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ABSTRACT

We explore the geospatial reasoning capabilities of Large Language Models
(LLMs), specifically, whether LLMs can read road network maps and perform
navigation. We frame trajectory recovery as a proxy task, which requires models
to reconstruct masked GPS traces, and introduce GLOBALTRACE, a dataset with
over 4,000 real-world trajectories across diverse regions and transportation modes.
Using road network as context, our prompting framework enables LLMs to gen-
erate valid paths without accessing any external navigation tools. Experiments
show that LLMs outperform off-the-shelf baselines and specialized trajectory re-
covery models, with strong zero-shot generalization. Fine-grained analysis shows
that LLMs have strong comprehension of the road network and coordinate sys-
tems, but also pose systematic biases with respect to regions and transportation
modes. Finally, we demonstrate how LLMs can enhance navigation experiences
by reasoning over maps in flexible ways to incorporate user preferences.

1 INTRODUCTION

Figure 1: An example of the trajectory
recovery task of a sample in GLOBAL-
TRACE. The masked segment to re-
cover is in green, which is part of a tra-
jectory shown in blue.

Large Language Models (LLMs) are increasingly recog-
nized as general-purpose systems, showing strong per-
formance across domains ranging from mathematics and
coding to vision and robotics. An emerging yet underex-
plored question is whether these models possess geospa-
tial understanding, the ability to reason about maps, paths,
and spatial relationships. Such capabilities are fundamen-
tal to many real-world applications, e.g., autonomous ve-
hicle navigation, logistics, and urban planning. While
prior work has studied LLMs in contexts such as geo-
graphic knowledge retrieval (Manvi et al., 2024a;b) and
map-based multiple-choice question answering (Dihan
et al., 2025), the ability of LLMs to read road networks
and plan paths has not been systematically evaluated.

We investigate whether LLMs can perform navigation
through the trajectory recovery task: reconstructing
masked segments of GPS traces from the road network
context, to bypass the restriction of relying on shortest
path-type of ground truth which may not reflect human
navigation pattern in practice (Golledge, 1995; Duckham
& Kulik, 2003). To facilitate this evaluation, we introduce
GLOBALTRACE, a dataset of over 4,000 real-world tra-
jectories spanning multiple continents and diverse trans-
portation modes, collected from public traces on OpenStreetMap (OpenStreetMap contributors,
2017). Unlike existing datasets, GLOBALTRACE covers multiple activities, i.e., transportation
modes (e.g., driving, cycling, walking, and hiking), and geographic regions, enabling a compre-
hensive evaluation of model generalization. Our dataset is framed in away that is harder than the
traditional point-wise trajectory recovery task (Newson & Krumm, 2009; Song et al., 2017; Si et al.,
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2024), and closer to the higher-level navigation problem. As Figure 1 shows, to successfully recon-
struct a masked segment of a trajectory, a model must be able to (1) understand the context of travel
(e.g., mode of transportation, speed, and direction) as well as the constraints of the road network
(e.g., one-way road and road connectivity) to select an appropriate route and (2) generate smooth
coordinates following the route.

Traditionally, the task of trajectory recovery is tackled using either probabilistic models and map-
matching techniques (Newson & Krumm, 2009; Huang et al., 2018; Yin et al., 2018), such as Hidden
Markov Models (HMM), or interpolation heuristics (Zheng et al., 2008), to reconstruct missing
points from noisy or sparse GPS traces. While effective in constrained settings, these approaches are
limited in capturing long-range dependencies, or adapting to complex moving patterns. Following
the pre-training trend after Transformer (Vaswani et al., 2017) is introduced, there is also effort to
build foundation trajectory models (Liang et al., 2025; Lin et al., 2024; Si et al., 2024; Yu et al.,
2025b) to encode geospatial knowledge from large amount of training data. This approach relies on
training using specialized in-domain trajectory data and struggles to generalize to unseen regions.

To address these issues, we explore the generalization capability of LLMs and present a prompting-
based framework that allows LLMs to reconstruct valid trajectories without reliance on external
navigation tools. Our system reasons over the available road network data to perform reconstruction
without the need of additional in-domain training. Our experiments compare LLMs against both
off-the-shelf navigation systems and specialized trajectory recovery models. Results show that state-
of-the-art LLMs achieve superior performance, with strong zero-shot generalization across regions
and activity types. Fine-grained analysis highlights their ability to plan over complex road networks,
adhere to geometric constraints, and generate realistic coordinates, while ablation studies reveal that
compact topological representations with directional cues are the most effective input format.

This combination of geospatial reasoning with LLMs’ semantic strengths to understand flexible
user queries opens new opportunities for navigation. For example, beyond recovering trajectories,
an LLM could generate a route that is not only efficient but also tailored to a user’s preferences,
such as scenic views, safety, or avoiding noisy streets—by integrating contextual knowledge already
embedded in the model. Such preference-aware navigation lies beyond the scope of traditional
systems, but emerges naturally when map reasoning is combined with LLMs’ flexible language and
reasoning capabilities.

Our contributions are threefold:

• We introduce GLOBALTRACE, a benchmark of over 4,000 real-world trajectories across
regions and transportation modes to benchmark models’ geospatial reasoning capabilities.

• We propose a prompting-based framework that elicits LLMs’ capability to perform trajec-
tory recovery directly from the road network context, without external navigation tools.

• We provide extensive evaluation and analysis, showing that LLMs outperform specialized
trajectory recovery models, generalize zero-shot, exhibit systematic regional and activity
biases, and can serve as a foundation for preference-based navigation. We release the
reproducible code for the experiment and our system together with the GLOBALTRACE
dataset at https://anonymous.4open.science/r/llm_traj_rec-5F5B/.

2 RELATED WORK

We covered a summary of existing works on trajectory recovery in the last section. Below, we outline
the literature that studies the geospatial understanding capabilities of LLMs. A full discussion on
the related works is included in Appendix A.

Recent studies have probed whether large language models possess an implicit grasp of geographic
space and spatial reasoning. Gurnee & Tegmark (2024) show that LLMs are able to map coordi-
nates to corresponding regions. Manvi et al. (2024b) show that LLMs embed substantial geospatial
knowledge (e.g., population density and mean income), but simply feeding geographic coordinates
into prompts yields poor results on those questions. The authors augment coordinate inputs with aux-
iliary map data (from OpenStreetMap), such as point-of-interest (POIs) around the coordinates, and
achieve large improvement over naive baselines. Manvi et al. (2024a) further extend this analysis,
showing that LLMs exhibit systematic geographic biases (e.g., against lower-socioeconomic status
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regions). MapEval (Dihan et al., 2025) is a benchmark of 700 multiple-choice, map-grounded ques-
tions (textual/API/visual) across 180 cities and 54 countries. Across 30 models tested, none exceeds
67% accuracy and all lag behind human performance, with particular difficulties in distance/direc-
tion inference, route planning, and visual map understanding. Unlike previous task formulations
of knowledge extraction, bias diagnostic, and multiple-choice question answering, we tackle trajec-
tory recovery as a path reconstruction problem and investigate whether general-purpose LLMs can
perform this in a zero-shot manner, without in-domain pretraining or extra supervision.

3 GLOBALTRACE

To enable comprehensive benchmarking, we curate a diverse dataset named GLOBALTRACE cover-
ing multiple modes of transportation and geographic regions. The dataset is derived from publicly
available user traces on OpenStreetMap, collected via its official API (Overpass API, 2025) across a
predefined set of regions and cities (detailed in Appendix B). As these traces are voluntarily shared
by contributors and contain no personally identifiable information (PII), their use raises no privacy
concerns. We further constrain all trajectories to lie within a target length range of 500 m to 30,000 m
to provide sufficient context for meaningful reconstruction. To lessen the risk of data contamination,
we only consider traces from 2024 onward. Each trace is annotated with an activity type (i.e., mode
of transportation) using keyword matching over the trace name and description, with an LLM-based
classifier serving as a fallback to allow semantic-based mapping and for cases such as non-English
text. For every trace, we generate two masked variants by masking consecutive points: one with a
small gap and another with a large gap, providing different difficulty levels. To facilitate different
experiment settings, we partition the dataset into training, development, and test splits, stratified to
balance both activity types and regional coverage. We provide the geographic coverage, activity
type distribution, and route length statistics of GLOBALTRACE in Figure 2.

Problem Statement Given a partial trajectory T = ⟨p1, p2, . . . , ps−1, ps, pe, pe+1, . . . , p|T |⟩,
where each point pi is represented by its coordinates (latitude and longitude), and there is a con-
secutive segment G = ⟨p∗1, p∗2, . . . , p∗|G|⟩ between ps and pe that is missing (i.e., masked), our
masked trajectory reconstruction task aims to generate a series of points R = ⟨p̂1, p̂2, . . . , p̂|R|⟩ that
minimizes the deviation of R from G. In Section 5, we will detail how to measure the deviation.

Our masked trajectory reconstruction task departs significantly from two common setups in the
literature. First, it is not a map-matching problem (Yin et al., 2018; Ren et al., 2021) where the
goal is to align noisy or low-quality GPS points to the underlying road network. In our problem,
the coordinates to be recovered (i.e., G) are entirely withheld rather than available in degraded
form. Second, our trajectory reconstruction problem is more challenging than point-wise recovery
tasks (Si et al., 2024; Zhu et al., 2024), where single (or a few) missing points are inferred from its
immediate neighbors. Instead, we remove a contiguous segment of the trajectory, spanning hundreds
to thousands of meters. A model must therefore reason over global context (movement context
before and after the gap, activity type, and road network topology) to generate coherent continuation.
This long-horizon prediction makes our problem substantially more challenging , and better reflects
the complexity of real-world mobility data.

100

200

300

Traces

Masked (km) Full trajectory (km)

Strategy Mean Min Max Mean Min Max

Small gap 0.3 0.2 0.5 8.6 0.5 29.9
Large gap 1.8 0.5 2.9 10.2 1.1 29.9

Activity Dev Test Train Total

Hiking 63 151 1188 1402
Driving 228 231 491 950
Walking 73 48 556 677
Cycling 127 12 380 519
Bus 68 87 77 232
Train 29 35 156 220
Boat 4 2 74 80
Flying 4 3 8 15

Total 596 569 2930 4095

Figure 2: GLOBALTRACE dataset overview: (a) geographic coverage and trajectory-length statistics,
(b) activity type distribution.
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**STEP-BY-STEP NAVIGATION:**

step_1: From the start point, continue northwest along Jalan 
Kuching (id=1178738987) until reaching the intersection with 
Jalan Sultan Azlan Shah (node_id_original=1724967277).

step_2: From the intersection at Jalan Sultan Azlan Shah 
(node_id_original=1724967277), continue northwest on Jalan 
Kuching (id=776008518) until the intersection with Jalan 
Sultan Azlan Shah (node_id_original=308275308).

step_3: At the intersection with Jalan Sultan Azlan Shah 
(node_id_original=308275308), continue straight (northwest) 
on Jalan Sultan Azlan Shah (id=1187203667) until the 
intersection with Jalan Enam (node_id_original=318209289).

...

step_1: From the start point, continue northwest along Jalan Kuching
(id=1178738987) until reaching the intersection with Jalan Sultan Azlan Shah
(node_id_original=1724967277). - [[3.1687067, 101.6861833], [3.1687967,
101.6861093], , [3.1690335, 101.6868655], [3.1694883,
101.6862202], [3.1699549, 101.6855615], [3.1700000,
101.6856000]]

step_2: From the intersection at Jalan Sultan Azlan Shah
(node_id_original=1724967277), continue northwest on Jalan Kuching
(id=776008518) until the intersection with Jalan Sultan Azlan Shah
(node_id_original=308275308). - [[3.1700000, 101.6856000], [3.1699549,
101.6855615],[3.1703835, 101.6849817], [3.1705213,
101.6848341], [3.1706752, 101.6846956], [3.1708715,
101.6845426], [3.1710601, 101.6844115], [3.1711336,
101.6843679], [3.1713523, 101.6842623], [3.1715564,
101.6841718], [3.1724704, 101.6837979], [3.1753023,
101.6812672]]

step_15: At the intersection with Jalan Enam (node_id_original=1818621462),
turn left (north) onto Jalan Enam (id=756636237) and continue until reaching
the destination point at [3.1829317, 101.6887217]
(node_id_original=9424929758). - [[3.1815000, 101.6903000], [3.1814976,
101.6902586],[3.1814901, 101.6901566],[3.1813667, 101.6892768],
[3.1828000, 101.6887000], [3.1829317, 101.6887217]]

Path
selection

Coordinate
generation

...

Figure 3: Two-stage LLM trajectory reconstruction.

4 METHODS

Traditional Transformer-based methods in trajectory reconstruction require a large amount of train-
ing data (e.g., 2.4M trajectories (Zhu et al., 2024)). Moreover, such models fail to generalize beyond
the region covered by their training data (typically just a city). By contrast, we propose a frame-
work that enables LLMs to perform navigation-style reasoning without relying on external routing
engines or domain-specific training.

A naive solution is to prompt an LLM with the partial trajectory to be recovered, T , and the road
network context of the region covering T . Empirically, we find that this naive solution fails to elicit
the geospatial reasoning capabilities of LLMs, due to a large amount of unorganized data being fed
to the LLM. We detail such alternative solutions in Section 6.2.

To elicit the geospatial reasoning capabilities of LLMs, we adopt a two-stage, schema-constrained
design: (1) Path selection over road and intersection IDs; and (2) Coordinate generation grounded
by road geometries, as illustrated in Figure 3. This two-stage design helps evaluates whether LLMs
can reconstruct trajectories by reasoning over road network topology rather than delegating to exter-
nal navigation engines.

Our two-stage approach decouples the two distinct goals and allow fine-grained qualitative analysis:
in the first stage, we exploit LLMs’ strong reasoning abilities to generate a verbose plan, while in
the second stage, we instruct the models to strictly adhere to the plan by grounding against road
geometries to generate precise coordinates (i.e., points in R). Unlike prior work that either performs
map-matching from noisy GPS points or predicts a single missing location given surrounding con-
text, our formulation demands recovering an entire long masked segment of trajectory. This setup is
significantly harder, as the model must maintain consistency across multiple steps, align with motion
summaries, and adhere to road network constraints simultaneously.

Stage 1: Path Selection This stage evaluates the ability of LLMs to read the road network sur-
rounding the masked segment and perform planning to craft an appropriate path connecting the start
and end points ps and pe with respect to the trajectory context. We provide the following context
to an LLM: (1) Masked segment information: coordinates of ps and pe, activity type, and masked
segment length. (2) Trajectory context summaries: timing, speed, and heading narratives before
and after the masked segment, which provide more context to help models understand the move-
ment. (3) Road network slice: a road network enclosed by a bounding box surrounding the masked
segment. Each road in the road network has ID, name, type, cardinal direction, and the list of roads
that it connects to along with the corresponding intersection ID. coordinates, and precomputed bear-
ing to destination. We detailed the road network construction in Appendix C and compare different
ways to represent it in our ablation study (Section 6.2). We enforce further requirements for the
navigation steps to make sure that LLMs produce unambiguous description with clear anchors (full
prompt in Appendix D).

Stage 2: Coordinate Generation Once a valid step-by-step plan is produced, the second stage
requests explicit coordinates (points in R) for each step. We perform this iteratively for each step,
grounded against the road network to ensure models generate valid coordinates that adhere to the
roads. To be able to successfully generate coordinates, the LLM must (1) be able to align the
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generation to the provided road geometries, and (2) generate coordinates in the order that respect
the moving direction in the generated step descriptions. Please refer to Appendix D for an example
of the prompt and response.

5 EXPERIMENTAL SETUP

Models Evaluated We consider three classes of models to benchmark against GLOBALTRACE.
The settings and parameters are detailed in Appendix E.

1. Baselines. Traditional baselines for trajectory recovery. We consider: Linear interpolation
(“Linear”), and Linear interpolation + HMM map-matching (“Liner+HMM”), follow-
ing Yu et al. (2025b). We also consider a popular navigation system Google Maps. Al-
though not designed for trajectory recovery, we convert the path generated by Google Maps
Direction API (as polylines) into coordinates by decoding the Google’s Encoded Polyline
Algorithm Format (Google Maps Platform) for comparison with other methods.

2. Pre-trained models. We compare with a strong pre-trained Transformer model for trajec-
tory recovery: TrajFM (Lin et al., 2024). The model was pre-trained using the Didi dataset
(Didi-Chuxing, 2018) containing vehicle trajectories in two cities in China. We fine-tuned
the model on our GLOBALTRACE training set.

3. LLM models. We consider strong models from different model families, including three
proprietary models: GPT-4.1, GPT-4.1-mini, and Claude 4 Sonnet, and four open-weight
models: Deepseek V3, Llama 4 Maverick, Qwen3-235B, and Qwen3-30B.

Metrics We focus on two evaluation metrics defined based on G = ⟨p∗1, p∗2, . . . , p∗|G|⟩, the ground-
truth points of a masked segment, and R = ⟨p̂1, p̂2, . . . , p̂|R|⟩, the reconstructed points.

Mean Absolute Error (MAE; ↓), a commonly used metric in the trajectory recovery literature (Zhu
et al., 2024), measures the average distance deviation (the the Haversine distance, denoted by d(·, ·))
between the original trajectory points and their respective closest points on the reconstructed trajec-
tory, normalized by the total masked segment length LG.

MAEG→R =
1

|G| · LG

|G|∑
i=1

|R|
min
j=1

d(p∗i , p̂j) · 100. (1)

To penalize spurious, off-route reconstruction, we also compute MAER→G that measures the aver-
age distance deviation between the reconstructed trajectory points and their respective closest points
on the ground-truth trajectory, expressed as a percentage of the reconstructed trajectory length LR.
We combine MAEG→R and MAER→G to calculate the harmonic mean.

MAEF1 =
2 · MAEG→R · MAER→G

MAEG→R + MAER→G
. (2)

While commonly used, MAE is sub-optimal to measure the path reasoning capabilities of LLMs as
it is a point-to-point metric, which can be affected when we have different point density between the
ground truth and the generated trajectory. To address this, we propose a point-to-segment metric.

Point-on-Trajectory (PoT; ↑) measures the percentage of original trajectory points that fall within τ
(τ = 10 by default) meters of the reconstructed trajectory. For each ground-truth point, we calculate
the minimum distance to the reconstructed trajectory (considering all segments between any two
consecutive points). We count the number of points within the τ -meter tolerance. Higher PoT values
indicate better ground-truth route coverage. This metric is less sensitive to minor positional errors,
focuses on overall route adherence, and penalizes reconstructions that miss significant portions of
the original trajectory.

PoTG→R =
1

|G|

|G|∑
i=1

I
(|R|−1

min
j=1

dseg(p
∗
i , p̂j , p̂j+1) ≤ τ

)
· 100. (3)

Here, I(·) is the indicator function, and dseg(·, ·) is the distance from a point to a line segment. Like
before, we also compute PoTR→G that measures the percentage of reconstructed trajectory points

5
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that fall within τ meters of the ground-truth trajectory. The harmonic mean, which we call the
symmetric coverage score, is then calculated as:

PoTF1 =
2 · PoTG→R · PoTR→G

PoTG→R + PoTR→G
. (4)

6 MAIN FINDINGS

6.1 RQ1: CAN LLMS PERFORM TRAJECTORY RECOVERY?

Table 1 reports the trajectory recovery results on the GLOBALTRACE test set. Overall, we can see
that, LLMs achieve strong results, on par with Google Maps, which is the state-of-the-art (SOTA)
navigation system. Even Google Maps has a relatively low results for this task, showing that actual
user trajectories do not always follow the optimal paths recommended by professional navigation
service, especially for exploration type activities such as walking or hiking (cf. Figure 6b).

Results of different LLMs tend to fall in similar range of 50-60%, with GPT-4.1 producing the best
results, followed by Claude-4-Sonnet. The two smaller variants, GPT-4.1-mini and Qwen-3-30B,
have worse results compared to their larger counterparts, indicating that geospatial reasoning capa-
bility emerges with scale. The pre-trained model, TrajFM, on the other hand, performs the worst,
and most of the time it just draws a straight line in small gap cases, or otherwise generate coordinates
in a completely different region. This is expected as we ensure no overlap between the regions in
the train/development and the test sets. It shows that generalizing to an unseen cities/region is not a
trivial fine-tuning objective and would likely require large amount of training data across different
regions in the world. We discuss more on the mismatch between the two metrics and show cases
where LLMs perform better than Google Maps in Appendix I, as well as the detailed results for each
reconstruction direction (G → T and T → G) in Appendix H.1.

Method Small gap Large gap Overall

PoTF1↑ MAEF1↓ PoTF1↑ MAEF1↓ PoTF1↑ MAEF1↓

Baseline
Google Maps 69.9 15.5 60.0 8.0 65.0 11.8
Linear 65.7 4.2 25.0 5.1 45.4 4.7
Linear+HMM 63.2 5.3 25.9 5.0 44.9 5.2

Pre-trained TrajFM 23.6 46.5 10.2 59.3 15.3 50.5

LLM

GPT-4.1 68.4 7.1 58.1 3.8 63.3 5.4
GPT-4.1-mini 63.7 7.3 50.2 4.4 57.0 5.9
Claude-Sonnet-4 63.1 8.0 53.3 4.4 58.2 6.2
Llama-4-Maverick 53.0 7.0 44.5 4.2 48.7 5.6
DeepSeek-V3 61.7 7.7 49.8 4.5 55.8 6.1
Qwen-3-235B 57.2 6.6 47.4 3.7 52.4 5.2
Qwen-3-30B 58.6 7.6 45.2 4.7 51.9 6.2

Table 1: Reconstruction performance on the GLOBALTRACE test set. Best scores are in bold,
second-best are underlined.

Stage-Based Analysis As our method consists of two stages, we also perform analyses for each
stage to assess their output quality. For path finding, we measure the path connectivity, i.e., whether
the generated step-by-step navigation can form a valid path connecting the start and end points of
the masked trajectory. We extract road segments from the generated step-by-step navigation and
cross-check them against the road network graph to verify if all the elements are connected. As
shown in Table 2, all tested LLMs show above average scores, with GPT-4.1 being the strongest
model (i.e., all road segments in the generated path are connected for 76.2% of the test instances),
and Qwen-3-30B the weakest.

We also report the road network adherence (“Net. adh.”) score, which measures the proportion of
the generated roads IDs and intersection IDs strictly presented in the road network. The scores for all
LLMs tested are almost perfect, showing almost zero hallucination in generating road IDs and inter-
section IDs adhering to the provided road network. The average number of steps (“Avg. # steps”)

6
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are between 3 and 5 for most models, while the average number of gaps (“Avg. # gaps”) longer
than 200 m (which is considered a large gap) between steps is below 0.2, showing smooth transition
between navigation steps. These results show that LLMs pose strong path finding capabilities. They
can plan and reason over complex and large road network graphs to find valid paths.

For coordinate generation, we evaluate whether the generated coordinates for each step are con-
sistent with the step description. This includes geometry adherence (percentage of the generated
coordinates presented in the road geometry, “Geo. adh.”), and bearing error (how far the directions
of the generated coordinates deviate from the step descriptions, “Bearing”). To determine the di-
rection of the coordinates for each step, we calculate the bearing using the start and end points for
the step, then measure the error with respect to the direction (north, east, south, or west) in the step
description. The bearing errors of all models are in the acceptable quadrant (i.e., < 90◦), with the
Qwen and DeepSeek models having slightly larger deviation. The coordinate generation analysis
demonstrates LLMs’ strong awareness of the GPS coordinate systems, i.e., the models can correctly
generate coordinates following the correct direction of the selected road segments.

Overall, the fine-grained quality metrics have high correlation with the overall trajectory recovery
performance, i.e., the models score consistently higher (or lower) for both evaluations.

Path Finding Coordinate Generation
Model Connectivity (%) ↑ Net. adh. (%) ↑ Avg. # gaps ↓ Avg. # steps Geo. adh. (%)↑ Bearing (◦)↓
GPT-4.1 76.2 99.8 0.07 4.2 84.0 54.8
GPT-4.1-mini 67.5 99.8 0.07 3.9 80.6 54.3
Claude-4-Sonnet 68.3 99.7 0.15 4.3 86.8 54.9
Llama-4-Maverick 64.8 99.3 0.13 5.0 76.2 55.7
DeepSeek-V3 61.6 99.8 0.14 4.0 81.7 56.4
Qwen-3-235B 63.8 98.6 0.27 4.7 82.3 55.8
Qwen-3-30B 55.2 97.8 0.38 3.7 80.2 57.3

Table 2: Quality analysis for the two-stage LLM-based approach. Best scores are in bold, second-
best are underlined. The metrics are defined in Appendix G.

6.2 RQ2: WHAT ROAD NETWORK CONTEXT IS OPTIMAL FOR TRAJECTORY RECOVERY?

To determine the optimal amount of context, we need to balance information completeness with
computational efficiency. While providing comprehensive road network data might seem beneficial,
excessive context can overwhelm LLMs and degrade performance and significantly increase compu-
tational costs. We conducted experiments on the development set with the following configurations
(Appendix F includes example prompts for each configuration):

(1) No network: An end-to-end approach where LLMs are asked to generate the final coordinates to
recover the missing segments.

(2) Raw network - Direct: We include the full road network in the bounding box surrounding the
masked segment for direct coordinate generation (the naive solution described in Section 4).

(3) Raw network - Two-stage: We use the two-stage approach described in Section 4, with the full
road network in the bounding box surrounding the masked segment as above.

(4) Adjacent list - Two-stage: Similar to (3), while to improve readability, we transform the retrieved
road network into an adjacency list-based graph representation, where each road includes explicit
connection information, along with relevant road metadata such as road types, oneway constraint.

(5) Topology-only - Two-stage: Similar to (4), and we remove all road geometry, retaining only
topology information.

(6) Topology-only + Direction - Two-stage (current system): Similar to (5), and we pre-compute
the direction for each road segment in the road network by calculating its bearing using the road
geometry to provide models with cues about the direction of the road, helping models have a general
sense of the roads to choose to move toward the destination.

The results in Table 3 demonstrate a clear pattern where structured representations and explicit
guidance significantly improve path finding performance. While the raw road network approaches
struggled with information overload, using topology-only with direction guidance produces optimal
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Variant PoTF1 ↑ MAEF1 ↓ Avg. # Tokens

No network 39.9 13.0 780
Raw network - Direct 42.3 11.6 23 655
Raw network - Two-stage 45.2 11.3 25 947
Adjacent list - Two-stage 53.1 6.6 19 920
Topology-only - Two-stage 52.3 7.5 12 892
Topology-only + Direction - Two-stage 58.7 4.2 10 708

Table 3: Ablation result of GPT-4.1 on the GLOBALTRACE development set. Best scores are in
bold, second-best are underlined.
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Figure 4: Reconstruction performance (PoTF1
) of all LLMs tested, breakdown by regions and ac-

tivity types.

performance by providing just the essential information LLMs need for effective path finding. The
minimal performance difference between Adjacent list and Topology-only approaches suggests that
geometric details beyond intersection points contribute little to path finding accuracy while substan-
tially increasing computational overhead.

6.3 RQ3: DO LLMS EXHIBIT GEOSPATIAL BIAS?

To further investigate potential biases, we breakdown the results based on activity types, regions,
and training data cutoff date of LLMs.

Regional Bias From Figure 4, we can clearly see that the LLMs consistently perform worse on
the Global South (Africa, Middle East, Oceania, South America, and South Asia) than they do on
the Global North (Europe, North America, and Southeast Asia). The discrepancy between the two
is non-trivial (with up to 50% difference, e.g., Africa vs. North America for Llama, DeepSeek,
and Qwen). These results are unsurprising as most training data are concentrated to the western
world, and LLMs would likely have more geospatial knowledge about those regions. One outlier
is the abnormally high result of GPT-4.1 on South Asia. Most of those are hiking trails in Bhutan,
which could potentially be a bias specific to this model. This finding also provides more context to a
previous finding that LLMs are biased toward higher socioeconomic regions (Manvi et al., 2024a).

Activity Type Bias Cycling, bus, and driving are among the the best-performing activity types.
These structured transportation modes utilize well-defined infrastructure. For these modes, LLMs
consistently perform better. For pedestrian activities, i.e., walking and hiking, LLMs show poorer
performance, while trajectories of flying and boat activities have the worst reconstruction quality.
This pattern is consistent across all LLM models, suggesting systematic biases rather than model-
specific limitations. The performance hierarchy appears to correlate with infrastructure definition
and predictability: activities following established routes (roads, railways, and bike paths) achieve
better reconstruction than free-form movements (e.g., walking and hiking).
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Data Contamination We study the performance trend on traces before vs. after cutoff date for
each model and observe no significant difference between the two periods, showing that LLMs do
possess geospatial reasoning capabilities beyond just memorization (detailed in Appendix J).

6.4 RQ4: CAN LLMS INCORPORATE USER PREFERENCE TO THE NAVIGATION?

The finding that LLMs can comprehend road networks to construct paths offers new opportunities
to enhance navigation experience beyond just finding the shortest or fastest routes between two
locations. We conduct a case study to explore such opportunities.

In practice, when in familiar areas, people usually choose paths that suit their personal preferences,
e.g., safe, scenic, close to water, or going through shops and cafes. There are several works that use
POIs (e.g., landmarks, parks, and shops), environmental features (e.g., greenery, lighting, and street
type) to plan travel (Ju et al., 2025; Wang et al., 2025; Yu et al., 2025a). The survey by Siriaraya
et al. (2020) introduces the SWEEP (Safety, Well-being, Exploration, Effort, Pleasure) taxonomy,
outlining different qualities in pedestrian paths. Based on SWEEP, we craft different scenarios,
focusing mostly on the Exploration and Pleasure categories, embedding users’ preferences and the
relevant POIs to the context provided to the model. Below, we demonstrate one specific manually-
crafted scenario. Refer to the full prompts and other scenarios in Appendix K.

Figure 5: Comparison of “Urban foodie”
paths generated by our system (green) and
Google Maps (black)

Urban Foodie We select a scenario in Melbourne, fa-
mous for its diverse food scene. The start and end points
are in two different ends of the city center, and the pref-
erence is a pedestrian path with many food options. The
path generated by Google Maps is just a straightforward
path that goes through the main streets with minimal
detours. On the other hand, our system suggests a path
that goes through alleys and lanes, where there could be
more hidden gems and local options. Interestingly, the
path managed to go through Hardware Lane, a famous
alley for foods and drinks, despite this street was not re-
trieved as a POI. This show that the model can leverage
its internal knowledge into route planning.

Additional Results We also crafted the “First-time
tourist” to show that our system works well in cases
where Google Maps failed to suggest due to the lack of
maps data, and “Waterfront cyclist” where model was
able to suggest an alternative route that goes through
more scenic POIs (Appendix K).

7 CONCLUSION

We introduced GLOBALTRACE, a benchmark for probing whether general-purpose LLMs can read
road networks and reconstruct long masked trajectory segments without specialized training or ex-
ternal routing engines. Using a two-stage, schema-constrained framework, we showed that strong
LLMs can produce valid, connected routes, outperforming specialized trajectory models and ap-
proaching the performance of an enterprise-grade navigation system. Our analysis suggests that
structured map topology is key to elicit these capabilities, and reveals persistent gaps and biases
across regions and transportation modes. Crucially, we also demonstrate that LLMs can go beyond
shortest paths and flexibly integrate user preferences into route recommendation. In a broader sense,
these findings show that LLMs have huge potential to support applications in mobility, accessibility,
and urban decision making.

While our results demonstrate that LLMs possess non-trivial geospatial reasoning capabilities, sev-
eral limitations remain. First, trajectory recovery, while informative, captures only a narrow slice
of geospatial understanding. Second, the definition of “ground truth” recoveries is itself imperfect.
Our benchmark is constructed from user-generated GPS traces, which may be noisy and reflect
individual rather than standard choices of movement.
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Ethics Statement This work involves the use of user-generated data, in the form of GPS traces.
Those data are uploaded voluntarily and contain no personal identifiable information (PII). One
more concern is on sending those data to proprietary LLM APIs. Again, as those traces are readily-
available and allow crawling through the official API, there should not be any violation regarding
the terms and agreements of OpenStreetMap.

Reproducibility Statement To ensure full reproducibility and to facilitate future research, we re-
lease the full GLOBALTRACE dataset (Section 3) along with the code to replicate the findings in this
work (Section 6) at https://anonymous.4open.science/r/llm_traj_rec-5F5B/.
We also document the settings that were used for each model (Appendix E).
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A FULL DISCUSSION ON RELATED WORKS

Trajectory recovery Traditional trajectory recovery methods have typically relied on probabilis-
tic modeling and map-matching techniques to reconstruct missing points from noisy or sparse GPS
traces. More recent, there are efforts that construct foundation models for trajectories. Most no-
tably, TrajBERT (Si et al., 2024) introduces a BERT-style Transformer for sparse trajectories where
location points are missing from poor GPS signal; it learns bidirectional temporal patterns with
spatial-temporal refinement to recover missing points. Following the same direction, TrajFM (Lin
et al., 2024) builds a vehicle trajectory foundation model for region and task transferability. The
paper propose to integrate spatial, temporal, and POIs, and uses trajectory masking/recovery to
pre-train a standard Transformer model. Instead of relying purely on coordinates-level data, BigC-
ity (Yu et al., 2025b) merge trajectories with population-level traffic state data (e.g. flow, speed,
density across road segments) to perform additional tasks like next-location prediction, and traffic
forecasting. Most of these works, however, focus on point recoveries (rather than a large continuous
segment). Furthermore, the biggest bottleneck is generalizability, as models trained for a specific
regions are not transferrable to other unseen regions. To the best of our knowledge, our work is
the first to explore this by applying general-purpose LLMs to this task, with the focus on zero-shot
capabilities without the need of training or additional supervision signals.

Geospatial understanding capabilities of LLMs Recent studies have probed whether large lan-
guage models possess an implicit grasp of geographic space and spatial reasoning. Gurnee &
Tegmark (2024) show that LLMs are are able to map coordinate to corresponding regions. Manvi
et al. (2024b) show that LLMs embed substantial geospatial knowledge (e.g., population density and
mean income), but simply feeding geographic coordinates into prompts yields poor results on those
questions. The authors augment coordinate inputs with auxiliary map data (from OpenStreetMap),
such as point-of-interest (POIs) around the coordinates, which lead to large improvement over naive
baselines. Manvi et al. (2024a) further extend this analysis, showing that LLMs exhibit system-
atic geographic biases (e.g., against lower-socioeconomic status regions). MapEval (Dihan et al.,
2025) is a benchmark of 700 multiple-choice, map-grounded questions (textual/API/visual) across
180 cities and 54 countries. Across 30 foundation models tested, none exceeds 67% accuracy and
all lag behind human performance, with particular difficulties in distance/direction inference, route
planning, and visual map understanding. Unlike previous task formulations of knowledge extrac-
tion, bias diagnostic, and multiple-choice question answering, we tackle trajectory recovery as long-
segment route reconstruction and investigate whether general-purpose LLMs can perform this in a
zero-shot manner, without in-domain pretraining or extra supervision.

B MORE DETAILS ON GLOBALTRACE

We show the cities, activity types, and regions covered by GLOBALTRACE in Table 4 to Table 6.

Region Cities
East Asia Hong Kong, Mongolia, Seoul, Shanghai, Tokyo
Southeast Asia Bangkok, Cambodia, Kuala Lumpur, Singapore, Vietnam
South Asia Bhutan, Delhi, Nepal, Sri Lanka
Central Asia Uzbekistan (Silk Road)
Middle East Iran (Persepolis), Jordan (Petra)
Europe Alps (Chamonix, Zermatt), Amsterdam, Aosta Valley, Athens, Barcelona, Bavarian

Alps, Berlin, Black Forest, Bohemian Switzerland, Budapest, Carpathians, Copen-
hagen, Corsica, Dolomites, Durmitor, Helsinki, Istanbul, Jotunheimen, Julian Alps,
Lake District, Lisbon, London, Madrid, Munich, Oslo, Paris, Plitvice Lakes, Prague,
Pyrenees, Rome, Scottish Highlands, Scottish Isles, Stockholm, Swiss Jura, Tatra
Mountains, Vienna, Vosges Mountains, Warsaw

North America Montreal, New York, San Francisco, Toronto, Vancouver
South America Bolivia, Buenos Aires, Iguazu Falls, Peru (Sacred Valley), Rio de Janeiro
Oceania Chile (Easter Island), Fiji Islands, Melbourne, Sydney
Africa Kenya, Tanzania (Serengeti)

Table 4: Cities covered by GLOBALTRACE.
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City Dev Test Train boat bus cycling driving flying hiking train walking Total

alps chamonix 0 0 11 0 0 0 2 0 6 0 3 11
alps zermatt 0 0 18 0 0 0 0 0 18 0 0 18
amsterdam 0 0 52 0 0 0 36 0 0 0 16 52
aosta valley 0 0 80 0 0 39 3 0 35 0 3 80
athens 0 0 39 0 2 0 37 0 0 0 0 39
bangkok 0 4 0 2 1 0 0 1 0 0 0 4
barcelona 0 0 110 0 1 21 4 0 62 12 10 110
bavarian alps 0 0 123 0 0 111 0 0 11 0 1 123
berlin 0 0 29 0 7 10 0 0 1 1 10 29
bhutan 0 3 0 0 0 0 0 0 3 0 0 3
black forest 0 0 127 0 0 7 4 0 75 21 20 127
bohemian switzerland 0 0 75 0 0 1 1 1 71 0 1 75
bolivia 0 0 98 0 0 5 2 0 85 0 6 98
budapest 0 0 21 13 0 1 0 0 2 2 3 21
buenos aires 0 1 0 0 0 0 0 0 0 0 1 1
cambodia 0 1 0 0 0 1 0 0 0 0 0 1
carpathians 0 0 321 2 4 21 29 0 196 24 45 321
chile easter island 37 0 0 1 0 9 0 0 25 0 2 37
copenhagen 0 0 84 0 0 0 0 0 0 0 84 84
corsica gr20 0 0 207 0 0 15 95 0 97 0 0 207
delhi 22 0 0 0 14 0 1 0 0 6 1 22
dolomites 0 0 8 0 0 0 0 0 8 0 0 8
durmitor 0 0 8 0 0 0 0 0 8 0 0 8
fiji islands 0 12 0 0 0 0 4 0 7 0 1 12
helsinki 2 0 0 0 0 0 0 0 0 0 2 2
hong kong 0 32 0 0 0 0 16 2 8 6 0 32
iguazu falls 0 0 12 0 0 0 0 0 12 0 0 12
iran persepolis 0 30 0 0 0 0 26 0 1 0 3 30
istanbul 0 49 0 0 0 0 49 0 0 0 0 49
jordan petra 88 0 0 0 0 85 3 0 0 0 0 88
jotunheimen 0 0 15 0 0 15 0 0 0 0 0 15
julian alps 0 0 12 0 0 3 2 0 6 0 1 12
kenya 0 1 0 0 0 0 1 0 0 0 0 1
kuala lumpur 0 198 0 0 85 1 76 0 3 24 9 198
lake district 0 0 50 0 0 0 0 0 50 0 0 50
lisbon 0 0 16 0 0 0 0 0 5 0 11 16
london 0 0 54 0 2 8 3 0 2 2 37 54
madrid 0 0 21 0 6 0 0 0 2 0 13 21
melbourne 0 18 0 0 0 6 0 0 4 2 6 18
mongolia 0 9 0 0 0 1 4 0 3 0 1 9
montreal 0 0 213 0 1 10 101 0 0 6 95 213
munich 0 0 10 0 0 1 1 1 0 2 5 10
nepal 0 0 258 0 29 1 46 0 177 0 5 258
new york 85 0 0 2 0 33 11 0 0 2 37 85
oslo 1 0 0 0 0 0 0 0 1 0 0 1
paris 0 0 17 0 6 1 1 0 0 2 7 17
peru sacred valley 0 0 107 28 0 1 25 1 36 0 16 107
plitvice lakes 0 0 31 0 0 1 28 0 2 0 0 31
prague 0 0 3 0 0 0 0 0 2 0 1 3
pyrenees 0 0 14 0 0 0 0 0 14 0 0 14
rio de janeiro 0 2 0 0 0 0 0 0 2 0 0 2
rome 0 0 91 0 3 28 43 0 13 1 3 91
san francisco 0 50 0 0 0 0 37 0 3 0 10 50
scottish highlands 0 0 89 0 0 1 0 0 88 0 0 89
scottish isles 0 0 8 0 0 0 0 0 8 0 0 8
seoul 0 0 97 19 4 39 0 0 5 5 25 97
shanghai 60 0 60 0 24 0 12 4 28 10 42 120
singapore 16 0 0 0 12 0 3 0 1 0 0 16
sri lanka 0 0 2 0 0 0 1 0 1 0 0 2
stockholm 0 0 37 12 0 1 7 0 6 0 11 37
swiss jura 0 0 38 0 0 35 0 0 2 0 1 38
sydney 0 39 0 0 0 0 0 0 39 0 0 39
tanzania serengeti 0 1 0 0 0 0 1 0 0 0 0 1
tatra mountains 0 0 40 0 0 1 0 0 32 6 1 40
tokyo 0 0 187 0 0 2 13 3 9 66 94 187
toronto 0 3 0 0 0 0 3 0 0 0 0 3
uzbekistan silk road 0 17 0 0 0 0 14 0 3 0 0 17
vancouver 41 0 0 0 30 0 2 0 9 0 0 41
vienna 0 99 0 0 1 3 0 0 75 3 17 99
vietnam 244 0 0 1 0 0 202 2 13 16 10 244
vosges mountains 0 0 10 0 0 0 0 0 9 0 1 10
warsaw 0 0 27 0 0 1 1 0 18 1 6 27

Total 596 569 2930 80 232 519 950 15 1402 220 677 4095

Table 5: GLOBALTRACE dataset statistics by region and activity type.
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Geographical Region Regions Dev Test Train Total Traces

Europe 39 3 148 1896 2047
East Asia 5 60 41 344 445
Southeast Asia 5 260 203 0 463
South Asia 4 22 3 260 285
Central Asia 1 0 17 0 17
Middle East 2 88 30 0 118
North America 5 126 53 213 392
South America 5 0 3 217 220
Africa 2 0 2 0 2
Oceania 4 37 69 0 106

Total 72 596 569 2930 4095

Table 6: GLOBALTRACE dataset coverage by geographical regions.

C MORE DETAILS IN ROAD NETWORK CONSTRUCTION

We retrieve a road network surrounding the masked segment using the Overpass API (Overpass API,
2025). Given the start and end coordinates for the masked segment, we draw a rectangle around the
straight line between the start and end points. To ensure enough coverage, we also expand this
rectangle on all sides using a gap-aware buffer in meters (150 m for small gap and 500 m for large
gap). This yields a compact box that encloses the segment rather than a large city-wide area. Inside
this bounding box, we then retrieve relevant roads specific to the type of activity:

• Walking/Hiking: footway, pedestrian, path, steps, living street, track, bridleway, road, res-
idential, service, unclassified, tertiary, tertiary link, secondary, secondary link, primary,
primary link, cycleway, trunk, trunk link

• Cycling: cycleway, path, living street, track, residential, service, unclassified, tertiary, ter-
tiary link, secondary, secondary link, primary, primary link

• Driving/Bus: motorway, motorway link, trunk, trunk link, primary, primary link, sec-
ondary, secondary link, tertiary, tertiary link, unclassified, residential, service

• Train: public transport=station, railway=station, railway=subway entrance, pub-
lic transport=platform/stop position.

• Flying/Boat: No specific filtering

An example of a query for walking activity would look like:

Endpoint: https://overpass-api.de/api/interpreter

Request:

[out:json][timeout:30];
(
way
[highway˜"footway|pedestrian|path|steps|living_street|track|bridleway|

road|residential|service|unclassified|tertiary|tertiary_link|
secondary|secondary_link|primary|primary_link|cycleway"]

(48.2080,16.3600,48.2160,16.3800);
);
out geom;

D SAMPLE PROMPTS AND RESPONSES

Path Selection
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Prompt

You are a navigation expert. Create a connected path from start to end point.
Start: [-37.6015900, 145.0244730]
End: [-37.6024230, 145.0274570]
Activity: CYCLING
Distance: 279m

— CONTEXT BEFORE —
- Starting near Equestria Boulevard, continuing along Grandidier Street
- The traveler was heading east before entering the masked segment
- Average speed: 8.3 m/s (steady cycling)

— CONTEXT AFTER —
Route narrative: Traveler continues east and will connect to Landover Road.
Movement: Expected speed steady at ∼8 m/s.
Behavioral interpretation: Still cycling straight, no significant detours.

— START POINT ANALYSIS —
Snapped to: unnamed cycleway (id=1347174722), confidence = 0.98
Bearing at entry: ∼95.7◦ (eastward)
Next candidate node: (node id original=12461706443)

— END POINT ANALYSIS —
Snapped to: Landover Road (id=1155201336), confidence = 1.00
Required approach bearing: ∼180◦

Nearest junction: (node id original=12461663891)

— ROAD NETWORK (excerpt; verbatim) —
{"roads": {
"1347174722": {"type":"cycleway","connects_to":[
{"road_id":"1347175623","intersection_id":"12461706443",
"coords":[-37.601601,145.024567],"bearing_to_dest":109.7}],
"direction":"E"},

"1347175623": {"type":"cycleway","connects_to":[
{"road_id":"1347174722","intersection_id":"12461706443",
"coords":[-37.601601,145.024567],"bearing_to_dest":109.7},
{"road_id":"1347176804","intersection_id":"12461729290",
"coords":[-37.601513,145.024983],"bearing_to_dest":114.9},
{"road_id":"1377168420","intersection_id":"12461729290",
"coords":[-37.601513,145.024983],"bearing_to_dest":114.9}],
"direction":"E"},
...

}}
— TASK —
Choose a logical path from start to end point based on the activity and distance.
Output step-by-step navigation with road names, IDs, and intersections.

— EVALUATION REQUIREMENTS —
1. Path must be physically connected via shared intersections.
2. Max 3 steps (distance = 279m).
3. Each step must include:
• Direction (e.g., east, southeast). • Road name + ID (e.g., cycleway (id=1347175623)).
• Target intersection ID (node id original=XXXX).
4. Prefer “continue straight” over turns.
5. Do not include coordinate lists in step descriptions.

— OUTPUT FORMAT —
REASONING: Justification for path choice.
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STEP-BY-STEP NAVIGATION: Structured steps following schema.

Response

**REASONING:**
The start point is on cycleway (id=1347174722), heading east,
consistent with pre-segment direction (˜95).
The direct continuation is via cycleway (id=1347175623),
then southeast via cycleway (id=1347176650),
leading to the endpoint on Landover Road (id=1155201336).
This minimizes turns and keeps within cycleway infrastructure.

**STEP-BY-STEP NAVIGATION:**

step_1: From start point, travel east along cycleway (id=1347174722)
until reaching intersection with cycleway (id=1347175623)
(node_id_original=12461706443)

step_2: Continue straight east onto cycleway (id=1347175623)
until intersection with cycleway (id=1347176650)
(node_id_original=12461734106)

step_3: Continue southeast onto cycleway (id=1347176650)
until reaching endpoint on Landover Road (id=1155201336)
(node_id_original=12461663891)

**VALIDATION:**
- Step count = 3 (within 3-step limit).
- Each step includes direction, road name + ID, and intersection

anchor.
- All roads are connected via listed node IDs.
- No coordinates included in step descriptions.
- Endpoint matches required destination on Landover Road.

Coordinate Generation
Prompt

**TASK:** Generate coordinates for step 2 from the geometry below.
**STEP 2 DESCRIPTION:** step 2: Continue straight east onto connecting
cycleway (id=1347175623) until intersection with cycleway (id=1347176650)
(node id original=12461729290)
**GEOMETRY (excerpt):**

{
"roads": [
{
"id": 1347175623,
"name": "unnamed",
"geometry": [
[-37.6016014, 145.0245667],
[-37.6016227, 145.0247631],
[-37.6015604, 145.0248218],
[-37.6015206, 145.0248792],
[-37.6015129, 145.0249834]

]
},
{
"id": 1347176650,
"name": "unnamed",
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"geometry": [
[-37.6015257, 145.0250507],
[-37.6015590, 145.0251463],
[-37.6015986, 145.0251966],
[-37.6016346, 145.0252310],
[-37.6016781, 145.0252713]

]
}

],
"intersections": [
{"id": 12461729290, "lat": -37.6015000, "lon": 145.0250000}

]
}

Starting coordinate: [-37.6016000, 145.0246000] (from step 1)
**GENERATE ONLY THE CONTINUATION OF THIS LIST, STARTING WITH A
COMMA:**

Response

step_2: Continue straight east onto connecting cycleway (id
=1347175623)

until intersection with cycleway (id=1347176650) (node_id_original
=12461729290)

- [[-37.6016000, 145.0246000],
[-37.6016014, 145.0245667],
[-37.6016227, 145.0247631],
[-37.6015604, 145.0248218],
[-37.6015206, 145.0248792],
[-37.6015129, 145.0249834],
[-37.6015000, 145.0250000]]

E MODEL DETAILS

Linear Reconstruct the masked segment by connecting the segment’s start and end GPS coordi-
nates with a straight line and sampling evenly along that line.

Linear + HMM Produce a simple, connected candidate polyline via linear interpolation, then snap
it to the road/path network using a standard HMM-based map-matching service. For this step, we
call the OSRM’s HMM-based Map Matching API. The HMM combines (1) emission probabilities:
likelihood of each observed point being near a road candidate (distance-based) and (2) transition
probabilities: likelihood of moving between candidates given road graph connectivity and plausible
travel costs; OSRM encapsulates this logic and returns a most-likely path (Viterbi).

TrajFM We adapt the pre-trained TrajFM to GlobalTrace as a masked coordinate recovery model
by aligning data, projection, and supervision to the task. Concretely, we keep the TrajFM architec-
ture fixed and load pre-trained weights, then project trajectories into metric space using per-group
UTM coordinates with the correct zone. We convert GlobalTrace supervision into the model’s tok-
enized format using a task-specific padder that masks only spatial features at indices flagged by the
dataset’s mask column, and finetune with the following settings:

LLMs
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Hyperparameter Value

Optimizer Adam (weight decay 1× 10−6)
Learning rate 5× 10−5

Epochs 20
Scheduler CosineAnnealingLR (Tmax=20, ηmin=1× 10−6)
Batch size 16
Loss weights spatial=2.0, temporal=0.5, token=0.5
Gradient clipping max norm=1.0
Task/Padder gt mask (masked coordinate recovery)

Table 7: Finetuning hyperparameters for TrajFM

Model Exact Checkpoint Param Size Training Cutoff

GPT-4.1 gpt-4.1 Not disclosed 2024-06-01
GPT-4.1-mini gpt-4.1-mini Not disclosed 2024-06-01
Claude Sonnet-4 anthropic/claude-sonnet-4 Not disclosed 2025-03-01
Meta-Llama 4 (Maverick) meta-llama/llama-4-maverick 400B (17B active) 2024-08-01
DeepSeek v3 deepseek/deepseek-chat-v3 (incl. -0324 variant) 671B (37B active) 2024-07-01
Qwen3-235B qwen/qwen3-235b (variant: qwen/qwen3-235b-a22b-2507) 235B 2024-06-01 (Estimated)
Qwen3-30B qwen/qwen3-30b (variant: qwen/qwen3-30b-a3b-instruct-2507) 30B 2024-06-01 (Estimated)

Table 8: LLM settings used in experiments: checkpoint, parameter size (if known), and training
cutoff date.

F MORE DETAILS ON ABLATION STUDY

RAW ROAD NETWORK

Context

--- RAW ROAD NETWORK DATA ---
Raw Road Network Data (Full OSM JSON):

{
"43981478": {
"id": 43981478,
"name": "Road 43981478",
"type": "unknown",
"geometry": [
[
1.3916361,
103.5465912

],
[
1.3910125,
103.5465948

],
[
1.3899776,
103.5466008

],
... (truncated)

],
"oneway": "no",
"access": null,
"surface": null,
"lanes": null,
"maxspeed": null,
"bridge": null,
"tunnel": null,
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"nodes_osmid": [
5863015808,
8524349683,
7542016752,
7044866205,
6090239253,
7044866215,
7541977250,
7042850022,
1911020654

]
},
"180657476": {
"id": 180657476,
"name": "Road 180657476",
"type": "unknown",
"geometry": [
[
1.382216,
103.5515759

],
[
1.3812584,
103.5530091

]
... (truncated)

],
"oneway": "no",
"access": null,
"surface": null,
"lanes": null,
"maxspeed": null,
"bridge": null,
"tunnel": null,
"nodes_osmid": [
1911020646,
10574515989

]
},
"180657527": {
"id": 180657527,
"name": "Road 180657527",
"type": "unknown",
"geometry": [
[
1.3845596,
103.5479925

],
[
1.382216,
103.5515759

]
... (truncated)

],
"oneway": "no",
"access": null,
"surface": null,
"lanes": null,
"maxspeed": null,
"bridge": null,
"tunnel": null,
"nodes_osmid": [
1911020652,
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1911020646
]

},
"180657531": {
"id": 180657531,
"name": "Road 180657531",
"type": "unknown",
"geometry": [
[
1.3853906,
103.5467324

],
[
1.385056,
103.5472046

]
... (truncated)

],
"oneway": "no",
"access": null,
"surface": null,
"lanes": null,
"maxspeed": null,
"bridge": null,
"tunnel": null,
"nodes_osmid": [
1911020654,
7042850021

]
},
"180657553": {
"id": 180657553,
"name": "Road 180657553",
"type": "unknown",
"geometry": [
[
1.3724152,
103.5431087

],
[
1.3725283,
103.5434894

],
[
1.3726949,
103.5440499

],
... (truncated)

ADJACENT LIST

Context

--- ROAD NETWORK (ADJACENCY LIST) ---
Road Network (Adjacency List with Full Geometry):

Road: Tonnelle Avenue (ID: 60430069, Type: trunk)
Connects to:
-> Road 1350138790 at intersection 11072081884 ([40.7704930,

-74.0434580])
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-> Road 316621099 at intersection 3227567283 ([40.7715490,
-74.0427250])

Full Geometry (50 points): [40.7568214, -74.0543041] -> [40.7571288,
-74.0540013] -> [40.7584890, -74.0525561] -> [... truncated]

Road: Road 1350138790 (ID: 1350138790, Type: service)
Connects to:
-> Road 1192329114 at intersection 12489885821 ([40.7704090,

-74.0432650])
-> Road 1350138779 at intersection 12489885820 ([40.7710770,

-74.0427570])
-> Road 60430069 at intersection 11072081884 ([40.7704930,

-74.0434580])
Full Geometry (8 points): [40.7711525, -74.0429339] -> [40.7711244,

-74.0428670] -> [40.7710768, -74.0427567] -> [... truncated]

Road: Road 1350138779 (ID: 1350138779, Type: footway)
Connects to:
-> Road 1192760824 at intersection 11900950545 ([40.7712240,

-74.0428280])
-> Road 1350138780 at intersection 11900950524 ([40.7709810,

-74.0428550])
-> Road 1350138790 at intersection 12489885820 ([40.7710770,

-74.0427570])
Full Geometry (19 points): [40.7709807, -74.0428549] -> [40.7709897,

-74.0428462] -> [40.7710349, -74.0427908] -> [... truncated]

Road: Road 1350138780 (ID: 1350138780, Type: footway)
Connects to:
-> Road 1192329114 at intersection 11900950521 ([40.7706850,

-74.0430820])
-> Road 1350138779 at intersection 11900950524 ([40.7709810,

-74.0428550])
Full Geometry (4 points): [40.7706848, -74.0430825] -> [40.7706918,

-74.0430771] -> [40.7709734, -74.0428609] -> [... truncated]

Road: Road 1181351412 (ID: 1181351412, Type: proposed)
Connects to:
-> Road 1181351410 at intersection 10970996238 ([40.7708440,

-74.0429640])
-> Road 659183610 at intersection 10970996241 ([40.7704510,

-74.0423890])
Full Geometry (3 points): [40.7708444, -74.0429640] -> [40.7706320,

-74.0426479] -> [40.7704509, -74.0423895]

...

TOPOLOGY ONLY

Context

--- ROAD NETWORK (TOPOLOGY ONLY) ---
Road Network (Topology Only - No Geometry):

Road: Tonnelle Avenue (ID: 60430069, Type: trunk)
Connects to:
-> Road 1192329085 at intersection 11068635760
-> Road 1350138790 at intersection 11072081884
-> Road 371374395 at intersection 3749476730
-> Road 371374396 at intersection 3749476733
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Road: Tonnelle Avenue (ID: 316621100, Type: trunk)
Connects to:
-> Road 1192329085 at intersection 11068635761
-> Road 1192329088 at intersection 11068635771

Road: Road 371374396 (ID: 371374396, Type: service)
Connects to:
-> Road 1192329113 at intersection 11068635986
-> Road 371374397 at intersection 3749476735
-> Road 371374471 at intersection 3749472151
-> Road 60430069 at intersection 3749476733
-> Road 895552436 at intersection 3749476731

Road: Road 1350138790 (ID: 1350138790, Type: service)
Connects to:
-> Road 1192329114 at intersection 12489885821
-> Road 60430069 at intersection 11072081884

Road: Road 1181351413 (ID: 1181351413, Type: proposed)
Connects to:
-> Road 1181351411 at intersection 10970996240
-> Road 1181351418 at intersection 10970996242

Road: Road 1181351412 (ID: 1181351412, Type: proposed)
Connects to:
-> Road 1181351410 at intersection 10970996238
-> Road 659183610 at intersection 10970996241

...

G MORE DETAILS ON STAGE-BASED ANALYSIS METRICS

Connectivity We first extract all mentions of road ID from the generated step-by-step navigation
(in order). Then using this ordered list, we will cross-check each consecutive road ID pair against
the provided road network (already transformed into topology-only format with explicit connection
defined). Then the Connectivity is just the percentage of pairs that are connected out of the total
number of pairs.

Network adherence Also extract all mentions of road ID from the generated step-by-step naviga-
tion. Using this list, we check against the provided road network to see if the IDs are actually exist.
The score is just the percentage of valid road ID out of all the generated road IDs

Geometry adherence Similar to road network adherence, but this metric compare whether the
generate coordinates are actually presented in the provided road geometry. The score is then just the
percentage of valid coordinates out of all the generated coordinates

Bearing For each LLM-produced navigation step, we extract the intended cardinal direction (e.g.,
north, southeast) and map it to a canonical expected bearing in degrees: N=0, NE=45, E=90,
SE=135, S=180, SW=225, W=270, NW=315. We then compute the actual bearing between the
step’s start point and end point coordinates and normalize it to [0, 360). The per-step bearing
error is the circular angular distance between expected and actual: error = min(|expected −
actual|, 360− |expected− actual|).
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Method PoT F1 @10m (%) MAE F1 (%) PoT GT→REC (%) PoT REC→GT (%) MAE GT→REC (%) MAE REC→GT (%)
GPT-4.1 63.3 5.4 79.0 59.3 5.1 25.9
Claude-Sonnet-4 58.2 6.2 76.9 53.5 5.5 33.0
GPT-4.1-mini 57.0 5.9 73.1 54.0 5.7 28.3
DeepSeek 55.8 6.1 75.5 51.3 5.5 32.5
Qwen-3-235B 52.4 5.2 72.7 55.4 6.7 33.7
Qwen-3-30B 51.9 6.2 73.1 50.3 6.4 36.1
Llama-4-Maverick 48.7 5.6 80.7 40.9 4.3 40.9

Table 9: Combined metrics: F1 (symmetric) and directional (GT→REC, REC→GT) on test set.

Method PoT GT→REC (%) PoT REC→GT (%) MAE GT→REC (%) MAE REC→GT (%)
Large Language Models
GPT-4.1 88.7 62.4 6.2 37.6
Claude-Sonnet-4 87.1 56.4 6.7 47.1
GPT-4.1-mini 85.4 58.0 6.6 38.2
DeepSeek 87.3 55.0 6.3 44.8
Qwen-3-235B 83.0 58.0 8.1 48.3
Qwen-3-30B 86.1 53.8 7.4 50.4
Llama-4-Maverick 90.8 42.9 4.8 53.3

Table 10: Directional metrics: Small gap.

Method PoT GT→REC (%) PoT REC→GT (%) MAE GT→REC (%) MAE REC→GT (%)
GPT-4.1 69.4 56.3 4.0 14.3
Claude-Sonnet-4 66.8 50.6 4.3 19.0
Qwen-3-235B 62.1 52.6 5.3 18.6
DeepSeek 63.6 47.7 4.7 20.2
GPT-4.1-mini 60.9 50.0 4.7 18.4
Llama-4-Maverick 70.8 38.8 3.8 28.7
Qwen-3-30B 60.1 46.8 5.5 21.6

Table 11: Directional metrics: Large gap.

H DETAILED RESULTS

H.1 RESULTS FOR EACH RECONSTRUCTION DIRECTION

A clear pattern shown in Table 9 to Table 11 is that many LLMs show high GT→REC and much
lower REC→GT (e.g., good coverage of the ground-truth path but poor precision). Interpreting the
directions: GT→REC measures recall (how much of the GT path is covered by the reconstruction),
while REC→GT measures precision (how much of the reconstructed path lies on or near the GT).
So a low REC→GT alongside a high GT→REC typically means the model covers most of the true
route but also adds extra, off-route geometry—spurs, loops, or side streets—so a large share of
reconstructed points are not close to the GT.

H.2 ACTIVITY RESULTS

We show the activite bias results in Table 12.

Model boat bus cycling driving flying hiking train walking

GPT-4.1 43.4 66.9 68.6 66.3 40.5 59.9 53.6 61.3
GPT-4.1-mini 43.4 57.3 57.4 59.7 21.4 54.0 54.4 57.5
Claude-4-Sonnet 31.6 64.7 55.4 60.8 47.6 52.5 55.5 56.7
Llama-4-Maverick 25.8 54.0 52.7 47.1 13.2 47.4 48.7 51.9
DeepSeek-V3 35.1 61.0 61.1 57.6 37.0 51.6 56.5 51.1
Qwen3-235B 33.1 58.2 55.2 53.7 26.8 47.8 52.2 51.5
Qwen3-30B 36.5 56.1 47.3 55.3 13.9 47.4 49.9 48.6

Table 12: Activity bias results: mean PoT (%) by model and activity

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

H.3 REGIONAL RESULTS

We show the regional bias results in Table 13.

Model Africa Central Asia East Asia Europe Middle East North America Oceania South America South Asia Southeast Asia

GPT-4.1 33.1 50.2 62.0 65.2 35.7 67.4 52.5 47.4 81.1 67.4
GPT-4.1-mini 15.1 46.4 53.6 61.2 32.7 64.5 48.7 34.2 42.4 58.2
Claude-4-Sonnet 23.3 42.9 54.3 58.3 41.1 65.7 44.2 40.9 26.2 64.5
Llama-4-Maverick 14.2 46.4 45.3 50.1 29.9 48.8 44.2 39.9 24.6 51.7
DeepSeek-V3 10.9 46.7 51.7 56.4 27.9 64.6 45.8 30.9 30.1 60.4
Qwen3-235B 12.7 38.4 49.8 51.3 31.2 61.8 42.6 30.4 26.2 57.7
Qwen3-30B 16.9 44.6 40.8 54.0 33.6 56.1 41.3 29.0 28.1 57.5

Table 13: Regional bias results: mean PoT (%) by model and region.

I GOOGLE MAPS ERRORS

The mismatch between PoT and MAE also reveals some interesting insights. For linear and our two-
stage LLM-based solutions, we notice that the MAE scores are strong, while Google Maps clearly
favors PoT.1 We notice that Google Maps often takes realistic detours to adhere to road rules, which
may not match well for free-form movements like walking or hiking. Figure 6 shows an example.
In Figure 6a, Google Maps is constrained to follow the road direction (the black line), achieving a
lower MAE to the user trajectory (dark green), which takes a parallel segment that run in the other
direction. This shows PoT is more robust to evaluate those cases as the two trajectories are within
the same corridor. Also, in areas without sufficient road network data, Google Maps may generate a
different trajectory (Figure 6b, or may not be able to generate any route at all (see Appendix K)

(a) (b)

Figure 6: Comparison of Google Maps (brown) vs. our system in walking activity. Our system
(light green, orange) follows the ground truth (dark green) trajectories closely in both cases

J CUTOFF ANALYSIS

LLMs training corpora contains a huge amount of geolocation data (Ilyankou et al., 2024), raising a
concern of data leakage given their strong performance. We observe the performance trend before
vs. cutoff date for each model. To facilitate a fair comparison, we perform stratification to get a
balance distribution in term of on activity types, regions, and masking strategies for the pre- and
post-cutoff sets. Overall, we observe no significant different between the two periods (Figure 7),
where most models in fact have slightly better performance post cutoff date, showing that LLMs do
posses geospatial reasoning capabilities rather than just memorization. Regardless, given that all the
traces are from 2024 onward, it is unlikely that data contamination is a concern as it has been shown
that the LLMs have a much more distant effective knowledge cutoff date compared to the reported
date (Cheng et al., 2024).

1Also the low value of MAE can be misleading as it is normalized by the masked segment length. For
example, a 5% error for a 2 km masked segment is 100 m, which is actually quite high, while a 15% error of a
200 m masked segment is just 30 m.
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Figure 7: Reconstruction performance (PoT) of pre- vs. post-cutoff date for each model. ns denotes
a non-significance change based on an independent t-test. Given a more recent cutoff date, Claude-
4-Sonnet was excluded as we cannot find enough samples for post-cutoff analysis.

K PREFERENCE DEMO

Prompt

PREFERENCE-AWARE CONTEXT (for planning):

USER PROFILE: Urban Culinary Corridor
Description: Food/market/shopping corridor via pleasant pedestrian

streets

ROUTING PRIORITIES (ordered):
- proximity to food_and_drink, markets, shopping, pedestrian_areas
- scenic beauty and interesting views
- safety and pedestrian infrastructure

ROUTE LENGTH + EFFORT CONSTRAINTS:
- Direct distance: ˜1713 m
- Target total length: 1628-2485 m (hard max: 2485 m)
- Maintain balance between exploration and effort: avoid unnecessary

detours, backtracking, or loops
- Prefer corridor-aligned POIs and short deviations only when

warranted by preferences
- Do not exceed 10 steps; typical is 3-7

ANCHORING CONSTRAINTS:
- step_1 MUST begin on a road within 60 m of the start coordinate.
* Prefer starting on: Unnamed road (id=721761316), distance=3m

- The final step MUST end within 60 m of the destination.
* Prefer finishing on: Victoria Street (id=1153395320), distance=3m

- Rules: Do not start step_1 on any road farther than 100 m from the
start.

Do not overshoot the destination; ensure the final coordinates end
exactly at the destination point.

Start: [-37.8179000, 144.9691000]
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End: [-37.8060000, 144.9567000]
Activity: WALKING

--- ROAD NETWORK ---
"17035879":{"id":17035879,"name":"McIntyre Alley","type":"service","

connects_to":[{"road_id":17035877,"intersection_id":176693549}],"
nearby_pois":[{"id":"593475843","name":"CrossCulture Church of
Christ","category":"landmarks"},{"id":"2384426956","name":"The Big
Clock","category":"landmarks"},{"id":"11867545682","name":"City

on a Hill Melbourne","category":"landmarks"}]},"17035193":{"id
":17035193,"name":"Driver Lane","type":"service","connects_to":[{"
road_id":291837736,"intersection_id":596909576},{"road_id
":715211398,"intersection_id":6722209690},{"road_id":715211389,"
intersection_id":596909581}]},"22930862":{"id":22930862,"name":"
Pender Place","type":"service","connects_to":[{"road_id
":715211379,"intersection_id":247018765},{"road_id":715211374,"
intersection_id":6722197739}],"nearby_pois":[{"id":"2217921373","
name":"Anglican Chinese Mission of the Epiphany","category":"
landmarks"}]},

...

Figure 8: “First time tourist” routes comparison. Our systems route consists of steps with different
colors, while Google Maps failed to suggest a valid pedestrian route.

First-time Tourist Maximizes novel POIs coverage within distance/time; strings landmarks/mar-
kets/pedestrian areas; balances detours. For this scenario, we select a route between two popular
tourist location in Seoul: From Myeongdong Shopping Street to N Seoul Tower. Google Maps was
not able to suggest a walking route due to unavailable map data in this region while our system
successfully construct a route going route various landmarks and popular tourist areas such as along
Myeongdong Shopping Street, Underground shopping centre, Namsan Park.

Scenic Cyclist Continuous rivers/lakes/bay boardwalks and promenades; avoids trunk roads. For
this scenario, we select a trace in Sydney CBD, where there are a combination of waterfronts and
gardens. Our system route start along the waterfront, similar to Google Maps, but then make a
detour through several cycleways, and connect through the Royal Botanic Garden before moving
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Figure 9: “Scenic cyclist” routes comparison. Our systems route consists of steps with different
colors. The Google Maps route is in black.

toward the destination. Though this show that the generated route do follow user preference, our
system output is not necessarily better compared to Google Maps.

L DISCLOSE OF LLM USAGE

We use GPT-5 through the web interface (https://chatgpt.com/) to aid in the writing of
this paper, including generating latex commands to improve paper formatting and polish writing
(grammar, collocation, rephrasing).
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