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Abstract— As autonomous vehicles (AVs) become increasingly
adopted, many opportunities to share information and commu-
nicate with one another will arise. This ability to communicate
reduces future uncertainties and allows for collaboration in
downstream tasks, such as planning, ensuring increased road-
side safety. Currently, many motion planners treat other AVs
as standalone human agents and plan to avoid their futures
without exploring the potential for collaboration and better-
informed motion planning. Towards this end, we present a
method for coordinated multi-agent motion planning between
two or more AVs that search over a distribution of expert
future trajectories to jointly plan paths. We evaluate our model
on a didactic, illustrative dataset to experimentally verify its
performance, with future plans to use more realistic perception
data.

I. INTRODUCTION
Recent years have seen large advancements in autonomous

driving and within the last decade autonomous vehicles
(AVs) are already being adopted worldwide. AVs operate
using a set of software henceforth referred to as an “auton-
omy stack”. This autonomy stack consists of several different
submodules that address the main tasks the AV needs to
perform to move in the world. The stack is most commonly
comprised of four components: perception (perceiving the
vehicle’s surroundings), prediction (forecasting potential fu-
ture events), planning (devising motion plans for the vehicle
to follow to reach a desired goal), and control (executing
those motion plans).

Motion planning is a crucial component of modern au-
tonomous driving systems, creating safe trajectories for a
vehicle to follow in an uncertain and ever-changing envi-
ronment [1]. To generate these motion plans, autonomous
vehicles must first reason about the surrounding environ-
ment, as well as predict the future motions of other agents
present in the scene. To do so, current motion planners treat
other vehicles as standalone sentient agents, predicting their
futures and planning paths that avoid them. As AVs are
increasingly deployed in the real world, however, scenes with
multiple AVs present will gradually become commonplace.
In these scenarios, each AV will execute the aforementioned
autonomy stack, predicting the future trajectories of other
AVs and human-driven vehicles and developing motion plans
based on these predictions. However, if both AVs could
trustfully communicate, the ability share information arises,
enabling the synthesis of coordinated motion plans with
reduced uncertainty by removing the need to forecast other
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Fig. 1. A visual overview of our method operating in a three-way
intersection. Both vehicles are autonomous with their trajectories denoted
by dashed lines and desired goals represented as stars.

AVs’ futures. Currently, the vast majority of state-of-the-
art motion planning algorithms neglect coordination in such
scenarios, instead treating each vehicle uniformly without
distinguishing human agents from AVs.

To this end, this paper presents a context-aware, data-
driven, multi-agent coordinated motion planning algorithm
that leverages vehicle-to-vehicle (V2V) communication. To
achieve coordinated motion planning, our method leverages
two key components: (1) a generative autoregressive flow
that determines possible future ego-vehicle trajectories by
learning to imitate expert driving behavior, and (2) a coor-
dinated motion planner that searches over AVs’ joint latent
behavior space to generate plans for each AV to achieve
their respective goals. An example of our proposed pipeline
is visualized in Fig. 1, where two AVs are approaching a
three-way intersection in opposing lanes. As the AVs near
each other, we assume temporary centralized control of both
vehicles. Our trajectory forecaster then predicts the potential
future trajectories of the two AVs. Our coordinated motion
planner then searches these trajectories to determine a joint
motion plan that will deliver each AV to their goal in a safe
manner. An example trajectory forecast for two vehicles is
shown in Fig. 2. Fig. 3 shows an example of a joint motion
plan for two vehicles.

Contributions. The key contribution of this paper is
a coordinated multi-agent motion planning algorithm that
searches over a distribution of potential future trajectories
to jointly plan paths for multiple AVs. This algorithm’s per-
formance was experimentally verified on a didactic dataset.

II. RELATED WORK

Multi-Agent Trajectory Forecasting. Data-driven meth-
ods have been heavily used to forecast interactions between
various types of agents (e.g., vehicles, pedestrians) [2],
[3], [4], [5], [6]. Broadly, most approaches apply Imitation
Learning (IL) [7] to mimic previously observed expert in-



Fig. 2. Our traffic model’s prediction results on an illustrative two-car
dataset. The two cars can move in one of three directions, and are shown
in red (moving rightwards) and blue (moving leftwards), with dark red and
dark blue denoting the ground truth futures of each car, respectively.

Fig. 3. An example of a joint optimal path (in green) found by our optimizer
that delivers both AVs to their goal destination (in red) using expert-like
trajectories (in gray).

teractions to generalize and predict multi-agent behaviours
in new scenarios. Our method is similar to methods such
as Behaviour Cloning (BC) [8] whereby visuomotor policies
are learned through expert data. However, we differ from
BC through Deep Imitative Models (DIM) [9], a method we
extend, and their use of spatial information inherent in the
waypoints outputted by an A* planner.

A majority of methods used for human trajectory fore-
casting fall under two types of approaches: deterministic
regression models and generative models. Several works
detailed in [10] are deterministic methods used for agent
trajectory forecasting, however, forecasting is inherently non-
deterministic due to the future’s uncertainty and existence of
many possible outcomes. Therefore, probabilistic methods
are better suited to deal with these uncertainties.

As of late, generative, probabilistic approaches to multi-
agent trajectory forecasting and planning have emerged as
state-of-the-art [10]. These methods have transitioned to

predicting a distribution of possible future trajectories as
opposed to only providing the single best. This shift has
proven useful for downstream tasks such as planning because
of the access to more information that the motion planner
can use to make safer decisions, something our method
relies heavily upon. Our method is most similar to works
using Conditional Variational Autoencoders (CVAE) [11] to
encode multimodality using recurrent backbone models [12],
[13], [6], [14], [15].

Prediction for Planning and Control. Many of the meth-
ods previously discussed are not developed with downstream
tasks such as planning and control in mind. Recently, several
works have designed their predictions’ output representation
to be cognizant of downstream motion planning. One such
work is the Neural Motion Planner (NMP) [16] which
outputs a temporal cost volume to be used in conjunction
with a sampling-based motion planner to evaluate trajectory
samples online. Another approach is MATS [17], whose
predictions consider agent-agent interactions as well as the
ego-vehicle’s future.

Given different output representations, trajectory forecast-
ing can be incorporated in planning in several different ways.
Some works optimize a plan in position space so as to
avoid other agents’ forecasted futures [18], [19] while others
project their predictions into the ego-vehicle’s control space
and subsequently optimize its controls (e.g., [17]). However,
our method which extends DIM, differs significantly because
our planning is done through our predictor by searching its
learned joint latent space during optimization, rather than
simply using its trajectory forecasts.

Methods Extended. Our method is most related to
R2P2 [20], DIM [9], and PRECOG [13]. R2P2 proposes a
method that forecasts ego-vehicle trajectories as a probability
distribution over expert-like paths, conditioned on visual
features. In addition to a novel objective function, R2P2 also
proposes a trajectory forecaster which learns a bijection that
transforms a Gaussian “base” distribution to a distribution
of expert-like trajectories such that when a sample from the
Gaussian is “pushed forward” through the bijection, it yields
an expert path sample. We illustrate R2P2’s forecasting factor
graph in the left of Fig. 4. Using scene observations and
the ego-vehicle’s past states ϕ, R2P2 forecasts the vehicle’s
future states. For R2P2, the AV’s intent Zr is unknown and
is represented with a circular node.

DIM [9] builds on R2P2’s trajectory forecasting model by
combining the advantages of imitation learning and goal-
based planning. DIM devises future ego-motion plans to
desired goal locations by searching over a restricted space
of “human-like” future trajectories. Using R2P2’s trajectory
prediction model, DIM is able to search over the latent base
distribution to find an expert-like trajectory that best achieves
the desired task. The paper also presents numerous different
goal formulations. As can be seen in Fig. 4, DIM expands
upon R2P2 with the ability to plan for and execute ego-
vehicle motion plans. Accordingly, Zr is now referred to
as zr and represented with a square, shaded node, where
shading denotes that the variable is observed.



Fig. 4. Factor graphs for R2P2 [20], DIM [9], and PRECOG [13]. As
shown, the forecasts and plans are conditioned on the scene context, ϕ
(explained further in Section III). Z denotes a driver’s intent and S denotes
the future system (“h” superscript denotes human and “r” superscript denotes
robot). Shaded nodes represent variables that are observed and square nodes
denote a decision made by an AV. The subscripts denote different timesteps.

Lastly, PRECOG [13] expands upon the prior two works
by proposing a prediction model able to forecast future
interactions between a variable number of agents present
in a scene. Specifically, the model generates conditional
forecasts in which the model reasons how agents will react
to knowledge of the ego-vehicle’s goal. As an example, if
our ego-vehicle plans to stop at an upcoming intersection
we can assume with a higher probability that any vehicle
tailing the ego-vehicle will subsequently stop. Shown on
the right of Fig. 4, we can see that PRECOG extends DIM
by incorporating interactions with other agents, treating the
state of the robot (denoted with an “r” superscript) and state
of the human (denoted with an “h” superscript) as a joint
state. Notably, if the other agent was a robot, the factor
graph would remain as-is because the other robot’s intent
is assumed unknown.

Our method extends [13] by increasing the dimensionality
of the latent space N -fold in order to jointly model all N
AVs present in a scene and their interactions, as opposed to
only considering the ego-vehicle. Furthermore, the AVs are
easily controlled and delivered to their goals as a result of
our optimization process.

III. PROBLEM FORMULATION

Nomenclature. Throughout the rest of this paper, a “plan”
denotes a sequence of states an AV can follow to reach its
goal. A “goal” is taken to mean an AV’s desired future state.
The term “forecasting” refers to the inference of the potential
future states of various agents present in a scene [13]. Finally,
“scene context” refers to visual features or observations such
as LIDAR or past vehicle states.

We aim to generate a set of non-colliding motion plans
M1:N ∈ RN×T×D that deliver N autonomous agents A1:N

to their respective goals G1:N within T timesteps. D refers
to the dimension of the trajectory data, which in our case
is two. An agent’s goal Gi ∈ RD is its desired final state.
Since we are primarily concerned with AVs in this work,
each agent Ai is a vehicle and its D-dimensional state
Si
t ∈ RD consists of the AV’s x, y coordinates at time

t. We additionally assume that each agent receives high-
dimensional observations of the scene χ (e.g., LIDAR or

Fig. 5. A factor graph showcasing this paper’s main differences from the
three prior works in Fig. 4. Specifically, our method extends PRECOG [13]
by (1) incorporating knowledge of other agents’ intent, and (2) optimizing
for a joint motion plan using additional latent variables.

RGB) and its τ previous states, Si
−τ :0 ∈ Rτ×D. Altogether,

these components comprise an agent’s overall scene context,
ϕ. Finally, each AV also possesses the ability to communicate
and share information with the other AVs present in the
scene, allowing for coordinated motion planning.

IV. MULTI-AGENT COORDINATED PLANNING

Our method assumes temporary, centralized control over
two or more AVs to execute a coordinated motion plan. At a
high-level, our approach is a two-step process. First, a flow-
based traffic model encodes the prior history of agents and
any scene context to produce an informative joint latent space
that captures potential future human-like behaviors for all
AVs. The resulting joint latent space is then searched by
our motion planner to determine safe, human-like motion
plans for all AVs conditioned on their respective goals. Our
work’s contribution is best illustrated in Fig. 5, extending
PRECOG by introducing additional latent variables that
enable optimizing the joint plan. We can also see that now the
other agent’s intent is known due to communication between
AVs.

A. Flow-Based Generative Trajectory Forecasting

The first component of our approach is a trajectory pre-
diction model that encodes a particular scene χ and its
history Si

−τ :0 into a joint latent space Z. Since this joint
latent space will be used later in planning, each latent
vector should directly correspond to an output trajectory.
Accordingly, we apply normalizing flows to learn a mapping
between latent vectors and future trajectories. A normalizing
flow [21] is a method by which a complex distribution
(e.g., over future trajectories) is synthesized by transforming
a simple probability density (e.g., a Gaussian) through a
series of invertible, bijective functions. Intuitively, the simple
density “flows” through the invertible mappings to achieve a
(normalized) general probability distribution. Formally,

Z ∼ N (0, I); E = gπ(Z;ϕ), (1)

where ϕ = {χ,Si
−τ :0}, E is a distribution of expert-like

trajectories, and gπ is the bijection transforming the joint
latent space Z to a complex distribution E. The function gπ



is learned as a result of training our flow-based prediction
model.

In this work, we extend the flow-based Deep Imitative
Model (DIM) architecture [20], [9] for our traffic model.
While the original method only modeled a single agent, we
increase its latent dimensionality N -fold in order to jointly
model all AVs and their interactions.

DIM uses a differentiable and invertible simulator gπ as
the learnable bijection between two distributions: (1) a Gaus-
sian joint latent base distribution Z, and (2) a distribution of
path trajectories E, which are expert trajectories in our case.
The simulator gπ is then used to “push forward” samples
from distribution (1) to elements of distribution (2). The
simulator gπ is an autoregressive map representing a discrete,
stochastic dynamical system as follows:

Et = gπ(Z1:t)
∣∣
t
= µπ(E1:t−1, ϕ) + σπ(E1:t−1, ϕ)Zt, (2)

where µπ(E1:t−1, ϕ) represents a “Verlet” step, as in [20],
and is defined as:

µπ(E1:t−1, ϕ) = 2Et−1 − Et−2 +mπ(E1:t−1, ϕ). (3)

The two quantities mπ and σπ are learned as a result of
training our traffic model, enabling it to accurately generate
multimodal distributions resembling expert trajectories.

We additionally use the MobileNetV2 [22] Convolutional
Neural Network (CNN) architecture to encode the feature
maps χ, which condition our flow-based predictor. The
past states of each AV, Sa

−τ :0, are encoded using a Gated
Recurrent Unit (GRU) [23].

To train the model, for each data point (ϕ, y) we maximize
the log-likelihood of the ground truth future y given the scene
context ϕ. Formally,

max
π

log q0
(
g−1
π (y;ϕ)

)
− log

∣∣det Jgπ (
g−1
π (y;ϕ)

)∣∣ , (4)

where q0 is the Gaussian base distribution, g−1
π (y;ϕ) is the

inverse flow from the path distribution to the base distribution
(evaluated at y), and Jgπ

(
g−1
π (y;ϕ)

)
is the Jacobian of

gπ (evaluated at g−1
π (y;ϕ)). The full model architecture is

shown in Fig. 6 with additional implementation details in
Appendix A.

B. Coordinated Multi-Agent Motion Planning

With a trajectory forecasting model in hand, our coor-
dinated planner can search for human-like trajectories that
guide each AV to its desired goal. To do so, the planner min-
imizes a non-convex cost function with decision variable z
by gradient descent. Formally, it aims to solve

min
z

1

N

N∑
i=1

∥gπ(z)iT − yiT ∥22, (5)

where yiT denotes the final state of the ground truth expert
trajectory and z is a latent vector in the joint latent base
distribution, that, when pushed forward, results in expert-like
trajectories for each AV. An optimal z∗ results in each AV
reaching their goals without any unsafe interactions between
each other.

At the start of the optimization process, to avoid local
minima, the latent vector z is chosen by sampling different
initial base distribution vectors to determine which results in
the lowest final displacement error between the goal and the
last state of each of the vectors when pushed forward to the
expert trajectory distribution. Section V-E will further discuss
the necessity of this initialization scheme. The conditioning
base vector is then optimized using gradient descent to
converge to a satisfactory z, yielding expert trajectories that
deliver each AV to its goal.

V. EXPERIMENTS

A. Simple Illustrative Dataset

We evaluate our method’s performance on a simple, di-
dactic dataset. The dataset is trimodal, representing an inter-
section where a vehicle can either turn left, right, or continue
straight. Two autonomous cars are placed in the scene, facing
each other in two different lanes. Each car had the option to
turn right or left into single-lane streets, or continue straight
on their respective lanes. Expert, ground-truth trajectories
were generated for each of the three modes with constant
velocities. Scene context ϕ consisted of each car’s states for
the previous τ = 5 time steps as well as a semantic birds-
eye-view observation χ ∈ R100×100×3 of the intersection,
where roads are represented as white rectangles, and the
surrounding ground is green. This semantic observation is
shown in the background of Fig. 7. The single-car dataset
consisted of three cases: the car turns right, left, or continues
straight. Each of these cases were duplicated 10000 times
and combined to create training, validation, and test datasets
of size 30000 each. For the two-car dataset, five cases were
made for each valid combination of trajectories that each of
the two AVs could take: (1) straight and straight, (2) straight
and right, (3) left and left, (4) right and straight, and (5)
right and right. A training, validation, and test dataset were
made by replicating each case 6000 times and combining
them to have datasets with 30000 examples total. Noise was
applied to each of the trajectories to introduce variance into
the dataset. Goal points were selected to be the final point
of each vehicles’ respective ground truth trajectories.

B. Prediction Evaluation

The trajectory prediction model was trained using this
trimodal dataset for 250 epochs and evaluated using a
negative log-likelihood (NLL) loss. Our loss values were
compared against a theoretical lower-bound of −120 for
the single-vehicle case and −240 for the two-vehicle case.
After training, our model achieved an NLL of −116 for the
single-car case and an NLL of −231 for the two-car case,
as expected. Trajectory forecasts were also visually verified
for both the single-car and two-car case. An example of the
two-car results is shown on Fig. 2.

C. Contextual Awareness Evaluation

We evaluated our model’s ability to appropriately incorpo-
rate scene context by adding different intersection types into



Fig. 6. Our method’s architecture diagram (building upon that of DIM [9], reproduced with author’s permission) of mπ and σπ which are used to learn
expert agent dynamics. The inputs to this model are scene context, ϕ = {χ,Si

−τ :0}, and latent noise Z1:T . The outputs of the model are trajectories,
S1:T . Most importantly, the traffic model can be used to search for expert-like trajectories that reach all AVs’ respective goals.

our didactic dataset. Two more road geometries, a left-turn-
only and right-turn-only road, were added in addition to the
trimodal intersection. In this evaluation, we are looking for
trajectory forecasts that account for each input intersection
type (e.g., only turning left on the left-turn intersection). As
can be seen in Fig. 7, our model is indeed able to factor
in scene context and produces predictions appropriate for
the input scenario. We additionally evaluated our model’s
capability to match dataset statistics by varying the amount
of different trajectory types in the dataset. In particular, for
the trimodal intersection, the car would go straight half of
the time and turn left or right a quarter of the time. These
same proportions between different future possibilities was
maintained in our trajectory forecasts, displaying a similar
50%/25%/25% direction split.

D. Motion Planning Evaluation

Using the prior model trained on the trimodal dataset, our
motion planner was experimentally verified by selecting one
of the single-car and two-car modes and placing goals at the
end of each car’s trajectory. Gradient descent was performed
for 1000 iterations using the mean squared error between our
path’s final state and the goal state as our loss function. Fig. 8
visualizes this optimization process. For each case, the final,
optimal path was visually shown to reach the desired goal
by using an expert-like trajectory. An example of an optimal
path reaching each car’s goal for the two-car example is
shown in Fig. 3. Additional results are shown in Appendix
B.

E. Planning - Forecasting Accuracy Trade-Off

During motion planning evaluation, there was an inter-
esting pattern that emerged. When using a prior model
that was better trained on the trimodal dataset, the three
modes were more “rigidly” separated in the joint latent
base distribution distribution. As a result, when optimizng
the MSELoss dropped significantly at one point, but has
difficulties searching the different modes until then. A visual
comparison of the optimization process between a better

trained prior and less trained prior is shown in Fig. 8.
Therefore, it seems that a better-trained prior is better for
open-loop prediction but worse for optimization and a worse-
trained prior is worse for open-loop prediction but better for
optimization. To remedy this, a better prior was used without
this consequence by initially sampling different conditioning
base vectors, z, and using the one with the lowest MSELoss,
allowing the optimizer to start its search “closer” to the
optimal path.

VI. CONCLUSION

In this work, we present a method for coordinated multi-
agent planning with promising performance on a didactic
test dataset. This method has the potential to be deployed
alongside the increasing adoption of AVs to leverage their
abilities to communicate and share information, creating
safer roadside interactions.

Future Work. Firstly, we will upgrade from using our
didactic trimodal dataset to more realistic perception data.
Additionally, there is also discussion as to expanding the
nature of how perception data is shared between the vehicles.
Currently, the ability to share visual observations is not
leveraged and methods like V2VNet [24] which create better
world representations by having the different AVs fill in each
others’ gaps can be incorporated or built on.
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APPENDIX A - ARCHITECTURAL DETAILS AND TRAINING
HYPERPARAMETERS

The architecture of our trajectory forecaster (in Fig. 6) is
shown in Fig. 9. Extends the architecture of [9] by increasing
the dimensionality N-fold.



Fig. 9. Implementation details (reproduced with author’s permission [9]) for the trajectory forecaster’s two components: scene context featurizer and
trajectory generator. For our didactic dataset, H = W = 100.

Fig. 10. Relevant training hyperparameters.



APPENDIX B - ADDITIONAL PLANNING RESULTS

The results of our coordinated motion planner on the left-
left and right-right case are shown in Fig. 11 and the results
from the straight-straight and right-straight case are shown
in Fig. 12. For each of the pair of figures, the left one depicts
the joint optimization process for both vehicles across 1000
steps. The optimal path at the end of the process is in green,
delivering each to their respective goals in red. Each optimal
path is overlaid onto our trimodal dataset in the right image
of each figure. This demonstrates that each path follows
expert-like trajectories to reach each vehicles’ goal.



Fig. 11. Additional coordinated motion planning results with the optimization process shown for each case on the left and optimal path (green) overlaid
onto our trimodal dataset on the right. The red points denote each vehicle’s goal.



Fig. 12. Additional coordinated motion planning results with the optimization process shown for each case on the left and optimal path (green) overlaid
onto our trimodal dataset on the right. The red points denote each vehicle’s goal.


