ChatCoder: Human-in-loop Refine Requirement Improves LLMs’ Code
Generation

Anonymous ACL submission

Abstract

Large language models have shown good per-
formances in generating code to meet human
requirements. However, human requirements
expressed in natural languages can be vague,
incomplete, and ambiguous, leading large lan-
guage models to misunderstand human require-
ments and make mistakes. Worse, it is difficult
for a human user to refine the requirement. To
help human users refine their requirements and
improve large language models’ code genera-
tion performances, we propose ChatCoder, a
method to refine the requirements via chatting
with large language models. We design a chat
scheme in which the large language models
will guide the human users to refine their ex-
pression of requirements to be more precise,
unambiguous, and complete than before. Ex-
periments show that ChatCoder has improved
by a large margin. Besides, ChatCoder has
the advantage over refine-based methods and
LLMs fine-tuned via human response.

1 Introduction

Code generation is to generate source code that
satisfies the human user’s requirements expressed
in natural language. Recently large language mod-
els have shown impressive abilities in code gen-
eration. For example, OpenAl’'s GPT-4(OpenAl,
2023) passes 67% of the tests of HumanEval(Chen
et al., 2021), and so are the open-source LLMs,
e.g., (Gunasekar et al., 2023) passes 50.6% of the
tests. It’s promising to deploy the LLM as an assis-
tant for humans in real-world software production
workflow.

Although promising, the LLMs struggle with
poor requirement expressions. In practice, require-
ments are written in natural language. The natural
language expressions can be vague, incomplete and
ambiguous, misleading an LLM to generate the
wrong code. Figure 1 shows a real-world example
from a widely-used code generation benchmark,

MBPP. The original expression of the requirement
is to find ‘the largest negative number’ without ex-
plaining the definition of ‘the largest negative num-
ber’. The real intent of the requirement is to find the
negative number with the largest absolute value.
However, according to the generated code from
gpt-3.5-turbo, the LLM is misled to look for the
negative number with the largest actual value. The
ambiguity of ‘the largest negative number’ leads to
incorrect programs from LLMs.

The above problem can be solved via require-
ments refinement, a widely used technique in real
development scenarios. Requirements refinement
is the process of revealing the underlying depen-
dencies and hidden structures(Liu, 2008). It alle-
viates potential ambiguities by revealing more re-
quirement details. As shown in Figure 1, we reveal
the hidden structure of "the largest’ as ’the largest
absolute value’ to the LLM and get the correctly
generated code.

# User's Real Intention

>>> largest neg((1,23,-4-6]) -> -6
>>> largest_neg((1,23,-8,9)) -> -9

def largest_neg(listL):
if len(list1) == 0;

return None
max_neg = None
for num in list1:
if num < 0
if max_neg is None or num > max_neg;
max_neg = num
return max_neg

#MBPP/443
Write a python function to find the largest
negative number from the given list.

Orignal Requirement

largest actual valuez  Code generated before refinement
Refine the concept of "largest” argest actual value?
largest:

largest abstract value?

#MBPP/443 Refined Requirements
Write a python function to find the largest
negative number from the given list.
largest negative number: The largest
negative number refers to the negative
number with the largest absolute value in
the given list

def largest_neg(listL):
largest = None
for num in list1:
if num < 0:
if largest is None or abs(num) >
abs(largest)
largest = num

Refined Requirement [ilatost

Code generated after refinement

Figure 1: Example of Refinement Improving Code Gen-
eration Performance

Inspired by the above observation, we intro-
duce requirement refinement into code generation
and propose ChatCoder, a new code generation
approach. ChatCoder utilises the human-in-the-



loop mechanism to refine requirements, asking the
LLM and the human user to chat to extend the
original requirement expression. By the coopera-
tion of refinement, the details are settled, the dis-
ambiguation is clarified, and the more informa-
tive and precise refined requirement expressions
are eventually formed. Then, the LLM generates
code based on the refined version of the require-
ment. Compared with the previous code generation
approaches, ChatCoder mitigates the disambigua-
tion in the requirement expression, improving the
LLM’s code generation accuracy.

A key challenge in ChatCoder is to design the
human-in-the-loop mechanism. As a code gener-
ation stakeholder, the human user has to partic-
ipate in the refinement (iee, 1998). ChatCoder
should provide an effective way of communication
between an LLM and a human. We propose a two-
round dialogue scheme for the human-in-the-loop
requirement refinement. In each round, the LLM
extends the requirement expressions obtained from
the previous round following our designed require-
ment extension framework. Then, the human user
checks the extended expressions and edits the mis-
takes. The edited expressions are prepared for the
next round of extension or output as the finalised
refined version.

We apply ChatCoder to 2 popular LLMs, gpt-
3.5-turbo and gpt-4. Our method is evaluated on
two popular benchmarks, Sanitized-MBPP and Hu-
manEval. The test results show that the refined
requirements with ChatCoder improve the LLM’s
code generation performances by a large margin,
at an average percentage of 10.

Our contribution is summarised as follows:

1): We find and raise the problem that human’s
poor requirement expressions in natural language
limit LLMs’ ability to generate better programs.

2): We propose ChatCoder, the first approach
using human-in-loop requirement refinement to en-
hance code generation.

3): We evaluate ChatCoder on Sanitized-MBPP
and Humaneval benchmarks. The extensive exper-
iments show that ChatCoder effectively enhances
the LLMs’ code generation performances.

2  background

2.1 Large Language Model for Code
Generation

Large language models are currently pre-trained
Transformer-based language models with at least

tens of billions of parameters. The first well-
known large language model is OpenAl’s GPT-3
(Brown et al., 2020) which has extraordinary code
generation ability. Following GPT-3, a series of
business-oriented close-source large language mod-
els have been proposed, e.g. GPT-3.5 and GPT-
4, and several open-source large language models
for code-related tasks have been published, e.g.,
StarCoder(Li et al., 2023b), CodeT5+(Wang et al.,
2023). WizardCoder(Luo et al., 2023) etc. They all
behave well in code generation.

The prompting technique is the current way of
using LLM to generate code. A prompt is a piece
of carefully designed text, e.g., the instructions for
the LLM. The prompt will be the LLM’s input,
influencing the LLM to generate what the human
user expects. In code generation, researchers have
explored multiple prompting techniques in order
for the LLM to generate code satisfying the hu-
man users’ requirements more precisely. For ex-
ample, Li et al. (2023a) proposes to provide exam-
ples closely related to the programming tasks in the
prompt as examples for the LLM. Jiang et al. (2023)
proposes that decomposing the programming task
in the prompt helps large language models solve
complex problems. The experiments prove that
the carefully designed prompts improve the LLMs’
code generation performances.

2.2 Requirements Refinement

Requirements refinement is the process of revealing
the underlying dependencies and hidden structures,
serving as a start from requirement to design. Re-
quirements refinement is important because many
users in practice do not understand what functions
they want precisely at the beginning of a software
project(Liu, 2002), leading to poor original require-
ment expressions. Thus, the users and software
suppliers need to refine the requirements to sort out
the users’ true needs.

Previous studies of requirements refinement fo-
cus on providing a formal method for the soft-
ware supplier to analyse and refine the software
customer’s requirements. Liu (2008) raises a hi-
erarchical framework from the business level to
the component level to refactor the customer’s re-
quirements. de Jong et al. (2000) propose formal
refinement patterns for goal-driven requirements
elaboration via KAOS. Liu (2002) proposes to use
the SOFL language to describe the refinement pro-
cess and raises the model of successive refinements
in which the requirements refinement is a process



from coarse to fine with a loop back.

Requirements refinement requires collaboration
with both the software provider and the software
user. On the one hand, the refinement methods
are frameworks that require domain knowledge
and an understanding of actual user requirements.
On the other hand, the users may not understand
the software design enough, so their expressions
may not correctly express their requirements. So
the key to requirement refinement techniques
is to design an efficient way of cooperation for
the user and the software to find the necessary
points to extend and reach an agreement on the
requirement.

3 Methodology

3.1 Overall Structure of ChatCoder

ChatCoder is a code generation method. It im-
proves LLM’s code generation ability by refining
requirements via the chat between LL.Ms and hu-
mans. ChatCoder comprises a dialogue schema
following which the LLM and the human can com-
municate to refine requirements effectively and ef-
ficiently, resulting in an accurate and informative
requirement expression. Based on the refined re-
quirement expression, the LLM can generate code
fulfilling the human’s need precisely.

Specifically, ChatCoder refines the original re-
quirement expressions via a two-round dialogue,
illustrated in Fig 2. The first round is Paraphrase
and Extend. Following our designed command, the
LLM paraphrase the original requirement expres-
sion and extends it in six specific angles, necessary
for the precise map from human needs in NL to to
the corresponding code. Then the human program-
mer reviews the LLM’s expanded expression and
edits the mistakes and missing parts. The second
round is Going-deep and Loop-back. Following
our designed command, the LLLM asks the human
programmer about its further confusion of the final
edited requirement expressions in the first round. If
a question is reasonable to the human programmer,
it is answered directly. Otherwise, the human pro-
grammer needs to review the expression in the first
step to find and correct the mistake leading to the
unreasonable question. The final refined require-
ment is the combination of the corrected expression
in the first step and the reasonable questions in the
second round and their corresponding answers.

In the following paragraphs, we will explain the
design of each round in detail.
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Figure 2: Overall Structure of the ChatCoder Dialogue
Framework

3.2 Paraphrase and Extend

The Paraphrase and Extend round is to extend the
original vague, incomplete and ambitious require-
ment expression into clear and accurate require-
ment statements for coding, via the chat between
LLM and the human programmer. In concrete, first
the LLM paraphrases and extends the original re-
quirement expression from six angles important for
correct programming. Then the human program-
mer reviews the extended requirement expression
and edits the wrong and the missing.

ChatCoder uses a hand-craft prompt to command
the LLM to paraphrase and extend the expressions,
illustrated in Figure 3. The prompt contains: 1) the
instruction to paraphrase and extend; 2): the angles
for extending the requirement. The design of the
angles is important since the angles are the scaffold
for both the LLM and the human programmers to
sort out what the requirement is. Inspired by /[EEE
Recommended Practice for Software Requirements
Specifications, we propose six angles from which
the programmers are likely to ask for clarification
of the requirement for correct programming. They
are presented as follows:

Key Concepts The LLM is required to extract
and explain the key concepts involved in the user’s
requirements, including objects and actions. By ex-
tending this angle, the user and the large language
model can align their understanding of the key con-
cepts, setting a firm basis for further discussion.

Method Purpose The LLM is required to para-
phrase the design of how to fulfil the proposed
requirements in detail. The LLM’s design reflects
its ongoing implementation based on the LLM’s
understanding of the initial requirement expression



Prompt for the LLM: Paraphase and Extend

Here is a programming task:
{task)

Please help refine the requirement specification following the steps:
1. List and clarify the definitions of the key concepts

2. Explain the purpose of the method to be implemented with your understandings
in details

3. Analyze each parameter's type, meanings, format, properties and restrictions.

4. Analyze the return values’ types, meanings, format, properties and restrictions.

5. Raise possible edge cases and solutions

5. Raise possible exceptions and errors and the solutions.

eg
Here is a programming task:

def filter_by_prefix(strings: Listlstr], prefix: str) -> Listlstr]:
*** Filter an input list of strings only for ones that start with a given prefix
>>> filter_by_prefix((], ‘a')

0
>>> filter_by_prefix((abc’ ‘bed:, ‘cde’, ‘array], ‘a)
['abc’, “array’]

Please help refine the requirement specification following the steps:
1. List and clarify the definitions of the key concepts

2. Explain the purpose of the method to be implemented with your understandings
in details

3. Analyze each parameter's type, meanings, format, properties and restrictions.

4. Analyze the return values' types, meanings, format, properties and restrictions.

5. Raise possible edge cases and solutions

5. Raise possible exceptions and errors and the solutions.

Prompt for LLM: Going-deep and Loop-back

Here is a programming task:
{the task: with the refinement from previous step aggregated)

Based on the given task descriptions, please:
Raise up to 5 question about the requirements that you concern the most.

- Each questions should be followed by an answer based on your
understanding of the task or your guess.

- You can raise questions from the following aspects: [Key Concept]
[Input Requirement] [Output Requirement] [Edge Case], and any other
categories you concern.,

- Don't ask questions that have answers in the task description

Example Output from Large Language Model

1. Key concepts
- strings': A list of strings that will be filtered
- “prefix’: A string that will be used to filter the list of strings,

2. Purpose of the method:
The purpose of the ‘filter_by_prefix’ method is to filter an input list of strings and
return a new list that only contains strings starting with a given prefix

3. Parameter analysis

- strings': This parameter is of type 'Listlstr]', which means it expects a list of strings
as input.

- “prefix’: This parameter is of type ‘str’, which means it expects a string as input. The
prefix is the string that will be used to filter the list of strings.

4. Return value analysis:
The return value of the ‘filter_by_prefix’ method is a new list of strings that only
contains strings starting with the given prefix. The return type is ‘List[str]".

5. Possible edge cases and solutions
~If the input lst strings' is empty, the method should return an empty lst.
~If none of the strings in the input list 'strings” start with the given prefix, the
method should return an empty list.

6. Possible exceptions and errors
- There are no specific exceptions or errors mentioned in the provided code.
However, some possible exceptions that could occur are:

- If the ‘strings parameter is not a lst, a “TypeError should be raised.

- If the “prefix’ parameter is not a string, a “TypeError’ should be raised,

- If any of the strings in the ‘strings’ st are not of type 'str', a TypeError’ should be
raised.

To handle these exceptions, appropriate type checks and error handling should be
implemented in the method

Example Output from Large Language Model

1. (Input Requirement] Can the input list strings” contain duplicate strings?
- the input list can contain duplicate strings.

2. [Output Requirement] Should the returned list of strings be in the same order as
the original list?
- Yes. the returned list of strings should be in the same order as the original list

3. [Edge Case] What should be the behavior if the input list ‘strings' is None?
- raise a “TypeError’ since it expects a list of strings as input.

4. [Edge Case] What should be the behavior if the input prefix is an empty string?
- the method should return an empty list since no strings in the input list will start
with an empty string.

5. [Edge Case] What should be the behavior if the input prefix is longer than any
string in the input list?

- the method should return an empty list since no strings in the input list will start
with a prefix longer than themselves.

Figure 3: Prompts for Large Language Models and Example Outputs

and its inference for the incomplete expression,
revealing the error and incompleteness of the re-
quirement expression.

Input Requirements The LLM is required to
extend the requirements for the method’s inputs,
including the parameters’ types, actual meaning,
boundaries and properties. The type, boundary and
property are important in programming by easily
missing. And the human can check whether the
LLM correctly understands the parameters’ mean-
ings.

Output Requirements The LLM is required to
extend the requirements for the method outputs, in-
cluding the types, the meaning and the format. Like
the input requirements, the output requirements are
easily missing and misunderstood, making it nec-
essary to check them.

Edge Cases The LLM is required to extend pos-
sible edge cases and solutions. Since a method can
run in complicated outer environments, the input
and the global variable states may not fulfil the
method’s running preconditions. So properly han-
dling edge cases is necessary for a robust method
implementation but can be easily ignored by soft-
ware customers.

Exceptions and Errors The LLM is required
to extend the solutions for possible exceptions and
errors during the method’s execution. Like edge

cases, handling exceptions and errors are necessary
but can be easily missed by the users because of
their unprofessional software design. The large
language model must be analysed, raise solutions
and wait for the users’ review.

When the LLM finishes paraphrasing and ex-
tending the original expression, the coarsely refined
requirements are sent to the human stakeholder to
review item by item. The human stakeholder, i.e.,
the programmer who submits the programming re-
quirements to the LLM, should check whether the
refined requirements fulfil the needs, correcting the
mistakes generated by the LLM.

3.3 Going-deep and Loop-back

In this round, the large language model is asked
to going-deep: to further refine the requirements
based on the specifications obtained in Paraphrase
and Extend; the human user is requested to loop
back: check for possible errors in the reviews and
the errors corrected.

Going-deep The large language model is asked
to raise questions in the angles based on the existing
specifications obtained in Paraphrase and Extend.
The instruction for the large language model is
also wrapped in a prompt, presented in Figure 3.
In this round, we let the LLM ask questions in a
free form for what confused the most about the



requirements, then give possible answers based on
its observations or assumptions. We design Going-
deep to refine the requirements further because
the large language model is a black box, and it is
hard to say we have used up its potential to refine
requirements through Paraphrase and Extend.

Loop-back The user is asked to review the ques-
tions and answers generated by the large language
model in Going-deep and correct the wrong an-
swers for further refinement. The user may find
that the LLM raises wrong questions, e.g., it asks
whether the output list should be sorted. However,
the desired output is an integer. In this case, the
user must "Loop-back": review the specifications
in Paraphrase and Extend to look for the wrong
expressions leading to the wrong questions, then
have them corrected. Loop-back is important be-
cause it is difficult to guarantee that the users never
make mistakes.

3.4 Advantage Analysis

ChatCoder refines the original requirement mitigat-
ing vague and disambiguate expression, preventing
the LLM from misunderstanding the human’s re-
quirement in downstream code generation. The
dialogue scheme provides a scaffold for the LLM
to refine the requirement. The two-round design
makes the refined requirement more informative
and with fewer mistakes. The design of ChatCoder
makes its output refined requirement effective in
assisting the LLM to generate code. Besides, in
ChatCoder most of the text is generated by the
LLM and humans need only to edit, saving much
human labor for requirement refinement.

4 Experiments

4.1 Datasets

We select two datasets for our experiments:

Sanitized-MBPP A widely-used dataset(Austin
et al., 2021) for evaluating an LLM’s program-
ming skill with 257 Python programming ques-
tions. Though the task descriptions are claimed
to be manually checked for disambiguation by the
authors, they are not clear enough for the LLM
to understand and program correctly based on our
manual check. Then, Sanitized-MBPP becomes a
good playground to evaluate how ChatCoder can
improve an LLM’s programming skill by refining
the requirements.

HumanEval A widely-used dataset(Chen et al.,
2021) for evaluating an LLM’s programming skill

with 164 Python programming questions. The task
descriptions are more longer and more complete
than those of Sanitized-MBPP, leaving a challenge
for ChatCoder to find the remaining key blind
points for refinement.

4.2 Baseline Models and Generation
Configurations

We use gpt-3.5-turbo and gpt-4 as our baselines.
Both gpt-3.5-turbo and gpt-4 are used as both the
base LLLM in ChatCoder and the model for com-
parison without using ChatCoder to refine require-
ments.

For HumanEval, we perform greedy generation,
which means the generation is zero-shot, and the
sampling is performed only once with a tempera-
ture of 0. For Sanitized-MBPP, we perform 3-shot
generation. For each task, we sample 20 programs
with top_p=0.2 when evaluating models for gpt-
3.5-turbo. As for GPT-4, because there is a calling
rate limit and the calling fee is high, it is difficult
and expensive to sample 20 programs for a pro-
gramming task. So we sample one program for
a programming task with temperature 0 like Hu-
manEval. The version of GPT-4 is gpt-4-0613. The
version of gpt-3.5-turbo is gpt-3.5-turbo-0613. For
a fair comparison, we rerun all the baselines with
the same prompts and our generation configura-
tion rather than copy the results from the original
papers.

4.3 Metrics

We report the test pass rate(Chen et al., 2021). For
HumanEval and Sanitized-MBPP on GPT-4, we
report pass@1. We report pass@1, pass@5, and
pass@10 for the other settings.

4.4 Research Questions

To evaluate our proposed ChatCoder, we raise and
investigate the following research questions:

1) How does ChatCoder perform compared with
existing code generation models?

2) Is ChatCoder an efficient method for LLM
and human users to communicate for requirement
refinement?

3) How much improvement is brought by human
involvement in ChatCoder?

4.5 RQ1: Code Generation Performances

RQ1 evaluates whether ChatCoder enhances an
LLM’s code generation ability through its com-
bined approach of LLM and human cooperation



on requirement refinement. Specifically, we use
ChatCoder on gpt-3.5-turbo to get the refined re-
quirement expressions for Sanitized-MBPP and
HumanEval. Then we compare gpt-3.5-turbo and
gpt-4’s code generation performances based on the
refined requirements with the performances based
on the original requirement expressions. We don’t
use gpt-4 to get the refined requirements due to the
high cost and limited access to gpt-4.

HumanEval | Sanitized-MBPP
pass@1 pass@1 pass@5  pass@10
gpt-3.5-turbo 59.13% 59.75%
gpt-4 81.10% 66.15% - -

ChatCoder(gpt-3.5-turbo)
ChatCoder(gpt-4)

79.87%
90.24%

71.25%  75.18%

70.12% ‘57.04%
‘ 76.65% -

76.25%

Table 1: Code Generation Performances

According to Table 1, ChatCoder significantly
improved the generated code’s execution accu-
racy, especially for Sanitized-MBPP. The refined
requirement specifications provided by ChatCoder
helped gpt-3.5-turbo to increase its pass@ 1 from
57.04% to 71.25%. Compared horizontally, for
both gpt-3.5-turbo and gpt-4, the performance im-
provements on Sanitized-MBPP are more promi-
nent than those on HumanEval. Compared to Hu-
manEval, Sanitized-MBPP has simpler task de-
scriptions, leaving more blind points for ChatCoder
to discover to improve the overall code generation
performances.

HumanEval ‘ Sanitized-MBPP

pass@1 ‘ pass@1 pass@5 pass@10

gpt-3.5-turbo 70.12% | 56.95% 59.48% 60.48%
Free Paraphrase 78.05% 64.61% 66.17% 66.68%
Free QA 71.95% 66.47% 70.91% 72.00%

ChatCoder 7987% | 71.25%  75.18% 76.25%

Table 2: Communication Efficiency Comparison

4.6 RQ2: Communication Efficiency
Evaluation

RQ2 evaluates whether ChatCoder is sufficiently
efficient for the LLM and the human to cooperate
to refine requirements. ChatCoder should provide
a dialogue scheme generating refined requirements
which results in better downstream generated code
than the other dialogue schemes for requirement
refinement.

We compare ChatCoder with two other dialogue
schemes for communication between human pro-

grammers and the LLMs: 1) Free Paraphrase:
We let the large language model paraphrase the
original programming task without giving any an-
gles and ask the human user to have it edited and
corrected for cognition alignment. 2) Free QA:
We let the large language model ask human users
questions about their confusion about the original
programming task and collect the human users’
responses. Comparing with these schemes helps
evaluate whether the angles to extend requirements
serve as scaffolds for the LLM to better under-
stand the human requirements and the two-round
dialogue setup, resulting in more concrete and in-
formative requirment expressions. All these experi-
ments are conducted based on gpt-3.5-turbo-0613.
The results are presented on Table 2

According to Table 2, all three dialogue schemes
help the LLM generate more accurate programs
downstream, which implies that requirement refine-
ment is effective in helping the LLMs in code gen-
eration. ChatCoder’s improvement is more promi-
nent than Free Paraphrase and Free QA due to its
carefully designed dialogue scheme. The angles
serve as scaffolds for the LLM to analyse and un-
derstand human requirements in requirement refine-
ment and code generation. The two-round dialogue
scheme provides not only more chances of find-
ing blind points but also a method to find mistakes.
Surprisingly, in Free Paraphrase and Free QA, the
LLM refines the requirements in part of our pro-
posed angles but can not cover all of them. Thus,
providing explicit guidance for analysing require-
ments for the LLM is vital.

HumanEval ‘ Sanitized-MBPP

pass@1 ‘ pass@1 pass@5 pass@10

gpt-3.5-turbo 70.12% | 56.95% 59.48% 60.48%
Auto-Refine 68.90% 52.82% 56.30% 57.12%
ChatCoder 79.87% 71.25%  75.18% 76.25%

Table 3: Human Intervention Evaluation

4.7 RQ3: Human Intervention Evaluation

RQ3 aims to evaluate the importance of human-
in-the-loop in ChatCoder. The experiment intends
to prove that effective refinement of requirements
should involve both the software provider and the
software supplier, in this case, the human user and
the large language model. Specifically, we com-
pare ChatCoder’s performance with ’ Auto-Refine’,
which involves the large language model paraphras-
ing and generating questions without human edit-



ing. All experiments are conducted using gpt-3.5-
turbo-0613. The results are presented in Table 3.

The results show that Auto-Refine harms LLM’s
code generation performance even as a require-
ment refinement scheme. Because in Auto-Refine
the LLLM extends the requirements based on the
knowledge from the training data different from
the human user, the paraphrase can introduce er-
rors and will not be corrected. Therefore, involving
human users is necessary, and ChatCoder should
be a human-in-the-loop technique.

5 Discussion

5.1 Case Study

We raise three cases illustrating how ChatCoder
helps LLMs generate correct code rather than the
wrong by refining requirements. The cases are
shown in Figure 4.

MBPP/91 This task asks the coder to write a
method checking if a string is presented in any
string as a substring within a list. However, the
large language model misunderstands the task of
a list of words. ChatCoder corrects the misun-
derstanding. It refines the requirement expression
by pointing out that the method should return a
boolean value.

MBPP/118 This task asks the coder to write a
method converting a string to a list. The LLM
thinks the string is to be split into a list of char-
acters, which should be split into a list of words.
ChatCoder corrects the misunderstanding. It re-
fines the requirement expression by explaining the
concept ’split’ to be ’split into words’.

MBPP/307 This task asks the coder to write a
method to get a colon of a tuple. However, the
meaning of the parameter is missing in the original
requirement expression, causing the LLM to think
that ‘m’ and ‘n’ are indexes. ChatCoder corrects
the misunderstanding. It refines the requirement
expression by directly explaining the meaning of
the parameters.

With the refined requirements, the LLM gener-
ates the correct code in all three cases, showing the
effectiveness of ChatCoder.

5.2 Savings of Human Labor Costs

Compared with performing requirements refine-
ment with requirement engineers, ChatCoder asks
the large language model to generate most of the
text. At the same time, human users just need to
review and edit, saving lots of human labour. This

Task ID: MBPP/91

Requirement

Original Requirment:

Write a function to check if a
substring is present in a given list
of string values.

Refined Requirement:

4. Return value analysis:

The return value of the method
should be a boolean indicating
whether the substring is present in
any of the strings within the list. It
should be of type bool

Test Case:
>>> find_substring(["red", "black", "
True

Task ID: MBPP/118
Requirement

Original Requirment:
write a function to convert a
string to a list

Refined Requirement:

2. Purpose of the method:

The purpose of the method is
to convert a given string into a
list. This means that each word
in the string will be an individual
item in the resulting list.

Test Case:

Code

Original Code:
def find_substring(strl, sub_str):
result =[]
for string in strl:
if sub_str in string:
result.append(string)
return result

Code with ChatCoder
def find_substring(strl, sub_str):
# ... a few edge case check...
if sub_str == "":
return True
for string in strl:
if sub_str in string:
return True
return False

white", "green”, "orange"],"ange")

Code

Original Code:
def string_to_list(string):
return list(string)

Code with ChatCoder
def string_to_list(string):
# ... some doc string
return string.split()

>>> string_to_list("python programming")

['python','programming']

Task ID: MBPP/307
Requirement

Original Requirement:
Write a function to get a colon of
a tuple.

Refined Requirement:

3. Parameter analysis:

- ‘tuplex’: The input tuple from
which the colon needs to be
extracted. It can contain elements
of any type.

-'m’: the index of the colon, i.e.,
the empty list.

- 'n": the value to be append to
the colon

Test Case:
>>> >>> colon_tuplex(("HELLO", 5,
("HELLO", 5, [50], True)

Code

Original Code:
def colon_tuplex(tuplex, m, n):
return tuplex[m:n]

Code with ChatCoder

def colon_tuplex(tuplex, m, n):
# Case Check...
new_tuple = list(tuplex)
new_tuple[m].append(n)
return tuple(new_tuple)

[1, True) ,2,50)

Figure 4: Case Study



section will analyse how much human labour costs
are saved.

We evaluate the savings of the human labour
costs by calculating how many tokens in the final
refined requirement specifications are from humans.
The statistics are shown in Figure 5. From Figure 5,
we can see that tokens from human users take only
a tiny proportion of the refined specifications. To
boost the code generation performance, the users
need to review the text, delete anything they do not
like, and input, on average, ten tokens with the help
of ChatCoder.

sssssssss of
Tokens from Human
max 76
median | 4

average | 9.93

Histogram of tokens from humans
x-axis: numbers of tokens from human
y-axis: number of tasks

Comparison of tokens from lims and humans
for each task

Figure 5: Statistics of Human Labor Savings

5.3 Relevance and Completeness

We need to evaluate whether the improvement
is due to ChatCoder’s refined requirements and
whether the users think ChatCoder’s refined re-
quirement specifications fulfil their needs well.
Thus, we invited three people outside the research
group to give scores on ten randomly selected Chat-
Coder’s refined requirements about ‘relevance’ and
‘completeness’. The results are depicted in Figure
6. We ask the testers to compare the requirements
before and after refinement and the code generated
before and after the requirement refinement. Then,
we ask them to give a score (1-5) to judge whether
the refinement relates to the improvement of the
generated code (The real score, 1 for unrelated and
5 for directly related). Besides, we ask them to
give a score (1-5) to judge whether the refinement
makes them clearer about the user’s requirements
(The comp score, 1 for getting confused and 5 for
getting clear). We calculate the average scores with
error bars and have the results depicted in Figure 6.

Through Figure 6, we find that all testers agree
that the refined requirements help the large lan-
guage model generate better code and help them-
selves better understand the requirements. How-
ever, compared with the real score, the confi-
dence that people get clearer about the problems is
slightly weaker. That is because people judge the
quality of the code partially based on the execution

test results. However, execution tests are not per-
fect. The program passing certain test cases may
not fulfil the user’s requirements. So, ChatCoder
still needs to be improved to refine the requirements
better to fulfil the user’s actual needs.

Complete Score on A

i FETT T | ™

Relative Score on Average with Error 8ar

il T [T | M=

Figure 6: Human Evaluation Score

5.4 Threats to Validations

The choice of datasets to test ChatCoder is the
major threat to our method. We use Sanitized-
MBPP and HumanEval since they are popular and
widely used code-generation datasets for evaluating
LLMs. However, the real-world requirements and
programs are more complex than the two datasets
we use. To refine the more complex real-world
requirements, it would be better to further improve
the dialogue schemes in ChatCoder. Besides the
choice of datasets, the experiment participants are
another threat. The participants for this paper are
all volunteer professional programmers who can
give proper responses in the requirement refine-
ment chat. However, the trait can not be guaran-
teed to be owned by any user of ChatCoder. Both
threats can be evaluated by large-scale deploying
ChatCoder in the real world and collecting user
feedback which remains our future work.

6 Conclusion

We find that poorly expressed requirements degrade
the LLMs’ code generation performances. Then
we propose ChatCoder to improve the LLM’s code
generation by introducing the human-in-the-loop
requirement refinement via chat. With the carefully
designed dialogue scheme, the LLM and the hu-
man user can disambiguate the requirements and
help the LLM generate code more precisely. The
experiments show that ChatCoder can not only im-
prove the LLM’s code generation ability by a large
margin, better than other refinement techniques,
and also save human labour.
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