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Abstract Model merging techniques aim to integrate the abilities of multiple models into a single
model. Most model merging techniques have hyperparameters, and their setting affects
the performance of the merged model. Because several existing works show that tuning
hyperparameters in model merging can enhance the merging outcome, developing hyperpa-
rameter optimization algorithms for model merging is a promising direction. However, its
optimization process is computationally expensive, particularly in merging LLMs. In this
work, we develop surrogate benchmarks for optimization of the merging hyperparameters
to realize algorithm development and performance comparison at low cost. We define two
search spaces and collect data samples to construct surrogate models to predict the perfor-
mance of a merged model from a hyperparameter. We demonstrate that our benchmarks
can predict the performance of merged models well and simulate optimization algorithm
behaviors.

1 Introduction

Model merging (Yang et al., 2024a) is a promising approach to build a powerful single model from
multiple separate models without accessing large datasets and requiring expensive computations.
Model merging techniques have succeeded in enhancing the ability of large language models
(LLMs) by merging multiple models fine-tuned by different downstream tasks. Most model merging
techniques have hyperparameters to set before model merging. Because these hyperparameters
affect the performance of merged models, tuning such hyperparameters can maximize the model
merging capabilities. Akiba et al. (2025) proposed the evolutionary model merging that optimizes
hyperparameters in model merging using an evolutionary algorithm. They used the covariance
matrix adaptation evolution strategy (CMA-ES) (Hansen, 2006, 2023) and succeeded in finding the
superior merging hyperparameters and building high-performance models.

We call the approach for optimizing hyperparameters in model merging techniques model
merging optimization. Model merging optimization is a kind of automated machine learning
(AutoML) task. The literature on evolutionary model merging (Akiba et al., 2025) shows the
effectiveness and potential of the model merging optimization approach using the standard CMA-
ES. Therefore, the development of sophisticated model merging optimization algorithms is a
promising direction in the AutoML community. However, the computational cost of model merging
optimization is relatively high, as with hyperparameter optimization and neural architecture
search (NAS).! This large computational load will burden the development of new model merging
optimization algorithms and increase the cost of algorithm comparison.

The benchmarks for hyperparameter optimization and NAS (Eggensperger et al., 2015; Ying
et al., 2019; Dong and Yang, 2020; Hirose et al., 2021; Zela et al., 2022) greatly contribute to algorithm

IFor example, the evaluation of a merging configuration for DARE-TIES (Akiba et al., 2025) took about five minutes
on an NVIDIA A100 (40GB) in our implementation. Although there is work (Mencattini et al., 2025) to reduce the
computational cost of evolutionary model merging by reducing the evaluation dataset and using a performance estimator,
it still requires about 3.5 minutes on a single NVIDIA 4090 with 24GB of VRAM. Therefore, when yielding 1,000 merge
evaluations, one run of the optimization algorithm requires more than 58 hours.
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development and evaluation. There are two types of benchmarks: tabular and surrogate benchmarks,
where tabular benchmarks provide table lookup for hyperparameter settings and their evaluations
through prior exhaustive search, and surrogate benchmarks construct a regression model that
returns the performance values from a hyperparameter setting using a sampled actual evaluation
dataset. While tabular benchmarks can provide exact hyperparameter evaluations, creating them
in continuous or large search spaces is intractable. Surrogate benchmarks can be constructed even
in a continuous and large search space, while the provided hyperparameter evaluation values
are predicted by a certain model. Referring to the success of benchmarks for hyperparameter
optimization and NAS, the benchmark for model merging optimization will also be essential for
further algorithm development, which will enable us to compare model merging optimization
methods at low cost and realize a fair and reproducible comparison.

He et al. (2025) have proposed a benchmark suite for evaluating model merging techniques,
which provides standardized fine-tuning models and evaluation protocols. However, evaluating
the performance of merged models requires model merging computation and LLM inferences.
Therefore, it cannot reduce the cost of model merging optimization.

In this work, we construct a surrogate benchmark to significantly reduce the evaluation cost of
model merging optimization. To our knowledge, this is the first surrogate benchmark for model
merging optimization. We collect the paired data of the hyperparameter for model merging and
its evaluation values, and construct the surrogate model that predicts the evaluation values from
a given hyperparameter. We evaluate the proposed surrogate benchmark for model merging
optimization, termed SMM-Bench, and demonstrate the use of our surrogate benchmark. The code
of SMM-Bench will be made available at https://github.com/shiralab/SMM-Bench.

Surrogate Model Merging Benchmark (SMM-Bench)

Akiba et al. (2025) optimized model merging configurations in two model merging settings: pa-
rameter space (PS) and data flow space (DFS) merging. For PS merging, where the parameters of
the multiple source models are aggregated, the continuous hyperparameters in DARE-TIES (Yadav
et al.,, 2024; Yu et al.,, 2024) were optimized. For DFS merging, the merged model is constructed
by stacking source models’ layers, and binary variables for the choice of layers and continuous
variables for input scaling were optimized. Because the hyperparameters in model merging contain
continuous variables and can be high-dimension, a surrogate benchmark is a reasonable choice. We
introduce surrogate benchmarks for PS and DFS merging as SMM-Bench-PS and SMM-Bench-DFS.
We use Japanese mathematics as a task to evaluate merged models as in Akiba et al. (2025). The
datasets, gsm8k-ja-test_250_1319 (denoting gsm8k-ja in short) (Cobbe et al., 2021; Akiba et al.,
2025) and the Japanese test set of MGSM (Shi et al., 2023), are used to calculate objective values in
optimization and final test score, respectively. To evaluate the ability to solve mathematical tasks
and provide answers in Japanese, we calculate accuracy, defined as the ratio of correct answers and
reasoning texts in Japanese. This evaluation protocol is the same as in Akiba et al. (2025).

SMM-Bench-PS

Search Space Design. Tuning the hyperparameters for each layer, called layer-wise merging, has
the potential for performance improvement (Yang et al., 2024b), while it increases the number
of hyperparameters to be tuned. We focus on layer-wise merging using two source models and
the simple merging method of task arithmetic (Ilharco et al., 2023). We use shisa-gamma-7b-v1?
and WizardMath-7B-V1.1 (Luo et al., 2025) as source LLMs for PS merging. These LLMs are fine-
tuned from Mistral-7B-v@.1 (Jiang et al., 2023) and consist of 32 layers. Task arithmetic has a
hyperparameter weight, the weighting factor of a task vector. Considering layer-wise merging,

thtps://huggingface.co/augmxnt/shisa—gamma—7b—v1
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different hyperparameters can be specified for each source model’s layer, resulting in 64 design
variables. We restrict the search space to [0, 1]%%.

Data Collection. We created a dataset of merging hyperparameters and their evaluation values on
gsm8k-ja and MGSM based on three strategies: random sampling, CMA-ES, and the tree-structured
Parzen estimator (TPE) (Bergstra et al., 2011). Random sampling collected 64,000 data uniformly at
random. We ran CMA-ES 13 times for 188 generations with the default hyperparameter setting and
TPE implemented in Optuna (Akiba et al., 2019) 12 times for 300 iterations with a batch size of 8.
In addition, we uniformly randomly sampled 1,500 data in the model-wise merging setting, i.e.,
sampling from a two-dimensional subspace. We collected 133,404 data points in total.

Surrogate Model Construction. We split the dataset into
training and test sets with a 9:1 ratio. Separate surrogate Table 1: The predictive performance of sur-

models predicting the gsm8k-ja and MGSM scores from the rogate models.
merging hyperparameters are trained using the training
set. We used LightGBM (Ke et al.,, 2017) as the surro- Dataset R? KT

gate model because it exhibited good performance on
the surrogate NAS benchmark (Zela et al., 2022). The
hyperparameters in LightGBM are optimized using Op-
tuna with five-fold cross-validation. The best-performing DFS gsm8k-ja 0.962 0.863
cross-validated models are used as our surrogate model MGSM 0.957 0.839

by averaging the five models’ outputs. Table 1 shows the

R? score and the Kendall’s Tau coefficient (KT) of the predictions made by the surrogate models for
the test set. We observe that our surrogate models achieved good prediction performance for both
the gsm8k-ja and MGSM scores.

PS gsm8k-ja 0.950 0.883
MGSM 0.921 0.791

SMM-Bench-DFS

Search Space Design. Referring to Akiba et al. (2025), we define a mixed category-continuous
search space for DFS merging. We use EvoLLM-JP-v1-7B,? called model A, and shisa-gamma-7b-v1,
called model B, as the source models. These source models consist of 32 layers. We construct a
merged model by inserting up to 32 layers selected from model A and model B between the 31st
and 32nd layers of model A. The i-th layer of the 32 potential inserted layers is selected from three
options: the i-th layer of model A, the i-th layer of model B, and without insertion. This layer
insertion is determined by a 32-dimensional categorical variable with three categories. In addition,
we introduce layer input scaling factors as hyperparameters to mitigate the input distribution
shift (Akiba et al., 2025). We fix the first layer’s scaling of the merged model to 1.0 and treat those
for the other 63 layers, including potentially inserted layers, as hyperparameters. The range of
scaling factors is [0.4,1.5]. As a result, the merging hyperparameters consist of 32 categorical
variables and 63 continuous variables.

Data Collection. We totally collected 40,913 data points, where 22,286 data were sampled uniformly
at random from the search space. We ran CatCMA (Hamano et al., 2024; Nomura and Shibata, 2024)
three times for 177 generations with the default setting and TPE four times for 300 iterations with
a batch size of 8.

Surrogate Model Construction. The surrogate models are trained in the same procedure as
SMM-Bench-PS. The R? score and Kendall’s Tau coefficient (KT) for the test set are also displayed in
Table 1. Our surrogate models achieved high predictive performance, while the dataset size was
smaller than that of SMM-Bench-PS.

3https://huggingface.co/SakanaAI/EvoLLM—JP—v1 -7B
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Figure 1: Transitions of best accuracy of gsm8k-ja on true benchmark (left), surrogate benchmark
(middle), and surrogate benchmark when using only a random sampled dataset (right).
Random search, CMA-ES, and TPE are compared. The mean and standard deviation over ten
and three runs are plotted in the search spaces for PS and DFS merging, respectively.

3 Evaluation of SMM-Bench

We simulate optimization trajectories using SMM-Bench. Figures 1a and 1b show the transitions of
the best accuracy for three algorithms on the search spaces for PS and DFS merging, respectively.
In these figures, we display the transitions on true benchmark (i.e., using actual evaluations of
merged models) and surrogate benchmarks constructed using all dataset and only random sampling
data. We observe that our surrogate benchmarks can capture the behavior of algorithms on true
benchmarks, although the performance prediction on the search space for DFS merging tends to
overestimate. In addition, our surrogate benchmarks work well even when using only random
sampled data.

4 Benchmark Demonstration Using SMM-Bench-PS

0.650
We ran two algorithms, separable CMA-ES (Sep-CMA) (Ros 0625
and Hansen, 2008; Nomura and Shibata, 2024) with the de- ao ] T ;
fault setting and differential evolution (DE) (Storn and Price, § 0550 P e Taoess
1997) implemented in SciPy with a population size of 64, on < osas :Q  Sep.CMA (gemkia)
SMM-Bench-PS. Figure 2 shows the transitions of accuracy it T Sercun o
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the best solutions for gsm8k-ja that is the objective value in Number of Evaluations
optimization. The accuracy of MGSM is the test performance  Fjgure 2: Performance of Sep-CMA and
of the best solutions. We observe that Sep-CMA outper- DE on SMM-Bench-PS.

forms DE on both gsm8k-ja and MGSM datasets, although the

test performance difference is not so significant. This experimental comparison can be conducted
in several minutes on a laptop owing to the surrogate benchmark. However, it requires many GPU
days if it uses the actual evaluation of merged LLMs. Our surrogate benchmarks will be useful for
hyperparameter tuning and comprehensive evaluation for optimizers.



5 Conclusion

We have proposed and evaluated surrogate benchmarks for model merging optimization. We also
demonstrated a performance comparison of optimization algorithms not used for data collection on
our benchmark. We believe that our surrogate benchmarks will contribute to algorithm development
for model merging optimization and reproducible algorithm comparison.
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