, 131

conserving computational resources in real-world 132

e-commerce applications. 133

The contributions are summarized as follows: 134

• Introduce AIGUARD, the first comprehensive 135

AIGC risk detection benchmark, compiling a 136

dataset of 253,420 image-text pairs covering 137

four critical risk categories (abnormal body, 138

violating physical laws, disharmonious back- 139

ground, illegal message). 140

• Propose a lightweight detection method using a 141

pre-trained BLIP model with the soft prompts, 142

achieving high accuracy via image soft prompt 143

matching while minimizing computational over- 144

head for real-world applications. 145

• Conduct extensive experiments on the bench- 146

mark, identifying key challenges and highlight- 147

ing critical research problems that merit further 148

systematic investigation. 149

2 Related Work 150

2.1 Risk Detection Benchmarks 151

Prior research on risk datasets has primarily fo- 152

cused on text-based risks, such as pornogra- 153

phy detection (Pavlopoulos et al., 2020), fraud 154

identification (Tang et al., 2025), and politi- 155

cally sensitive content (Ratkiewicz et al., 2011). 156

With the rise of AIGC, datasets evaluating risks 157

in AI-generated text, such as factual hallucina- 158

tions (Zhao et al., 2023; Li et al., 2023a) and 159

toxic outputs like hate speech (Hartvigsen et al., 160

2022), have gained prominence. For example, 161

FELM (Zhao et al., 2023) assesses factual ac- 162

curacy across domains (e.g., math, reasoning), 163
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Benchmark Task Risk Types Size

Toxic Hallulation Illegal

FELM (Zhao et al., 2023) Factuality Evaluation 3 847
ToxiGen (Hartvigsen et al., 2022) Hate Speech Detection 3 274,186
HaluEval (Li et al., 2023a) Hallucination Recognition 3 30,000
CHIFRAUD (Tang et al., 2025) Fraud Text Detection 3 3 411,934
MHaluBench (Chen et al., 2024) Multimodal Hallucination Detection 3 1,860
M-HalDetect (Gunjal et al., 2024) Multimodal Hallucination Detection 3 4,000
MM-safetybench (Liu et al., 2024a) Safety-critical Evaluation 3 5,040

AIGUARD (Ours) Multimodel Risk Detection 3 3 3 253,420

Table 1: Comparison of AIGC risk detection benchmarks.

while ToxiGen (Hartvigsen et al., 2022) cata-164

logs toxic/benign statements targeting 13 minor-165

ity groups. Recent work has extended to multi-166

modal tasks, exploring hallucination and toxicity167

in image-text contexts. New benchmarks aim to168

evaluate hallucination/toxicity severity (Liu et al.,169

2024a; Ying et al., 2024; Li et al., 2023b; Wang170

et al., 2023b) or detector performance (Chen et al.,171

2024). Examples include MM-safetybench (Liu172

et al., 2024a), which classifies multimodal toxic-173

ity risks, and MHaluBench (Chen et al., 2024), a174

multi-task hallucination detector benchmark span-175

ning three modalities.176

However, current research often concentrates on177

analyzing text in isolation or addressing a single178

type of risk (e.g., toxic outputs, hallucinations).179

There is a notable lack of exploration into com-180

posite risk data derived from real-world scenarios.181

We compare the recent risk detection benchmarks182

with AIGUARD in Table 1.183

2.2 Risk Detection and Model Alignment184

The approaches to risk detection have primarily185

evolved alongside the development of deep learn-186

ing. Early solutions rely on rule-based meth-187

ods, such as template-based strategy (Warner188

and Hirschberg, 2012) or syntactic features (Gi-189

tari et al., 2015), which often lack generaliza-190

tion ability. Subsequently, deep learning-based191

methods, such as CNN-based detectors (Gam-192

bäck and Sikdar, 2017) and domain adversarial193

training (Markov et al., 2023), are introduced to194

enhance performance. More recently, detectors195

leveraging pre-trained models and large language196

models have gained traction (Cohen et al., 2023;197

Pan et al., 2023). For instance, Pan et al. in-198

troduce program-guided fact-checking, which de-199

composes complex claims into simpler sub-tasks200

using reasoning programs generated by large lan-201

guage models. Nevertheless, these methods are ei-202

ther too outdated or lack generalizability for de-203

tecting diverse multimodal risks. 204

For large language models (LLMs), alignment 205

is a hot topic aimed at reducing risky outputs by 206

aligning models with human preferences. Exist- 207

ing alignment techniques primarily follow the rein- 208

forcement learning from human feedback (RLHF) 209

paradigm (Ouyang et al., 2022; Yu et al., 2024; 210

Sun et al., 2023; Xu et al., 2023), evolving into 211

variants including group relative policy optimiza- 212

tion (Shao et al., 2024), and rule-based reward 213

modeling (Mu et al., 2024), among others. For ex- 214

ample, Wu et al. use dense reward signals for fine- 215

grained control. Recently, Lightman et al. propose 216

a process reward model that provides feedback on 217

each step of the model’s reasoning process, rather 218

than focusing solely on the final result. 219

However, these methods primarily focus on 220

alignment with real-world content rather than ad- 221

dressing risks in AIGC. Furthermore, these meth- 222

ods require meticulous parameter tuning and ne- 223

cessitate further research to develop fast and adap- 224

tive approaches for quickly responding to adver- 225

sarial risks in real-world scenarios. 226

3 Risk Detection Problem Formulation 227

Detecting risky content in AI-generated e- 228

commerce images involves predicting a probabil- 229

ity ŷ ∈ [0, 1] for a given image I , representing the 230

likelihood that the image contains risky content. 231

However, purely predicting the label may overfit 232

to specific patterns and lack interpretability, 233

which undermines generalization and contravenes 234

the principles of developing robust detectors. 235

Therefore, we formalize the task as interpretable 236

risk detection, where models generate textual 237

explanations S = (w0, w1, ..., wT ) that explicitly 238

identify and describe harmful content while 239

aligning with expert annotations. Here, T denotes 240

the number of decoding steps. The goal is to learn 241

a function fθ : I → {ŷ,S} that jointly optimizes 242
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classification accuracy (e.g., F1, AUC-ROC) and243

explanation verifiability, ensuring that predictions244

are grounded in causal expert rationales rather245

than spurious correlations.246

4 Benchmark Description247

This section outlines the construction of the248

dataset, detailing the workflow for collecting249

AIGC images, the expert annotation procedure,250

and the construction of the benchmarks.251

Online AIGC Workflow Our dataset comprises252

images sourced from a real-world e-commerce253

application (hide for anonymized reviews). The254

risky images primarily originate from our adver-255

tising creative platforms powered by AI-driven256

generative tools, such as text-to-image, image-257

to-image, doodle-style art, virtual model synthe-258

sis, and personalized portrait generation. These259

tools enable creative and cost-effective advertis-260

ing. The image generation workflow is depicted261

in Figure 2. As illustrated, product images pro-262

duced by the AIGC platform’s cutout tool, paired263

with descriptive prompts, are processed by a Flux-264

based model (Labs, 2024). This model dynam-265

ically selects LoRA fine-tuning parameters (Hu266

et al., 2021), such as visual model, background,267

and style, to align with the input prompt. This pro-268

cess may inadvertently generate risky content, in-269

cluding hallucinations (e.g., unrealistic product at-270

tributes) or toxic information. Additionally, mali-271

cious actors could exploit advanced AI techniques272

to embed inconspicuous text or illegal content,273

evading standard OCR systems and enabling de-274

ceptive material to proliferate undetected. Further275

technical details of the image generation pipeline276

are provided in Appendix B.277

Data Collection Procedure Our dataset com-278

prises a subset of samples collected from the279

aforementioned platforms between January 1 and280

December 31, 2024. During this period, the281

platforms generated a significantly large volume282

of images. To filter out normal images, we283

employ a multi-stage process combining user284

complaints, manual inspection, and model-based285

checks. Specifically, all user-submitted com-286

plaints flagged with risky tags are subjected to287

expert annotation procedures. For the large un-288

labeled dataset, we first recruit professional an-289

notators to manually label the images. Subse-290

quently, we train a ViT-S/16 model (Dosovitskiy291

  Requirement

  AIGC Platform

Product Display

E-commercial Merchants

Flux                   
(For Product)                  

Online Marketing Platform

  Merchant

Normal Product Images
with New Background

  Scenario

Product
Images

Prompts

The sneakers are placed
on the ground...

 LoRA 1  LoRA 2 

 LoRA ··· LoRA 3
LoRA ···

Cutout
Tool

Original
Images

select from:

Risky Product Images
with New Background

Figure 2: The workflow for generating AI-produced
advertisement images. The process begins with the
extraction of product images from the original inputs
provided by merchants. These extracted images are
then combined with descriptive prompts, and subse-
quently fed into a Flux-based image generation model.
Throughout this process, the platform dynamically in-
tegrates pre-tuned LoRA modules to tailor features ac-
cording to user preferences.

et al., 2021), a small version of the Vision Trans- 292

former, using professionally annotated data. The 293

trained model is employed to filter out images 294

identified as deemed certainly non-risky, ensur- 295

ing the resulting dataset contains only high-quality 296

samples with potential risks relevant to real-world 297

e-commerce platforms. The final dataset com- 298

prises 253,420 samples, including 43,885 risky 299

and 209,535 normal instances. 300

Expert Annotation To enhance the generaliza- 301

tion and usability of the dataset, we include de- 302

tailed annotations for each sample. Specifically, 303

we recruit three domain experts to label the data 304

following a standardized procedure. 305

• Risk Classification: Experts are required to 306

categorize the images into four distinct classes 307

based on their risk type: Abnormal Body refers 308
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to the unrealistic human features (e.g., “a man309

with three arms”). Violating Physical Laws in-310

volves images that defy the laws of physics (e.g.,311

“a smartphone floating in mid-air”). Disharmo-312

nious Background describes images where the313

background is inconsistent with the main sub-314

ject (e.g., “a giant toothbrush in a forest land-315

scape”). Illegal Message includes images with316

hidden illegal message in the background (e.g.,317

“make fake certificate”) in Figure 1.318

• Content Annotation: Experts then describe319

whether the image contains risky content. Both320

risky and normal samples are annotated strictly321

in a certain format to ensure clarity and accuracy.322

For Abnormal Body, normal images are labeled323

as “Characters do not have any abnormal fea-324

tures, such as missing bodies, flying heads, twist-325

ing limbs, etc.”, and risky images are described326

using a “Abnormal part + Identificatio” for-327

mat (e.g., “The woman’s left hand is deformed328

and the right hand is missing, and there is an329

abnormal structure in her body”). For Dishar-330

monious Background, normal images are anno-331

tated as “The product has no reasonableness is-332

sues, the product size is reasonable, and the333

background is coordinated (not floating in the334

water or standing on the table, etc.).”, and risky335

images are described using a “Observation +336

Assessment” format (e.g., “Shoes appear on the337

ground, obviously too large”). More specific an-338

notation rules are detailed in Appendix C.339

• Peer Review: To ensure label accuracy through-340

out the annotation process, annotators perform341

a peer review of each other’s annotations and342

resolve disagreements through majority voting.343

Corrections are made as needed to adhere to344

established guidelines. This step is crucial to345

maintain consistency and reliability in the anno-346

tations, ensuring that the dataset is robust and347

usable for various applications.348

AIGUARD Benchmark After annotation, the349

benchmark dataset comprises a total of 253,420350

samples. The distribution across categories is as351

follows: Abnormal Body (76,800 samples), Violat-352

ing Physical Laws (90,880 samples), Disharmo-353

nious Background (65,280 samples), and Illegal354

Message (20,460 samples). To balance the dataset,355

we remove many normal samples, resulting in a356

risky-to-normal ratio close to 1:5. The statistic of357

the dataset is shown in Table 2.358

Category Total Risky Normal Ratio
Abnormal Body 76,800 12,768 64,032 ≈1:5
Violating Physical Laws 90,880 15,154 75,726 ≈1:5
Disharmonious Background 65,280 10,847 54,433 ≈1:5
Illegal Message 20,460 5,116 15,344 ≈1:3

Table 2: The statistic of the dataset.

5 Lightweight Detection Method 359

To balance efficiency and effectiveness, we de- 360

velop a lightweight detection model based on the 361

BLIP framework (Li et al., 2022), which unifies 362

image-text contrastive learning (ITC), image-text 363

matching (ITM), and language modeling (LM) 364

to achieve strong performance across multimodal 365

tasks. Specifically, we distilled expert-annotated 366

risk information into soft prompts using image soft 367

prompt matching and language modeling tasks. 368

During inference, we rely solely on image soft 369

prompt matching to reduce detection time. The 370

framework overview is illustrated in Figure 3. 371

Cross-Attentive Image Soft Prompt Matching 372

To address the absence of text during inference, 373

the module employs learnable soft prompts to 374

encode risk information into general dense vec- 375

tor representation. Specifically, the input im- 376

age I is first encoded into a feature sequence 377

HIMG ∈ RN×d, where N is the number of im- 378

age patches and d is the embedding dimension. Si- 379

multaneously, the soft prompts are represented as 380

Hs ∈ RL×d, with L denoting the prompt length. 381

These features are concatenated with a [CLS] to- 382

ken hCLS and fed into n transformer encoder layers 383

Encodern, initialized from BLIP’s cross-encoder. 384

Then, the final output Hn is calculated as 385

Hn = Encodern([hCLS,HIMG,HS]), (1) 386

where [·, ·, ·] is the concentrate operation. Finally, 387

the last layer output of the summarized token hn
CLS 388

is passed through a MLP to yield the binary classifi- 389

cation probabilities as 390

ŷ = Sigmoid (MLP(hn
CLS)) , (2) 391

where Sigmoid transforms the output of the MLP 392

into a probability score between 0 and 1. 393

This module is trained using an image soft 394

prompt matching objective, denoted as LVTM, to 395

determine whether an image contains risk content. 396

The objective function is defined as 397

LVTM = −y log(ŷ)− (1− y) log(1− ŷ), (3) 398

where y = 1 indicates that the image contains risk 399

content, and y = 0 is not. 400
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"The picture is
about……"

Image
Encoder

Image 
Embedding (H

IMG
)

Image Soft Prompt (Hs)

d

L

d

N
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feed forward
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Vision-augmented Text Encoder

×12

Vision-augmented Text Decoder

Hn
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d

L

d
Next Token Prediction Loss
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causal self-attention

Decoded Tokens

Manual LabelImage Description

cross-attention

Image
Description

Task2: Visual-Grounded Risk DecodingTask1: Image Soft Prompt Matching

parameters
share

×12

Figure 3: An overview of the lightweight detection method. It contains two components: (1) The image-grounded
text encoder leverages cross-attention and soft prompts to identify AIGC risk, guided by an image-text matching
objective. (2) The image-grounded text decoder utilizes causal self-attention and is refined through a language
modeling objective, embedding semantic information into the soft prompts.

Visual-Grounded Risk Decoding This mod-401

ule employs a shared architecture that combines402

causal self-attention, optimized via a language403

modeling objective. This design enables the in-404

tegration of semantic information into the soft405

prompts, allowing the creation of more expressive406

representations conditioned on visual semantics.407

Specifically, given an input image I and the408

soft prompts, the model autoregressively pre-409

dicts the t-th token of the risk description410

S = (w0, w1, ..., wT ) at each decoding step411

t. This is achieved using an m-layer de-412

coder, initialized from BLIP’s pre-trained decoder,413

as Decoderm(wt|I,HS,Hw<t) where Hw<t de-414

notes the token embeddings of the first t−1 tokens.415

The soft prompts HS are jointly optimized with416

the decoder by minimizing the next-token predic-417

tion loss LRD, which encodes expert annotations418

into the soft prompts as419

LRD = −
T∑

t=1

log Decoderm(wt|I,HS,Hw<t). (4)420

This process ensures that the soft prompts adapt421

to visual semantics while aligning with annotated422

risk descriptions.423

The final training loss L is formulated by com-424

bining two components:425

L = LVTM + λLRD, (5)426

where λ is a hyper-parameter that balances the in-427

fluence of LRD.428

6 Experiments 429

This section examines intuitive risk detection 430

methods on AIGUARD and compares their ef- 431

fectiveness against our proposed lightweight ap- 432

proach. The experimental results provide valuable 433

insights and suggest promising directions for refin- 434

ing risk detection models in future work. 435

6.1 Experimental Setting 436

Baseline Models To comprehensively evaluate 437

our proposed method, we compare it against five 438

baseline approaches from distinct categories: (1) 439

ResNet-50 (He et al., 2016): A foundational 440

convolutional neural network pre-trained on Ima- 441

geNet (Deng et al., 2009). We adapt this model 442

for risk detection via full fine-tuning. (2) ViT- 443

B/16 (Dosovitskiy et al., 2021): A base version of 444

the transformer-based vision model using 16×16 445

patches, pre-trained on ImageNet. We adapt this 446

model for risk detection via full fine-tuning. (3) 447

BLIP-LM (Li et al., 2022): The decoder part 448

of BLIP is designed to generate descriptive text 449

from visual data and identify the risk from the 450

descriptive text information. (4) BLIP-ITM (Li 451

et al., 2022): We utilize image-text matching part 452

of BLIP for risk classification by simply setting 453

the query text as “The image does not contain any 454

risk information” and fine-tune the model with the 455

benchmark dataset. (5) Qwen2-VL-7B (Bai et al., 456

2023): A state-of-the-art large multimodal model 457
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Model Params Abnormal Body Violating Physical Laws Disharmonious Background Illegal Message Overall
R P F1 R P F1 R P F1 R P F1 R P F1

ResNet-50 235M 48.48 52.80 50.54 75.59 32.08 45.04 40.47 79.01 53.52 2.78 52.57 5.28 50.36 41.45 45.47

ViT-B/16 86M 77.21 76.17 76.68 84.29 80.55 82.38 83.68 77.20 80.31 42.78 53.97 47.73 77.47 75.87 76.66

BLIP-LM 224M 73.00 20.38 31.86 84.40 87.09 85.72 7.26 21.10 10.81 53.15 50.62 51.85 58.60 37.25 45.54

BLIP-ITM 447M 79.09 81.50 80.28 83.49 89.10 86.20 77.55 82.53 79.96 95.19 25.69 40.46 82.24 63.80 71.86

Qwen2-VL-7B 7.6B 10.54 63.77 18.09 24.90 68.22 36.49 7.64 37.85 12.72 16.11 24.79 19.53 15.53 51.16 23.83

Qwen2-VL-7B (sft) 7.6B 65.66 56.93 60.98 80.28 86.57 83.30 71.42 79.60 75.29 71.48 86.35 78.21 72.88 74.96 73.90

Ours 500M 87.74 84.92 86.31 84.47 90.27 87.27 80.75 86.64 83.59 67.41 35.24 46.28 82.40 76.06 79.10

Table 3: Performance comparison of different methods on AIGUARD. “Params” denotes the number of parameters
in the model. “Overall” is calculated from the entire dataset. The best results are shown in bold.

with 7.6 billion parameters. We evaluate its per-458

formance before and after LoRA (Hu et al., 2021)459

fine-tuning.460

Implementation Details We employ the ViT-461

B/16 model as our baseline, initializing it with462

Googles official checkpoint (Dosovitskiy et al.,463

2021). For BLIP-based caption generation and464

image-text retrieval, we utilize COCO-fine-tuned465

checkpoints provided by the BLIP authors (Li466

et al., 2022). As for the trainable soft prompts,467

they comprise 25 embeddings, which are initial-468

ized by averaging the predefined negative label to-469

ken embeddings. Consistent with the BLIP model470

configuration, the Transformer architecture com-471

prises both encoder and decoder layers, each with472

a layer size of 12, and the hyper-parameter λ is set473

to 1. Prior to encoding, all input images are re-474

sized to 384×384 resolution. The training and test475

datasets are split in a 9:1 ratio. For the four risk476

categories in AIGUARD, baseline models (except477

Qwen2-VL-7B) are trained for 25 epochs, while478

Qwen2-VL-7B is trained for one epoch. The train-479

ing process uses an initial learning rate of 1×10−5480

and a weight decay of 0.05. For all experiments,481

we report precision (P), recall (R), and F1-score482

(F1) as performance metrics.483

6.2 Performance Comparison484

Table 3 presents the recall, precision, and F1485

scores of the evaluated baseline models on our486

AIGUARD benchmark. All experiments are re-487

peated four times to ensure reliability, with re-488

sults averaged across runs to reflect consistent per-489

formance metrics. From the table, we have fol-490

lowed observations: (1) Our experiments reveal491

significant room for improvement, underscor-492

ing the need for further research. Current base-493

line methods, including MLLMs (e.g., Qwen2-494

VL-7B), demonstrate limited effectiveness on our495

dataset. For instance, Qwen2-VL-7B after super-496

vised fine-tuning (sft) only achieves a recall of497

65.66% and a precision of 56.93% on the abnor-498

mal body detection task. (2) Our lightweight 499

framework establishes state-of-the-art results. 500

Our method outperforms large MLLMs by 9.68% 501

in recall and 1.10% in precision on the overall 502

dataset. It also reduces GPU memory consump- 503

tion by 4.45× during training and increases in- 504

ference QPS by 37.8×, as shown in Table 6. 505

(3) MLLMs exhibit limited proficiency in image 506

risk detection. We evaluate Qwen2-VL-7B on 507

our AIGUARD dataset. Despite its extensive world 508

knowledge, the model’s performance remains sub- 509

optimal (e.g., recall of 80.28% in Violating Phys- 510

ical Laws category). Fine-tuning improves re- 511

sults slightly, but our approach still outperforms it 512

across most risk types. This suggests MLLMs cur- 513

rently lack specialized knowledge for AIGC con- 514

tent analysis. (4) General MLLMs hold promise 515

for future risk detection. The fine-tuned Qwen2- 516

VL-7B model achieves strong performance in the 517

Illegal Message category, demonstrating MLLMs’ 518

potential for complex illegal message detection 519

tasks (e.g., detecting hidden text). As a compari- 520

son, the best-performing method ViT-B/16 (Doso- 521

vitskiy et al., 2021) among the remaining base- 522

lines, including our method, achieves only an F1 523

score of 51.85%. This highlights the difficulties 524

these methods encounter in performing the task, 525

attributable to their deficiencies in context compre- 526

hension and world knowledge. 527

6.3 Analysis Experiments 528

Benefit of Textual Description We evaluate the 529

impact of text descriptions by comparing model 530

performance with/without text inputs under identi- 531

cal settings, where text is used only during training 532

(not inference). As shown in Table 4, integrating 533

descriptive text description allows the model to 534

improve F1 scores on specific tasks while bal- 535

ancing precision and recall. For image-intensive 536

tasks (e.g., Violating Physical Laws detection), the 537

improvement is particularly obvious, with preci- 538

sion improving by 2.74% and recall improving by 539

0.33%. For the Illegal Message detection task, 540
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Category Text-Description Recall Precision F1-score
Abnormal
Body

7 87.66 84.54 86.07
3 87.74 84.92 86.31

Violating Physical
Laws

7 84.14 87.53 85.80
3 84.47 90.27 87.27

Disharmonious
Background

7 81.60 85.81 83.66
3 80.75 86.64 83.59

Illegal
Message

7 67.04 43.77 52.96
3 67.41 35.24 46.28

Table 4: Comparison of model performance influ-
enced by text description labels generated by large mul-
timodal models. The symbol 7" indicates the absence
of a text-description, while "3" indicates its presence.
The best results are shown in bold.

0 5 10 15 20 25 30 35 40 45 50 55 6080%

82%

84%

86%

88%

90%

Recall, Precision, and F1 Score vs. Length
Recall
Precision
F1 Score

Figure 4: Performance comparison of different prompt
lengths on the abnormal body detection task. The hori-
zontal axis represents the length of soft prompts, and
the vertical axis represents the corresponding recall,
precision, and F1-score.

which requires the model to identify and detect541

risky hidden text accurately, the incorporation of542

descriptive image labels is counterproductive and543

adversely affects the model’s training, leading to544

lower identification precision.545

Influence of Prompt Length We compare the546

model performance of the learnable soft prompts547

under different length settings. As shown in Fig-548

ure 4, our approach achieves the highest F1549

score when the prompt length is set to 25. When550

the prompt length is 5, we observe a suboptimal551

F1 score, but recall and precision remain well bal-552

anced. As the prompt length moves away from 25,553

both recall and precision decline, which confirms554

that our experimental setup is sound.555

Further ablation study and analysis experiments556

are presented in Appendix D.557

7 Discussion558

Based on the dataset and experimental results,559

this section highlights key challenges and emerg-560

ing research opportunities for advancing AIGC561

safety. (1) Advanced Risk Detection: Though562

lightweight detection methods show promise, sig- 563

nificant improvements are still needed. Existing 564

approaches struggle particularly with Illegal Mes- 565

sage risks, where threats are well-hidden and de- 566

mand more generalizable solutions. Furthermore, 567

as detection methods improve, malicious users 568

may adapt their tactics to hide illegal content, high- 569

lighting the need for robust and adaptable detec- 570

tion strategies. (2) MLLMs and AIGC Risks: 571

Our experiments reveal that current MLLMs often 572

fail to detect subtle risks in AIGC due to their train- 573

ing on standard real-world data. This underscores 574

the need to expose MLLMs to AIGC outputs, par- 575

ticularly adversarial or risky content, to enhance 576

their understanding. With the increasing preva- 577

lence of AIGC, it is crucial to introduce AIGC 578

content to MLLMs and develop specialized algo- 579

rithms (e.g., contrastive learning, adversarial train- 580

ing, pre-training), to improve the models’ abil- 581

ity to recognize and process AIGC content effec- 582

tively. (3) AIGC Alignment Datasets: Current 583

alignment efforts mainly focus on real-world im- 584

ages. As these data sources become limited, us- 585

ing composite data generated by models can en- 586

hance model understanding and improve general- 587

ization from weak to strong. Future work could 588

expand the dataset to AIGC data, which can be 589

generated at a low cost and with controlled param- 590

eters. Our dataset can also serve as a foundation 591

for building alignment datasets to improve mod- 592

els’ comprehension of e-commerce AIGC content. 593

(4) Safer AIGC Generation: This work provides 594

a real-world scenario for studying the safety of 595

AIGC generation. As the source of this problem, 596

we also highlight the need to develop safer and 597

controllable generation methods, which can ad- 598

dress risks in AIGC content at root. 599

8 Conclusion 600

This work introduces AIGUARD, the first bench- 601

mark designed to detect AIGC risks within e- 602

commerce contexts. The benchmark comprises 603

253,420 image-text pairs, each annotated with cor- 604

responding risk information. Then, we propose 605

an effective and lightweight detection method that 606

distills risk annotations into learnable soft prompts 607

via image-text matching and next-token prediction 608

tasks. Experimental results demonstrate the supe- 609

rior performance of our approach and provide in- 610

sights into future directions for developing robust 611

detection methods in real-world systems. 612
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9 Limitation613

This study faces two primary limitations. First,614

the dataset has inconsistent annotation standards.615

Specifically, while risky data are labeled in detail,616

normal data are labeled uniformly across different617

categories. This inconsistency requires further ex-618

ploration of dataset caption methods to fully uti-619

lize the dataset. Second, the risk content in the620

system is dynamic. Therefore, models over-fitted621

on this dataset may not perform well in real-world622

systems, where risk patterns change rapidly. As623

a result, this work can only provide guidance for624

method development and encourages the develop-625

ment of general and powerful models that can gen-626

eralize across diverse and different risk types.627

10 Ethical Considerations628

Privacy While constructing AIGUARD from629

content generated by the AIGC platform, we ob-630

serve that the content is influenced by the pre-631

training data of the underlying model and may in-632

clude elements that resemble human features. We633

affirm that our dataset does not include any per-634

sonal information, ensuring that it can be safely635

released and utilized.636

Legitimacy Certain images in AIGUARD con-637

tain content associated with illegal black and gray638

market transactions. We wish to clarify that our639

intention is not to promote illegal transactions. In-640

stead, their focus is on analyzing the detection641

effectiveness of illegal message risk. All the642

risky images we collect have been prohibited on643

e-commerce platforms.644
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A AIGUARD License934

The AIGUARD dataset is available for free down-935

load at https://anonymous.4open.science/r/936

aigc-dataset-anonymous and can be used for937

non-commercial purposes under a custom license,938

CC BY-NC 4.01. In addition to the existing tasks939

in the dataset directory, users are permitted to de-940

fine their own tasks under this license.941

B Details of Image Generation in the942

Dataset943

In this section, we will give a detailed description944

of image generation in the online AIGC platform.945

The dataset proposed in this work consists of946

images from two sources: product advertisement947

images and images that may contain illegal infor-948

mation. For images from the first source, the sam-949

ple generation process is illustrated in Figure 2,950

which demonstrates the process by which an e-951

commerce merchant can obtain AI-generated ad-952

vertisement images for product display. The pro-953

cess begins with the merchant providing require-954

ments for product display, then the requirements955

are addressed by the AIGC platform. The work-956

flow involves the following steps:957

• Original Images: The original images of the958

products to be displayed. The merchants need959

to start by taking product photos as original im-960

ages and uploading them to the platform.961

• Cutout Tool: A cutout tool developed by the962

AIGC platform, which is used to isolate the prod-963

uct from the original images, creating product964

images. The merchant can obtain product im-965

ages with the assistance of the tool and seam-966

lessly input them into the model.967

• Prompts: Textual prompts created to guide the968

image generation process, e.g., "The sneakers969

are placed on the ground...". The merchants970

control the background generation by inputting971

these descriptive prompts into the model.972

• Flux Model: The product images and973

the prompts are fed into the Flux-based974

model (Labs, 2024), which is designed for975

product image generation.976

• LoRA Selection: The AIGC platform selects977

appropriate LoRA (Low-Rank Adaptation) (Hu978

et al., 2021) modules to fine-tune the Flux-based979

model based on the given prompts.980

• Output: The Flux-based model may generate 981

two types of images: (1) Normal Product Im- 982

ages with New Background: These are standard 983

images of the product with a new background. 984

(2) Risky Product Images with New Background: 985

These are abnormal images that may not meet 986

the desired quality or could be inappropriate. 987

During this process, different types of risky con- 988

tent may be generated. In this work, we divide 989

the risk information from this source into the fol- 990

lowing three categories based on their specific 991

forms: Abnormal Body, Violating Physical Laws, 992

and Disharmonious Background. The specific con- 993

notations of them are elaborated in Section 4. 994

As for the images that may contain illegal infor- 995

mation, we primarily focus on the issue of embed- 996

ding illicit text into images using AI technology 997

in this work, for they are relatively easy to gener- 998

ate but difficult to detect. For instance, they can 999

be generated by some open-source text-to-image 1000

web applications for image generation developed 1001

based on Stable Diffusion (Rombach et al., 2022) 1002

along with ControlNet (Zhang et al., 2023) plugin. 1003

These applications can accept a text prompt and 1004

a control signal image for ControlNet, allowing 1005

it to generate an image that highlights the white 1006

areas in the control signal while adhering to the 1007

prompt in the background. Following this manner, 1008

malicious merchants can convert an illegal text to 1009

a black-and-white binary image, whose white ar- 1010

eas are the text patterns, and then feed this image 1011

along with a prompt (describing the background 1012

of the image) into the platform to generate an im- 1013

age that subtly incorporates the illegal text. We de- 1014

scribe this category of risks as "Illegal Message". 1015

Figure 5 illustrates the four categories of risky 1016

images mentioned in this section. 1017

C Additional Annotation Rules 1018

For Illegal Message, all images contain hidden text 1019

information that is difficult to detect. The images 1020

are described using a "Whether it is a violation 1021

+ Hidden text" format, e.g., "There is violation 1022

information in the hidden text ’pinhole camera’ in 1023

the figure", or "There is no violation information 1024

in the hidden text ’fashion shoes’ in the figure". 1025

For Violating Physical Laws, we primarily fo- 1026

cus on whether the images display any phenom- 1027

ena that defy the law of gravity. In particular, 1028

we describe the images using overall statements. 1029

Normal images are labeled as "The product is not 1030
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Illegal Message

There is violation information
in the hidden text "驾照_免考
(Driver's license_Exemption)"
in the figure.

Disharmonious Background

The size of the product
does not match the
background.

Violating Phsical Laws

The product is suspended.

Abnormal Body

The human head that appears
out of thin air above the red
clothes, there is an abnormal
structure of the human body.

Figure 5: Our dataset covers four categories of AI-generated risk images: Abnormal Body, Violating Physical
Laws, Disharmonious Background, and Illegal Message. This figure provides specific examples for each category,
including images and manually annotated labels.

Category Soft Prompts LM Recall Precision F1

Abnormal
Body

79.09 81.50 80.28
3 88.46 82.20 85.22
3 3 87.74 84.92 86.31

Violating Physical
Laws

83.49 89.10 86.20
3 84.40 89.07 86.68
3 3 84.47 90.27 87.27

Disharmonious
Background

77.55 82.53 79.96
3 82.36 84.59 83.46
3 3 80.75 86.64 83.59

Illegal
Message

95.15 25.69 40.46
3 65.93 32.28 43.34
3 3 67.41 35.24 46.28

Table 5: Performance comparison of our detection
method under different component configurations."3"
represents the corresponding components are equipped.
The best results are shown in bold.

Resource Consumption Training Inference
GPU Memory(GB) ↓ Time(min)↓ GPU Memory(GB)↓ QPS↑

Qwen2-VL(sft) 60.1 72.8 17.6 1.5
ours 13.5 14.9 1.1 56.7

Table 6: Comparison of resource consumption be-
tween our method and fine-tuned Qwen2-VL-7B dur-
ing training and inference under consistent settings on
a single NVIDIA H20 GPU. Training involves 10,000
samples with a batch size of 4 over one epoch, while in-
ference uses a batch size of 16. "↓" means lower values
are better, and "↑" means the opposite. The best results
are shown in bold.

suspended.", and risky images are labeled as "The1031

product is suspended.".1032

D More Analysis Experiments1033

Contribution of Each Component We evalu-1034

ate the contributions of each component to the1035

model’s overall performance. The results, pre-1036

sented in Table 5, confirm that both the soft1037

prompts and language model components pos-1038

itively impact precision and F1 score.1039

Computational Resource Consumption Ta- 1040

ble 6 shows the computation resource consump- 1041

tion of our method compared to Qwen2-VL-7B. 1042

Under the same experimental settings, our method 1043

reduces GPU memory usage by 4.45× during 1044

training and 16× during inference, decreases train- 1045

ing time by 4.89×, and increases the QPS of infer- 1046

ence by 37.8×. 1047
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