
ChatCoder: Human-in-loop Refine Requirement Improves LLMs’ Code
Generation

Anonymous ACL submission

Abstract

Large language models have shown good per-001
formances in generating code to meet human002
requirements. However, human requirements003
expressed in natural languages can be vague,004
incomplete, and ambiguous, leading large lan-005
guage models to misunderstand human require-006
ments and make mistakes. Worse, it is difficult007
for a human user to refine the requirement. To008
help human users refine their requirements and009
improve large language models’ code genera-010
tion performances, we propose ChatCoder, a011
method to refine the requirements via chatting012
with large language models. We design a chat013
scheme in which the large language models014
will guide the human users to refine their ex-015
pression of requirements to be more precise,016
unambiguous, and complete than before. Ex-017
periments show that ChatCoder has improved018
by a large margin. Besides, ChatCoder has019
the advantage over refine-based methods and020
LLMs fine-tuned via human response.021

1 Introduction022

Code generation is to generate source code that023

satisfies the human user’s requirements expressed024

in natural language. Recently large language mod-025

els have shown impressive abilities in code gen-026

eration. For example, OpenAI’s GPT-4(OpenAI,027

2023) passes 67% of the tests of HumanEval(Chen028

et al., 2021), and so are the open-source LLMs,029

e.g., (Gunasekar et al., 2023) passes 50.6% of the030

tests. It’s promising to deploy the LLM as an assis-031

tant for humans in real-world software production032

workflow.033

Although promising, the LLMs struggle with034

poor requirement expressions. In practice, require-035

ments are written in natural language. The natural036

language expressions can be vague, incomplete and037

ambiguous, misleading an LLM to generate the038

wrong code. Figure 1 shows a real-world example039

from a widely-used code generation benchmark,040

MBPP. The original expression of the requirement 041

is to find ‘the largest negative number’ without ex- 042

plaining the definition of ‘the largest negative num- 043

ber’. The real intent of the requirement is to find the 044

negative number with the largest absolute value. 045

However, according to the generated code from 046

gpt-3.5-turbo, the LLM is misled to look for the 047

negative number with the largest actual value. The 048

ambiguity of ‘the largest negative number’ leads to 049

incorrect programs from LLMs. 050

The above problem can be solved via require- 051

ments refinement, a widely used technique in real 052

development scenarios. Requirements refinement 053

is the process of revealing the underlying depen- 054

dencies and hidden structures(Liu, 2008). It alle- 055

viates potential ambiguities by revealing more re- 056

quirement details. As shown in Figure 1, we reveal 057

the hidden structure of ’the largest’ as ’the largest 058

absolute value’ to the LLM and get the correctly 059

generated code. 060

#MBPP/443
Write	a	python	function	to	find	the	largest

negative	number	from	the	given	list.

def	largest_neg(list1):
				if	len(list1)	==	0:
								return	None
				max_neg	=	None
				for	num	in	list1:
								if	num	<	0:
												if	max_neg	is	None	or	num	>	max_neg:
																max_neg	=	num
				return	max_neg

#	User's	Real	Intention
>>>	largest_neg([1,2,3,-4,-6])	->	-6
>>>	largest_neg([1,2,3,-8,-9])	->	-9

#MBPP/443	Refined	Requirements
Write	a	python	function	to	find	the	largest

negative	number	from	the	given	list.
	largest	negative	number:	The	largest
negative	number	refers	to	the	negative

number	with	the	largest	absolute	value	in
the	given	list.

Refine	the	concept	of	"largest"

def	largest_neg(list1):
				largest	=	None
				for	num	in	list1:
								if	num	<	0:
												if	largest	is	None	or	abs(num)	>
abs(largest):
																largest	=	num
				return	largest

Orignal	Requirement

Refined	Requirement

largest:

largest	actual	value?

largest	abstract	value?

Code	generated	before	refinement

Code	generated	after	refinement

Figure 1: Example of Refinement Improving Code Gen-
eration Performance

Inspired by the above observation, we intro- 061

duce requirement refinement into code generation 062

and propose ChatCoder, a new code generation 063

approach. ChatCoder utilises the human-in-the- 064

1

loop mechanism to refine requirements, asking the065

LLM and the human user to chat to extend the066

original requirement expression. By the coopera-067

tion of refinement, the details are settled, the dis-068

ambiguation is clarified, and the more informa-069

tive and precise refined requirement expressions070

are eventually formed. Then, the LLM generates071

code based on the refined version of the require-072

ment. Compared with the previous code generation073

approaches, ChatCoder mitigates the disambigua-074

tion in the requirement expression, improving the075

LLM’s code generation accuracy.076

A key challenge in ChatCoder is to design the077

human-in-the-loop mechanism. As a code gener-078

ation stakeholder, the human user has to partic-079

ipate in the refinement (iee, 1998). ChatCoder080

should provide an effective way of communication081

between an LLM and a human. We propose a two-082

round dialogue scheme for the human-in-the-loop083

requirement refinement. In each round, the LLM084

extends the requirement expressions obtained from085

the previous round following our designed require-086

ment extension framework. Then, the human user087

checks the extended expressions and edits the mis-088

takes. The edited expressions are prepared for the089

next round of extension or output as the finalised090

refined version.091

We apply ChatCoder to 2 popular LLMs, gpt-092

3.5-turbo and gpt-4. Our method is evaluated on093

two popular benchmarks, Sanitized-MBPP and Hu-094

manEval. The test results show that the refined095

requirements with ChatCoder improve the LLM’s096

code generation performances by a large margin,097

at an average percentage of 10.098

Our contribution is summarised as follows:099

1): We find and raise the problem that human’s100

poor requirement expressions in natural language101

limit LLMs’ ability to generate better programs.102

2): We propose ChatCoder, the first approach103

using human-in-loop requirement refinement to en-104

hance code generation.105

3): We evaluate ChatCoder on Sanitized-MBPP106

and Humaneval benchmarks. The extensive exper-107

iments show that ChatCoder effectively enhances108

the LLMs’ code generation performances.109

2 background110

2.1 Large Language Model for Code111

Generation112

Large language models are currently pre-trained113

Transformer-based language models with at least114

tens of billions of parameters. The first well- 115

known large language model is OpenAI’s GPT-3 116

(Brown et al., 2020) which has extraordinary code 117

generation ability. Following GPT-3, a series of 118

business-oriented close-source large language mod- 119

els have been proposed, e.g. GPT-3.5 and GPT- 120

4, and several open-source large language models 121

for code-related tasks have been published, e.g., 122

StarCoder(Li et al., 2023b), CodeT5+(Wang et al., 123

2023). WizardCoder(Luo et al., 2023) etc. They all 124

behave well in code generation. 125

The prompting technique is the current way of 126

using LLM to generate code. A prompt is a piece 127

of carefully designed text, e.g., the instructions for 128

the LLM. The prompt will be the LLM’s input, 129

influencing the LLM to generate what the human 130

user expects. In code generation, researchers have 131

explored multiple prompting techniques in order 132

for the LLM to generate code satisfying the hu- 133

man users’ requirements more precisely. For ex- 134

ample, Li et al. (2023a) proposes to provide exam- 135

ples closely related to the programming tasks in the 136

prompt as examples for the LLM. Jiang et al. (2023) 137

proposes that decomposing the programming task 138

in the prompt helps large language models solve 139

complex problems. The experiments prove that 140

the carefully designed prompts improve the LLMs’ 141

code generation performances. 142

2.2 Requirements Refinement 143

Requirements refinement is the process of revealing 144

the underlying dependencies and hidden structures, 145

serving as a start from requirement to design. Re- 146

quirements refinement is important because many 147

users in practice do not understand what functions 148

they want precisely at the beginning of a software 149

project(Liu, 2002), leading to poor original require- 150

ment expressions. Thus, the users and software 151

suppliers need to refine the requirements to sort out 152

the users’ true needs. 153

Previous studies of requirements refinement fo- 154

cus on providing a formal method for the soft- 155

ware supplier to analyse and refine the software 156

customer’s requirements. Liu (2008) raises a hi- 157

erarchical framework from the business level to 158

the component level to refactor the customer’s re- 159

quirements. de Jong et al. (2000) propose formal 160

refinement patterns for goal-driven requirements 161

elaboration via KAOS. Liu (2002) proposes to use 162

the SOFL language to describe the refinement pro- 163

cess and raises the model of successive refinements 164

in which the requirements refinement is a process 165

2

from coarse to fine with a loop back.166

Requirements refinement requires collaboration167

with both the software provider and the software168

user. On the one hand, the refinement methods169

are frameworks that require domain knowledge170

and an understanding of actual user requirements.171

On the other hand, the users may not understand172

the software design enough, so their expressions173

may not correctly express their requirements. So174

the key to requirement refinement techniques175

is to design an efficient way of cooperation for176

the user and the software to find the necessary177

points to extend and reach an agreement on the178

requirement.179

3 Methodology180

3.1 Overall Structure of ChatCoder181

ChatCoder is a code generation method. It im-182

proves LLM’s code generation ability by refining183

requirements via the chat between LLMs and hu-184

mans. ChatCoder comprises a dialogue schema185

following which the LLM and the human can com-186

municate to refine requirements effectively and ef-187

ficiently, resulting in an accurate and informative188

requirement expression. Based on the refined re-189

quirement expression, the LLM can generate code190

fulfilling the human’s need precisely.191

Specifically, ChatCoder refines the original re-192

quirement expressions via a two-round dialogue,193

illustrated in Fig 2. The first round is Paraphrase194

and Extend. Following our designed command, the195

LLM paraphrase the original requirement expres-196

sion and extends it in six specific angles, necessary197

for the precise map from human needs in NL to to198

the corresponding code. Then the human program-199

mer reviews the LLM’s expanded expression and200

edits the mistakes and missing parts. The second201

round is Going-deep and Loop-back. Following202

our designed command, the LLM asks the human203

programmer about its further confusion of the final204

edited requirement expressions in the first round. If205

a question is reasonable to the human programmer,206

it is answered directly. Otherwise, the human pro-207

grammer needs to review the expression in the first208

step to find and correct the mistake leading to the209

unreasonable question. The final refined require-210

ment is the combination of the corrected expression211

in the first step and the reasonable questions in the212

second round and their corresponding answers.213

In the following paragraphs, we will explain the214

design of each round in detail.215

initial	requirement
specifications

Key	Concept

Method
Purpose

Input
Requirements

Output
Requirements

Edge	Cases

Exceptions
and	Errors

Generate	by
Paraphase	&	Extend

Key	Concepts

Input

Output

Eage	Cases

going	deep

going	deep

going	deep

going	deep

going	deep

going	deep

Generate

Review	and	Edit Review	and	Edit

Loop-back	to
Correct	Mistakes

Large	language	model

Human	user Human	user

Phase	1:	
Paraphrase	and	Extend

Phase	2:
Going-deep	and	Loop-back

Refined	Requierment	Specifications

Figure 2: Overall Structure of the ChatCoder Dialogue
Framework

3.2 Paraphrase and Extend 216

The Paraphrase and Extend round is to extend the 217

original vague, incomplete and ambitious require- 218

ment expression into clear and accurate require- 219

ment statements for coding, via the chat between 220

LLM and the human programmer. In concrete, first 221

the LLM paraphrases and extends the original re- 222

quirement expression from six angles important for 223

correct programming. Then the human program- 224

mer reviews the extended requirement expression 225

and edits the wrong and the missing. 226

ChatCoder uses a hand-craft prompt to command 227

the LLM to paraphrase and extend the expressions, 228

illustrated in Figure 3. The prompt contains: 1) the 229

instruction to paraphrase and extend; 2): the angles 230

for extending the requirement. The design of the 231

angles is important since the angles are the scaffold 232

for both the LLM and the human programmers to 233

sort out what the requirement is. Inspired by IEEE 234

Recommended Practice for Software Requirements 235

Specifications, we propose six angles from which 236

the programmers are likely to ask for clarification 237

of the requirement for correct programming. They 238

are presented as follows: 239

Key Concepts The LLM is required to extract 240

and explain the key concepts involved in the user’s 241

requirements, including objects and actions. By ex- 242

tending this angle, the user and the large language 243

model can align their understanding of the key con- 244

cepts, setting a firm basis for further discussion. 245

Method Purpose The LLM is required to para- 246

phrase the design of how to fulfil the proposed 247

requirements in detail. The LLM’s design reflects 248

its ongoing implementation based on the LLM’s 249

understanding of the initial requirement expression 250

3

Prompt	for	the	LLM:	Paraphase	and	Extend Example	Output	from	Large	Language	Model

Here	is	a	programming	task:

{task}

Please	help	refine	the	requirement	specification	following	the	steps:
1.	List	and	clarify	the	definitions	of	the	key	concepts
2.	Explain	the	purpose	of	the	method	to	be	implemented	with	your	understandings
in	details
3.	Analyze	each	parameter's	type,	meanings,	format,	properties	and	restrictions.
4.	Analyze	the	return	values'	types,	meanings,	format,	properties	and	restrictions.
5.	Raise	possible	edge	cases	and	solutions
5.	Raise	possible	exceptions	and	errors	and	the	solutions.

e.g.	

Here	is	a	programming	task:

def	filter_by_prefix(strings:	List[str],	prefix:	str)	->	List[str]:
				"""	Filter	an	input	list	of	strings	only	for	ones	that	start	with	a	given	prefix.
				>>>	filter_by_prefix([],	'a')
				[]
				>>>	filter_by_prefix(['abc',	'bcd',	'cde',	'array'],	'a')
				['abc',	'array']
				"""

Please	help	refine	the	requirement	specification	following	the	steps:
1.	List	and	clarify	the	definitions	of	the	key	concepts
2.	Explain	the	purpose	of	the	method	to	be	implemented	with	your	understandings
in	details
3.	Analyze	each	parameter's	type,	meanings,	format,	properties	and	restrictions.
4.	Analyze	the	return	values'	types,	meanings,	format,	properties	and	restrictions.
5.	Raise	possible	edge	cases	and	solutions
5.	Raise	possible	exceptions	and	errors	and	the	solutions.

1.	Key	concepts:
-	`strings`:	A	list	of	strings	that	will	be	filtered.
-	`prefix`:	A	string	that	will	be	used	to	filter	the	list	of	strings.

2.	Purpose	of	the	method:
The	purpose	of	the	`filter_by_prefix`	method	is	to	filter	an	input	list	of	strings	and
return	a	new	list	that	only	contains	strings	starting	with	a	given	prefix.

3.	Parameter	analysis:
-	`strings`:	This	parameter	is	of	type	`List[str]`,	which	means	it	expects	a	list	of	strings
as	input.
-	`prefix`:	This	parameter	is	of	type	`str`,	which	means	it	expects	a	string	as	input.	The
prefix	is	the	string	that	will	be	used	to	filter	the	list	of	strings.

4.	Return	value	analysis:
The	return	value	of	the	`filter_by_prefix`	method	is	a	new	list	of	strings	that	only
contains	strings	starting	with	the	given	prefix.	The	return	type	is	`List[str]`.

5.	Possible	edge	cases	and	solutions:
-	If	the	input	list	`strings`	is	empty,	the	method	should	return	an	empty	list.
-	If	none	of	the	strings	in	the	input	list	`strings`	start	with	the	given	prefix,	the
method	should	return	an	empty	list.

6.	Possible	exceptions	and	errors:
-	There	are	no	specific	exceptions	or	errors	mentioned	in	the	provided	code.
However,	some	possible	exceptions	that	could	occur	are:
		-	If	the	`strings`	parameter	is	not	a	list,	a	`TypeError`	should	be	raised.
		-	If	the	`prefix`	parameter	is	not	a	string,	a	`TypeError`	should	be	raised.
		-	If	any	of	the	strings	in	the	`strings`	list	are	not	of	type	`str`,	a	`TypeError`	should	be
raised.

To	handle	these	exceptions,	appropriate	type	checks	and	error	handling	should	be
implemented	in	the	method.

Prompt	for	LLM:	Going-deep	and	Loop-back Example	Output	from	Large	Language	Model

Here	is	a	programming	task:

{the	task:	with	the	refinement	from	previous	step	aggregated}

Based	on	the	given	task	descriptions,	please:
Raise	up	to	5	question	about	the	requirements	that	you	concern	the	most.	
				-	Each	questions	should	be	followed	by	an	answer	based	on	your
understanding	of	the	task	or	your	guess.	
				-	You	can	raise	questions	from	the	following	aspects:	[Key	Concept]
[Input	Requirement]	[Output	Requirement]	[Edge	Case],	and	any	other
categories	you	concern.
				-	Don't	ask	questions	that	have	answers	in	the	task	description.

1.	[Input	Requirement]	Can	the	input	list	`strings`	contain	duplicate	strings?
			-	the	input	list	can	contain	duplicate	strings.

2.	[Output	Requirement]	Should	the	returned	list	of	strings	be	in	the	same	order	as
the	original	list?
			-	Yes.	the	returned	list	of	strings	should	be	in	the	same	order	as	the	original	list

3.	[Edge	Case]	What	should	be	the	behavior	if	the	input	list	`strings`	is	None?
			-	raise	a	`TypeError`	since	it	expects	a	list	of	strings	as	input.

4.	[Edge	Case]	What	should	be	the	behavior	if	the	input	prefix	is	an	empty	string?
			-	the	method	should	return	an	empty	list	since	no	strings	in	the	input	list	will	start
with	an	empty	string.

5.	[Edge	Case]	What	should	be	the	behavior	if	the	input	prefix	is	longer	than	any
string	in	the	input	list?
			-	the	method	should	return	an	empty	list	since	no	strings	in	the	input	list	will	start
with	a	prefix	longer	than	themselves.

Figure 3: Prompts for Large Language Models and Example Outputs

and its inference for the incomplete expression,251

revealing the error and incompleteness of the re-252

quirement expression.253

Input Requirements The LLM is required to254

extend the requirements for the method’s inputs,255

including the parameters’ types, actual meaning,256

boundaries and properties. The type, boundary and257

property are important in programming by easily258

missing. And the human can check whether the259

LLM correctly understands the parameters’ mean-260

ings.261

Output Requirements The LLM is required to262

extend the requirements for the method outputs, in-263

cluding the types, the meaning and the format. Like264

the input requirements, the output requirements are265

easily missing and misunderstood, making it nec-266

essary to check them.267

Edge Cases The LLM is required to extend pos-268

sible edge cases and solutions. Since a method can269

run in complicated outer environments, the input270

and the global variable states may not fulfil the271

method’s running preconditions. So properly han-272

dling edge cases is necessary for a robust method273

implementation but can be easily ignored by soft-274

ware customers.275

Exceptions and Errors The LLM is required276

to extend the solutions for possible exceptions and277

errors during the method’s execution. Like edge278

cases, handling exceptions and errors are necessary 279

but can be easily missed by the users because of 280

their unprofessional software design. The large 281

language model must be analysed, raise solutions 282

and wait for the users’ review. 283

When the LLM finishes paraphrasing and ex- 284

tending the original expression, the coarsely refined 285

requirements are sent to the human stakeholder to 286

review item by item. The human stakeholder, i.e., 287

the programmer who submits the programming re- 288

quirements to the LLM, should check whether the 289

refined requirements fulfil the needs, correcting the 290

mistakes generated by the LLM. 291

3.3 Going-deep and Loop-back 292

In this round, the large language model is asked 293

to going-deep: to further refine the requirements 294

based on the specifications obtained in Paraphrase 295

and Extend; the human user is requested to loop 296

back: check for possible errors in the reviews and 297

the errors corrected. 298

Going-deep The large language model is asked 299

to raise questions in the angles based on the existing 300

specifications obtained in Paraphrase and Extend. 301

The instruction for the large language model is 302

also wrapped in a prompt, presented in Figure 3. 303

In this round, we let the LLM ask questions in a 304

free form for what confused the most about the 305

4

requirements, then give possible answers based on306

its observations or assumptions. We design Going-307

deep to refine the requirements further because308

the large language model is a black box, and it is309

hard to say we have used up its potential to refine310

requirements through Paraphrase and Extend.311

Loop-back The user is asked to review the ques-312

tions and answers generated by the large language313

model in Going-deep and correct the wrong an-314

swers for further refinement. The user may find315

that the LLM raises wrong questions, e.g., it asks316

whether the output list should be sorted. However,317

the desired output is an integer. In this case, the318

user must "Loop-back": review the specifications319

in Paraphrase and Extend to look for the wrong320

expressions leading to the wrong questions, then321

have them corrected. Loop-back is important be-322

cause it is difficult to guarantee that the users never323

make mistakes.324

3.4 Advantage Analysis325

ChatCoder refines the original requirement mitigat-326

ing vague and disambiguate expression, preventing327

the LLM from misunderstanding the human’s re-328

quirement in downstream code generation. The329

dialogue scheme provides a scaffold for the LLM330

to refine the requirement. The two-round design331

makes the refined requirement more informative332

and with fewer mistakes. The design of ChatCoder333

makes its output refined requirement effective in334

assisting the LLM to generate code. Besides, in335

ChatCoder most of the text is generated by the336

LLM and humans need only to edit, saving much337

human labor for requirement refinement.338

4 Experiments339

4.1 Datasets340

We select two datasets for our experiments:341

Sanitized-MBPP A widely-used dataset(Austin342

et al., 2021) for evaluating an LLM’s program-343

ming skill with 257 Python programming ques-344

tions. Though the task descriptions are claimed345

to be manually checked for disambiguation by the346

authors, they are not clear enough for the LLM347

to understand and program correctly based on our348

manual check. Then, Sanitized-MBPP becomes a349

good playground to evaluate how ChatCoder can350

improve an LLM’s programming skill by refining351

the requirements.352

HumanEval A widely-used dataset(Chen et al.,353

2021) for evaluating an LLM’s programming skill354

with 164 Python programming questions. The task 355

descriptions are more longer and more complete 356

than those of Sanitized-MBPP, leaving a challenge 357

for ChatCoder to find the remaining key blind 358

points for refinement. 359

4.2 Baseline Models and Generation 360

Configurations 361

We use gpt-3.5-turbo and gpt-4 as our baselines. 362

Both gpt-3.5-turbo and gpt-4 are used as both the 363

base LLM in ChatCoder and the model for com- 364

parison without using ChatCoder to refine require- 365

ments. 366

For HumanEval, we perform greedy generation, 367

which means the generation is zero-shot, and the 368

sampling is performed only once with a tempera- 369

ture of 0. For Sanitized-MBPP, we perform 3-shot 370

generation. For each task, we sample 20 programs 371

with top_p=0.2 when evaluating models for gpt- 372

3.5-turbo. As for GPT-4, because there is a calling 373

rate limit and the calling fee is high, it is difficult 374

and expensive to sample 20 programs for a pro- 375

gramming task. So we sample one program for 376

a programming task with temperature 0 like Hu- 377

manEval. The version of GPT-4 is gpt-4-0613. The 378

version of gpt-3.5-turbo is gpt-3.5-turbo-0613. For 379

a fair comparison, we rerun all the baselines with 380

the same prompts and our generation configura- 381

tion rather than copy the results from the original 382

papers. 383

4.3 Metrics 384

We report the test pass rate(Chen et al., 2021). For 385

HumanEval and Sanitized-MBPP on GPT-4, we 386

report pass@1. We report pass@1, pass@5, and 387

pass@10 for the other settings. 388

4.4 Research Questions 389

To evaluate our proposed ChatCoder, we raise and 390

investigate the following research questions: 391

1) How does ChatCoder perform compared with 392

existing code generation models? 393

2) Is ChatCoder an efficient method for LLM 394

and human users to communicate for requirement 395

refinement? 396

3) How much improvement is brought by human 397

involvement in ChatCoder? 398

4.5 RQ1: Code Generation Performances 399

RQ1 evaluates whether ChatCoder enhances an 400

LLM’s code generation ability through its com- 401

bined approach of LLM and human cooperation 402

5

on requirement refinement. Specifically, we use403

ChatCoder on gpt-3.5-turbo to get the refined re-404

quirement expressions for Sanitized-MBPP and405

HumanEval. Then we compare gpt-3.5-turbo and406

gpt-4’s code generation performances based on the407

refined requirements with the performances based408

on the original requirement expressions. We don’t409

use gpt-4 to get the refined requirements due to the410

high cost and limited access to gpt-4.

HumanEval Sanitized-MBPP

pass@1 pass@1 pass@5 pass@10

gpt-3.5-turbo 70.12% 57.04% 59.13% 59.75%
gpt-4 81.10% 66.15% - -

ChatCoder(gpt-3.5-turbo) 79.87% 71.25% 75.18% 76.25%
ChatCoder(gpt-4) 90.24% 76.65% - -

Table 1: Code Generation Performances

411
According to Table 1, ChatCoder significantly412

improved the generated code’s execution accu-413

racy, especially for Sanitized-MBPP. The refined414

requirement specifications provided by ChatCoder415

helped gpt-3.5-turbo to increase its pass@1 from416

57.04% to 71.25%. Compared horizontally, for417

both gpt-3.5-turbo and gpt-4, the performance im-418

provements on Sanitized-MBPP are more promi-419

nent than those on HumanEval. Compared to Hu-420

manEval, Sanitized-MBPP has simpler task de-421

scriptions, leaving more blind points for ChatCoder422

to discover to improve the overall code generation423

performances.424

HumanEval Sanitized-MBPP

pass@1 pass@1 pass@5 pass@10

gpt-3.5-turbo 70.12% 56.95% 59.48% 60.48%

Free Paraphrase 78.05% 64.61% 66.17% 66.68%
Free QA 71.95% 66.47% 70.91% 72.00%

ChatCoder 79.87% 71.25% 75.18% 76.25%

Table 2: Communication Efficiency Comparison

4.6 RQ2: Communication Efficiency425

Evaluation426

RQ2 evaluates whether ChatCoder is sufficiently427

efficient for the LLM and the human to cooperate428

to refine requirements. ChatCoder should provide429

a dialogue scheme generating refined requirements430

which results in better downstream generated code431

than the other dialogue schemes for requirement432

refinement.433

We compare ChatCoder with two other dialogue434

schemes for communication between human pro-435

grammers and the LLMs: 1) Free Paraphrase: 436

We let the large language model paraphrase the 437

original programming task without giving any an- 438

gles and ask the human user to have it edited and 439

corrected for cognition alignment. 2) Free QA: 440

We let the large language model ask human users 441

questions about their confusion about the original 442

programming task and collect the human users’ 443

responses. Comparing with these schemes helps 444

evaluate whether the angles to extend requirements 445

serve as scaffolds for the LLM to better under- 446

stand the human requirements and the two-round 447

dialogue setup, resulting in more concrete and in- 448

formative requirment expressions. All these experi- 449

ments are conducted based on gpt-3.5-turbo-0613. 450

The results are presented on Table 2 451

According to Table 2, all three dialogue schemes 452

help the LLM generate more accurate programs 453

downstream, which implies that requirement refine- 454

ment is effective in helping the LLMs in code gen- 455

eration. ChatCoder’s improvement is more promi- 456

nent than Free Paraphrase and Free QA due to its 457

carefully designed dialogue scheme. The angles 458

serve as scaffolds for the LLM to analyse and un- 459

derstand human requirements in requirement refine- 460

ment and code generation. The two-round dialogue 461

scheme provides not only more chances of find- 462

ing blind points but also a method to find mistakes. 463

Surprisingly, in Free Paraphrase and Free QA, the 464

LLM refines the requirements in part of our pro- 465

posed angles but can not cover all of them. Thus, 466

providing explicit guidance for analysing require- 467

ments for the LLM is vital. 468

HumanEval Sanitized-MBPP

pass@1 pass@1 pass@5 pass@10

gpt-3.5-turbo 70.12% 56.95% 59.48% 60.48%

Auto-Refine 68.90% 52.82% 56.30% 57.12%
ChatCoder 79.87% 71.25% 75.18% 76.25%

Table 3: Human Intervention Evaluation

4.7 RQ3: Human Intervention Evaluation 469

RQ3 aims to evaluate the importance of human- 470

in-the-loop in ChatCoder. The experiment intends 471

to prove that effective refinement of requirements 472

should involve both the software provider and the 473

software supplier, in this case, the human user and 474

the large language model. Specifically, we com- 475

pare ChatCoder’s performance with ’Auto-Refine’, 476

which involves the large language model paraphras- 477

ing and generating questions without human edit- 478

6

ing. All experiments are conducted using gpt-3.5-479

turbo-0613. The results are presented in Table 3.480

The results show that Auto-Refine harms LLM’s481

code generation performance even as a require-482

ment refinement scheme. Because in Auto-Refine483

the LLM extends the requirements based on the484

knowledge from the training data different from485

the human user, the paraphrase can introduce er-486

rors and will not be corrected. Therefore, involving487

human users is necessary, and ChatCoder should488

be a human-in-the-loop technique.489

5 Discussion490

5.1 Case Study491

We raise three cases illustrating how ChatCoder492

helps LLMs generate correct code rather than the493

wrong by refining requirements. The cases are494

shown in Figure 4.495

MBPP/91 This task asks the coder to write a496

method checking if a string is presented in any497

string as a substring within a list. However, the498

large language model misunderstands the task of499

a list of words. ChatCoder corrects the misun-500

derstanding. It refines the requirement expression501

by pointing out that the method should return a502

boolean value.503

MBPP/118 This task asks the coder to write a504

method converting a string to a list. The LLM505

thinks the string is to be split into a list of char-506

acters, which should be split into a list of words.507

ChatCoder corrects the misunderstanding. It re-508

fines the requirement expression by explaining the509

concept ’split’ to be ’split into words’.510

MBPP/307 This task asks the coder to write a511

method to get a colon of a tuple. However, the512

meaning of the parameter is missing in the original513

requirement expression, causing the LLM to think514

that ‘m’ and ‘n’ are indexes. ChatCoder corrects515

the misunderstanding. It refines the requirement516

expression by directly explaining the meaning of517

the parameters.518

With the refined requirements, the LLM gener-519

ates the correct code in all three cases, showing the520

effectiveness of ChatCoder.521

5.2 Savings of Human Labor Costs522

Compared with performing requirements refine-523

ment with requirement engineers, ChatCoder asks524

the large language model to generate most of the525

text. At the same time, human users just need to526

review and edit, saving lots of human labour. This527

Task	ID:	MBPP/91

Requirement Code

Original	Requirment:

			Write	a	function	to	check	if	a
substring	is	present	in	a	given	list
of	string	values.

Original	Code:
def	find_substring(str1,	sub_str):
				result	=	[]
				for	string	in	str1:
								if	sub_str	in	string:
												result.append(string)
				return	result

Refined	Requirement:
...
4.	Return	value	analysis:
				The	return	value	of	the	method
should	be	a	boolean	indicating
whether	the	substring	is	present	in
any	of	the	strings	within	the	list.	It
should	be	of	type	bool
...

Code	with	ChatCoder
def	find_substring(str1,	sub_str):
				#	...	a	few	edge	case	check...
				if	sub_str	==	"":
								return	True
				for	string	in	str1:
								if	sub_str	in	string:
												return	True
				return	False

Test	Case:	
>>>	find_substring(["red",	"black",	"white",	"green",	"orange"],"ange")
			True

Task	ID:	MBPP/118

Requirement Code

Original Requirment:
write a function to convert a
string to a list

Original Code:
def string_to_list(string):
 return list(string)

Refined Requirement:
...
 2. Purpose of the method:
 The purpose of the method is
to convert a given string into a
list. This means that each word
in the string will be an individual
item in the resulting list.
...

Code with ChatCoder
def string_to_list(string):
 # ... some doc string
 return string.split()

Test Case:
>>> string_to_list("python programming")
 ['python','programming']

Task	ID:	MBPP/307

Requirement Code

Original	Requirement:	
		Write	a	function	to	get	a	colon	of
a	tuple.

Original	Code:
def	colon_tuplex(tuplex,	m,	n):
				return	tuplex[m:n]

Refined	Requirement:
...
				3.	Parameter	analysis:
				-	`tuplex`:	The	input	tuple	from
which	the	colon	needs	to	be
extracted.	It	can	contain	elements
of	any	type.
				-	`m`:	the	index	of	the	colon,	i.e.,
the	empty	list.
				-	`n`:	the	value	to	be	append	to
the	colon
...

Code	with	ChatCoder
def	colon_tuplex(tuplex,	m,	n):
			#	Case	Check...
				new_tuple	=	list(tuplex)
				new_tuple[m].append(n)
				return	tuple(new_tuple)

Test	Case:	
>>>	>>>	colon_tuplex(("HELLO",	5,	[],	True)	,2,50)
		("HELLO",	5,	[50],	True)

Figure 4: Case Study

7

section will analyse how much human labour costs528

are saved.529

We evaluate the savings of the human labour530

costs by calculating how many tokens in the final531

refined requirement specifications are from humans.532

The statistics are shown in Figure 5. From Figure 5,533

we can see that tokens from human users take only534

a tiny proportion of the refined specifications. To535

boost the code generation performance, the users536

need to review the text, delete anything they do not537

like, and input, on average, ten tokens with the help538

of ChatCoder.539

max 76

median 4

average 9.93

Statistics	of	
Tokens	from	Human

Histogram	of	tokens	from	humans
x-axis:	numbers	of	tokens	from	human

y-axis:	number	of	tasks

Comparison	of	tokens	from	llms	and	humans
for	each	task

Figure 5: Statistics of Human Labor Savings

5.3 Relevance and Completeness540

We need to evaluate whether the improvement541

is due to ChatCoder’s refined requirements and542

whether the users think ChatCoder’s refined re-543

quirement specifications fulfil their needs well.544

Thus, we invited three people outside the research545

group to give scores on ten randomly selected Chat-546

Coder’s refined requirements about ‘relevance’ and547

‘completeness’. The results are depicted in Figure548

6. We ask the testers to compare the requirements549

before and after refinement and the code generated550

before and after the requirement refinement. Then,551

we ask them to give a score (1-5) to judge whether552

the refinement relates to the improvement of the553

generated code (The real score, 1 for unrelated and554

5 for directly related). Besides, we ask them to555

give a score (1-5) to judge whether the refinement556

makes them clearer about the user’s requirements557

(The comp score, 1 for getting confused and 5 for558

getting clear). We calculate the average scores with559

error bars and have the results depicted in Figure 6.560

Through Figure 6, we find that all testers agree561

that the refined requirements help the large lan-562

guage model generate better code and help them-563

selves better understand the requirements. How-564

ever, compared with the real score, the confi-565

dence that people get clearer about the problems is566

slightly weaker. That is because people judge the567

quality of the code partially based on the execution568

test results. However, execution tests are not per- 569

fect. The program passing certain test cases may 570

not fulfil the user’s requirements. So, ChatCoder 571

still needs to be improved to refine the requirements 572

better to fulfil the user’s actual needs. 573

Figure 6: Human Evaluation Score

5.4 Threats to Validations 574

The choice of datasets to test ChatCoder is the 575

major threat to our method. We use Sanitized- 576

MBPP and HumanEval since they are popular and 577

widely used code-generation datasets for evaluating 578

LLMs. However, the real-world requirements and 579

programs are more complex than the two datasets 580

we use. To refine the more complex real-world 581

requirements, it would be better to further improve 582

the dialogue schemes in ChatCoder. Besides the 583

choice of datasets, the experiment participants are 584

another threat. The participants for this paper are 585

all volunteer professional programmers who can 586

give proper responses in the requirement refine- 587

ment chat. However, the trait can not be guaran- 588

teed to be owned by any user of ChatCoder. Both 589

threats can be evaluated by large-scale deploying 590

ChatCoder in the real world and collecting user 591

feedback which remains our future work. 592

6 Conclusion 593

We find that poorly expressed requirements degrade 594

the LLMs’ code generation performances. Then 595

we propose ChatCoder to improve the LLM’s code 596

generation by introducing the human-in-the-loop 597

requirement refinement via chat. With the carefully 598

designed dialogue scheme, the LLM and the hu- 599

man user can disambiguate the requirements and 600

help the LLM generate code more precisely. The 601

experiments show that ChatCoder can not only im- 602

prove the LLM’s code generation ability by a large 603

margin, better than other refinement techniques, 604

and also save human labour. 605

References 606

1998. Ieee recommended practice for software require- 607
ments specifications. IEEE Std 830-1998, pages 1– 608

8

https://doi.org/10.1109/IEEESTD.1998.88286
https://doi.org/10.1109/IEEESTD.1998.88286
https://doi.org/10.1109/IEEESTD.1998.88286

40.609

Jacob Austin, Augustus Odena, Maxwell I. Nye,610
Maarten Bosma, Henryk Michalewski, David Dohan,611
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,612
and Charles Sutton. 2021. Program synthesis with613
large language models. CoRR, abs/2108.07732.614

Tom Brown, Benjamin Mann, Nick Ryder, Melanie615
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind616
Neelakantan, Pranav Shyam, Girish Sastry, Amanda617
Askell, Sandhini Agarwal, Ariel Herbert-Voss,618
Gretchen Krueger, Tom Henighan, Rewon Child,619
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens620
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-621
teusz Litwin, Scott Gray, Benjamin Chess, Jack622
Clark, Christopher Berner, Sam McCandlish, Alec623
Radford, Ilya Sutskever, and Dario Amodei. 2020.624
Language models are few-shot learners. In Ad-625
vances in Neural Information Processing Systems,626
volume 33, pages 1877–1901. Curran Associates,627
Inc.628

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming629
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-630
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,631
Greg Brockman, Alex Ray, Raul Puri, Gretchen632
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-633
try, Pamela Mishkin, Brooke Chan, Scott Gray,634
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz635
Kaiser, Mohammad Bavarian, Clemens Winter,636
Philippe Tillet, Felipe Petroski Such, Dave Cum-637
mings, Matthias Plappert, Fotios Chantzis, Eliza-638
beth Barnes, Ariel Herbert-Voss, William Hebgen639
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie640
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,641
William Saunders, Christopher Hesse, Andrew N.642
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan643
Morikawa, Alec Radford, Matthew Knight, Miles644
Brundage, Mira Murati, Katie Mayer, Peter Welinder,645
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya646
Sutskever, and Wojciech Zaremba. 2021. Evaluating647
large language models trained on code.648

E. de Jong, J. van de Pol, and J. Hooman. 2000. Re-649
finement in requirements specification and analysis:650
a case study. In Proceedings Seventh IEEE Interna-651
tional Conference and Workshop on the Engineering652
of Computer-Based Systems (ECBS 2000), pages 290–653
298.654

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio655
César Teodoro Mendes, Allie Del Giorno, Sivakanth656
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo657
de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,658
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,659
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and660
Yuanzhi Li. 2023. Textbooks are all you need.661

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang,662
and Ge Li. 2023. Self-planning code generation with663
large language model. CoRR, abs/2303.06689.664

Jia Li, Yunfei Zhao, Yongmin Li, Ge Li, and Zhi Jin.665
2023a. Towards enhancing in-context learning for666
code generation. CoRR, abs/2303.17780.667

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 668
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 669
Marone, Christopher Akiki, Jia Li, Jenny Chim, 670
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, 671
Thomas Wang, Olivier Dehaene, Mishig Davaadorj, 672
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, 673
Nicolas Gontier, Nicholas Meade, Armel Zebaze, 674
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, 675
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo 676
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp 677
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, 678
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, 679
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo 680
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel 681
Romero, Tony Lee, Nadav Timor, Jennifer Ding, 682
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri 683
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, 684
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan- 685
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry 686
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, 687
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro 688
von Werra, and Harm de Vries. 2023b. Starcoder: 689
may the source be with you! 690

Shaoying Liu. 2002. Capturing complete and accu- 691
rate requirements by refinement. In Eighth IEEE 692
International Conference on Engineering of Complex 693
Computer Systems, 2002. Proceedings., pages 57–67. 694

WenQian Liu. 2008. A requirements refinement frame- 695
work. In Proceedings of the 2008 ACM Sympo- 696
sium on Applied Computing (SAC), Fortaleza, Ceara, 697
Brazil, March 16-20, 2008, pages 658–659. ACM. 698

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi- 699
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, 700
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder: 701
Empowering code large language models with evol- 702
instruct. CoRR, abs/2306.08568. 703

OpenAI. 2023. GPT-4 technical report. CoRR, 704
abs/2303.08774. 705

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi 706
D. Q. Bui, Junnan Li, and Steven C. H. Hoi. 707
2023. Codet5+: Open code large language mod- 708
els for code understanding and generation. CoRR, 709
abs/2305.07922. 710

9

http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.1109/ECBS.2000.839888
https://doi.org/10.1109/ECBS.2000.839888
https://doi.org/10.1109/ECBS.2000.839888
https://doi.org/10.1109/ECBS.2000.839888
https://doi.org/10.1109/ECBS.2000.839888
http://arxiv.org/abs/2306.11644
https://doi.org/10.48550/arXiv.2303.06689
https://doi.org/10.48550/arXiv.2303.06689
https://doi.org/10.48550/arXiv.2303.06689
https://doi.org/10.48550/arXiv.2303.17780
https://doi.org/10.48550/arXiv.2303.17780
https://doi.org/10.48550/arXiv.2303.17780
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
https://doi.org/10.1109/ICECCS.2002.1181498
https://doi.org/10.1109/ICECCS.2002.1181498
https://doi.org/10.1109/ICECCS.2002.1181498
https://doi.org/10.1145/1363686.1363844
https://doi.org/10.1145/1363686.1363844
https://doi.org/10.1145/1363686.1363844
https://doi.org/10.48550/arXiv.2306.08568
https://doi.org/10.48550/arXiv.2306.08568
https://doi.org/10.48550/arXiv.2306.08568
https://doi.org/10.48550/arXiv.2306.08568
https://doi.org/10.48550/arXiv.2306.08568
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2305.07922
https://doi.org/10.48550/arXiv.2305.07922
https://doi.org/10.48550/arXiv.2305.07922

	Introduction
	background
	Large Language Model for Code Generation
	Requirements Refinement

	Methodology
	Overall Structure of ChatCoder
	Paraphrase and Extend
	Going-deep and Loop-back
	Advantage Analysis

	Experiments
	Datasets
	Baseline Models and Generation Configurations
	Metrics
	Research Questions
	RQ1: Code Generation Performances
	RQ2: Communication Efficiency Evaluation
	RQ3: Human Intervention Evaluation

	Discussion
	Case Study
	Savings of Human Labor Costs
	Relevance and Completeness
	Threats to Validations

	Conclusion

