
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMPROMISED TURING MACHINES: ADVERSARIAL
INTERFERENCE AND ENDOGENOUS VERIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce the concept of a Compromised Turing Machine (CTM), an extension
of the classical Turing machine model where an adversary, Eve, can tamper with
the tape or internal state between timesteps. The CTM exposes fundamental vul-
nerabilities in the machine’s ability to self-verify its computations, particularly in
adversarial environments where endogenous verification mechanisms cannot reli-
ably ensure computational integrity. Through a novel parallel with Descartes’ deus
deceptor thought experiment, we explore the epistemological limits of computa-
tional certainty, illustrating how the CTM reveals the failure of self-verification in
adversarial contexts.
To address these vulnerabilities, we propose several secure computational models,
including hybrid systems with external verification, randomized and probabilistic
verification protocols, distributed computing models with cross-verification, self-
correcting and self-healing mechanisms, and advanced cryptographic techniques
such as zero-knowledge proofs and homomorphic encryption. While each solu-
tion presents trade-offs in terms of computational overhead and complexity, they
provide a foundation for building resilient systems capable of withstanding ad-
versarial interference. Our work highlights the need for external sources of trust
and verification in secure computation and opens new directions for research into
adversarial computational models.

1 INTRODUCTION

The Turing machine (TM) is a cornerstone of classical computational theory, providing a fundamen-
tal model of algorithmic processes. However, the classical TM assumes an idealized environment
where computations are isolated from external interference. In modern computational contexts, es-
pecially in distributed systems and adversarial settings, such assumptions no longer hold. In this
paper, we introduce the Compromised Turing Machine (CTM), a model where an adversary, Eve,
can modify the machine’s tape or state between computational steps. This model offers new per-
spectives on the limits of computation and verification in adversarial settings.

The CTM draws parallels to classical philosophical skepticism, particularly the Cartesian deus de-
ceptor, where an all-powerful deceiver undermines certainty in knowledge. Here, Eve acts as a
computational deceiver, calling into question the reliability of internal verification processes. We
explore the implications of this model for theoretical computer science, cryptography, and the secu-
rity of autonomous systems.

The primary contributions of this paper are as follows:

• We formalize the Compromised Turing Machine (CTM), a new model where adversarial
interference occurs between timesteps of a classical TM.

• We explore the limitations of endogenous verification in the CTM, where the machine
attempts to verify its own integrity against external manipulation.

• We draw novel philosophical parallels between the CTM and Cartesian skepticism, offering
insights into the limits of self-verification in both human cognition and machine computa-
tion.

• We propose directions for secure computational models that could operate in adversarial
environments, with implications for cryptography and secure computation.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 TURING MACHINES AND VARIATIONS

Turing machines serve as a fundamental model of computation (Turing (1936)). Various extensions
to the classical model, such as non-deterministic Turing machines and interactive Turing machines,
have been explored (Goldwasser et al. (1989)). However, these models typically assume computa-
tional isolation, without considering adversarial manipulation between steps.

2.2 ADVERSARIAL MODELS IN CRYPTOGRAPHY

Adversarial models are central to cryptography, where the goal is to design secure protocols in
the presence of malicious actors. The Dolev-Yao model, for example, assumes an adversary can
intercept and modify messages (Dolev & Yao (1983)). However, these models focus on network
security, whereas the CTM addresses internal computational integrity.

2.3 FAULT TOLERANCE AND SELF-STABILIZING SYSTEMS

Fault-tolerant systems and Byzantine fault tolerance address adversarial behavior in distributed sys-
tems (Lamport et al. (1982)). The CTM model shares some features with these systems but intro-
duces new challenges by focusing on a single computational entity subject to external tampering
between discrete steps.

2.4 PHILOSOPHICAL PARALLELS TO CARTESIAN SKEPTICISM

The concept of a deceiving adversary in the CTM echoes Descartes’ thought experiment of the
deus deceptor, where an all-powerful being systematically deceives an individual’s perceptions
(Descartes & Cottingham (1996)). Our work draws on this philosophical analogy to examine the
limitations of verification in both human and machine contexts.

3 COMPROMISED TURING MACHINES

3.1 CLASSICAL TURING MACHINE

A classical Turing machine M is defined as a tuple M = (Q,Σ,Γ, δ, q0, qaccept, qreject), where Q is
the finite set of states, Σ is the input alphabet, Γ is the tape alphabet, and δ is the transition function.
The machine proceeds step-by-step in a deterministic manner.

Formally, a classical Turing machine M is defined as a tuple:

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

Where:

• Q is the finite set of states.
• Σ is the input alphabet (not containing the blank symbol ⊔).
• Γ is the tape alphabet, where Σ ⊂ Γ, and ⊔ ∈ Γ represents the blank symbol.
• δ : Q×Γ → Q×Γ×{L,R} is the transition function that defines how the machine moves

between states based on the current symbol read from the tape.
• q0 ∈ Q is the initial state.
• qaccept ∈ Q is the accepting state.
• qreject ∈ Q is the rejecting state.

The machine operates by reading a symbol from the tape at the position of the tape head, transition-
ing to a new state based on the transition function δ, writing a new symbol to the tape (or overwriting
the current symbol), and moving the tape head one cell to the left (L) or right (R).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3.2 COMPROMISED TURING MACHINE (CTM) DEFINITION

We now define the Compromised Turing Machine (CTM) by introducing an external adversary, Eve,
who can manipulate the machine’s tape or internal state between time steps. The CTM is defined as
a tuple:

MC = (Q,Σ,Γ, δ, q0, qaccept, qreject, Psafe)

Where:

• Q,Σ,Γ, δ, q0, qaccept, qreject are as defined for the classical Turing machine.
• Psafe : T × Q → {true, false} is a predicate that verifies the integrity of the tape configu-

ration and internal state of the machine, ensuring that no tampering by Eve has occurred.
Here, T represents the set of possible tape configurations, and Q represents the set of pos-
sible internal states.

Unlike a classical Turing machine, where the tape and state transitions occur deterministically based
on the transition function δ, the CTM allows for the possibility that Eve can:

• Modify the tape between time steps, potentially altering the symbols on the tape.
• Alter the machine’s state between time steps, potentially changing the internal state of the

machine without the machine’s awareness.

The predicate Psafe is used to detect such tampering. If Psafe(T, q) = true, the machine concludes
that no tampering has occurred. Otherwise, if Psafe(T, q) = false, tampering is detected, and the
machine halts or transitions to an error state.

3.3 ADVERSARIAL INTERFERENCE BY EVE

In the CTM model, Eve has the ability to interfere with the Turing machine between discrete
timesteps. Specifically, after the machine has read from the tape, transitioned to a new state, and
updated the tape, Eve may:

• Modify the contents of any cell on the tape.
• Alter the machine’s internal state q ∈ Q.
• Modify previously stored integrity checks (e.g., cryptographic hashes or checksums) that

the machine may have computed for endogenous verification.

Eve’s goal may vary depending on the scenario, ranging from corrupting the machine’s output to
causing it to enter an infinite loop, halt prematurely, or even produce incorrect results while main-
taining the illusion of correctness. Eve can tamper with both the current configuration of the tape
and the machine’s internal state in a way that the machine may not detect.

3.4 ENDOGENOUS VERIFICATION: DEFINITION AND LIMITATIONS

A key question that arises in the CTM model is whether the machine can perform endogenous
verification, i.e., whether it can verify its own integrity from within the system. The predicate Psafe
is designed to allow the machine to verify that no tampering has occurred. However, we demonstrate
that endogenous verification is inherently vulnerable in the presence of Eve.

The predicate Psafe(T, q) operates as follows:

• T ∈ T represents the current tape configuration.
• q ∈ Q represents the current internal state.
• Psafe(T, q) = true if the machine concludes that its tape and state are untampered, and
Psafe(T, q) = false if tampering is detected.

Endogenous Verification Mechanisms: The machine may attempt to use mechanisms such as:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• Cryptographic Hashing: The machine can hash portions of the tape and compare the hash
at later steps. If the hash matches the expected value, the machine proceeds; otherwise, it
detects tampering.

• State Consistency Checks: The machine can store the expected next state and check that it
transitions to this state as determined by δ.

However, since Eve can tamper with both the tape and any stored hash or consistency checks be-
tween timesteps, these mechanisms are not sufficient. Specifically, Eve can:

• Alter the tape or state after the machine has verified them but before the next step occurs.

• Modify the stored hash values or expected states, making it impossible for the machine
to reliably detect the tampering.

3.5 THEOREM: THE IMPOSSIBILITY OF COMPLETE ENDOGENOUS VERIFICATION

We now formalize the limitations of endogenous verification in the CTM model. We show that it is
impossible for a CTM to guarantee tamper-free computation using endogenous verification alone.

Theorem 1. Let MC be a Compromised Turing Machine with an adversary Eve, who can tamper
with the machine’s tape and internal state between timesteps. Then, there exists no endogenous
verification mechanism Psafe such that Psafe can deterministically guarantee that no tampering has
occurred.

Proof. Assume, for the sake of contradiction, that there exists an endogenous verification mecha-
nism Psafe such that Psafe(T, q) = true if and only if the tape T and state q have not been tampered
with.

After timestep t, the machine computes some integrity check (e.g., a hash) based on its current tape
and state and stores this value. However, before timestep t + 1, Eve can modify both the tape and
the stored integrity check (including the hash value). When the machine performs verification at
t + 1, it will observe the modified (tampered) tape and the tampered hash value. Since both have
been altered consistently, the machine will conclude that Psafe(T, q) = true, even though tampering
has occurred.

Thus, any mechanism the machine uses to verify its own integrity is susceptible to Eve’s interference,
rendering endogenous verification insufficient to guarantee safety. Therefore, no such Psafe can
deterministically guarantee tamper-free computation.

This result highlights the fundamental vulnerability of a CTM: any verification mechanism entirely
internal to the machine can be manipulated by an adversary who has access between timesteps.

We have introduced the concept of the Compromised Turing Machine (CTM) and formalized the
adversarial interference model, where Eve can manipulate the tape or state between timesteps. Ad-
ditionally, we demonstrated the inherent limitations of endogenous verification mechanisms, show-
ing that no such mechanism can fully guarantee the machine’s safety in the presence of adversarial
manipulation. This opens up further inquiries into external verification mechanisms and secure
computational models capable of operating under adversarial conditions.

4 PHILOSOPHICAL INTERPRETATION: THE CARTESIAN DEUS DECEPTOR

The notion of a Compromised Turing Machine (CTM), wherein an adversary (Eve) can tamper with
the machine’s internal state or tape between timesteps, has striking parallels to René Descartes’ fa-
mous philosophical thought experiment involving a deus deceptor—an all-powerful deceiver who
systematically misleads the thinker about the nature of reality. This section draws on these philo-
sophical parallels to explore the deeper implications of computational and epistemological certainty,
deception, and trust in systems that operate under adversarial interference.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 DESCARTES’ Deus Deceptor AND EPISTEMIC SKEPTICISM

In his Meditations on First Philosophy, Descartes famously posited the possibility of a deus de-
ceptor, or a deceiving god, who has the power to manipulate not only the senses but also the very
faculties of reason. This thought experiment led Descartes to question the certainty of all knowl-
edge, including mathematical truths, as he considered the possibility that an omnipotent being could
deceive him at every step of his reasoning process. Descartes concluded that he could doubt all
external realities, but the one indubitable truth was his own existence as a thinking being: Cogito,
ergo sum (I think, therefore I am, Descartes & Cottingham (1996)).

4.2 THE ROLE OF EVE AS THE Deus Deceptor IN THE CTM

In the context of the CTM, Eve serves as a computational analogue to Descartes’ deus deceptor.
Just as Descartes imagined a deceiving god capable of altering his perceptions and reasoning, Eve
can systematically interfere with the CTM’s tape and internal state without the machine being
aware. The machine, like Descartes’ thinker, operates under the assumption that its own internal
processes—whether reasoning for Descartes or computational steps for the machine—are reliable.
However, just as Descartes must entertain the possibility of deception in his pursuit of knowledge,
the CTM must account for the possibility that its computations have been compromised by Eve.

In both cases, the agent (Descartes or the Turing machine) is limited by the fact that it has no
access to events that occur outside its own processes. The Turing machine has no awareness of what
happens between timesteps, and Descartes’ thinker has no access to the external world beyond his
mind’s own constructions. In both cases, the possibility of deception is ever-present.

4.3 ILLUSION OF CERTAINTY AND THE FAILURE OF ENDOGENOUS VERIFICATION

One of the key insights of Descartes’ thought experiment is the illusion of certainty. Before introduc-
ing the deus deceptor, Descartes had assumed that certain truths, such as the laws of mathematics,
were beyond doubt. However, the possibility of a powerful deceiver led him to doubt even these
foundational truths. Similarly, in the CTM, the machine may compute certain verification mecha-
nisms, such as a cryptographic hash or state consistency check, that give it the illusion of certainty
about the integrity of its tape or internal state.

However, as we have shown in Section 3.4, Eve can tamper with both the tape and the verification
mechanisms themselves, leading the machine to believe it has verified its integrity when, in fact,
it has been deceived. This parallels Descartes’ realization that his faculties of reasoning, which
seemed reliable, could be systematically manipulated by an external deceiver. Thus, the machine’s
internal verification processes, like Descartes’ initial beliefs in the certainty of mathematical truths,
may ultimately be unreliable in the face of external interference.

4.4 THE LIMITS OF SELF-VERIFICATION AND CARTESIAN DOUBT

Descartes’ ultimate conclusion was that all knowledge derived from the senses or reasoning could be
called into doubt, except for the knowledge of his own existence as a thinking being. The Cogito rep-
resented the only indubitable truth because it was a self-verifying, immediate fact of consciousness:
in order to doubt, one must exist to perform the doubting.

In contrast, the Turing machine lacks this capacity for self-awareness or Cogito. It cannot reflect on
its own computations in a way that is independent of external tampering. The machine’s attempts
at endogenous verification are vulnerable to Eve’s interference, meaning that there is no equivalent
to the Cogito for the machine—no self-verifying truth that it can rely on. Thus, while Descartes’
thinker can at least rely on the certainty of his own existence, the CTM cannot be certain of the
integrity of its computations.

This difference highlights a fundamental limitation in computational systems: without some form of
external or trusted verification mechanism, the machine cannot escape the possibility of deception.
In epistemological terms, the Turing machine is more vulnerable than the Cartesian thinker because
it lacks any inherent, self-verifying truth.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.5 EXISTENTIAL AND EPISTEMIC VULNERABILITIES

The CTM model reveals an existential vulnerability in computational systems. Just as Descartes’
thinker, in the face of the deus deceptor, confronts the possibility that everything he perceives or
knows might be false, the CTM faces the possibility that every computation it performs might be
compromised. This vulnerability raises broader questions about trust and security in computational
systems (Anderson (2020)), particularly in environments where external interference is possible
(e.g., distributed systems, cloud computing, blockchain).

The key challenge for both Descartes and the CTM is the lack of access to external reality—whether
it be the physical world for Descartes or the state of the tape and computation for the CTM. In both
cases, there is a profound dependence on internal processes that may be systematically manipulated
by an adversarial force.

4.6 FROM CARTESIAN SKEPTICISM TO COMPUTATIONAL TRUST

In his philosophical work, Descartes ultimately overcomes the deus deceptor hypothesis by invok-
ing the existence of a benevolent God, who guarantees the truth of clear and distinct ideas. For
computational systems like the CTM, a similar resolution may come in the form of trusted external
verification mechanisms. In the CTM model, such mechanisms could take the form of a trusted
third-party verifier, a secure external observer, or a cryptographic protocol that is tamper-proof and
guarantees the integrity of the machine’s computations.

Thus, the resolution to the CTM’s existential and epistemic vulnerability, like Descartes’ resolution
to his skepticism, lies in the introduction of an external source of trust. Without such mechanisms,
the CTM remains vulnerable to adversarial manipulation, much like Descartes remains vulnerable
to deception without a benevolent God.

4.7 PHILOSOPHICAL INSIGHTS FOR SECURE COMPUTATION

The comparison between the CTM and Descartes’ deus deceptor reveals several key insights for
secure computation:

• Epistemic Limits of Computation: Just as Descartes’ thinker cannot escape doubt through
internal reasoning alone, a Turing machine cannot guarantee the integrity of its computa-
tions through internal verification processes if an external adversary is present.

• Necessity of External Trust: The only way for both Descartes and the CTM to over-
come the possibility of deception is through the introduction of an external source of
trust—whether it be a benevolent God in Descartes’ philosophy or a trusted external verifier
in computational theory.

• Existential Vulnerabilities: The CTM highlights a fundamental vulnerability in compu-
tational systems that operate in adversarial environments, much like Descartes’ skepticism
highlights the vulnerability of human reason to deception. In both cases, there is a need for
external verification to secure trust.

This philosophical analogy provides a deeper understanding of the limitations of computation in
adversarial settings and highlights the necessity of secure, trusted external mechanisms for ensuring
computational integrity.

5 SECURE COMPUTATIONAL MODELS: FUTURE DIRECTIONS

The compromised Turing machine (CTM) highlights fundamental vulnerabilities in the ability of
computational systems to verify their own integrity when subject to adversarial interference. Since
the machine cannot guarantee tamper-free computation using purely endogenous verification mech-
anisms, secure computational models must integrate additional strategies to mitigate the risks posed
by adversaries such as Eve. In this section, we propose several directions for constructing secure
computational models, drawing on existing techniques in cryptography, distributed systems, and
verification, as well as introducing new concepts that address the unique challenges posed by the
CTM.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.1 HYBRID COMPUTATIONAL MODELS WITH EXTERNAL VERIFICATION

One promising direction for securing computational models against adversarial interference is the in-
troduction of external verification mechanisms that operate outside the machine’s internal processes.
In such a model, the Turing machine would be augmented by a trusted external entity responsible
for verifying the integrity of the machine’s computation between timesteps. This external verifier
could monitor both the tape and the machine’s internal state, ensuring that any tampering by Eve is
detected.

The key idea behind hybrid models is that they combine the machine’s internal operations with a
trusted external observer or verification mechanism. This external verifier could take several forms:

• Trusted Third-Party Verifier: A secure, independent system that periodically checks the
machine’s tape and state, computing cryptographic checksums or hashes to detect tamper-
ing. This verifier could act like a ”watchdog” that observes the computation and raises an
alert if tampering is detected.

• Secure Hardware Modules: Trusted execution environments (TEEs) such as Intel SGX
or ARM TrustZone could be integrated with the Turing machine to ensure that certain
critical operations (e.g., state transitions or tape writes) are executed securely and cannot be
tampered with by Eve. These hardware modules provide a level of assurance that internal
state and sensitive computations are protected from interference.

• External Cryptographic Proofs: The machine could periodically generate cryptographic
proofs (e.g., using zero-knowledge proofs or homomorphic encryption) that can be veri-
fied externally. These proofs would guarantee that the machine’s computation proceeds
correctly, even if Eve attempts to interfere.

Hybrid models rely on the premise that some external source of trust can detect tampering that the
machine itself cannot. By introducing external verifiers, we ensure that tampering by Eve can be
caught between timesteps, thus mitigating the vulnerabilities inherent in purely endogenous verifi-
cation.

5.2 RANDOMIZED OR PROBABILISTIC VERIFICATION PROTOCOLS

Another approach to securing the CTM is to introduce randomized or probabilistic verification pro-
tocols, which make it harder for an adversary like Eve to predict when and where the verification
will occur. The core idea is to increase the adversary’s uncertainty about the timing or scope of
verification, thus reducing the effectiveness of any tampering attempt.

Randomized verification protocols could work as follows:

• Randomized Tape Checks: The machine could randomly select portions of the tape to
verify at each timestep, using cryptographic hashes or checksums to ensure that the contents
of those tape cells have not been modified. Since Eve cannot predict which portions of the
tape will be checked, tampering becomes more difficult to conceal.

• Probabilistic State Verification: Similarly, the machine could probabilistically verify its
internal state at random intervals. If the machine detects any inconsistencies between its
current state and its expected state, it halts or raises an alarm.

• Randomized Redundancy: The machine could introduce redundancy into its computa-
tions by randomly replicating certain computations or storing multiple copies of the tape.
Eve would need to tamper with all redundant copies consistently to avoid detection, which
increases the difficulty of successful tampering.

Randomized verification protocols introduce an element of unpredictability that makes it harder for
adversaries to perform undetectable tampering. However, they also come with trade-offs in terms of
computational overhead, as frequent checks or redundant computations can slow down the system.

5.3 DISTRIBUTED COMPUTATION AND VERIFICATION

Distributed computing offers another promising avenue for securing computation in adversarial envi-
ronments. In distributed systems, multiple independent agents or machines work together to perform

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

a computation, and integrity can be ensured by cross-verification among these agents. By decentral-
izing the computation, we reduce the impact of tampering on any single machine and increase the
likelihood that tampering will be detected.

In a distributed CTM model, the computation is divided across multiple Turing machines, each
of which performs a part of the overall task. These machines communicate with one another and
cross-verify their results. If one machine detects that its tape or state has been tampered with, it can
alert the other machines, who can collectively decide whether to halt the computation or switch to a
backup.

Key features of distributed verification include:

• Cross-Verification: Each machine independently verifies the outputs of the other ma-
chines, ensuring that no single machine can be tampered with without detection. This
is analogous to Byzantine fault-tolerance in distributed systems, where the system can tol-
erate a certain number of faulty or malicious agents.

• Majority Voting: In the case of conflicting results, the distributed system could use ma-
jority voting to determine the correct outcome. For example, if three machines perform the
same computation and one produces an inconsistent result, the system could discard the
outlier.

• Sharding and Replication: The computation could be sharded, meaning that different
machines work on separate parts of the task, but critical components are replicated across
multiple machines. Replication ensures that tampering with one machine does not compro-
mise the entire computation.

Distributed computation increases resilience against tampering, as Eve would need to compromise a
majority of machines to successfully alter the final result. This approach is particularly well-suited
for environments where trust can be distributed among multiple agents.

5.4 SELF-CORRECTING OR SELF-HEALING SYSTEMS

A more advanced approach to securing the CTM is the development of self-correcting or self-healing
systems, which can detect and repair damage caused by adversarial interference without external
assistance. These systems would have built-in mechanisms to automatically recover from tampering,
making them more robust in adversarial environments.

Self-healing systems could work on the basis of redundant state recovery, automated error detection,
and/or self-correcting algorithms.

Self-correcting systems would allow the CTM to autonomously detect and recover from tampering,
making them particularly useful in environments where external verification or human intervention
is impractical.

5.5 ADVANCED CRYPTOGRAPHIC TECHNIQUES: ZERO-KNOWLEDGE PROOFS AND
HOMOMORPHIC ENCRYPTION

Finally, advances in cryptographic techniques could provide novel ways to secure computations
against adversarial interference. Techniques such as zero-knowledge proofs (ZKP) and homomor-
phic encryption offer promising directions for ensuring the integrity of computations even in adver-
sarial environments.

• Zero-Knowledge Proofs (ZKP): In a ZKP-based system, the machine could generate
proofs that it has performed a computation correctly without revealing the details of the
computation itself. External verifiers could then check these proofs without needing to ac-
cess the machine’s internal state or tape. This would prevent Eve from tampering with the
computation while still allowing verification.

• Homomorphic Encryption: Homomorphic encryption allows computations to be per-
formed on encrypted data without needing to decrypt it first. In a homomorphically en-
crypted CTM, even if Eve were to tamper with the tape, she would be unable to alter the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

encrypted data meaningfully. The machine would be able to compute on encrypted inputs
and outputs, ensuring privacy and integrity throughout the computation.

These advanced cryptographic techniques provide strong guarantees of security and privacy, making
them valuable tools for securing computations in adversarial environments like the CTM.

While each of the secure computational models proposed above offers significant advantages, they
also come with trade-offs and challenges, such as the computational overhead, complexity of imple-
mentation, and trust assumptions.

Despite these challenges, securing computational models in adversarial environments remains a
critical area of research. The models and techniques outlined above provide a strong foundation for
building more resilient systems in the face of adversarial tampering.

In this section, we explored several promising directions for constructing secure computational mod-
els that can mitigate the vulnerabilities exposed by the CTM. Hybrid models with external verifica-
tion, randomized verification protocols, distributed computation, self-healing systems, and advanced
cryptographic techniques all offer ways to ensure the integrity of computation in adversarial settings.
While each approach has its trade-offs, together they represent a rich set of tools for advancing se-
cure computation in the presence of adversarial interference.

6 CONCLUSION

In this paper, we introduced the concept of the Compromised Turing Machine (CTM), a theoretical
model in which an adversary, Eve, can tamper with the tape or internal state of a Turing machine
between timesteps. This model reveals significant vulnerabilities in the machine’s ability to verify its
own computations, particularly in adversarial settings where endogenous verification mechanisms
are inherently insufficient. We demonstrated that no purely internal verification process can reliably
ensure the integrity of the machine’s state or tape due to Eve’s capacity to manipulate both the
verification and computational processes.

By drawing philosophical parallels to Descartes’ deus deceptor, we explored how the CTM high-
lights the limits of computational certainty in adversarial environments. Just as Descartes ques-
tioned the reliability of his perceptions and reasoning in the presence of a deceiving god, the CTM
reveals how computational systems are vulnerable to tampering that undermines their own verifica-
tion processes. This analysis suggests that, like Descartes’ reliance on a benevolent God to guarantee
certainty, computational systems must incorporate external sources of trust to mitigate adversarial
risks.

We proposed several promising directions for addressing the vulnerabilities of the CTM. Each of
these approaches addresses the fundamental weaknesses exposed by the CTM, but they also come
with trade-offs in terms of computational overhead, complexity of implementation, and trust as-
sumptions. Nevertheless, the exploration of these techniques provides a foundation for future work
in securing computational systems against adversarial interference, especially in contexts such as
distributed computing, cloud environments, and blockchain systems.

The CTM raises profound questions about the nature of trust, security, and computation in adversar-
ial settings. In highlighting the inherent vulnerability of endogenous verification, this work opens
up new avenues for developing more resilient computational models capable of withstanding ad-
versarial attacks. Just as the philosophical challenges posed by Descartes’ skepticism spurred the
development of new epistemological frameworks, the challenges posed by the CTM encourage us to
rethink how we approach computational security and integrity in an increasingly adversarial world.

REFERENCES

Ross Anderson. Security Engineering: A Guide to Building Dependable Distributed Systems. Wiley,
3rd edition, 2020.

René Descartes and John Cottingham. Meditations on First Philosophy: With Selections from the
Objections and Replies. Cambridge University Press, 1996.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–208, 1983.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. Knowledge complexity of interactive proof
systems. In Proceedings of the 17th ACM Symposium on Theory of Computing, pp. 291–304.
ACM, 1989.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

Alan M Turing. On computable numbers, with an application to the entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, 42(2):230–265, 1936.

10


	Introduction
	Related Work
	Turing Machines and Variations
	Adversarial Models in Cryptography
	Fault Tolerance and Self-Stabilizing Systems
	Philosophical Parallels to Cartesian Skepticism

	Compromised Turing Machines
	Classical Turing Machine
	Compromised Turing Machine (CTM) Definition
	Adversarial Interference by Eve
	Endogenous Verification: Definition and Limitations
	Theorem: The Impossibility of Complete Endogenous Verification

	Philosophical Interpretation: The Cartesian Deus Deceptor
	Descartes' Deus Deceptor and Epistemic Skepticism
	The Role of Eve as the Deus Deceptor in the CTM
	Illusion of Certainty and the Failure of Endogenous Verification
	The Limits of Self-Verification and Cartesian Doubt
	Existential and Epistemic Vulnerabilities
	From Cartesian Skepticism to Computational Trust
	Philosophical Insights for Secure Computation

	Secure Computational Models: Future Directions
	Hybrid Computational Models with External Verification
	Randomized or Probabilistic Verification Protocols
	Distributed Computation and Verification
	Self-Correcting or Self-Healing Systems
	Advanced Cryptographic Techniques: Zero-Knowledge Proofs and Homomorphic Encryption

	Conclusion

