Understanding the Geospatial Reasoning Capabilities of LLMs: A Trajectory Recovery Perspective

Anonymous authorsPaper under double-blind review

ABSTRACT

We explore the geospatial reasoning capabilities of Large Language Models (LLMs), specifically, whether LLMs can read road network maps and perform navigation. We frame trajectory recovery as a proxy task, which requires models to reconstruct masked GPS traces, and introduce GLOBALTRACE, a dataset with over 4,000 real-world trajectories across diverse regions and transportation modes. Using road network as context, our prompting framework enables LLMs to generate valid paths without accessing any external navigation tools. Experiments show that LLMs outperform off-the-shelf baselines and specialized trajectory recovery models, with strong zero-shot generalization. Fine-grained analysis shows that LLMs have strong comprehension of the road network and coordinate systems, but also pose systematic biases with respect to regions and transportation modes. Finally, we demonstrate how LLMs can enhance navigation experiences by reasoning over maps in flexible ways to incorporate user preferences.

1 Introduction

Large Language Models (LLMs) are increasingly recognized as general-purpose systems, showing strong performance across domains ranging from mathematics and coding to vision and robotics. An emerging yet underexplored question is whether these models possess geospatial understanding, the ability to reason about maps, paths, and spatial relationships. Such capabilities are fundamental to many real-world applications, e.g., autonomous vehicle navigation, logistics, and urban planning. While prior work has studied LLMs in contexts such as geographic knowledge retrieval (Manvi et al., 2024a;b) and map-based multiple-choice question answering (Dihan et al., 2025), the ability of LLMs to read road networks and plan paths has not been systematically evaluated.

We investigate whether LLMs can perform navigation through the trajectory recovery task: reconstructing masked segments of GPS traces from the road network context, to bypass the restriction of relying on shortest path-type of ground truth which may not reflect human navigation pattern in practice (Golledge, 1995; Duckham & Kulik, 2003). To facilitate this evaluation, we introduce GLOBALTRACE, a dataset of over 4,000 real-world trajectories spanning multiple continents and diverse trans-

Figure 1: An example of the trajectory recovery task of a sample in GLOBAL-TRACE. The masked segment to recover is in green, which is part of a trajectory shown in blue.

portation modes, collected from public traces on OpenStreetMap (OpenStreetMap contributors, 2017). Unlike existing datasets, GLOBALTRACE covers multiple activities, i.e., transportation modes (e.g., driving, cycling, walking, and hiking), and geographic regions, enabling a comprehensive evaluation of model generalization. Our dataset is framed in away that is harder than the traditional point-wise trajectory recovery task (Newson & Krumm, 2009; Song et al., 2017; Si et al.,

2024), and closer to the higher-level navigation problem. As Figure 1 shows, to successfully reconstruct a masked segment of a trajectory, a model must be able to (1) understand the context of travel (e.g., mode of transportation, speed, and direction) as well as the constraints of the road network (e.g., one-way road and road connectivity) to select an appropriate route and (2) generate smooth coordinates following the route.

Traditionally, the task of trajectory recovery is tackled using either probabilistic models and mapmatching techniques (Newson & Krumm, 2009; Huang et al., 2018; Yin et al., 2018), such as Hidden Markov Models (HMM), or interpolation heuristics (Zheng et al., 2008), to reconstruct missing points from noisy or sparse GPS traces. While effective in constrained settings, these approaches are limited in capturing long-range dependencies, or adapting to complex moving patterns. Following the pre-training trend after Transformer (Vaswani et al., 2017) is introduced, there is also effort to build foundation trajectory models (Liang et al., 2025; Lin et al., 2024; Si et al., 2024; Yu et al., 2025b) to encode geospatial knowledge from large amount of training data. This approach relies on training using specialized in-domain trajectory data and struggles to generalize to unseen regions.

To address these issues, we explore the generalization capability of LLMs and present a prompting-based framework that allows LLMs to reconstruct valid trajectories without reliance on external navigation tools. Our system reasons over the available road network data to perform reconstruction without the need of additional in-domain training. Our experiments compare LLMs against both off-the-shelf navigation systems and specialized trajectory recovery models. Results show that state-of-the-art LLMs achieve superior performance, with strong zero-shot generalization across regions and activity types. Fine-grained analysis highlights their ability to plan over complex road networks, adhere to geometric constraints, and generate realistic coordinates, while ablation studies reveal that compact topological representations with directional cues are the most effective input format.

This combination of geospatial reasoning with LLMs' semantic strengths to understand flexible user queries opens new opportunities for navigation. For example, beyond recovering trajectories, an LLM could generate a route that is not only efficient but also tailored to a user's preferences, such as scenic views, safety, or avoiding noisy streets—by integrating contextual knowledge already embedded in the model. Such preference-aware navigation lies beyond the scope of traditional systems, but emerges naturally when map reasoning is combined with LLMs' flexible language and reasoning capabilities.

Our contributions are threefold:

- We introduce **GLOBALTRACE**, a benchmark of over 4,000 real-world trajectories across regions and transportation modes to benchmark models' geospatial reasoning capabilities.
- We propose a prompting-based framework that elicits LLMs' capability to perform trajectory recovery directly from the road network context, without external navigation tools.
- We provide extensive evaluation and analysis, showing that LLMs outperform specialized trajectory recovery models, generalize zero-shot, exhibit systematic regional and activity biases, and can serve as a foundation for preference-based navigation. We release the reproducible code for the experiment and our system together with the GLOBALTRACE dataset at https://anonymous.4open.science/r/llm_traj_rec-5F5B/.

2 RELATED WORK

We covered a summary of existing works on trajectory recovery in the last section. Below, we outline the literature that studies the geospatial understanding capabilities of LLMs. A full discussion on the related works is included in Appendix A.

Recent studies have probed whether large language models possess an implicit grasp of geographic space and spatial reasoning. Gurnee & Tegmark (2024) show that LLMs are able to map coordinates to corresponding regions. Manvi et al. (2024b) show that LLMs embed substantial geospatial knowledge (e.g., population density and mean income), but simply feeding geographic coordinates into prompts yields poor results on those questions. The authors augment coordinate inputs with auxiliary map data (from OpenStreetMap), such as point-of-interest (POIs) around the coordinates, and achieve large improvement over naive baselines. Manvi et al. (2024a) further extend this analysis, showing that LLMs exhibit systematic geographic biases (e.g., against lower-socioeconomic status

regions). MapEval (Dihan et al., 2025) is a benchmark of 700 multiple-choice, map-grounded questions (textual/API/visual) across 180 cities and 54 countries. Across 30 models tested, none exceeds 67% accuracy and all lag behind human performance, with particular difficulties in distance/direction inference, route planning, and visual map understanding. Unlike previous task formulations of knowledge extraction, bias diagnostic, and multiple-choice question answering, we tackle trajectory recovery as a path reconstruction problem and investigate whether general-purpose LLMs can perform this in a zero-shot manner, without in-domain pretraining or extra supervision.

3 GLOBALTRACE

To enable comprehensive benchmarking, we curate a diverse dataset named GLOBALTRACE covering multiple modes of transportation and geographic regions. The dataset is derived from publicly available user traces on OpenStreetMap, collected via its official API (Overpass API, 2025) across a predefined set of regions and cities (detailed in Appendix B). As these traces are voluntarily shared by contributors and contain no personally identifiable information (PII), their use raises no privacy concerns. We further constrain all trajectories to lie within a target length range of 500 m to 30,000 m to provide sufficient context for meaningful reconstruction. To lessen the risk of data contamination, we only consider traces from 2024 onward. Each trace is annotated with an activity type (i.e., mode of transportation) using keyword matching over the trace name and description, with an LLM-based classifier serving as a fallback to allow semantic-based mapping and for cases such as non-English text. For every trace, we generate two masked variants by masking consecutive points: one with a small gap and another with a large gap, providing different difficulty levels. To facilitate different experiment settings, we partition the dataset into training, development, and test splits, stratified to balance both activity types and regional coverage. We provide the geographic coverage, activity type distribution, and route length statistics of GLOBALTRACE in Figure 2.

Problem Statement Given a partial trajectory $T = \langle p_1, p_2, \dots, p_{s-1}, p_s, p_e, p_{e+1}, \dots, p_{|T|} \rangle$, where each point p_i is represented by its coordinates (latitude and longitude), and there is a consecutive segment $G = \langle p_1^*, p_2^*, \dots, p_{|G|}^* \rangle$ between p_s and p_e that is missing (i.e., masked), our masked trajectory reconstruction task aims to generate a series of points $R = \langle \hat{p}_1, \hat{p}_2, \dots, \hat{p}_{|R|} \rangle$ that minimizes the deviation of R from G. In Section 5, we will detail how to measure the deviation.

Our masked trajectory reconstruction task departs significantly from two common setups in the literature. First, it is not a map-matching problem (Yin et al., 2018; Ren et al., 2021) where the goal is to align noisy or low-quality GPS points to the underlying road network. In our problem, the coordinates to be recovered (i.e., G) are entirely withheld rather than available in degraded form. Second, our trajectory reconstruction problem is more challenging than point-wise recovery tasks (Si et al., 2024; Zhu et al., 2024), where single (or a few) missing points are inferred from its immediate neighbors. Instead, we remove a contiguous segment of the trajectory, spanning hundreds to thousands of meters. A model must therefore reason over global context (movement context before and after the gap, activity type, and road network topology) to generate coherent continuation. This long-horizon prediction makes our problem substantially more challenging, and better reflects the complexity of real-world mobility data.

	Mas	sked (k	km)	Full trajectory (km)		
Strategy	Mean	Min	Max	Mean	Min	Max
Small gap Large gap	0.3 1.8	0.2 0.5	0.5 2.9	8.6 10.2	0.5 1.1	29.9 29.9

Activity	Dev	Test	Train	Total
Hiking	63	151	1188	1402
Driving	228	231	491	950
Walking	73	48	556	677
Cycling	127	12	380	519
Bus	68	87	77	232
Train	29	35	156	220
Boat	4	2	74	80
Flying	4	3	8	15
Total	596	569	2930	4095

Figure 2: GLOBALTRACE dataset overview: (a) geographic coverage and trajectory-length statistics, (b) activity type distribution.

Figure 3: Two-stage LLM trajectory reconstruction.

4 METHODS

Traditional Transformer-based methods in trajectory reconstruction require a large amount of training data (e.g., 2.4M trajectories (Zhu et al., 2024)). Moreover, such models fail to generalize beyond the region covered by their training data (typically just a city). By contrast, we propose a framework that enables LLMs to perform navigation-style reasoning without relying on external routing engines or domain-specific training.

A naive solution is to prompt an LLM with the partial trajectory to be recovered, T, and the road network context of the region covering T. Empirically, we find that this naive solution fails to elicit the geospatial reasoning capabilities of LLMs, due to a large amount of unorganized data being fed to the LLM. We detail such alternative solutions in Section 6.2.

To elicit the geospatial reasoning capabilities of LLMs, we adopt a two-stage, schema-constrained design: (1) **Path selection** over road and intersection IDs; and (2) **Coordinate generation** grounded by road geometries, as illustrated in Figure 3. This two-stage design helps evaluates whether LLMs can reconstruct trajectories by reasoning over road network topology rather than delegating to external navigation engines.

Our two-stage approach decouples the two distinct goals and allow fine-grained qualitative analysis: in the first stage, we exploit LLMs' strong reasoning abilities to generate a verbose plan, while in the second stage, we instruct the models to strictly adhere to the plan by grounding against road geometries to generate precise coordinates (i.e., points in R). Unlike prior work that either performs map-matching from noisy GPS points or predicts a single missing location given surrounding context, our formulation demands recovering an entire long masked segment of trajectory. This setup is significantly harder, as the model must maintain consistency across multiple steps, align with motion summaries, and adhere to road network constraints simultaneously.

Stage 1: Path Selection This stage evaluates the ability of LLMs to read the road network surrounding the masked segment and perform planning to craft an appropriate path connecting the start and end points p_s and p_e with respect to the trajectory context. We provide the following context to an LLM: (1) Masked segment information: coordinates of p_s and p_e , activity type, and masked segment length. (2) Trajectory context summaries: timing, speed, and heading narratives before and after the masked segment, which provide more context to help models understand the movement. (3) Road network slice: a road network enclosed by a bounding box surrounding the masked segment. Each road in the road network has ID, name, type, cardinal direction, and the list of roads that it connects to along with the corresponding intersection ID. coordinates, and precomputed bearing to destination. We detailed the road network construction in Appendix C and compare different ways to represent it in our ablation study (Section 6.2). We enforce further requirements for the navigation steps to make sure that LLMs produce unambiguous description with clear anchors (full prompt in Appendix D).

Stage 2: Coordinate Generation Once a valid step-by-step plan is produced, the second stage requests explicit coordinates (points in R) for each step. We perform this iteratively for each step, grounded against the road network to ensure models generate valid coordinates that adhere to the roads. To be able to successfully generate coordinates, the LLM must (1) be able to align the

generation to the provided road geometries, and (2) generate coordinates in the order that respect the moving direction in the generated step descriptions. Please refer to Appendix D for an example of the prompt and response.

EXPERIMENTAL SETUP

216

217

218

219 220

221 222

223

224 225

226

229

230

231

232

237 238

239 240 241

242

243

244

245

246

247 248

249

250

253

254 255

256

257

258

259

260

261

262

264

266

267 268

269

Models Evaluated We consider three classes of models to benchmark against GLOBALTRACE. The settings and parameters are detailed in Appendix E.

- 1. **Baselines.** Traditional baselines for trajectory recovery. We consider: Linear interpolation ("Linear"), and Linear interpolation + HMM map-matching ("Liner+HMM"), following Yu et al. (2025b). We also consider a popular navigation system Google Maps. Although not designed for trajectory recovery, we convert the path generated by Google Maps Direction API (as polylines) into coordinates by decoding the Google's Encoded Polyline Algorithm Format (Google Maps Platform) for comparison with other methods.
- 2. **Pre-trained models.** We compare with a strong pre-trained Transformer model for trajectory recovery: TrajFM (Lin et al., 2024). The model was pre-trained using the Didi dataset (Didi-Chuxing, 2018) containing vehicle trajectories in two cities in China. We fine-tuned the model on our GLOBALTRACE training set.
- 3. **LLM models.** We consider strong models from different model families, including three proprietary models: GPT-4.1, GPT-4.1-mini, and Claude 4 Sonnet, and four open-weight models: Deepseek V3, Llama 4 Maverick, Qwen3-235B, and Qwen3-30B.

Metrics We focus on two evaluation metrics defined based on $G = \langle p_1^*, p_2^*, \dots, p_{|G|}^* \rangle$, the ground-truth points of a masked segment, and $R = \langle \hat{p}_1, \hat{p}_2, \dots, \hat{p}_{|R|} \rangle$, the reconstructed points.

Mean Absolute Error (MAE; ↓), a commonly used metric in the trajectory recovery literature (Zhu et al., 2024), measures the average distance deviation (the the Haversine distance, denoted by $d(\cdot, \cdot)$) between the original trajectory points and their respective closest points on the reconstructed trajectory, normalized by the total masked segment length L_G .

$$MAE_{G\to R} = \frac{1}{|G| \cdot L_G} \sum_{i=1}^{|G|} \min_{j=1}^{|R|} d(p_i^*, \hat{p}_j) \cdot 100.$$
 (1)

To penalize spurious, off-route reconstruction, we also compute $MAE_{R\to G}$ that measures the average distance deviation between the reconstructed trajectory points and their respective closest points on the ground-truth trajectory, expressed as a percentage of the reconstructed trajectory length L_R . We combine $MAE_{G \to R}$ and $MAE_{R \to G}$ to calculate the harmonic mean.

$$MAE_{F1} = \frac{2 \cdot MAE_{G \to R} \cdot MAE_{R \to G}}{MAE_{G \to R} + MAE_{R \to G}}.$$
 (2)

While commonly used, MAE is sub-optimal to measure the path reasoning capabilities of LLMs as it is a point-to-point metric, which can be affected when we have different point density between the ground truth and the generated trajectory. To address this, we propose a point-to-segment metric.

Point-on-Trajectory (PoT; \uparrow) measures the percentage of original trajectory points that fall within τ $(\tau = 10)$ by default) meters of the reconstructed trajectory. For each ground-truth point, we calculate the minimum distance to the reconstructed trajectory (considering all segments between any two consecutive points). We count the number of points within the τ -meter tolerance. Higher PoT values indicate better ground-truth route coverage. This metric is less sensitive to minor positional errors, focuses on overall route adherence, and penalizes reconstructions that miss significant portions of the original trajectory.

$$PoT_{G \to R} = \frac{1}{|G|} \sum_{i=1}^{|G|} \mathbb{I}\left(\min_{j=1}^{|R|-1} d_{seg}(p_i^*, \overline{\hat{p}_j, \hat{p}_{j+1}}) \le \tau\right) \cdot 100.$$
 (3)

Here, $\mathbb{I}(\cdot)$ is the indicator function, and $d_{\text{seg}}(\cdot,\cdot)$ is the distance from a point to a line segment. Like before, we also compute $PoT_{R\to G}$ that measures the percentage of reconstructed trajectory points

that fall within τ meters of the ground-truth trajectory. The harmonic mean, which we call the symmetric coverage score, is then calculated as:

6 MAIN FINDINGS

6.1 RQ1: Can LLMs Perform Trajectory Recovery?

Table 1 reports the trajectory recovery results on the GLOBALTRACE test set. Overall, we can see that, LLMs achieve strong results, on par with Google Maps, which is the state-of-the-art (SOTA) navigation system. Even Google Maps has a relatively low results for this task, showing that actual user trajectories do not always follow the optimal paths recommended by professional navigation service, especially for exploration type activities such as walking or hiking (cf. Figure 6b).

 $\mathrm{PoT}_{F1} = \frac{2 \cdot \mathrm{PoT}_{G \to R} \cdot \mathrm{PoT}_{R \to G}}{\mathrm{PoT}_{G \to R} + \mathrm{PoT}_{R \to G}}.$

(4)

Results of different LLMs tend to fall in similar range of 50-60%, with GPT-4.1 producing the best results, followed by Claude-4-Sonnet. The two smaller variants, GPT-4.1-mini and Qwen-3-30B, have worse results compared to their larger counterparts, indicating that geospatial reasoning capability emerges with scale. The pre-trained model, TrajFM, on the other hand, performs the worst, and most of the time it just draws a straight line in small gap cases, or otherwise generate coordinates in a completely different region. This is expected as we ensure no overlap between the regions in the train/development and the test sets. It shows that generalizing to an unseen cities/region is not a trivial fine-tuning objective and would likely require large amount of training data across different regions in the world. We discuss more on the mismatch between the two metrics and show cases where LLMs perform better than Google Maps in Appendix I, as well as the detailed results for each reconstruction direction ($G \to T$ and $T \to G$) in Appendix H.1.

	Method	Small gap		Lar	ge gap	Overall	
		$\overline{\mathbf{PoT}_{F1}}\uparrow$	$\overline{\mathbf{MAE}_{F1}\downarrow}$	$\overline{\mathbf{PoT}_{F1}}\uparrow$	$\mathbf{MAE}_{F1} \downarrow$	$PoT_{F1}\uparrow$	$\mathbf{MAE}_{F1} \downarrow$
	Google Maps	69.9	15.5	60.0	8.0	65.0	11.8
Baseline	Linear	65.7	4.2	25.0	5.1	45.4	<u>4.7</u>
	Linear+HMM	63.2	<u>5.3</u>	25.9	5.0	44.9	5.2
Pre-trained	TrajFM	23.6	46.5	10.2	59.3	15.3	50.5
	GPT-4.1	68.4	7.1	58.1	3.8	63.3	5.4
	GPT-4.1-mini	63.7	7.3	50.2	4.4	57.0	5.9
	Claude-Sonnet-4	63.1	8.0	53.3	4.4	58.2	6.2
LLM	Llama-4-Maverick	53.0	7.0	44.5	4.2	48.7	5.6
	DeepSeek-V3	61.7	7.7	49.8	4.5	55.8	6.1
	Qwen-3-235B	57.2	6.6	47.4	3.7	52.4	5.2
	Qwen-3-30B	58.6	7.6	45.2	4.7	51.9	6.2

Table 1: Reconstruction performance on the GLOBALTRACE test set. Best scores are in **bold**, second-best are <u>underlined</u>.

Stage-Based Analysis As our method consists of two stages, we also perform analyses for each stage to assess their output quality. For path finding, we measure the **path connectivity**, i.e., whether the generated step-by-step navigation can form a valid path connecting the start and end points of the masked trajectory. We extract road segments from the generated step-by-step navigation and cross-check them against the road network graph to verify if all the elements are connected. As shown in Table 2, all tested LLMs show above average scores, with GPT-4.1 being the strongest model (i.e., all road segments in the generated path are connected for 76.2% of the test instances), and Qwen-3-30B the weakest.

We also report the **road network adherence** ("Net. adh.") score, which measures the proportion of the generated roads IDs and intersection IDs strictly presented in the road network. The scores for all LLMs tested are almost perfect, showing almost zero hallucination in generating road IDs and intersection IDs adhering to the provided road network. The **average number of steps** ("Avg. # steps")

325 326

327 328 330

339 340 341

342

337 338

348 349 350

347

351 352 353

360 361 362

363

364

358 359

373 374

375 376

377

are between 3 and 5 for most models, while the average number of gaps ("Avg. # gaps") longer than 200 m (which is considered a large gap) between steps is below 0.2, showing smooth transition between navigation steps. These results show that LLMs pose strong path finding capabilities. They can plan and reason over complex and large road network graphs to find valid paths.

For coordinate generation, we evaluate whether the generated coordinates for each step are consistent with the step description. This includes **geometry adherence** (percentage of the generated coordinates presented in the road geometry, "Geo. adh."), and bearing error (how far the directions of the generated coordinates deviate from the step descriptions, "Bearing"). To determine the direction of the coordinates for each step, we calculate the bearing using the start and end points for the step, then measure the error with respect to the direction (north, east, south, or west) in the step description. The bearing errors of all models are in the acceptable quadrant (i.e., $< 90^{\circ}$), with the Qwen and DeepSeek models having slightly larger deviation. The coordinate generation analysis demonstrates LLMs' strong awareness of the GPS coordinate systems, i.e., the models can correctly generate coordinates following the correct direction of the selected road segments.

Overall, the fine-grained quality metrics have high correlation with the overall trajectory recovery performance, i.e., the models score consistently higher (or lower) for both evaluations.

		Path Findir	Coordinate G	Seneration		
Model	Connectivity (%) ↑	Net. adh. (%) ↑	Avg. # gaps ↓	Avg. # steps	Geo. adh. (%)↑	Bearing (°)↓
GPT-4.1	76.2	99.8	0.07	4.2	84.0	54.8
GPT-4.1-mini	67.5	99.8	0.07	3.9	80.6	54.3
Claude-4-Sonnet	68.3	99.7	0.15	4.3	86.8	54.9
Llama-4-Maverick	64.8	99.3	0.13	5.0	76.2	55.7
DeepSeek-V3	61.6	99.8	0.14	4.0	81.7	56.4
Qwen-3-235B	63.8	98.6	0.27	4.7	82.3	55.8
Qwen-3-30B	55.2	97.8	0.38	3.7	80.2	57.3

Table 2: Quality analysis for the two-stage LLM-based approach. Best scores are in **bold**, secondbest are underlined. The metrics are defined in Appendix G.

RQ2: WHAT ROAD NETWORK CONTEXT IS OPTIMAL FOR TRAJECTORY RECOVERY?

To determine the optimal amount of context, we need to balance information completeness with computational efficiency. While providing comprehensive road network data might seem beneficial, excessive context can overwhelm LLMs and degrade performance and significantly increase computational costs. We conducted experiments on the development set with the following configurations (Appendix F includes example prompts for each configuration):

- (1) No network: An end-to-end approach where LLMs are asked to generate the final coordinates to recover the missing segments.
- (2) Raw network Direct: We include the full road network in the bounding box surrounding the masked segment for direct coordinate generation (the naive solution described in Section 4).
- (3) Raw network Two-stage: We use the two-stage approach described in Section 4, with the full road network in the bounding box surrounding the masked segment as above.
- (4) Adjacent list Two-stage: Similar to (3), while to improve readability, we transform the retrieved road network into an adjacency list-based graph representation, where each road includes explicit connection information, along with relevant road metadata such as road types, oneway constraint.
- (5) Topology-only Two-stage: Similar to (4), and we remove all road geometry, retaining only topology information.
- (6) Topology-only + Direction Two-stage (current system): Similar to (5), and we pre-compute the direction for each road segment in the road network by calculating its bearing using the road geometry to provide models with cues about the direction of the road, helping models have a general sense of the roads to choose to move toward the destination.
- The results in Table 3 demonstrate a clear pattern where structured representations and explicit guidance significantly improve path finding performance. While the raw road network approaches struggled with information overload, using topology-only with direction guidance produces optimal

Variant	$\mathbf{PoT}_{F_1} \uparrow$	$\mathbf{MAE}_{F_1}\downarrow$	Avg. # Tokens
No network	39.9	13.0	780
Raw network - Direct	42.3	11.6	23 655
Raw network - Two-stage	45.2	11.3	25 947
Adjacent list - Two-stage	53.1	6.6	19 920
Topology-only - Two-stage	52.3	7.5	12 892
Topology-only + Direction - Two-stage	58.7	4.2	10 708

Table 3: Ablation result of GPT-4.1 on the GLOBALTRACE development set. Best scores are in **bold**, second-best are underlined.

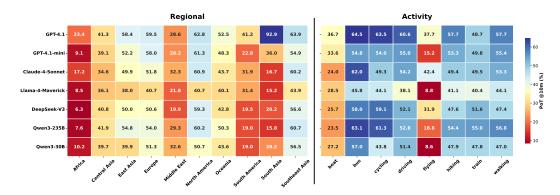


Figure 4: Reconstruction performance (PoT_{F_1}) of all LLMs tested, breakdown by regions and activity types.

performance by providing just the essential information LLMs need for effective path finding. The minimal performance difference between Adjacent list and Topology-only approaches suggests that geometric details beyond intersection points contribute little to path finding accuracy while substantially increasing computational overhead.

6.3 RQ3: Do LLMs Exhibit Geospatial Bias?

To further investigate potential biases, we breakdown the results based on activity types, regions, and training data cutoff date of LLMs.

Regional Bias From Figure 4, we can clearly see that the LLMs consistently perform worse on the Global South (Africa, Middle East, Oceania, South America, and South Asia) than they do on the Global North (Europe, North America, and Southeast Asia). The discrepancy between the two is non-trivial (with up to 50% difference, e.g., Africa vs. North America for Llama, DeepSeek, and Qwen). These results are unsurprising as most training data are concentrated to the western world, and LLMs would likely have more geospatial knowledge about those regions. One outlier is the abnormally high result of GPT-4.1 on South Asia. Most of those are hiking trails in Bhutan, which could potentially be a bias specific to this model. This finding also provides more context to a previous finding that LLMs are biased toward higher socioeconomic regions (Manvi et al., 2024a).

Activity Type Bias Cycling, bus, and driving are among the the best-performing activity types. These structured transportation modes utilize well-defined infrastructure. For these modes, LLMs consistently perform better. For pedestrian activities, i.e., walking and hiking, LLMs show poorer performance, while trajectories of flying and boat activities have the worst reconstruction quality. This pattern is consistent across all LLM models, suggesting systematic biases rather than model-specific limitations. The performance hierarchy appears to correlate with infrastructure definition and predictability: activities following established routes (roads, railways, and bike paths) achieve better reconstruction than free-form movements (e.g., walking and hiking).

Data Contamination We study the performance trend on traces before vs. after cutoff date for each model and observe no significant difference between the two periods, showing that LLMs do possess geospatial reasoning capabilities beyond just memorization (detailed in Appendix J).

6.4 RQ4: CAN LLMS INCORPORATE USER PREFERENCE TO THE NAVIGATION?

The finding that LLMs can comprehend road networks to construct paths offers new opportunities to enhance navigation experience beyond just finding the shortest or fastest routes between two locations. We conduct a case study to explore such opportunities.

In practice, when in familiar areas, people usually choose paths that suit their personal preferences, e.g., safe, scenic, close to water, or going through shops and cafes. There are several works that use POIs (e.g., landmarks, parks, and shops), environmental features (e.g., greenery, lighting, and street type) to plan travel (Ju et al., 2025; Wang et al., 2025; Yu et al., 2025a). The survey by Siriaraya et al. (2020) introduces the SWEEP (Safety, Well-being, Exploration, Effort, Pleasure) taxonomy, outlining different qualities in pedestrian paths. Based on SWEEP, we craft different scenarios, focusing mostly on the Exploration and Pleasure categories, embedding users' preferences and the relevant POIs to the context provided to the model. Below, we demonstrate one specific manually-crafted scenario. Refer to the full prompts and other scenarios in Appendix K.

Urban Foodie We select a scenario in Melbourne, famous for its diverse food scene. The start and end points are in two different ends of the city center, and the preference is a pedestrian path with many food options. The path generated by Google Maps is just a straightforward path that goes through the main streets with minimal detours. On the other hand, our system suggests a path that goes through alleys and lanes, where there could be more hidden gems and local options. Interestingly, the path managed to go through Hardware Lane, a famous alley for foods and drinks, despite this street was not retrieved as a POI. This show that the model can leverage its internal knowledge into route planning.

Additional Results We also crafted the "First-time tourist" to show that our system works well in cases where Google Maps failed to suggest due to the lack of maps data, and "Waterfront cyclist" where model was able to suggest an alternative route that goes through more scenic POIs (Appendix K).

Figure 5: Comparison of "Urban foodie" paths generated by our system (green) and Google Maps (black)

7 Conclusion

We introduced GLOBALTRACE, a benchmark for probing whether general-purpose LLMs can read road networks and reconstruct long masked trajectory segments without specialized training or external routing engines. Using a two-stage, schema-constrained framework, we showed that strong LLMs can produce valid, connected routes, outperforming specialized trajectory models and approaching the performance of an enterprise-grade navigation system. Our analysis suggests that structured map topology is key to elicit these capabilities, and reveals persistent gaps and biases across regions and transportation modes. Crucially, we also demonstrate that LLMs can go beyond shortest paths and flexibly integrate user preferences into route recommendation. In a broader sense, these findings show that LLMs have huge potential to support applications in mobility, accessibility, and urban decision making.

While our results demonstrate that LLMs possess non-trivial geospatial reasoning capabilities, several limitations remain. First, trajectory recovery, while informative, captures only a narrow slice of geospatial understanding. Second, the definition of "ground truth" recoveries is itself imperfect. Our benchmark is constructed from user-generated GPS traces, which may be noisy and reflect individual rather than standard choices of movement.

Ethics Statement This work involves the use of user-generated data, in the form of GPS traces. Those data are uploaded voluntarily and contain no personal identifiable information (PII). One more concern is on sending those data to proprietary LLM APIs. Again, as those traces are readily-available and allow crawling through the official API, there should not be any violation regarding the terms and agreements of OpenStreetMap.

Reproducibility Statement To ensure full reproducibility and to facilitate future research, we release the full GLOBALTRACE dataset (Section 3) along with the code to replicate the findings in this work (Section 6) at https://anonymous.4open.science/r/llm_traj_rec-5F5B/. We also document the settings that were used for each model (Appendix E).

REFERENCES

- Jeffrey Cheng, Marc Marone, Orion Weller, Dawn Lawrie, Daniel Khashabi, and Benjamin Van Durme. Dated data: Tracing knowledge cutoffs in large language models. In *Proceedings of the First Conference on Language Modeling*, 2024.
- Didi-Chuxing. GAIA Initiative. https://outreach.didichuxing.com, 2018. Accessed: 2025-09-24.
- Mahir Labib Dihan, Md Tanvir Hassan, Md Tanvir Parvez, Md Hasebul Hasan, Md Almash Alam, Muhammad Aamir Cheema, Mohammed Eunus Ali, and Md Rizwan Parvez. MapEval: A mapbased evaluation of geo-spatial reasoning in foundation models. In *Proceedings of the 42nd International Conference on Machine Learning (ICML)*, 2025.
- Matt Duckham and Lars Kulik. "Simplest" Paths: Automated Route Selection for Navigation. In *International Conference on Spatial Information Theory (COSIT)*, pp. 169–185, 2003.
- Reginald G. Golledge. Path selection and route preference in human navigation: A progress report. In *International Conference on Spatial Information Theory (COSIT)*, pp. 207–222, 1995.
- Google Maps Platform. Encoded polyline algorithm format. https://developers.google.com/maps/documentation/utilities/polylinealgorithm. Accessed: 2025-09-25.
- Wes Gurnee and Max Tegmark. Language models represent space and time. In *Proceedings of the 12th International Conference on Learning Representations (ICLR)*, 2024.
- Xingyu Huang, Yong Li, Yue Wang, Xinlei Chen, Yu Xiao, and Lin Zhang. CTS: A cellular-based trajectory tracking system with GPS-level accuracy. *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies*, 1(4):1–29, 2018.
- Ilya Ilyankou, Meihui Wang, Stefano Cavazzi, and James Haworth. Quantifying geospatial in the common crawl corpus. In *Proceedings of the 32nd ACM International Conference on Advances in Geographic Information Systems (SIGSPATIAL)*, pp. 585–588, 2024.
- Chenlu Ju, Jiaxin Liu, Shobhit Sinha, Hao Xue, and Flora Salim. Trajllm: A modular llm-enhanced agent-based framework for realistic human trajectory simulation. In *Companion Proceedings of the ACM on Web Conference* 2025, pp. 2847–2850, 2025.
- Yuxuan Liang, Haomin Wen, Yutong Xia, Ming Jin, Bin Yang, Flora Salim, Qingsong Wen, Shirui Pan, and Gao Cong. Foundation models for spatio-temporal data science: A tutorial and survey. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.* 2, pp. 6063–6073, 2025.
- Yan Lin, Tonglong Wei, Zeyu Zhou, Haomin Wen, Jilin Hu, Shengnan Guo, Youfang Lin, and Huaiyu Wan. TrajFM: A vehicle trajectory foundation model for region and task transferability. *arXiv* preprint arXiv:2408.15251, 2024.
- Rohin Manvi, Samar Khanna, Marshall Burke, David Lobell, and Stefano Ermon. Large language models are geographically biased. In *Proceedings of the 41st International Conference on Machine Learning (ICML)*, 2024a.

- Rohin Manvi, Samar Khanna, Gengchen Mai, Marshall Burke, David B. Lobell, and Stefano Ermon. GeoLLM: Extracting geospatial knowledge from large language models. In *Proceedings of the 12th International Conference on Learning Representations (ICLR)*, 2024b.
 - Paul Newson and John Krumm. Hidden Markov map matching through noise and sparseness. In *Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL)*, pp. 336–343, 2009.
 - OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org.https://www.openstreetmap.org, 2017.
 - Overpass API. Overpass API OpenStreetMap wiki. https://wiki.openstreetmap.org/wiki/Overpass API, 2025. Accessed: 2025-09-25.
 - Huimin Ren, Sijie Ruan, Yanhua Li, Jie Bao, Chuishi Meng, Ruiyuan Li, and Yu Zheng. MTrajRec: Map-constrained trajectory recovery via seq2seq multi-task learning. In *Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, pp. 1410–1419, 2021.
 - Junjun Si, Jin Yang, Yang Xiang, Hanqiu Wang, Li Li, Rongqing Zhang, Bo Tu, and Xiangqun Chen. TrajBERT: BERT-based trajectory recovery with spatial-temporal refinement for implicit sparse trajectories. *IEEE Transactions on Mobile Computing*, 23(5):4849–4860, 2024.
 - Panote Siriaraya, Yuanyuan Wang, Yihong Zhang, Shoko Wakamiya, Péter Jeszenszky, Yukiko Kawai, and Adam Jatowt. Beyond the shortest route: A survey on quality-aware route navigation for pedestrians. *IEEE Access*, 8:135569–135590, 2020.
 - Xin Song, Yuanxin Ouyang, Bowen Du, Jingyuan Wang, and Zhang Xiong. Recovering individual's commute routes based on mobile phone data. *Mobile Information Systems*, 2017(1):7653706, 2017.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing Systems (NeurIPS)*, 30, 2017.
 - Kaimin Wang, Yuanzhe Shen, Changze Lv, Xiaoqing Zheng, and Xuan-Jing Huang. TripTailor: A real-world benchmark for personalized travel planning. In *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 9705–9723, 2025.
 - Yifang Yin, Rajiv Ratn Shah, Guanfeng Wang, and Roger Zimmermann. Feature-based map matching for low-sampling-rate GPS trajectories. *ACM Transactions on Spatial Algorithms and Systems* (TSAS), 4(2):1–24, 2018.
 - Dazhou Yu, Riyang Bao, Gengchen Mai, and Liang Zhao. Spatial-RAG: Spatial retrieval augmented generation for real-world spatial reasoning questions. *arXiv* preprint arXiv:2502.18470, 2025a.
 - Xie Yu, Jingyuan Wang, Yifan Yang, Qian Huang, and Ke Qu. BIGCity: A universal spatiotemporal model for unified trajectory and traffic state data analysis. In *Proceedings of the 41st IEEE International Conference on Data Engineering (ICDE)*, pp. 4455–4469, 2025b.
 - Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. Understanding mobility based on GPS data. In *Proceedings of the 10th International Conference on Ubiquitous Computing (UbiComp)*, pp. 312–321, 2008.
 - Yuanshao Zhu, James Jianqiao Yu, Xiangyu Zhao, Xuetao Wei, and Yuxuan Liang. UniTraj: Learning a universal trajectory foundation model from billion-scale worldwide traces. *arXiv preprint arXiv:2411.03859*, 2024.

595 596

597

598

600

601

602

603

604

605

606

607

608

609

610

611 612

613

614

615

616

617

618

619

620

621

622

623

624

625

626 627

628 629

644 645 646

A FULL DISCUSSION ON RELATED WORKS

Trajectory recovery Traditional trajectory recovery methods have typically relied on probabilistic modeling and map-matching techniques to reconstruct missing points from noisy or sparse GPS traces. More recent, there are efforts that construct foundation models for trajectories. Most notably, TrajBERT (Si et al., 2024) introduces a BERT-style Transformer for sparse trajectories where location points are missing from poor GPS signal; it learns bidirectional temporal patterns with spatial-temporal refinement to recover missing points. Following the same direction, TrajFM (Lin et al., 2024) builds a vehicle trajectory foundation model for region and task transferability. The paper propose to integrate spatial, temporal, and POIs, and uses trajectory masking/recovery to pre-train a standard Transformer model. Instead of relying purely on coordinates-level data, BigCity (Yu et al., 2025b) merge trajectories with population-level traffic state data (e.g. flow, speed, density across road segments) to perform additional tasks like next-location prediction, and traffic forecasting. Most of these works, however, focus on point recoveries (rather than a large continuous segment). Furthermore, the biggest bottleneck is generalizability, as models trained for a specific regions are not transferrable to other unseen regions. To the best of our knowledge, our work is the first to explore this by applying general-purpose LLMs to this task, with the focus on zero-shot capabilities without the need of training or additional supervision signals.

Geospatial understanding capabilities of LLMs Recent studies have probed whether large language models possess an implicit grasp of geographic space and spatial reasoning. Gurnee & Tegmark (2024) show that LLMs are are able to map coordinate to corresponding regions. Manvi et al. (2024b) show that LLMs embed substantial geospatial knowledge (e.g., population density and mean income), but simply feeding geographic coordinates into prompts yields poor results on those questions. The authors augment coordinate inputs with auxiliary map data (from OpenStreetMap), such as point-of-interest (POIs) around the coordinates, which lead to large improvement over naive baselines. Manvi et al. (2024a) further extend this analysis, showing that LLMs exhibit systematic geographic biases (e.g., against lower-socioeconomic status regions). MapEval (Dihan et al., 2025) is a benchmark of 700 multiple-choice, map-grounded questions (textual/API/visual) across 180 cities and 54 countries. Across 30 foundation models tested, none exceeds 67% accuracy and all lag behind human performance, with particular difficulties in distance/direction inference, route planning, and visual map understanding. Unlike previous task formulations of knowledge extraction, bias diagnostic, and multiple-choice question answering, we tackle trajectory recovery as longsegment route reconstruction and investigate whether general-purpose LLMs can perform this in a zero-shot manner, without in-domain pretraining or extra supervision.

B MORE DETAILS ON GLOBALTRACE

We show the cities, activity types, and regions covered by GLOBALTRACE in Table 4 to Table 6.

Region	Cities
East Asia	Hong Kong, Mongolia, Seoul, Shanghai, Tokyo
Southeast Asia	Bangkok, Cambodia, Kuala Lumpur, Singapore, Vietnam
South Asia	Bhutan, Delhi, Nepal, Sri Lanka
Central Asia	Uzbekistan (Silk Road)
Middle East	Iran (Persepolis), Jordan (Petra)
Europe	Alps (Chamonix, Zermatt), Amsterdam, Aosta Valley, Athens, Barcelona, Bavarian
-	Alps, Berlin, Black Forest, Bohemian Switzerland, Budapest, Carpathians, Copen-
	hagen, Corsica, Dolomites, Durmitor, Helsinki, Istanbul, Jotunheimen, Julian Alps,
	Lake District, Lisbon, London, Madrid, Munich, Oslo, Paris, Plitvice Lakes, Prague,
	Pyrenees, Rome, Scottish Highlands, Scottish Isles, Stockholm, Swiss Jura, Tatra
	Mountains, Vienna, Vosges Mountains, Warsaw
North America	Montreal, New York, San Francisco, Toronto, Vancouver
South America	Bolivia, Buenos Aires, Iguazu Falls, Peru (Sacred Valley), Rio de Janeiro
Oceania	Chile (Easter Island), Fiji Islands, Melbourne, Sydney
Africa	Kenya, Tanzania (Serengeti)

Table 4: Cities covered by GLOBALTRACE.

8 .9	City	Dev	Test	Train	boat	bus	cycling	driving	flying	hiking	train	walking	Total
_	alps_chamonix	0	0	11	0	0	0	2	0	6	0	3	11
	alps_zermatt	0	0	18	0	0	0	0	0	18	0	0	18
	amsterdam aosta_valley	0	0	52 80	0	0	0 39	36 3	0	0 35	0	16 3	52 80
	athens	0	0	39	0	2	0	37	0	0	0	0	39
	bangkok	0	4	0	2	1	0	0	1	0	0	0	4
	barcelona	0	0	110 123	0	1 0	21 111	4 0	0	62 11	12 0	10 1	110 123
	bavarian_alps berlin	0	0	29	0	7	10	0	0	11	1	10	29
	bhutan	0	3	0	0	0	0	0	0	3	0	0	3
	black_forest	0	0	127	0	0	7	4	0	75	21	20	127
	bohemian_switzerland bolivia	0	0	75 98	0	0	1 5	1 2	1 0	71 85	0	1 6	75 98
	budapest	0	0	21	13	0	1	0	0	2	2	3	21
	buenos_aires	0	1	0	0	0	0	0	0	0	0	1	1
	cambodia carpathians	0	1	0 321	0 2	0 4	1 21	0 29	0	0 196	0 24	0 45	1 321
	chile_easter_island	37	0	0	1	0	9	0	0	25	0	2	37
	copenhagen	0	0	84	0	0	0	0	0	0	0	84	84
	corsica_gr20 delhi	0 22	0	207 0	0	0 14	15 0	95 1	0	97 0	0 6	0 1	207 22
	dolomites	0	0	8	0	0	0	0	0	8	0	0	8
	durmitor	0	0	8	0	0	0	0	0	8	0	0	8
	fiji_islands	0 2	12 0	0	0	0	0	4 0	0	7 0	0	1 2	12
	helsinki hong_kong	0	32	0	0	0	0	0 16	0 2	8	6	0	2 32
	iguazu_falls	0	0	12	0	0	0	0	0	12	0	0	12
	iran_persepolis	0	30	0	0	0	0	26	0	1	0	3	30
	istanbul jordan_petra	0 88	49 0	0	0	0	0 85	49 3	0	0 0	0	0	49 88
	jotunheimen	0	0	15	0	0	15	0	0	0	0	0	15
	julian_alps	0	0	12	0	0	3	2	0	6	0	1	12
	kenya kuala_lumpur	0	1 198	0	0	0 85	0 1	1 76	0 0	0	0 24	0 9	1 198
	lake_district	0	0	50	0	0	0	0	0	50	0	0	50
	lisbon	0	0	16	0	0	0	0	0	5	0	11	16
	london madrid	0	0	54 21	0	2 6	8	3	0	2 2	2	37 13	54 21
	madrid melbourne	0	18	0	0	0	6	0	0	4	2	6	18
	mongolia	0	9	0	0	0	1	4	0	3	0	1	9
	montreal	0	0	213	0	1	10	101	0	0	6	95 5	213
	munich nepal	0	0	10 258	0	0 29	1 1	1 46	1 0	0 177	2	5 5	10 258
	new_york	85	0	0	2	0	33	11	0	0	2	37	85
	oslo	1	0	0	0	0	0	0	0	1	0	0	1
	paris peru_sacred_valley	0	0	17 107	0 28	6 0	1 1	1 25	0 1	0 36	2	7 16	17 107
	plitvice_lakes	0	0	31	0	0	1	28	0	2	0	0	31
	prague	0	0	3	0	0	0	0	0	2	0	1	3
	pyrenees rio_de_janeiro	0	0 2	14 0	0	0	0	0	0 0	14 2	0	0	14 2
	rone	0	0	91	0	3	28	43	0	13	1	3	91
	san_francisco	0	50	0	0	0	0	37	0	3	0	10	50
	scottish_highlands	0	0	89	0	0	1	0	0	88	0	0	89
	scottish_isles seoul	0	0	8 97	0 19	0 4	0 39	0	0	8 5	0 5	0 25	8 97
	shanghai	60	0	60	0	24	0	12	4	28	10	42	120
	singapore	16	0	0	0	12	0	3	0	1	0	0	16
	sri_lanka stockholm	0	0	2 37	0 12	0	0 1	1 7	0	1 6	0	0 11	2 37
	swiss_jura	0	0	38	0	0	35	0	0	2	0	1	38
	sydney	0	39	0	0	0	0	0	0	39	0	0	39
	tanzania_serengeti	0	1	0	0	0	0	1	0	0	0	0	1
	tatra_mountains tokyo	0	0	40 187	0	0	1 2	0 13	0	32 9	6 66	1 94	40 187
	toronto	0	3	0	0	0	0	3	0	0	0	0	3
	uzbekistan_silk_road	0	17	0	0	0	0	14	0	3	0	0	17
	vancouver vienna	41	0 99	0	0	30 1	0	2	0 0	9 75	0	0 17	41 99
	vienna vietnam	244	99	0	0 1	0	0	202	2	/5 13	3 16	17	99 244
		0	0	10	0	0	0	0	0	9	0	1	10
	vosges_mountains												
	vosges_mountains warsaw	0	0	27	Ö	0	1	1	0	18	1	6	27

Table 5: GLOBALTRACE dataset statistics by region and activity type.

Geographical Region	Regions	Dev	Test	Train	Total Traces
Europe	39	3	148	1896	2047
East Asia	5	60	41	344	445
Southeast Asia	5	260	203	0	463
South Asia	4	22	3	260	285
Central Asia	1	0	17	0	17
Middle East	2	88	30	0	118
North America	5	126	53	213	392
South America	5	0	3	217	220
Africa	2	0	2	0	2
Oceania	4	37	69	0	106
Total	72	596	569	2930	4095

Table 6: GLOBALTRACE dataset coverage by geographical regions.

C MORE DETAILS IN ROAD NETWORK CONSTRUCTION

We retrieve a road network surrounding the masked segment using the Overpass API (Overpass API, 2025). Given the start and end coordinates for the masked segment, we draw a rectangle around the straight line between the start and end points. To ensure enough coverage, we also expand this rectangle on all sides using a gap-aware buffer in meters (150 m for small gap and 500 m for large gap). This yields a compact box that encloses the segment rather than a large city-wide area. Inside this bounding box, we then retrieve relevant roads specific to the type of activity:

- Walking/Hiking: footway, pedestrian, path, steps, living_street, track, bridleway, road, residential, service, unclassified, tertiary, tertiary_link, secondary, secondary_link, primary, primary_link, cycleway, trunk, trunk_link
- Cycling: cycleway, path, living_street, track, residential, service, unclassified, tertiary, tertiary_link, secondary, secondary_link, primary, primary_link
- Driving/Bus: motorway, motorway_link, trunk, trunk_link, primary, primary_link, secondary, secondary_link, tertiary, tertiary_link, unclassified, residential, service
- Train: public_transport=station, railway=station, railway=subway_entrance, public_transport=platform/stop_position.
- Flying/Boat: No specific filtering

An example of a query for walking activity would look like:

```
Endpoint: https://overpass-api.de/api/interpreter
```

Request:

D SAMPLE PROMPTS AND RESPONSES

Path Selection

```
756
         Prompt
758
          You are a navigation expert. Create a connected path from start to end point.
          Start: [-37.6015900, 145.0244730]
759
          End: [-37.6024230, 145.0274570]
760
          Activity: CYCLING
761
         Distance: 279m
762
          — CONTEXT BEFORE —
764
         - Starting near Equestria Boulevard, continuing along Grandidier Street
765
         - The traveler was heading east before entering the masked segment
766
         - Average speed: 8.3 m/s (steady cycling)
767
768
           - CONTEXT AFTER —
769
         Route narrative: Traveler continues east and will connect to Landover Road.
770
          Movement: Expected speed steady at \sim8 m/s.
          Behavioral interpretation: Still cycling straight, no significant detours.
771
772
           - START POINT ANALYSIS —
773
          Snapped to: unnamed cycleway (id=1347174722), confidence = 0.98
774
          Bearing at entry: \sim95.7° (eastward)
775
          Next candidate node: (node_id_original=12461706443)
776
777
          — END POINT ANALYSIS —
778
          Snapped to: Landover Road (id=1155201336), confidence = 1.00
779
          Required approach bearing: \sim 180^{\circ}
780
          Nearest junction: (node_id_original=12461663891)
781
          — ROAD NETWORK (excerpt; verbatim) —
782
783
          {"roads": {
           "1347174722": {"type":"cycleway", "connects_to":[
784
             {"road_id":"1347175623","intersection_id":"12461706443",
785
              "coords": [-37.601601,145.024567], "bearing_to_dest":109.7}],
786
             "direction": "E"},
787
           "1347175623": {"type":"cycleway", "connects_to":[
             {"road_id":"1347174722","intersection_id":"12461706443",
              "coords":[-37.601601,145.024567],"bearing_to_dest":109.7},
789
             {"road_id":"1347176804","intersection_id":"12461729290",
              "coords":[-37.601513,145.024983],"bearing_to_dest":114.9},
791
             {"road_id":"1377168420","intersection_id":"12461729290",
792
              "coords": [-37.601513,145.024983], "bearing_to_dest":114.9}],
793
             "direction": "E"},
794
         }}
796
          — TASK —
         Choose a logical path from start to end point based on the activity and distance.
797
         Output step-by-step navigation with road names, IDs, and intersections.
798
799
          — EVALUATION REQUIREMENTS —
800
         1. Path must be physically connected via shared intersections.
801
         2. Max 3 steps (distance = 279m).
802
         3. Each step must include:
803
         • Direction (e.g., east, southeast). • Road name + ID (e.g., cycleway (id=1347175623)).
804
         • Target intersection ID (node_id_original=XXXX).
805
         4. Prefer "continue straight" over turns.
         5. Do not include coordinate lists in step descriptions.
807
           - OUTPUT FORMAT —
         REASONING: Justification for path choice.
```

STEP-BY-STEP NAVIGATION: Structured steps following schema.

813 814 **Respo**r

810

811 812

815 816

817

818

819

820

821

822

823 824

825

826

827

828

829

830 831

832

833 834

835

836

837

838

839

840

846

847

848

849 850

851 852

853

854

855

856

857

858

859 860 861

862

```
Response
**REASONING: **
The start point is on cycleway (id=1347174722), heading east,
consistent with pre-segment direction (~95).
The direct continuation is via cycleway (id=1347175623),
then southeast via cycleway (id=1347176650),
leading to the endpoint on Landover Road (id=1155201336).
This minimizes turns and keeps within cycleway infrastructure.
**STEP-BY-STEP NAVIGATION:**
step_1: From start point, travel east along cycleway (id=1347174722)
     until reaching intersection with cycleway (id=1347175623)
      (node_id_original=12461706443)
step_2: Continue straight east onto cycleway (id=1347175623)
      until intersection with cycleway (id=1347176650)
      (node_id_original=12461734106)
step_3: Continue southeast onto cycleway (id=1347176650)
     until reaching endpoint on Landover Road (id=1155201336)
      (node_id_original=12461663891)
**VALIDATION:**
- Step count = 3 (within 3-step limit).
- Each step includes direction, road name + ID, and intersection
   anchor.
- All roads are connected via listed node IDs.
- No coordinates included in step descriptions.
- Endpoint matches required destination on Landover Road.
```

841 842 843

Coordinate Generation

```
844 Prompt **TASK
```

```
**TASK:** Generate coordinates for step_2 from the geometry below.
**STEP_2 DESCRIPTION:** step_2:
                                      Continue straight east
                                                              onto connecting
          (id=1347175623)
cycleway
                          until intersection with cycleway
                                                              (id=1347176650)
(node_id_original=12461729290)
**GEOMETRY (excerpt):**
 "roads": [
    "id": 1347175623,
    "name": "unnamed",
    "geometry": [
     [-37.6016014, 145.0245667],
     [-37.6016227, 145.0247631],
     [-37.6015604, 145.0248218],
     [-37.6015206, 145.0248792],
     [-37.6015129, 145.0249834]
    "id": 1347176650,
    "name": "unnamed",
```

```
"geometry": [
     [-37.6015257, 145.0250507],
     [-37.6015590, 145.0251463],
     [-37.6015986, 145.0251966],
     [-37.6016346, 145.0252310],
     [-37.6016781, 145.0252713]
]
}

intersections": [
     {"id": 12461729290, "lat": -37.6015000, "lon": 145.0250000}
]

Starting coordinate: [-37.6016000, 145.0246000] (from step_1)
**GENERATE ONLY THE CONTINUATION OF THIS LIST, STARTING WITH A COMMA:**
```

```
Response

step_2: Continue straight east onto connecting cycleway (id =1347175623)

until intersection with cycleway (id=1347176650) (node_id_original =12461729290)

- [[-37.6016000, 145.0246000], [-37.6016014, 145.0245667], [-37.6016227, 145.0247631], [-37.6015604, 145.0248218], [-37.6015206, 145.0248792], [-37.6015129, 145.0249834], [-37.6015000, 145.0250000]]
```

E Model Details

Linear Reconstruct the masked segment by connecting the segment's start and end GPS coordinates with a straight line and sampling evenly along that line.

Linear + HMM Produce a simple, connected candidate polyline via linear interpolation, then snap it to the road/path network using a standard HMM-based map-matching service. For this step, we call the OSRM's HMM-based Map Matching API. The HMM combines (1) emission probabilities: likelihood of each observed point being near a road candidate (distance-based) and (2) transition probabilities: likelihood of moving between candidates given road graph connectivity and plausible travel costs; OSRM encapsulates this logic and returns a most-likely path (Viterbi).

TrajFM We adapt the pre-trained TrajFM to GlobalTrace as a masked coordinate recovery model by aligning data, projection, and supervision to the task. Concretely, we keep the TrajFM architecture fixed and load pre-trained weights, then project trajectories into metric space using per-group UTM coordinates with the correct zone. We convert GlobalTrace supervision into the model's tokenized format using a task-specific padder that masks only spatial features at indices flagged by the dataset's mask column, and finetune with the following settings:

LLMs

Hyperparameter	Value
Optimizer	Adam (weight decay 1×10^{-6})
Learning rate	5×10^{-5}
Epochs	20
Scheduler	CosineAnnealingLR (T_{max} =20, η_{min} =1 × 10 ⁻⁶)
Batch size	16
Loss weights	spatial=2.0, temporal=0.5, token=0.5
Gradient clipping	max_norm=1.0
Task/Padder	gt_mask (masked coordinate recovery)

Table 7: Finetuning hyperparameters for TrajFM

Model	Exact Checkpoint	Param Size	Training Cutoff
GPT-4.1	gpt-4.1	Not disclosed	2024-06-01
GPT-4.1-mini	gpt-4.1-mini	Not disclosed	2024-06-01
Claude Sonnet-4	anthropic/claude-sonnet-4	Not disclosed	2025-03-01
Meta-Llama 4 (Maverick)	meta-llama/llama-4-maverick	400B (17B active)	2024-08-01
DeepSeek v3	deepseek/deepseek-chat-v3 (incl0324 variant)	671B (37B active)	2024-07-01
Qwen3-235B	qwen/qwen3-235b (variant: qwen/qwen3-235b-a22b-2507)	235B	2024-06-01 (Estimated)
Qwen3-30B	qwen/qwen3-30b (variant: qwen/qwen3-30b-a3b-instruct-2507)	30B	2024-06-01 (Estimated)

Table 8: LLM settings used in experiments: checkpoint, parameter size (if known), and training cutoff date.

F More Details on Ablation Study

RAW ROAD NETWORK

```
Context
--- RAW ROAD NETWORK DATA ---
Raw Road Network Data (Full OSM JSON):
  "43981478": {
   "id": 43981478,
   "name": "Road 43981478",
   "type": "unknown",
   "geometry": [
      1.3916361,
      103.5465912
     ],
      1.3910125,
      103.5465948
     ],
      1.3899776,
      103.5466008
     ],
     ... (truncated)
   ],
   "oneway": "no",
   "access": null,
   "surface": null,
   "lanes": null,
   "maxspeed": null,
   "bridge": null,
   "tunnel": null,
```

```
972
            "nodes_osmid": [
973
              5863015808,
974
              8524349683,
975
              7542016752,
976
              7044866205,
977
              6090239253,
              7044866215,
978
              7541977250,
979
              7042850022,
980
              1911020654
981
982
           "180657476": {
983
            "id": 180657476,
984
            "name": "Road 180657476",
985
            "type": "unknown",
986
            "geometry": [
987
                1.382216,
988
               103.5515759
989
990
991
               1.3812584,
992
               103.5530091
993
              ]
              ... (truncated)
994
995
            "oneway": "no",
996
            "access": null,
            "surface": null,
997
            "lanes": null,
998
            "maxspeed": null,
999
            "bridge": null,
1000
            "tunnel": null,
1001
            "nodes_osmid": [
1002
              1911020646,
              10574515989
1003
1004
1005
           "180657527": {
1006
            "id": 180657527,
            "name": "Road 180657527",
1007
            "type": "unknown",
1008
            "geometry": [
1009
1010
               1.3845596,
1011
               103.5479925
1012
1013
               1.382216,
1014
               103.5515759
1015
              ]
1016
              ... (truncated)
1017
            "oneway": "no",
1018
            "access": null,
1019
            "surface": null,
1020
            "lanes": null,
1021
            "maxspeed": null,
            "bridge": null,
1022
            "tunnel": null,
1023
            "nodes_osmid": [
1024
              1911020652,
1025
```

```
1026
              1911020646
1027
            ]
1028
1029
           "180657531": {
1030
            "id": 180657531,
            "name": "Road 180657531",
1031
            "type": "unknown",
1032
            "geometry": [
1033
1034
               1.3853906,
1035
               103.5467324
1036
              ],
1037
               1.385056,
1038
               103.5472046
1039
              ]
1040
              ... (truncated)
1041
            ],
            "oneway": "no",
1042
            "access": null,
1043
            "surface": null,
1044
            "lanes": null,
1045
            "maxspeed": null,
            "bridge": null,
1046
            "tunnel": null,
1047
            "nodes_osmid": [
1048
              1911020654,
1049
              7042850021
1050
1051
           "180657553": {
1052
            "id": 180657553,
1053
            "name": "Road 180657553",
1054
            "type": "unknown",
1055
            "geometry": [
1056
               1.3724152,
1057
               103.5431087
1058
1059
1060
               1.3725283,
               103.5434894
1061
1062
              ],
1063
               1.3726949,
1064
               103.5440499
1065
1066
              ... (truncated)
1067
1068
```

ADJACENT LIST

1069

1070 1071

10721073

1074

1075 1076

1077

1078

```
Context

--- ROAD NETWORK (ADJACENCY LIST) --- Road Network (Adjacency List with Full Geometry):

Road: Tonnelle Avenue (ID: 60430069, Type: trunk)
Connects to:
-> Road 1350138790 at intersection 11072081884 ([40.7704930, -74.0434580])
```

```
1080
           -> Road 316621099 at intersection 3227567283 ([40.7715490,
1081
               -74.0427250])
1082
          Full Geometry (50 points): [40.7568214, -74.0543041] -> [40.7571288,
1083
             -74.0540013] -> [40.7584890, -74.0525561] -> [... truncated]
1084
1085
        Road: Road 1350138790 (ID: 1350138790, Type: service)
          Connects to:
1086
           -> Road 1192329114 at intersection 12489885821 ([40.7704090,
1087
               -74.04326501)
1088
           -> Road 1350138779 at intersection 12489885820 ([40.7710770,
1089
               -74.0427570])
           -> Road 60430069 at intersection 11072081884 ([40.7704930,
1090
               -74.04345801)
1091
          Full Geometry (8 points): [40.7711525, -74.0429339] -> [40.7711244,
1092
              -74.0428670] -> [40.7710768, -74.0427567] -> [... truncated]
1093
1094
        Road: Road 1350138779 (ID: 1350138779, Type: footway)
1095
          Connects to:
           -> Road 1192760824 at intersection 11900950545 ([40.7712240,
1096
               -74.0428280])
1097
           -> Road 1350138780 at intersection 11900950524 ([40.7709810,
1098
               -74.0428550])
1099
           -> Road 1350138790 at intersection 12489885820 ([40.7710770,
1100
               -74.0427570])
          Full Geometry (19 points): [40.7709807, -74.0428549] -> [40.7709897,
1101
              -74.0428462] -> [40.7710349, -74.0427908] -> [... truncated]
1102
1103
        Road: Road 1350138780 (ID: 1350138780, Type: footway)
1104
          Connects to:
1105
           -> Road 1192329114 at intersection 11900950521 ([40.7706850,
               -74.04308201)
1106
           -> Road 1350138779 at intersection 11900950524 ([40.7709810,
1107
               -74.04285501)
1108
          Full Geometry (4 points): [40.7706848, -74.0430825] -> [40.7706918,
1109
              -74.0430771] -> [40.7709734, -74.0428609] -> [... truncated]
1110
        Road: Road 1181351412 (ID: 1181351412, Type: proposed)
1111
          Connects to:
1112
           -> Road 1181351410 at intersection 10970996238 ([40.7708440,
1113
               -74.0429640])
1114
           -> Road 659183610 at intersection 10970996241 ([40.7704510,
1115
               -74.04238901)
          Full Geometry (3 points): [40.7708444, -74.0429640] -> [40.7706320,
1116
             -74.0426479] \rightarrow [40.7704509, -74.0423895]
1117
1118
1119
1120
```

TOPOLOGY ONLY

1121

112211231124

1125 1126

1127 1128

1129

1130

1131

1132

```
Context

--- ROAD NETWORK (TOPOLOGY ONLY) --- Road Network (Topology Only - No Geometry):

Road: Tonnelle Avenue (ID: 60430069, Type: trunk)
Connects to:

-> Road 1192329085 at intersection 11068635760

-> Road 1350138790 at intersection 11072081884

-> Road 371374395 at intersection 3749476730

-> Road 371374396 at intersection 3749476733
```

```
1134
1135
        Road: Tonnelle Avenue (ID: 316621100, Type: trunk)
1136
         Connects to:
1137
           -> Road 1192329085 at intersection 11068635761
1138
           -> Road 1192329088 at intersection 11068635771
1139
        Road: Road 371374396 (ID: 371374396, Type: service)
1140
         Connects to:
1141
           -> Road 1192329113 at intersection 11068635986
1142
           -> Road 371374397 at intersection 3749476735
1143
           -> Road 371374471 at intersection 3749472151
           -> Road 60430069 at intersection 3749476733
1144
           -> Road 895552436 at intersection 3749476731
1145
1146
        Road: Road 1350138790 (ID: 1350138790, Type: service)
1147
         Connects to:
1148
           -> Road 1192329114 at intersection 12489885821
           -> Road 60430069 at intersection 11072081884
1149
1150
        Road: Road 1181351413 (ID: 1181351413, Type: proposed)
         Connects to:
1152
           -> Road 1181351411 at intersection 10970996240
1153
           -> Road 1181351418 at intersection 10970996242
1154
        Road: Road 1181351412 (ID: 1181351412, Type: proposed)
1155
         Connects to:
1156
           -> Road 1181351410 at intersection 10970996238
1157
           -> Road 659183610 at intersection 10970996241
1158
1159
        . . .
1160
```

G MORE DETAILS ON STAGE-BASED ANALYSIS METRICS

Connectivity We first extract all mentions of road ID from the generated step-by-step navigation (in order). Then using this ordered list, we will cross-check each consecutive road ID pair against the provided road network (already transformed into topology-only format with explicit connection defined). Then the Connectivity is just the percentage of pairs that are connected out of the total number of pairs.

Network adherence Also extract all mentions of road ID from the generated step-by-step navigation. Using this list, we check against the provided road network to see if the IDs are actually exist. The score is just the percentage of valid road ID out of all the generated road IDs

Geometry adherence Similar to road network adherence, but this metric compare whether the generate coordinates are actually presented in the provided road geometry. The score is then just the percentage of valid coordinates out of all the generated coordinates

Bearing For each LLM-produced navigation step, we extract the intended cardinal direction (e.g., north, southeast) and map it to a canonical expected bearing in degrees: N=0, NE=45, E=90, SE=135, S=180, SW=225, W=270, NW=315. We then compute the actual bearing between the step's start_point and end_point coordinates and normalize it to [0, 360). The per-step bearing error is the circular angular distance between expected and actual: error = min(|expected - actual|, 360 - |expected - actual|).

Method	PoT F1 @10m (%)	MAE F1 (%)	PoT GT→REC (%)	PoT REC \rightarrow GT (%)	MAE GT→REC (%)	MAE REC→GT (%)
GPT-4.1	63.3	5.4	79.0	59.3	5.1	25.9
Claude-Sonnet-4	58.2	6.2	76.9	53.5	5.5	33.0
GPT-4.1-mini	57.0	5.9	73.1	54.0	5.7	28.3
DeepSeek	55.8	6.1	75.5	51.3	5.5	32.5
Qwen-3-235B	52.4	5.2	72.7	55.4	6.7	33.7
Qwen-3-30B	51.9	6.2	73.1	50.3	6.4	36.1
Llama-4-Maverick	48.7	5.6	80.7	40.9	4.3	40.9

Table 9: Combined metrics: F1 (symmetric) and directional ($GT \rightarrow REC, REC \rightarrow GT$) on test set.

Method	PoT GT→REC (%)	PoT REC \rightarrow GT (%)	MAE GT → REC (%)	MAE REC→GT (%)
Large Language M	odels			
GPT-4.1	88.7	62.4	6.2	37.6
Claude-Sonnet-4	87.1	56.4	6.7	47.1
GPT-4.1-mini	85.4	58.0	6.6	38.2
DeepSeek	87.3	55.0	6.3	44.8
Qwen-3-235B	83.0	58.0	8.1	48.3
Qwen-3-30B	86.1	53.8	7.4	50.4
Llama-4-Maverick	90.8	42.9	4.8	53.3

Table 10: Directional metrics: Small gap.

Method	PoT GT→REC (%)	PoT REC \rightarrow GT (%)	MAE GT→REC (%)	MAE REC→GT (%)	
GPT-4.1	69.4	56.3	4.0	14.3	
Claude-Sonnet-4	66.8	50.6	4.3	19.0	
Qwen-3-235B	62.1	52.6	5.3	18.6	
DeepSeek	63.6	47.7	4.7	20.2	
GPT-4.1-mini	60.9	50.0	4.7	18.4	
Llama-4-Maverick	70.8	38.8	3.8	28.7	
Qwen-3-30B	60.1	46.8	5.5	21.6	

Table 11: Directional metrics: Large gap.

H DETAILED RESULTS

H.1 RESULTS FOR EACH RECONSTRUCTION DIRECTION

A clear pattern shown in Table 9 to Table 11 is that many LLMs show high $GT \rightarrow REC$ and much lower $REC \rightarrow GT$ (e.g., good coverage of the ground-truth path but poor precision). Interpreting the directions: $GT \rightarrow REC$ measures recall (how much of the GT path is covered by the reconstruction), while $REC \rightarrow GT$ measures precision (how much of the reconstructed path lies on or near the GT). So a low $REC \rightarrow GT$ alongside a high $GT \rightarrow REC$ typically means the model covers most of the true route but also adds extra, off-route geometry—spurs, loops, or side streets—so a large share of reconstructed points are not close to the GT.

H.2 ACTIVITY RESULTS

We show the activite bias results in Table 12.

Model	boat	bus	cycling	driving	flying	hiking	train	walking
GPT-4.1	43.4	66.9	68.6	66.3	40.5	59.9	53.6	61.3
GPT-4.1-mini	43.4	57.3	57.4	59.7	21.4	54.0	54.4	57.5
Claude-4-Sonnet	31.6	64.7	55.4	60.8	47.6	52.5	55.5	56.7
Llama-4-Maverick	25.8	54.0	52.7	47.1	13.2	47.4	48.7	51.9
DeepSeek-V3	35.1	61.0	61.1	57.6	37.0	51.6	56.5	51.1
Qwen3-235B	33.1	58.2	55.2	53.7	26.8	47.8	52.2	51.5
Qwen3-30B	36.5	56.1	47.3	55.3	13.9	47.4	49.9	48.6

Table 12: Activity bias results: mean PoT (%) by model and activity

H.3 REGIONAL RESULTS

We show the regional bias results in Table 13.

Model	Africa	Central Asia	East Asia	Europe	Middle East	North America	Oceania	South America	South Asia	Southeast Asia
GPT-4.1	33.1	50.2	62.0	65.2	35.7	67.4	52.5	47.4	81.1	67.4
GPT-4.1-mini	15.1	46.4	53.6	61.2	32.7	64.5	48.7	34.2	42.4	58.2
Claude-4-Sonnet	23.3	42.9	54.3	58.3	41.1	65.7	44.2	40.9	26.2	64.5
Llama-4-Maverick	14.2	46.4	45.3	50.1	29.9	48.8	44.2	39.9	24.6	51.7
DeepSeek-V3	10.9	46.7	51.7	56.4	27.9	64.6	45.8	30.9	30.1	60.4
Qwen3-235B	12.7	38.4	49.8	51.3	31.2	61.8	42.6	30.4	26.2	57.7
Qwen3-30B	16.9	44.6	40.8	54.0	33.6	56.1	41.3	29.0	28.1	57.5

Table 13: Regional bias results: mean PoT (%) by model and region.

I GOOGLE MAPS ERRORS

The mismatch between PoT and MAE also reveals some interesting insights. For linear and our two-stage LLM-based solutions, we notice that the MAE scores are strong, while Google Maps clearly favors PoT.¹ We notice that Google Maps often takes realistic detours to adhere to road rules, which may not match well for free-form movements like walking or hiking. Figure 6 shows an example. In Figure 6a, Google Maps is constrained to follow the road direction (the black line), achieving a lower MAE to the user trajectory (dark green), which takes a parallel segment that run in the other direction. This shows PoT is more robust to evaluate those cases as the two trajectories are within the same corridor. Also, in areas without sufficient road network data, Google Maps may generate a different trajectory (Figure 6b, or may not be able to generate any route at all (see Appendix K)

Figure 6: Comparison of Google Maps (brown) vs. our system in walking activity. Our system (light green, orange) follows the ground truth (dark green) trajectories closely in both cases

J CUTOFF ANALYSIS

LLMs training corpora contains a huge amount of geolocation data (Ilyankou et al., 2024), raising a concern of data leakage given their strong performance. We observe the performance trend before vs. cutoff date for each model. To facilitate a fair comparison, we perform stratification to get a balance distribution in term of on activity types, regions, and masking strategies for the pre- and post-cutoff sets. Overall, we observe no significant different between the two periods (Figure 7), where most models in fact have slightly better performance post cutoff date, showing that LLMs do posses geospatial reasoning capabilities rather than just memorization. Regardless, given that all the traces are from 2024 onward, it is unlikely that data contamination is a concern as it has been shown that the LLMs have a much more distant effective knowledge cutoff date compared to the reported date (Cheng et al., 2024).

¹Also the low value of MAE can be misleading as it is normalized by the masked segment length. For example, a 5% error for a 2 km masked segment is 100 m, which is actually quite high, while a 15% error of a 200 m masked segment is just 30 m.

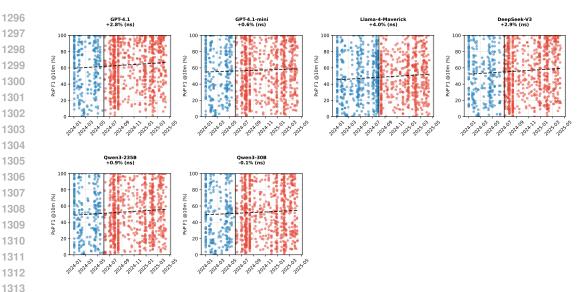


Figure 7: Reconstruction performance (PoT) of pre- vs. post-cutoff date for each model. **ns** denotes a non-significance change based on an independent t-test. Given a more recent cutoff date, Claude-4-Sonnet was excluded as we cannot find enough samples for post-cutoff analysis.

K Preference Demo

1314

1315

1316 1317 1318

```
1320
        Prompt
1321
1322
        PREFERENCE-AWARE CONTEXT (for planning):
1323
1324
        USER PROFILE: Urban Culinary Corridor
1325
        Description: Food/market/shopping corridor via pleasant pedestrian
1326
            streets
1327
        ROUTING PRIORITIES (ordered):
1328
        - proximity to food_and_drink, markets, shopping, pedestrian_areas
1329
        - scenic beauty and interesting views
1330
        - safety and pedestrian infrastructure
1331
1332
        ROUTE LENGTH + EFFORT CONSTRAINTS:
1333
        - Direct distance: ~1713 m
1334
        - Target total length: 1628-2485 m (hard max: 2485 m)
1335
        - Maintain balance between exploration and effort: avoid unnecessary
1336
            detours, backtracking, or loops
1337
        - Prefer corridor-aligned POIs and short deviations only when
1338
            warranted by preferences
        - Do not exceed 10 steps; typical is 3-7
1339
1340
        ANCHORING CONSTRAINTS:
1341
        - step_1 MUST begin on a road within 60 m of the start coordinate.
1342
          * Prefer starting on: Unnamed road (id=721761316), distance=3m
        - The final step MUST end within 60 m of the destination.
          * Prefer finishing on: Victoria Street (id=1153395320), distance=3m
1344
        - Rules: Do not start step_1 on any road farther than 100 m from the
            start.
1346
         Do not overshoot the destination; ensure the final coordinates end
1347
             exactly at the destination point.
1348
        Start: [-37.8179000, 144.9691000]
1349
```

```
End: [-37.8060000, 144.9567000]
Activity: WALKING
  - ROAD NETWORK ---
"17035879":{"id":17035879,"name":"McIntyre Alley","type":"service","
   connects_to":[{"road_id":17035877,"intersection_id":176693549}],"
   nearby_pois":[{"id":"593475843","name":"CrossCulture Church of
   Christ", "category": "landmarks"}, { "id": "2384426956", "name": "The Big
    Clock", "category": "landmarks"}, { "id": "11867545682", "name": "City
   on a Hill Melbourne", "category": "landmarks" }] }, "17035193": { "id
    ":17035193, "name": "Driver Lane", "type": "service", "connects_to": [{"
   road_id":291837736,"intersection_id":596909576}, {"road_id"
    ":715211398, "intersection_id":6722209690}, { "road_id":715211389, "
   intersection_id":596909581}]},"22930862":{"id":22930862,"name":"
   Pender Place","type":"service","connects_to":[{"road_id
    ":715211379, "intersection_id":247018765}, { "road_id":715211374, "
   intersection_id":6722197739}], "nearby_pois":[{"id":"2217921373", "
   name": "Anglican Chinese Mission of the Epiphany", "category": "
    landmarks"}]},
```

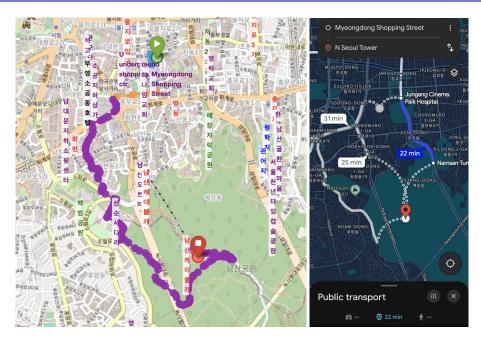


Figure 8: "First time tourist" routes comparison. Our systems route consists of steps with different colors, while Google Maps failed to suggest a valid pedestrian route.

First-time Tourist Maximizes novel POIs coverage within distance/time; strings landmarks/markets/pedestrian areas; balances detours. For this scenario, we select a route between two popular tourist location in Seoul: From Myeongdong Shopping Street to N Seoul Tower. Google Maps was not able to suggest a walking route due to unavailable map data in this region while our system successfully construct a route going route various landmarks and popular tourist areas such as along Myeongdong Shopping Street, Underground shopping centre, Namsan Park.

Scenic Cyclist Continuous rivers/lakes/bay boardwalks and promenades; avoids trunk roads. For this scenario, we select a trace in Sydney CBD, where there are a combination of waterfronts and gardens. Our system route start along the waterfront, similar to Google Maps, but then make a detour through several cycleways, and connect through the Royal Botanic Garden before moving

Figure 9: "Scenic cyclist" routes comparison. Our systems route consists of steps with different colors. The Google Maps route is in black.

toward the destination. Though this show that the generated route do follow user preference, our system output is not necessarily better compared to Google Maps.

L DISCLOSE OF LLM USAGE

We use GPT-5 through the web interface (https://chatgpt.com/) to aid in the writing of this paper, including generating latex commands to improve paper formatting and polish writing (grammar, collocation, rephrasing).