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Abstract
The growing Machine Learning (ML) services
require extensive collections of user data, which
may inadvertently include people’s private infor-
mation irrelevant to the services. Various studies
have been proposed to protect private attributes
by removing them from the data while maintain-
ing the utilities of the data for downstream tasks.
Nevertheless, as we theoretically and empirically
show in the paper, these methods reveal severe vul-
nerability because of a common weakness rooted
in their adversarial training based strategies. To
overcome this limitation, we propose a novel
approach, PASS, designed to stochastically sub-
stitute the original sample with another one ac-
cording to certain probabilities, which is trained
with a novel loss function soundly derived from
information-theoretic objective defined for utility-
preserving private attributes protection. The com-
prehensive evaluation of PASS on various datasets
of different modalities, including facial images,
human activity sensory signals, and voice record-
ing datasets, substantiates PASS’s effectiveness
and generalizability.

1. Introduction
The expansion of modern Machine Learning (ML) services
has seamlessly improved the convenience of daily lives,
where the service providers oftentimes gather data from
users and then utilize advanced models to cater to users’
needs (Secinaro et al., 2021; Ahmed et al., 2022). How-
ever, the data collected frequently includes private informa-
tion that users may be reluctant to disclose (Boulemtafes
et al., 2020; Kumar et al., 2023). For instance, a human
voice recognition service needs to collect speaker’s voice
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to extract the content (Kheddar et al., 2024), which would
inadvertently contain private attributes such as the speaker’s
gender or accent, imposing the risk of privacy leakage when
an adversary tries to eavesdrop on the voice. Therefore,
there has been a lasting interest in developing a data obfus-
cation module that can be inserted into the data sharing or
ML service pipelines to protect the private attributes by sup-
pressing or removing them from the data, while maintaining
the utility of the data for downstream tasks.

Various methods are proposed towards this goal. Roy & Bod-
deti (2019); Bertran et al. (2019); Wu et al. (2020) focused
on suppressing private attributes while preserving explic-
itly annotated useful attributes. On the other hand, Huang
et al. (2018); Malekzadeh et al. (2019); Dave et al. (2022)
extended their researches to managing unannotated gen-
eral features for broader applicability. Furthermore, Chen
et al. (2024) summarized and satisified SUIFT, 5 desirable
properties of utility-preserving private attributes protection
methods. Notably, these state-of-the-art methods are ad-
versarial training based, where their obfuscation module is
trained to prevent an adversarial private attributes classifier
from making correct inferences.

However, as widely discussed in the neighboring fields of
adversarial robustness (Carlini & Wagner, 2017; Athalye
et al., 2018; Ilyas et al., 2019; Carlini et al., 2019), generated
image/vedio detection (Yu et al., 2019; Wang et al., 2020;
Masood et al., 2023), membership inference attacks (Car-
lini et al., 2022) and gradient inversion in federated learn-
ing (Geiping et al., 2020; Huang et al., 2021), a common
weakness with adversarial training based methods is that,
although the defender can tolerate the jointly-trained ad-
versary, it may be vulnerable to slightly stronger or unseen
adversaries. In the private attributes protection context, as
we theoretically and empirically demonstrate in Section 3.2,
this weakness can indeed cause significant negative impact
on the state-of-the-art methods, reducing their practicality
in real-world deployment.

To overcome the above weakness, we present a novel
method for private attributes protection, called Private
Attributes protection with Stochatsic data Substitution (or
PASS), which avoids the adversarial training strategy al-
together. Specifically, we propose to substitute each input
sample of the data sharing system or ML service pipeline
with another sample according to a stochastic data substitu-
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Figure 1. An illustration use case of PASS applied on facial images.
We suppress ”sex” as a private attribute, and preserve ”Eyeglasses”
and ”Smiling” as useful attributes. Apart from these attributes, we
also preserve general features in facial images, such as ”Black hair”
and ”Young”, which are not explicitly annotated in the dataset, but
are useful for potential downstream applications. PASS stochasti-
cally substitutes the original sample with another sample such that
the private attribute cannot be accurately inferred from the substi-
tuted sample. On the contrary, the useful attributes and general
features are still inferable from the substituted sample.

tion algorithm. This algorithm is parameterized by a neural
network and is trained with our novel loss function derived
step-by-step from an information-theoretic objective defined
for utility-preserving private attributes protection. Benefit-
ing from the theoretical basis, PASS has clear operational
boundaries for entangled attributes and can trade-off be-
tween privacy and utility controllably. An illustrative use
case of PASS is provided in Figure 1.

In summary, our paper’s contributions are threefold: 1) We
propose PASS, a stochastic data substitution based method
that overcomes the common weakness of state-of-the-art
private attributes protection methods; 2) We demonstrate
theoretically that PASS is rigorously rooted in information
theory with desirable properties; and 3) We extensively eval-
uate PASS on facial images, human activity sensory signals,
and human voice recordings to show its broad applicability.

2. Related Works
Utility-preserving Private Attributes Protection. Vari-
ous studies have been proposed on this topic recently. At-
triGuard(Jia & Gong, 2018) proposed to defend against
attribute inference attacks using evasion attack on the ad-
versarial classifier. PPDAR(Wu et al., 2020), GAP(Huang
et al., 2018) and MaSS(Chen et al., 2024) proposed to mini-
mize private information leakage by making the adversarial
classifier unable to make correct predictions. In compari-
son, ALR(Bertran et al., 2019) and BDQ(Kumawat & Na-
gahara, 2022) proposed to minimize private information
leakage by making the adversarial classifier uncertain about
its predictions. Maxent-ARL(Roy & Boddeti, 2019) and
MSDA(Malekzadeh et al., 2019) adopted a combination of

both above strategies. Different from above, SPAct(Dave
et al., 2022) proposed to train the obfuscation model to
maximize a contrastive learning loss adversarially with its
feature extractor. All of the above methods, except for GAP,
proposed to preserve annotated useful attributes by ensuring
their predictability. Generalizing the problem, GAP, MSDA,
MaSS, and SPAct(Dave et al., 2022) proposed to manage
unannotated general features. These works are adversarial
training based, resulting in a common weakness elaborated
in Section 3.2, motivating the design of PASS.

The field of fairness shares similar problem formulation and
designing techniques with private attributes protection (Ed-
wards & Storkey, 2016; Madras et al., 2018; Sarhan et al.,
2020; Caton & Haas, 2024). Nevertheless, their training
losses are typically derived from fairness metrics, as op-
posed to the privacy objectives, making them uncomparable
with private attributes protection methods.

Local Differential Privacy (LDP) And Randomized Re-
sponse. Differential Privacy requires the randomized mech-
anism to produce similar distributions when applied to any
two neighboring datasets (Dwork et al., 2006), which is
typically achieved with addictive noises (Dwork et al., 2014;
Abadi et al., 2016; Zhang et al., 2018; Sun et al., 2020). Sim-
ilarly, Local Differential Privacy casts the same requirement
on any two samples in a dataset (Kasiviswanathan et al.,
2011; Yang et al., 2023; Arachchige et al., 2019), instead
of two neighboring datasets. Local Differential Privacy is
mainly achieved with Randomized Response (Warner, 1965;
Wang et al., 2016; Chaudhuri & Mukerjee, 2020), which typ-
ically involves randomly switching the class of the sensitive
attribute when collected. As shown in Appendix B, under
certain assumptions, PASS can be viewed as a LDP mech-
anism—specifically, an extension of randomized response,
that is distinguished by its utility preservation requirements
and applicability on high-dimensional space.

k-Anonymity, l-Diversity and t-Closeness (k-l-t privacy).
PASS can also be viewed as an extension to the k-l-t privacy
in high-dimensional spaces. k-anonymity aims at thwart-
ing membership inference by ensuring that at least k sam-
ples share the same identifiable attributes after obfuscation,
and consequently undistinguishable (Samarati & Sweeney,
1998; Qu et al., 2017; Song et al., 2019), while PASS aims
at thwarting private attribute inference by ensuring that mul-
tiple samples with different private attributes are substituted
by each other, and consequently also undistinguishable. l-
diversity and t-closeness extended k-anonymity, requiring
that these k-samples (equivalent group) have diverse private
attributes (Li et al., 2006), preferably with similar distribu-
tion as the entire dataset (Sei et al., 2017; Rajendran et al.,
2017; Majeed & Lee, 2020), preventing the attacker from
guessing the private attribute from obfuscated sample accu-
rately. Similarly, PASS also encourages the private attribute
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Figure 2. The probabilistic model of all random variables.
U, S,X ′ are only dependent on X .

guessed from the substituted sample to have a similar distri-
bution as in the entire dataset.

3. Problem Definition and Motivation
We aim to build a data obfuscation algorithm that could
be inserted into a data sharing or processing pipeline to
remove certain private attributes from an input sample while
preserving its useful attributes as well as general features
for downstream tasks. To ensure practicality and soundness,
we adhere to the restrictive SUIFT requirements as recently
proposed in Chen et al. (2024), as elaborated below.

Sensitivity suppression and Utility preservation are the
most basic requirements, suggesting that our method should
ensure that private attributes are no longer predictable after
obfuscation while the specified useful attributes are main-
tained. For example, when sharing human voices, the user
of our method may remove the speaker’s gender information
from the audio clip, while preserving the spoken content.

Invariance of sample space dictating that the obfuscated
data should remain in the same space as the original data,
ensuring the seamless insertion of our method into existing
pipelines and data re-usability, which is adopted in most of
the recent works (Bertran et al., 2019; Dave et al., 2022;
Chen et al., 2024; Malekzadeh et al., 2019).

Feature management without annotation requires pre-
serving the unspecified general features in the data. In the
human voice example, general features may include the
speaker’s accent and age, etc., which are not explicitly spec-
ified or labeled in the dataset. This requirement ensures
broader usage of our method in the real world, where the
downstream tasks are oftentimes unknown, plentiful, and
constantly evolving (Huang et al., 2018; Dave et al., 2022;
Chen et al., 2024).

Finally, Theoretical basis is also required for the entire
proposed framework to enhance soundness and correctness.

3.1. Information-theoretic Problem Definition for
Private Attributes Protection

Following the high-level requirements, we formulate our
problem into an information-theoretic framework for in-
depth understanding. For presentation clarity, we use the fol-
lowing notation convention in our paper: uppercase letters

(e.g., X,S) denote random variables, and their correspond-
ing lowercase letters (e.g., x, s) the realization of random
variables. We use P (·) to denote probability distributions
(e.g., P (X)), among which we use Pdata(·) to indicate that
this distribution is purely determined by a dataset and can be
readily calculated, and Pθ(·) to indicate that this distribution
is parameterized by θ and can be calculated readily (e.g.,
by forward propagation of a neural network). Calligraphic
letters (e.g., D) denote datasets.

We consider a multi-attribute dataset with training split
Dtrain and test split Dtest, which can be seen as both
drawn from the underlying data distribution Pdata(X,S,U),
where X is the high-dimensional original input data, S =
{S1, S2, . . . , SM} denotes a set of M user-chosen private
attributes annotated on X , and U = {U1, U2, . . . , UN} de-
notes a set of N user-chosen useful attributes annotated on
X . For example, in the AudioMNIST dataset (Becker et al.,
2018), X can denote the high dimensional audio clips, and
the user can choose S = {“gender”} as a private attribute
to remove, and choose U = {“spoken digit”} as a useful
attribute to preserve.

Following the assumptions made in Bertran et al. (2019), we
assume that all attributes in S,U follow finite categorical
distributions, to ensure a finite mutual information between
X and each attribute. We also realistically assume that each
attribute is deterministic when X is given, namely P (Si|X)
and P (Uj |X) are degenerate distributions.

With above definitions and assumptions, we can now for-
mally describe our goal in the information theory framework
as to find the optimal data obfuscation algorithm, denoted as
Pθ(X

′|X), by solving the following optimization problem

min
Pθ(X′|X)

L =

M∑
i=1

I(X ′;Si)−λ

N∑
j=1

I(X ′;Uj)−µI(X ′;X),

(1)
where the random variable X ′ denotes the obfuscated data,
and our obfuscation algorithm Pθ(X

′|X) is parameterized
by θ. I(·, ·) denotes Shannon mutual information, and λ
and µ are two hyperparameters used to trade-off privacy pro-
tection and utility preservation. This optimization objective
tries to simultaneously minimize the information leaked for
Si in X ′ to remove private attributes, maximize the informa-
tion of Uj in X ′ to preserve useful attributes, and maximize
the information of original data X in X ′ to preserve the
general features of the data. To summarize the relationship
of random variables U, S,X , and X ′, we illustrate their
probabilistic model in Figure 2. The information-theoretic
optimization objective of Equation 1 is similar to the objec-
tives used in Bertran et al. (2019); Malekzadeh et al. (2019);
Chen et al. (2024). It also closely resembles the optimiza-
tion objective in Privacy Funnel or Information Bottleneck
literature with different focuses (Makhdoumi et al., 2014;
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Tishby et al., 2000; Alemi et al., 2017; Hjelm et al., 2019).

3.2. The Vulnerability of Existing Private Attributes
Protection Methods

State-of-the-art utility-preserving private attributes protec-
tion methods have demonstrated satisfactory performance
in their respective papers in recent years. These methods
are based on adversarial training, where the protector trains
an adversarial classifier trying to correctly infer the private
attribute Si from obfuscated data X ′, and jointly trains the
obfuscation algorithm Pθ(X

′|X) to prevent the adversarial
classifier from making correct inferences.

Nevertheless, as widely discussed in the neighboring fields
of adversarial robustness (Carlini & Wagner, 2017; Atha-
lye et al., 2018; Ilyas et al., 2019; Carlini et al., 2019),
generated image/video detection (Yu et al., 2019; Wang
et al., 2020; Masood et al., 2023), membership inference
attacks (Carlini et al., 2022) and gradient inversion in fed-
erated learning (Geiping et al., 2020; Huang et al., 2021),
adversarial training based methods share a common and
critical weakness. That is, although their trained defender
can safely defend against the jointly-trained adversary, they
are vulnerable to potentially stronger or unseen adversaries,
which can be obtained by certain tailored adaptive attack-
ing strategies, or simply using longer training time, more
computation power, larger datasets, etc.

Despite the existence of many advanced attacking strate-
gies in these neighboring fields listed above, we empiri-
cally find out that in the context of private attributes protec-
tion, an even simpler and more realistic attacking method
can effectively break the state-of-the-art methods, which
is formally described below. Given an obfuscation al-
gorithm Pθ(X

′|X), the attacker may repetitively get an
original sample and its associated attributes (x, s, u) from
Pdata(X,S,U); feeds the original sample x into the obfus-
cation algorithm to get the corresponding obfuscated sam-
ple x′ ∼ Pθ(X

′|X = x); and thus collect a dataset of
(x, s, u, x′) tuples. Then, this collected dataset is utilized
to train a new adversarial classifier in a supervised manner.
In the rest of this paper, we call this attacking method the
Probing Attack. The Probing Attack is realistic in that it
does not have assumptions on the training protocol or model
structures of the obfuscation algorithm, and can be applied
to either deterministic or stochastic obfuscation algorithms.

We conduct a motivational experiment on the Motion Sense
dataset to reveal Probing Attack’s negative impact on ex-
isting methods, where we suppress “gender” and “ID” as
private attributes and preserve “activity” as a useful attribute.
We use the Normalized Accuracy Gain (NAG) proposed
in Chen et al. (2024) as the metric, which is generally pro-
portional to the accuracy of a classifier trained on X ′ for
each attribute. The obfuscation is considered better when

Table 1. Comparison of the NAG of baseline methods on Motion
Sense. We suppress “gender” and “ID” as private attributes, while
preserving “activity” as a useful attribute. NAG-Protector suggests
that this NAG is calculated using the protector’s adversarial classi-
fier. NAG-Attacker suggests that this NAG is calculated using the
attacker’s adversarial classifier trained with Probing Attack.

Method NAG-Protector (%) NAG-Attacker (%)

gender (↓) ID (↓) activity (↑) gender (↓) ID (↓) activity (↑)

ADV 14.2±2.4 7.3±0.4 86.9±11.5 62.9±7.5 37.3±10.7 86.9±11.5
GAP 0.0±0.0 0.0±0.0 85.5±0.7 64.2±0.2 49.5±0.4 85.5±0.7
MSDA 0.0±0.1 5.9±0.9 93.0±0.5 65.4±1.6 46.6±1.5 93.0±0.5
BDQ 18.2±2.0 5.8±0.4 90.5±2.3 56.0±9.4 30.8±14.8 90.5±2.3
PPDAR 0.2±0.3 0.9±0.3 93.7±0.1 65.7±1.4 49.8±0.5 93.7±0.1
MaSS 1.3±0.6 1.2±0.2 93.8±0.1 65.1±0.5 49.8±0.2 93.8±0.1

NAG is lower for private attributes and when NAG is higher
for useful attributes. For each private attribute, we calculate
the NAG using both 1) the protector’s adversarial classifier
trained jointly with the obfuscation algorithm, and 2) the
attacker’s new adversarial classifier trained with a moderate
Probing Attack setup after the obfuscation algorithm is de-
ployed. The detailed descriptions of the NAG’s definition
and experimental settings can be found in Section 5.

We can observe from the results shown in Table 1 that,
for private attributes, all methods achieved low NAG with
the protector’s adversarial classifier but significantly higher
NAG with the attacker’s adversarial classifier. These experi-
ment results substantiate existing works’ severe vulnerabil-
ity to the simple Probing Attack method, indicating their
impracticality in challenging real-world deployment.

To further examine adversarial training based works’ vulner-
ability, we present an information-theoretic interpretation
of this phenomenon in Appendix C.

4. Our Method: PASS
To build a data obfuscation model that is robust to Probing
Attack, we propose PASS, Private Attributes protection with
Stochastic data Substitution, which abandons adversarial
training but adopts a novel idea of stochastic data substitu-
tion. Specifically, we propose first to draw a subset from the
training dataset Dtrain, which is denoted as the substitution
dataset Dsubstitute. Then, for each input original sample x,
instead of transforming x into an obfuscated sample, we
propose to strategically replace x with a sample x′ in the
substitution dataset Dsubstitute according to our designed sub-
stitution probability, such that the attacker can not correctly
infer the private attributes of the original sample x from the
substituted sample x′, but can still infer the useful attributes
and some general features of x from x′.

We propose to parameterize our substitution probability
with a neural network, and then train it with our novel loss
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Figure 3. The overview of PASS design. PASS stochastically replaces each original sample x with a substitute sample x′ according
to probability Pθ(X

′ = x′|X = x). Pθ(X
′ = x′|X = x) is used to calculate approximate loss functions L̂Si , L̂Uj and L̂X , which

are theoretically derived from I(X ′;Si), I(X ′;Uj), and I(X ′;X) respectively, and are responsible for protecting private attribute Si,
preserving useful attribute Uj and preserving general features, respectively.

function, which is rigorously derived from our information-
theoretic objective Equation 1. An overview of PASS is
shown in Figure 3, and the design details will be elaborated
in the next sections.

4.1. Neural Network-based Stochastic Data
Substitution

To unify the discussions of PASS and existing private
attributes protection methods into the same information-
theoretic framework, we reuse the notation Pθ(X

′|X) to
denote substitution probability, where Pθ(X

′ = x′|X = x)
denotes the probability of substituting the original sample x
with the substitute sample x′ ∈ Dsubstitute, and θ denotes all
the parameters in PASS.

To calculate Pθ(X
′|X), we propose to first input each orig-

inal input sample x into a neural network to calculate an
embedding, denoted as f(x). Then, we obtain a learnable
embedding g(x′) for each substitute sample x′ ∈ Dsubstitute.
Next, we calculate Pθ(X

′|X) based on the cosine similarity
between each pair of embeddings f(x) and g(x′) as

Pθ(X
′ = x′|X = x) =

ecos(f(x),g(x
′))/τ∑

x′′∈Dsubstitute
ecos(f(x),g(x′′))/τ

,

(2)
where cos(·, ·) is the cosine similarity, τ is the temperature
hyper-parameter which is set to 0.01 for all of our experi-
ments. Similar designs can be found widely in contrastive
learning literature (Oord et al., 2018; Chen et al., 2020).

4.2. Loss Function Derivation

Ideally, to achieve our goal of utility-preserving private at-
tributes protection, Pθ(X

′|X) should be trained to minimize
our information-theoretic optimization objective L defined
in Equation 1. Unfortunately, L cannot be accurately esti-

mated for each mini-batch during training. Therefore, we
propose a novel, fully differentiable loss function L̂ to train
Pθ(X

′|X), which is derived step-by-step from L and is
theoretically valid in mini-batched based training.

In the rest of this section, we will focus on the formulation of
L̂. For a deeper understanding, please refer to Appendix D
for detailed discussions on 1) the theoretical reason why L
cannot be accurately estimated, 2) the step-by-step deriva-
tion of L̂ and proof of its theoretical validity, and 3) an
intuitive explanation of L̂ with a running example.

L̂ can be decomposed into several loss terms as

L̂ =

M∑
i=1

L̂Si
− λ

N∑
j=1

L̂Uj
− µL̂X , (3)

where L̂Si , L̂Uj and L̂X are derived from I(X ′;Si),
I(X ′;Uj), and I(X ′;X) respectively, and are responsible
for protecting each private attribute Si, preserving each use-
ful attribute Uj and preserving general features, respectively.
λ and µ are the same trade-off hyperparameters used in L.
We will focus on each of them below.

Private Attributes Protection. To remove the information
of each private attribute Si from X ′, we minimize I(X ′;Si)
by minimizing L̂Si , which is derived to be

L̂Si
= −EPdata(Si) [H(X ′|Si)] , (4)

where H(·|·) denotes conditional Shannon entropy. The
conditional distribution P (X ′|Si) is calculated as

P (X ′|Si) = EPdata(X|Si) [Pθ(X
′|X)] , (5)

where Pdata(X|Si) can be interpreted as all x with each class
of private attribute Si in the dataset. Taking expectation over
Pdata(X|Si) is estimated by averaging over all x with Si in
a mini-batch.
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Useful Attributes Preservation. Extending the notations in
Section 3.1, we denote the data distribution of Dsubstitute as
Pdata(X

′, S′, U ′), where U ′ = {U ′
1, U

′
2, . . . , U

′
N} are called

substitute useful attributes, which represents the useful at-
tributes directly annotated on X ′.

To preserve the useful attributes Uj , we propose to encour-
age the substitute useful attributes U ′

j to be similar to the
original useful attribute Uj . For the AudioMNIST example
where we choose “spoken digit” as the useful attribute, for
original audio with the spoken digit “1”, we try to encourage
the substitute audio also to have the spoken digit “1”. To
achieve this, we propose to minimize L̂Uj defined as:

L̂Uj
= log |Uj |EPdata(X,Uj)

[
− logP (U ′

j = Uj |X))
]
, (6)

where Uj denotes the support of Uj , |·| denotes the cardinal-
ity. log |Uj | is a coefficient to adjust L̂Uj

, so that the scale of
L̂Uj matches I(X ′;Uj). Taking expectation over Pdata(X)
is estimated by averaging over a mini-batch. P (U ′

j |X) de-
notes the expected U ′

j of X , which can be calculated as:

P (U ′
j |X) = EPθ(X′|X)

[
Pdata(U

′
j |X ′)

]
. (7)

As shown in Appendix D.2, L̂Uj can also be rigorously
derived from I(X ′;Uj).

General Feature Preservation. To preserve general fea-
tures, we maximize I(X ′;X) by minimizing the conditional
entropy of Pθ(X

′|X), which can be written as minimizing
the loss term L̂X :

L̂X = EPdata(X) [H(X ′|X)] , (8)

where taking expectation over Pdata(X) is also estimated by
averaging over a mini-batch.

Next, we will show that the expectation of L̂ over mini-
batches is proportional to an upperbound of L defined in
Equation 1, suggesting that minimizing L̂ can lead to the
minimization of L, confirming its theoretical validity.

Theorem 4.1. For L and L̂ defined in Equation 1 and Equa-
tion 3 respectively, for µ ≤ N , we can have

E
[
L̂
]
+ C ≥ L, (9)

where the expectation is taken over all mini-batches, C is a
constant defined as

C = (M − µ) log(|Dsubstitute|)− λ

N∑
j=1

H(Uj) + λ. (10)

Please refer to Appendix D.2 for detailed proof. The con-
stant C is independent of model’s parameters θ, and can be
calculated before training to estimate L during training.

4.3. Training and Inference Procedures

Our design follows a standard two-phase machine learn-
ing workflow, consisting of training and inference. During
training, we compute Pθ(X

′|X) using Equation 2 for a
mini-batch of samples from Dtrain, then calculate our loss
function according to Equation 3 and update the parameters
θ via backpropagation. We summarize the pseudo-code for
training in 1.

Once training is complete, inference proceeds by freezing
the model parameters θ. For each unseen test-set sample
x ∈ Dtest, we compute the substitution probability Pθ(X

′ =
x′|X = x) and draw a x′ accordingly to substitute x. The
inference pseudo-code is detailed in Algorithm 2.

Algorithm 1 PASS Training Pseudo-code

Require: training dataset Dtrain, substitution dataset
Dsubstitute, model parameters θ

Ensure: trained model parameters θ
1: while not reached max number of epochs do
2: sample a mini-batch from Dtrain
3: compute f(x) for x in mini-batch
4: compute g(x′) for x′ ∈ Dsubstitute
5: compute Pθ(X

′ = x′|X = x) using f(x) and g(x′)
(Equation 2)

6: compute L̂ using Pθ(X
′ = x′|X = x) (Equation 3)

7: update θ with ∂L̂
∂θ

8: end while
9: return θ

Algorithm 2 PASS Inference Pseudo-code

Require: original sample x, substitution dataset Dsubstitute,
model parameters θ

Ensure: substituted sample x′

1: compute f(x)
2: compute g(x′) for x′ ∈ Dsubstitute
3: compute Pθ(X

′ = x′|X = x) using f(x) and g(x′)
(Equation 2)

4: draw x′ ∈ Dsubstitute according to Pθ(X
′ = x′|X = x)

5: return x′

PASS has lower training and inference computational over-
head compared with state-of-the-art methods, because its
Pθ(X

′|X) is parameterized as an embedding extraction fol-
lowed by a cosine similarity, whereas the state-of-the-art
methods typically parameterize Pθ(X

′|X) as an end-to-
end data reconstruction neural network (Ronneberger et al.,
2015; Cao et al., 2022), which may require more computa-
tion.
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4.4. Theoretical Analysis for Entangled Attributes

Intuitively, when the useful attributes and private attributes
are highly correlated or entangled, we need to sacrifice
the utility of useful attributes to an extent to achieve pri-
vate attributes protection. To theoretically describe this
phenomenon in the information theory framework, and to
provide an estimation of the extent of the utility sacrifice, we
present the following theorem, revealing that both I(X ′;Uj)
and I(X ′;X) are bounded by I(X ′;Si) and cannot be arbi-
trarily large.
Theorem 4.2. For any i ∈ {1, 2, . . . ,M}, any J ⊆
{1, 2, . . . , N}, and U = {Uj |j ∈ J }, we can have∑

j∈J
I(X ′;Uj) ≤ I(X ′;Si) +H(U|Si) + C(U), (11)

where C(·) denotes the total correlation, H(·|·) denotes
conditional Shannon entropy. We can also have

I(X ′;X) ≤ I(X ′;Si) +H(X|Si). (12)

Please refer to Appendix A for detailed proof. This theorem
can be viewed as an extension of the analysis in Chen et al.
(2024). The terms H(U|Si), C(U), and H(X|Si) can all
be calculated before training to estimate the extent of utility
sacrifice, and to track the training progress.

4.5. Theoretical Interpretation within Local Differential
Privacy Framework

As elaborated in Appendix B, under certain assumptions,
our information-theoretic problem formulation can also be
interpreted within the framework of local differential pri-
vacy (LDP) (Yang et al., 2023). In this context, PASS can
be viewed as an LDP mechanism, more specifically, an ex-
tension of the classical randomized response methods. The
distinctiveness of PASS from classical methods lies in its
capability to operate over high-dimensional data domains,
its explicit focus on utility preservation, and its foundation
in information-theoretic principles.

5. Experiments
5.1. Experimental Setup

Datasets. We thoroughly evaluated PASS on three multi-
attribute benchmark datasets, each representing a different
application of a different modality. These datasets include
AudioMNIST (Becker et al., 2018), containing recordings of
human voices; Motion Sense (Malekzadeh et al., 2019), con-
sisting of human activity sensory signals; and CelebA (Liu
et al., 2015), containing facial images. More detailed de-
scriptions of datasets can be found in Appendix E.1.

Baselines. We primarily compare PASS against six state-
of-the-art baseline methods: ALR (Bertran et al., 2019),

GAP (Huang et al., 2018), MSDA (Malekzadeh et al., 2019),
BDQ (Kumawat & Nagahara, 2022), PPDAR (Wu et al.,
2020), and MaSS (Chen et al., 2024), whose detailed de-
scriptions are presented in Section 2.

Evaluation Metrics and Default Probing Attack’s Set-
ting. To measure the performance of the obfuscation on
imbalanced datasets, we adopt the metric Normalized Ac-
curacy Gain (NAG) proposed by Chen et al. (2024), which
can ensure that all attributes are measured on the same scale.
The NAG for private attribute Si is defined as

NAG(Si) = max

(
0,

Acc(Si)−Accguessing(Si)

Accno suppr.(Si)−Accguessing(Si)

)
,

(13)
where Acc(Si) is the accuracy of a classifier trained on
the obfuscated data and the ground truth label of attribute
Si. Accguessing(Si) is the accuracy of the majority classi-
fier for Si, serving as a lower bound of the Acc(Si). And
Accno suppr.(Si) is the accuracy of a classifier trained on the
original data and the ground truth label of attribute Si, serv-
ing as an upper bound of Acc(Si).

A critical difference between our evaluation protocol and
baselines lies in that, we use the attacker’s adversarial clas-
sifier trained with the Probing Attack to calculate NAG and
thus measure the obfuscation performance, enhancing the
practicality and realisticity of the evaluation. In the de-
fault Probing Attack’s setting, the attacker has the API of
the trained obfuscation model Pθ(X

′|X) and its training
dataset. The attacker adopts a medium-sized neural network
based adversarial classifier and trains it on the obfuscated
data using the Probing Attack.

To evaluate whether our method and baselines can preserve
the data’s general features, we hide some attributes during
training and only reveal them during evaluation to verify if
they can be preserved. We call these attributes hidden use-
ful attributes and denote them as Fk for k ∈ {1, . . . ,K}.

NAG for each useful attribute NAG(Uj) and each hidden
useful attribute NAG(Fk) is defined and calculated in the
same way as NAG(Si). Higher NAG suggests that this at-
tribute’s information is well preserved in X ′. Therefore, the
performance of an obfuscation method is considered better
when each NAG(Si) is lower and when each NAG(Uj) and
each NAG(Fk) is higher.

To facilitate a fair comparison between different methods,
we propose a novel scalar metric, mean Normalized Accu-
racy Gain (mNAG), to measure the trade-off between private
attributes protection and useful attributes preservation in a
comprehensive way. mNAG is defined as the average of
the NAG for useful attributes (including hidden useful at-
tributes), minus the average of the NAG for private attributes,
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Table 2. Comparison of the NAG between PASS and baselines on
AudioMNIST. We suppress “gender” as a private attribute, while
preserving “digit” as a useful attribute. We take “accent”, “age”,
and “ID” as hidden useful attributes to evaluate general feature
preservation.

Method NAG (%) mNAG (%) (↑)
gender (↓) accent (↑) age (↑) ID (↑) digit (↑)

No suppr. 100.0 100.0 100.0 100.0 100.0 0.0
Guessing 0.0 0.0 0.0 0.0 0.0 0.0

ADV 71.4±1.2 62.3±1.0 55.2±0.6 72.3±0.3 99.8±0.1 1.0±1.6
GAP 13.3±2.6 0.1±0.1 0.0±0.0 3.4±0.3 21.2±0.4 -7.1±2.4
MSDA 78.4±2.9 61.9±3.3 57.3±3.0 77.1±2.4 99.8±0.0 -4.3±0.8
BDQ 69.0±5.8 56.9±5.8 47.7±5.9 68.1±5.7 99.7±0.1 -0.8±1.7
PPDAR 81.7±1.0 68.4±0.8 60.7±0.6 74.0±0.9 99.7±0.0 -6.0±0.8
MaSS 88.9±1.2 76.0±0.7 70.4±1.0 81.1±0.3 99.5±0.1 -7.2±0.8

PASS 0.0±0.0 46.4±0.9 27.6±1.6 49.7±0.4 96.5±0.2 55.0±0.7

Table 3. Comparison of the NAG of PASS on AudioMNIST for
different configurations. In each configuration, the attributes anno-
tated with (S) are suppressed as private attributes, and the attributes
annotated with (U) are preserved as useful attributes.

NAG (%) mNAG
(%) (↑)gender accent age ID digit

(S) 0.0±0.0 (U) 65.2±0.4 (U) 77.0±0.1 (U) 73.3±0.4 (U) 92.0±0.3 76.9±0.2
(S) 9.3±0.9 (S) 0.0±0.0 (U) 67.8±0.3 (U) 61.9±0.2 (U) 93.4±0.4 69.7±0.4
(S) 0.1±0.2 (S) 0.0±0.0 (S) 30.7±0.6 (U) 40.0±0.4 (U) 95.8±0.4 57.6±0.2
(S) 0.0±0.0 (S) 0.0±0.0 (S) 0.0±0.0 (S) 0.0±0.0 (U) 99.5±0.2 99.5±0.2

which can be formally written as

mNAG =
1

M +K
(

M∑
j=1

NAG(Uj) +

K∑
k=1

NAG(Fk))

− 1

N

N∑
i=1

NAG(Si).

(14)

We report the NAG and mNAG in the main paper, while the
corresponding accuracy can be found in Appendix F.

Hyperparameters. Unless otherwise specified, we set
λ = N

M and µ = 0.2N throughout our experiments to bal-
ance private attributes protection, useful attributes preserva-
tion, and general feature preservation. The substitute dataset
is constructed by randomly sampling 4096 data points from
the training dataset. All the experiments in this paper are
conducted with three random seeds and then aggregated.
Other hyperparameters for neural network structures, train-
ing configurations, and datasets can be found in Appendix E.

5.2. Evaluation on Human Voice Recording

We begin with the task of removing gender information from
human voice recordings on AudioMNIST dataset, where we
suppress “gender”, and preserve “digit”. We take “accent”,
“age”, “ID” as hidden useful attributes to evaluate general
feature preservation. As shown in Table 2, PASS exhibited 0

Table 4. Comparison of the NAG between PASS and baselines on
Motion Sense. We suppress “gender” and “ID” as private attributes,
while preserving “activity” as a useful attribute. NAG-unfinetuned
means that this NAG is calculated with a classifier that is only
pre-trained on original data but not finetuned on substituted data.

Method NAG (%) NAG-unfinetuned (%) mNAG (%) (↑)
gender (↓) ID (↓) activity (↑) activity (↑)

ADV 62.9±7.5 37.3±10.7 86.9±11.5 93.8±0.7 36.8±4.3
GAP 64.2±0.2 49.5±0.4 85.5±0.7 10.2±3.5 28.6±0.6
MSDA 65.4±1.6 46.6±1.5 93.0±0.5 5.5±9.6 37.0±2.0
BDQ 56.0±9.4 30.8±14.8 90.5±2.3 0.0±0.0 47.1±9.3
PPDAR 65.7±1.4 49.8±0.5 93.7±0.1 0.0±0.0 36.0±0.8
MaSS 65.1±0.5 49.8±0.2 93.8±0.1 0.0±0.0 36.3±0.3

PASS 0.0±0.0 0.0±0.0 98.1±0.3 97.6±0.3 98.1±0.3

NAG on “gender” and a significantly higher mNAG than all
baselines, which strongly substantiated PASS’s capability on
utility-preserving private attributes protection, and PASS’s
tolerance to the Probing Attack.

Furthermore, we conduct an ablation study to verify if PASS
is robust to different combinations of useful and private
attributes. The combinations and their corresponding re-
sults are presented in Table 3, demonstrating that PASS
can consistently achieve a high mNAG for all combinations.
When useful attributes and private attributes are highly en-
tangled (e.g., when we suppress “gender”, “accent”,“age”,
but preserve “ID”), PASS manages to find a satisfactory
compromise between privacy and utility automatically.

We also conduct four more ablation studies on AudioM-
NIST by varying 1) the coefficient λ, 2) the coefficient µ, 3)
the number of samples in the substitute dataset |Dsubstitute|,
and 4) the distribution of the substitute dataset. As shown
in Appendix F.1, PASS consistently maintains high perfor-
mance across all different settings, showing robustness to
hyperparameter changes.

5.3. Evaluation on Human Activity Sensory Data

In our subsequent study, we apply PASS to the task of
anonymized activity recognition on Motion Sense dataset,
where we suppress “gender” and “ID” attributes while pre-
serving the “activity” attribute. On “activity”, in addition to
the standard NAG, we also report the NAG calculated with
an un-finetuned classifier, which is only pre-trained on origi-
nal data X , without finetuning on X ′. The results, presented
in Table 4, show that PASS achieves NAG of 0 for private at-
tributes and a much higher mNAG than all baselines, which
substantiated the effectiveness of PASS. Besides, PASS also
achieved the highest NAG on “activity” with un-finetuned
classifier, which shows that PASS can be plugged into an
existing ML pipeline to protect private attributes without
necessarily altering the downstream models. We visual-
ize the results of data substitution in this experiment using
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Table 5. Comparison of the NAG between PASS and baselines on CelebA. We suppress “Male” as a private attribute, while preserving
“Smiling” and “Young” as useful attributes, and we take “Attractive,” “Mouth Slightly Open,” and “High Cheekbones” as hidden useful
attributes to evaluate general feature preservation.

Method NAG (%) mNAG (%) (↑)
Male (↓) Smiling (↑) Young (↑) Attractive (↑) Mouth Slightly Open (↑) High Cheekbones (↑)

ADV 99.9±0.1 98.8±0.1 97.0±0.9 94.6±0.4 99.1±0.1 97.0±0.5 -2.6±0.2
GAP 83.0±1.1 75.9±1.3 45.4±3.0 77.6±1.1 61.1±2.1 75.6±0.7 -15.9±2.3
MSDA 91.6±0.7 99.8±0.2 92.4±2.4 89.9±1.0 91.8±0.8 95.7±1.1 2.3±0.8
BDQ 99.7±0.1 98.8±0.2 96.3±0.8 94.1±0.6 98.9±0.4 97.0±0.3 -2.7±0.2
PPDAR 99.7±0.1 98.9±0.3 97.2±1.2 94.4±0.6 99.0±0.1 97.0±0.4 -2.4±0.3
MaSS 96.9±0.1 97.2±0.2 86.2±1.4 90.6±0.3 97.6±0.2 94.6±0.4 -3.7±0.4

PASS 4.9±0.5 98.3±0.1 78.6±0.8 58.1±2.8 67.0±0.8 86.7±0.3 72.9±0.2

confusion matrices, as shown in Appendix F.2.

We also experimented to show that PASS can safely tolerate
the Probing Attack when the attacker has more data than
the protector. Detailed results and analysis are presented in
Appendix F.2.

5.4. Evaluation on Facial Images

We then extend the application of PASS to removing gender
information from facial images on CelebA dataset, where
we aim to suppress the “Male” as private attribute while pre-
serving “Smiling”, “Young” as useful attributes, and evaluat-
ing the general features preservation by taking “Attractive”,
“Mouth Slightly Open”, “High Cheekbones” as hidden use-
ful attributes. As displayed in Table 5, PASS achieved a
near 0 NAG on “Male”, and a much higher mNAG than all
the baselines, which highlights PASS’s efficacy on images.

We further compare PASS with four additional DP-based
baselines: Laplace Mechanism (Additive Noise) (Dwork
et al., 2006), DPPix (Fan, 2018), Snow (John et al., 2020),
and DP-Image (Xue et al., 2021). As shown in Table 17 in
Appendix F.3, these methods show limited performance be-
cause they primarily aim to prevent membership inference,
which differs from our goal of protecting specific private
attributes while preserving utility.

In addition, we conduct an ablation study showing PASS’s
robustness on different combinations of useful and private
attributes on CelebA. And we also experiment to reveal
PASS’s superiority over the baseline SPAct (Dave et al.,
2022). Please refer to Appendix F.3 for results and analyses.

6. Conclusion
In this paper, we theoretically and empirically demonstrate
that the common weakness of adversarial training has a no-
ticeable negative impact on state-of-the-art private attributes

protection methods. To address this, we propose PASS,
a stochastic data substitution based method rooted rigor-
ously in information theory, that overcomes the above weak-
ness. The evaluation of PASS on three datasets substantiates
PASS’s broad applicability in various applications.
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Appendix

A. Proof of Theorem 4.2
Proof. For the first inequality of Theorem 4.2. For all i ∈ {1, . . . ,M} and all U ⊆ {U1, . . . , UN}, we can have

I(X ′;Si) +H(U|Si) + C(U)
=I(X ′;U , Si)− I(X ′;U|Si) +H(U|Si) + C(U)
=I(X ′;U , Si) +H(U|X ′, Si) + C(U)
=I(X ′;U) + I(X ′;Si|U) +H(U|X ′, Si) + C(U)
≥I(X ′;U) + C(U)
=C(X ′,U)

=
∑
U∈U

I(X ′;U) + C(U|X ′)

≥
∑
U∈U

I(X ′;U)

(15)

Similar to Chen et al. (2024), the second inequality of Theorem 4.2 can be proved as

I(X ′;X) = H(X ′)−H(X ′|X)

= H(X ′)−H(X ′|X,Si)

≤ H(X ′)−H(X ′|X,Si) +H(X|X ′, Si)

= H(X ′) +H(X|Si)−H(X ′|Si)

= I(X ′;Si) +H(X|Si)

(16)

B. Theoretical Analysis on the Connection with Local Differential Privacy
In this section, we will theoretically show that, under certain assumptions, our information-theoretic optimization objective
in Equation 1 can be converted into a local differential privacy objective (Yang et al., 2023).

We first describe the definition of local differential privacy as follows. Let ϵ and δ be non-negative real numbers, and A be a
randomized algorithm taking original sample x from a dataset as input. Let imA denotes the image of A. Then A satisfies
(ϵ, δ)-local differential privacy if for any S ⊆ imA, any pair of original data points x1 and x2:

P (A(x1) ∈ S) ≤ eϵP (A(x2) ∈ S) + δ (17)

Next, we formulate our goal of private attributes suppression into the local differential privacy framework. We first assume an
almighty attacker with the optimal adversarial classifier that can always infer each private attribute Si from substituted data
X ′ with the ground truth distribution P (Si|X ′). Then, for attribute Si, we can define the randomized inference algorithm
A(x) for each original sample x as the almighty attacker’s expected inference result on x:

P (A(x)) = EPθ(X′|X=x) [P (Si|X ′)] (18)

Our goal can then be expressed as training a substitution probability distribution Pθ(X
′|X), such that A satisfies (ϵ, δ)-local

differential privacy. This formulation means that, with our trained Pθ(X
′|X), the almighty attacker’s inference results on Si

for any two data points x1 and x2 are similar, which means that even the almighty attacker cannot infer Si reliably for each
x.

Finally, we show that our goal’s information-theoretic formulation can be converted into our goal’s local differential privacy
formulation. Recall that we propose to minimize I(X ′;Si) in Equation 1 to suppress Si, which can be written as:

I(X ′;Si) = EP (X′) [KL(P (Si|X ′)||P (Si))] (19)
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Suppose that after training Pθ(X
′|X) using this objective, we manage to achieve:

KL(P (Si|X ′ = x′)||P (Si)) ≤ γ (20)

for any x′. Then we can use the following theorem to prove that our A(x) can achieve (0,
√
2γ)-local differential privacy:

Theorem B.1. For A(x) defined in Equation 18, if KL(P (Si|X ′ = x′)||P (Si)) ≤ γ for any x′, then for any S ⊆ imA,
and any x1 and x2 we can have

P (A(x1) ∈ S) ≤ P (A(x2) ∈ S) +
√
2γ (21)

The proof of this theorem is as follows:

Proof. Using Pinsker’s Inequality (Cover, 1999), for any x′, we can have

sup
S

|P (Si ∈ S|X ′ = x′)− P (Si ∈ S)|

≤
√

1

2
KL(P (Si|X ′ = x′)||P (Si))

≤
√

γ

2

(22)

Therefore, for any S and x′, we have:

P (Si ∈ S)−
√

γ

2

≤P (Si ∈ S|X ′ = x′)

≤P (Si ∈ S) +
√

γ

2

(23)

Then, we can use this inequality to prove:

P (A(x1) ∈ S) =EPθ(X′|X=x1) [P (Si ∈ S|X ′)]

≤EPθ(X′|X=x1)

[
P (Si ∈ S) +

√
γ

2

]
=P (Si ∈ S) +

√
γ

2

=EPθ(X′|X=x2)

[
P (Si ∈ S) +

√
γ

2

]
≤EPθ(X′|X=x2)

[
P (Si ∈ S|X ′) +

√
2γ

]
=P (A(x2) ∈ S) +

√
2γ

(24)

C. Theoretical Analysis of Adversarial Training Based Methods’ Vulnerability to The Probing
Attack

In this section, we will theoretically uncover the underlying reason for adversarial training based methods’ Vulnerability to
The Probing Attack. Specifically, we first prove that the mutual information estimated and minimized by adversarial training
based methods, denoted as Iϕ(X ′;Si), is only a lower bound for the true mutual information I(X ′;Si). The proof can be
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written as:
I(X ′;Si)− Iϕ(X

′;Si)

=EP (X)Pθ(X′|X)P (Si|X)[log
P (Si|X ′)

Pϕ(Si|X ′)
]

=EPθ(X′)P (Si|X′)[log
P (Si|X ′)

Pϕ(Si|X ′)
]

=EPθ(X′)[KL(P (Si|X ′)||Pϕ(Si|X ′))]

≥0

(25)

where Pϕ(Si|X ′) denotes the protector’s adversarial classifier, parameterized by neural network ϕ. Therefore, adversarial
training based methods can not guarantee the minimization of I(X ′;Si) by minimizing Iϕ(X

′;Si). The remaining I(X ′;Si)
is unknown and potentially unbounded. If the attacker has a stronger adversarial classifier than Pϕ(Si|X ′), then the attacker
can exploit the remaining I(X ′;Si) to breach the protection.

D. Detailed Explanations of Our Loss Function
D.1. Theoretical Reason Why L Cannot Be Accurately Estimated in Mini-batch

To understand why L cannot be accurately estimated in mini-batch, we first introduce a random variable B, which denotes
the index of the mini-batch. B follows a uniform categorical distribution, where each index of mini-batch corresponds to a
unique combination of samples in the mini-batch. We use P (·|B) to denote that this distribution is calculated only using the
samples in mini-batch B.

During the training process, we can only calculate an estimation for mutual information terms in L using all samples in
each mini-batch. Taking I(X ′;Si) as an example, let us denote the estimation in mini-batch B as the conditional mutual
information I(X ′;Si|B). It can calculated as

I(X ′;Si|B) = EP (X′,Si|B)

[
P (X ′, Si|B)

P (X ′|B)P (Si|B)

]
(26)

Then, let us denote the estimation of L in each mini-batch B as L(B). It can be calculated as

L(B) =

M∑
i=1

I(X ′;Si|B)− λ

N∑
j=1

I(X ′;Uj |B)− µI(X ′;X|B) (27)

Then, we can show that the expectation of L(B) over all possible mini-batches is not equal to L

EP (B)[L(B)]

=EP (B)

 M∑
i=1

I(X ′;Si|B)− λ

N∑
j=1

I(X ′;Uj |B)− µI(X ′;X|B)


̸=

M∑
i=1

I(X ′;Si)− λ

N∑
j=1

I(X ′;Uj)− µI(X ′;X)

=L

(28)

where the inequality is achieved because the expectation of conditional mutual information is not necessarily equal to the
mutual information.

In conclusion, mini-batched-based estimation L(B) is not an unbiased estimator for L and is not suitable for use as a loss
function.

D.2. Theoretical Derivation of Our Loss Function And Proof of of Theorem 4.1

In this section, we will keep using the random variable B defined in Appendix D.1 to denote the index of mini-batch. We
will rewrite our equations in Section 4.2 more formally with B to elaborate our derivation and to prove Theorem 4.1. We
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will omit the expectations when writing conditional entropy for clarity, except for B, whose expectations will still be written
explicitly.

To derive L̂ from L, we first need to derive the following upperbound for L

L =

M∑
i=1

I(X ′;Si)− λ

N∑
j=1

I(X ′;Uj)− µI(X ′;X)

= (M − µ)H(X ′)−
M∑
i=1

H(X ′|Si)

− λ

N∑
j=1

H(Uj) + λ

N∑
j=1

H(Uj |X ′) + µH(X ′|X)

≤ (M − µ) log(|Dsubstitute|)−
M∑
i=1

H(X ′|Si)

− λ

N∑
j=1

H(Uj) + λ

N∑
j=1

H(Uj |X ′) + µH(X ′|X)

=

M∑
i=1

−H(X ′|Si) + λ

N∑
j=1

(H(Uj |X ′)− 1) + µH(X ′|X)

+ C

(29)

where H(·) and H(·|·) denote Shannon entropy and conditional Shannon entropy respectively, C is a constant defined
in Theorem 4.1. The inequality is achieved because the entropy of a random variable is smaller than or equal to the log
cardinality of its support.

Next, we will focus on each term in Equation 29 separately.

Private Attributes Protection. In Equation 29, −H(X ′|Si) is responsible for suppressing each private attribute Si. Similar
to the reasoning in Appendix D.1, we can calculate an estimation for −H(X ′|Si) using all the samples in a mini-batch B.
The estimation is denoted as L̂Si

, which can be rewritten with B as

L̂Si = −H(X ′|Si, B) (30)

The expectation of L̂Si
over all mini-batches is an upperbound for −H(X ′|Si)

−H(X ′|Si)

≤EP (B)[−H(X ′|Si, B)]

=EP (B)[L̂Si
]

(31)

where the inequality is achieved because adding a condition cannot increase the entropy.

Therefore, we can manage to minimize −H(X ′|Si) by calculating and then minimize L̂Si
.

Useful Attributes Preservation. In Equation 29, H(Uj |X ′)− 1 is responsible for preserving each useful attribute Uj . To
show the connection between H(Uj |X ′)− 1 and L̂Uj

, we need to first derive another upperbound for H(Uj |X ′)− 1, which
can be written as

H(Uj |X ′)− 1

=H(Uj |U ′
j , X

′)− 1

≤H(Uj |U ′
j)− 1

≤(1− P (U ′
j = Uj)) log |Uj |+ 1− 1

=(1− P (U ′
j = Uj)) log |Uj |

≤ − logP (U ′
j = Uj) log |Uj |

≤EPdata(X,Uj)

[
− logP (U ′

j = Uj |X))
]
log |Uj |

(32)
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where the first equation is achieved because U ′
j is independent of Uj given X ′. The first inequality is achieved because

removing a condition cannot decrease the entropy. The second inequality is Fano’s Inequality (Cover, 1999), and the fourth
inequality is Jensen’s Inequality.

When calculating an estimation of the above equation in a mini-batch B, we can have

P (U ′
j = Uj |X,B) = P (U ′

j = Uj |X) (33)

which is because all the variables are independent of B when X is given. therefore, we can prove that L̂Uj
is an unbiased

estimator as
H(Uj |X ′)− 1

≤EPdata(X,Uj)

[
− logP (U ′

j = Uj |X))
]
log |Uj |

=EP (B)EPdata(X,Uj)

[
− logP (U ′

j = Uj |X,B))
]
log |Uj |

=EP (B)[L̂Uj
]

(34)

General Features Preservation. In Equation 29, H(X ′|X) is responsible for preserving general features. Similar to the
analysis above, when calculating an estimation of H(X ′|X) in a mini-batch B, we can have

H(X ′|X,B) = H(X ′|X) (35)

therefore, we can prove that L̂X is an unbiased estimator as

H(X ′|X)

=EP (B)[H(X ′|X,B)]

=EP (B)[L̂X ]

(36)

In conclusion, summarizing the equations above, we can prove Theorem 4.1 as

L

≤
M∑
i=1

−H(X ′|Si) + λ

N∑
j=1

(H(Uj |X ′)− 1) + µH(X ′|X) + C

≤EP (B)[L̂Si ] + λEP (B)[L̂Uj ] + µEP (B)[L̂X ] + C

=EP (B)[L̂] + C

(37)

D.3. Intuitive Explanation of Our Loss Function with AudioMNIST Example

The intuition behind L̂Si is as follows. Maximizing the conditional entropy of P (X ′|Si) may encourage that the original
samples x with each class of Si can be substituted with a wide range of x′ ∈ Dsubstitute, which may further ensure each x′

can substitute many different x with different Si classes. Therefore, when the attacker observes a x′, it cannot confidently
infer which x with which class of Si is the original input sample, thus cannot infer the class of Si correctly.

Using the example of the AudioMNIST dataset, and supposing Si is ”gender”, our loss term L̂Si
tries to encourage that each

x′ can substitute both ”male” speaker’s audio and ”female” speaker’s audio, so that the attacker can not infer the speaker’s
gender of the x when observing a x′.

To preserve the useful attributes Uj , we propose to encourage the substitute useful attributes U ′
j to be similar to the original

useful attribute Uj . For the AudioMNIST example, supposing we choose ”spoken digit” as the useful attribute, if there
comes an audio with the spoken digit ”1”, then we try to encourage the substitute audio also to have the spoken digit ”1”.

L̂X may encourage each original sample x to be substituted by a narrow range of x′ ∈ Dsubstitute, which has a counteracting
effect on the loss term L̂Si

. When L̂X and L̂Si
are both used to train Pθ(X

′|X), their combined effect is to encourage that,
although each x can only cover a relatively narrow range of x′, all the x with each class of Si may jointly cover a wide
range of x′. Consequently, each x′ may only substitute a narrow range of x, but these x are with different classes of Si,
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Table 6. Detailed configurations of our experiments’ datasets, models, and optimization techniques.
Experiment Audio Human activity Facial image
Dataset AudioMNIST Motion Sense CelebA
# total data points 30000 74324 202599
Training-testing split 4:1 7:4 4:1
Optimizer AdamW (Loshchilov & Hutter, 2019)
Learning rate 0.001 0.001 0.0001
Weight decay 0.0001
Learning rate scheduler Cosine scheduler
Embeddings f(x) and g(x′) dimension 512
Pθ(X

′|X) training epochs 2000 200 50
Probing Attack training epochs 2000 200 50

f(x) neural network structure 3-layer MLP 6-layer Convolutional NN
Pre-trained FaceNet backbone

followed by 2-layer MLP

which still hinders the attacker from inferring Si from x′, while ensuring that the downstream user can infer x from x′ with
medium level of accuracy.

Keep using the AudioMNIST dataset with the private attribute ”gender” as an example. With both L̂X and L̂Si
, we

encourage that each x′ can only substitute a limited number of x, but these x contain both ”male” speaker’s audio and
”female” speaker’s audio.

E. Additional Experimental Setup
E.1. Datasets Desciptions

CelebA Dataset comprises 202,599 facial images, each annotated with 40 binary attributes. For our experiments, we
selected six representative attributes. We used the official split for training and validation. All images were center-cropped
to a resolution of 160×160 pixels in preprocessing.

AudioMNIST Dataset includes human voice recordings in English, which contains 60 speakers speaking 10 digits. It is
annotated with eight attributes. We selected attributes gender, accent, age, ID, and spoken digits for our experiments, which
have 2, 16, 18, 60, and 10 classes, respectively. The dataset contains 30,000 audio clips, divided into 24,000 for training and
6,000 for validation. We enhance the experiment efficiency on the AudioMNIST dataset by converting the raw data into
features using HuBERT-B (Hsu et al., 2021).

Motion Sense Dataset consists of accelerometer and gyroscope data recorded during six daily human activities. We focused
on three attributes: gender, ID, and activity, with 2, 24, and 6 classes, respectively. Following Malekzadeh et al. (2019), we
excluded the ”sit” and ”stand up” activities from our experiments; adopted the ”trial” split strategy; used only the magnitudes
of the gyroscope and accelerometer as input; normalized input to zero mean and unit standard deviation; and segmented the
datasets into 74,324 samples, each with a length of 128.

E.2. Model and Optimization Configurations

To achieve better training stability and faster convergence, we adopt a pre-trained FaceNet (Schroff et al., 2015) backbone
followed by 2-layer MLPs as the neural network for CelebA dataset. We used a 6-layer Convolutional neural network for
the Motion Sense dataset. Please refer to Table 6 for more detailed configurations of our experiments’ datasets, models, and
optimization techniques.
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Table 7. Comparison of the NAG and accuracy between PASS and baselines on AudioMNIST. We suppress ”gender” as a private attribute,
while preserving ”digit” as a useful attribute. We take ”accent”, ”age”, and ”ID” as hidden useful attributes to evaluate general feature
preservation.

Method NAG (Accuracy) (%) mNAG (%) (↑)
gender (↓) accent (↑) age (↑) ID (↑) digit (↑)

No suppr. 100.0 (99.7) 100.0 (98.6) 100.0 (97.1) 100.0 (98.6) 100.0 (99.9) 0.0
Guessing 0.0 (80.0) 0.0 (68.3) 0.0 (16.7) 0.0 (1.7) 0.0 (10.0) 0.0

ADV 71.4±1.2 (94.1±0.2) 62.3±1.0 (66.8±0.8) 55.2±0.6 (85.1±0.2) 72.3±0.3 (71.8±0.3) 99.8±0.1 (99.6±0.1) 1.0±1.6
GAP 13.3±2.6 (82.6±0.5) 0.1±0.1 (16.7±0.1) 0.0±0.0 (68.3±0.0) 3.4±0.3 (4.9±0.3) 21.2±0.4 (29.0±0.3) -7.1±2.4
MSDA 78.4±2.9 (95.5±0.6) 61.9±3.3 (66.5±2.6) 57.3±3.0 (85.7±0.9) 77.1±2.4 (76.4±2.3) 99.8±0.0 (99.6±0.0) -4.3±0.8
BDQ 69.0±5.8 (93.6±1.1) 56.9±5.8 (62.4±4.7) 47.7±5.9 (82.8±1.8) 68.1±5.7 (67.7±5.5) 99.7±0.1 (99.6±0.1) -0.8±1.7
PPDAR 81.7±1.0 (96.1±0.2) 68.4±0.8 (71.7±0.7) 60.7±0.6 (86.7±0.2) 74.0±0.9 (73.4±0.9) 99.7±0.0 (99.6±0.0) -6.0±0.8
MaSS 88.9±1.2 (97.5±0.2) 76.0±0.7 (77.8±0.5) 70.4±1.0 (89.6±0.3) 81.1±0.3 (80.3±0.3) 99.5±0.1 (99.4±0.1) -7.2±0.8

PASS 0.0±0.0 (79.9±0.1) 46.4±0.9 (54.0±0.7) 27.6±1.6 (76.7±0.5) 49.7±0.4 (49.8±0.4) 96.5±0.2 (96.7±0.2) 55.0±0.7

Table 8. Comparison of the NAG and accuracy of PASS on AudioMNIST for different configurations. In each configuration, the attributes
annotated with (S) are suppressed as private attributes, and the attributes annotated with (U) are preserved as useful attributes.

Method NAG (Accuracy) (%) mNAG (%) (↑)
gender accent age ID digit

No suppr. (U) 100.0 (99.7) (U) 100.0 (98.6) (U) 100.0 (97.1) (U) 100.0 (98.6) (U) 100.0 (99.9) 0.0
Guessing (S) 0.0 (80.0) (S) 0.0 (68.3) (S) 0.0 (16.7) (S) 0.0 (1.7) (S) 0.0 (10.0) 0.0

PASS

(S) 0.0±0.0 (79.4±0.2) (U) 65.2±0.4 (88.1±0.1) (U) 77.0±0.1 (78.6±0.1) (U) 73.3±0.4 (72.7±0.4) (U) 92.0±0.3 (92.7±0.2) 76.9±0.2
(S) 9.3±0.9 (81.8±0.2) (S) 0.0±0.0 (67.9±0.1) (U) 67.8±0.3 (71.2±0.2) (U) 61.9±0.2 (61.6±0.2) (U) 93.4±0.4 (93.9±0.4) 69.7±0.4
(S) 0.1±0.2 (79.6±0.4) (S) 0.0±0.0 (67.4±0.4) (S) 30.7±0.6 (41.4±0.5) (U) 40.0±0.4 (40.4±0.4) (U) 95.8±0.4 (96.1±0.4) 57.6±0.2
(S) 0.0±0.0 (80.0±0.0) (S) 0.0±0.0 (68.3±0.0) (S) 0.0±0.0 (16.7±0.0) (S) 0.0±0.0 (1.7±0.0) (U) 99.5±0.2 (99.4±0.2) 99.5±0.2

Table 9. Ablation study of varying the coefficient λ on AudioMNIST. We suppress ”gender” as a private attribute, while preserving ”digit”
as a useful attribute. We take ”accent”, ”age”, and ”ID” as hidden useful attributes to evaluate general feature preservation.

Method λ
NAG (Accuracy) (%) mNAG (%) (↑)

gender (↓) accent (↑) age (↑) ID (↑) digit (↑)

No suppr. - 100.0 (99.7) 100.0 (98.6) 100.0 (97.1) 100.0 (98.6) 100.0 (99.9) 0.0
Guessing - 0.0 (80.0) 0.0 (68.3) 0.0 (16.7) 0.0 (1.7) 0.0 (10.0) 0.0

PASS

0.1 N/M 0.0±0.0 (80.0±0.0) 45.0±0.5 (52.9±0.4) 25.2±1.5 (76.0±0.4) 48.5±0.6 (48.7±0.6) 88.5±0.7 (89.5±0.6) 51.8±0.7
0.2 N/M 0.0±0.0 (80.0±0.0) 45.3±0.3 (53.1±0.2) 25.7±1.4 (76.1±0.4) 49.3±0.1 (49.4±0.1) 91.5±0.6 (92.2±0.5) 53.0±0.4
0.5 N/M 0.0±0.0 (80.0±0.0) 47.3±0.7 (54.7±0.6) 28.4±1.1 (76.9±0.3) 50.8±0.5 (50.9±0.5) 95.0±0.2 (95.4±0.2) 55.4±0.6
1 N/M 0.0±0.0 (79.9±0.1) 46.4±0.9 (54.0±0.7) 27.6±1.6 (76.7±0.5) 49.7±0.4 (49.8±0.4) 96.5±0.2 (96.7±0.2) 55.0±0.7
2 N/M 0.0±0.0 (80.0±0.0) 47.8±0.5 (55.1±0.4) 28.5±0.4 (77.0±0.1) 51.3±0.7 (51.4±0.7) 97.8±0.0 (97.9±0.0) 56.4±0.4
5 N/M 0.1±0.1 (80.0±0.0) 46.2±0.7 (53.8±0.5) 27.0±1.4 (76.5±0.4) 49.9±0.8 (50.0±0.8) 99.0±0.1 (98.9±0.1) 55.4±0.5

Table 10. Ablation study of varying the coefficient µ on AudioMNIST. We suppress ”gender” as a private attribute, while preserving
”digit” as a useful attribute. We take ”accent”, ”age”, and ”ID” as hidden useful attributes to evaluate general feature preservation.

Method µ
NAG (Accuracy) (%) mNAG (%) (↑)

gender (↓) accent (↑) age (↑) ID (↑) digit (↑)

No suppr. - 100.0 (99.7) 100.0 (98.6) 100.0 (97.1) 100.0 (98.6) 100.0 (99.9) 0.0
Guessing - 0.0 (80.0) 0.0 (68.3) 0.0 (16.7) 0.0 (1.7) 0.0 (10.0) 0.0

PASS

0.00 0.0±0.0 (80.0±0.0) 0.0±0.0 (16.7±0.0) 0.0±0.0 (68.3±0.0) 0.0±0.0 (1.7±0.0) 97.3±0.4 (97.4±0.4) 24.3±0.1
0.01 0.0±0.0 (80.0±0.0) 2.9±0.3 (19.0±0.2) 0.0±0.0 (68.3±0.0) 6.4±0.1 (7.9±0.1) 99.8±0.1 (99.7±0.1) 27.3±0.1
0.02 0.0±0.0 (80.0±0.0) 7.5±0.8 (22.7±0.6) 0.0±0.0 (68.3±0.0) 12.7±0.1 (13.9±0.1) 99.8±0.0 (99.6±0.0) 30.0±0.2
0.05 0.0±0.0 (80.0±0.0) 23.5±0.5 (35.6±0.4) 4.1±0.3 (69.6±0.1) 28.5±0.3 (29.2±0.3) 98.9±0.2 (98.9±0.1) 38.8±0.3
0.10 0.0±0.0 (80.0±0.0) 40.5±0.7 (49.3±0.6) 20.4±1.8 (74.5±0.5) 44.3±0.7 (44.6±0.7) 97.9±0.1 (97.9±0.0) 50.8±0.6
0.20 0.0±0.0 (79.9±0.1) 46.4±0.9 (54.0±0.7) 27.6±1.6 (76.7±0.5) 49.7±0.4 (49.8±0.4) 96.5±0.2 (96.7±0.2) 55.0±0.7
0.50 0.0±0.0 (79.8±0.1) 44.9±0.2 (52.8±0.1) 25.1±1.3 (75.9±0.4) 48.5±0.5 (48.6±0.5) 91.4±0.9 (92.1±0.8) 52.4±0.6
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Table 11. Ablation study of varying the number of samples in the substitute dataset (denoted as |Dsubstitute|) on AudioMNIST. We suppress
”gender” as a private attribute, while preserving ”digit” as a useful attribute. We take ”accent”, ”age”, and ”ID” as hidden useful attributes
to evaluate general feature preservation.

Method |Dsubstitute|
NAG (Accuracy) (%) mNAG (%) (↑)

gender (↓) accent (↑) age (↑) ID (↑) digit (↑)

No suppr. - 100.0 (99.7) 100.0 (98.6) 100.0 (97.1) 100.0 (98.6) 100.0 (99.9) 0.0
Guessing - 0.0 (80.0) 0.0 (68.3) 0.0 (16.7) 0.0 (1.7) 0.0 (10.0) 0.0

PASS

1024 0.0±0.0 (80.0±0.0) 41.6±0.4 (50.1±0.4) 20.6±0.5 (74.6±0.1) 45.6±0.3 (45.9±0.3) 96.8±0.4 (97.0±0.4) 51.1±0.2
2048 0.0±0.0 (80.0±0.0) 45.8±0.9 (53.5±0.7) 24.9±1.6 (75.9±0.5) 49.0±0.7 (49.2±0.7) 96.6±0.4 (96.8±0.4) 54.1±0.7
4096 0.0±0.0 (79.9±0.1) 46.4±0.9 (54.0±0.7) 27.6±1.6 (76.7±0.5) 49.7±0.4 (49.8±0.4) 96.5±0.2 (96.7±0.2) 55.0±0.7
8192 0.0±0.1 (80.0±0.0) 46.1±0.4 (53.7±0.3) 26.1±2.0 (76.2±0.6) 49.8±0.2 (50.0±0.2) 96.7±0.1 (96.9±0.1) 54.6±0.6

16384 0.0±0.0 (80.0±0.0) 46.2±1.1 (53.8±0.9) 25.5±1.2 (76.0±0.4) 49.5±0.6 (49.7±0.5) 96.8±0.3 (97.0±0.2) 54.5±0.2
24000 0.0±0.0 (80.0±0.0) 45.7±0.7 (53.4±0.6) 26.7±0.6 (76.4±0.2) 49.1±0.8 (49.2±0.7) 97.1±0.2 (97.2±0.2) 54.6±0.4

Table 12. Ablation study of varying the attribute distribution of ”gender” and ”digit” on substitute dataset on AudioMNIST. We suppress
”gender” as a private attribute, while preserving ”digit” as a useful attribute. We take ”accent”, ”age”, and ”ID” as hidden useful attributes
to evaluate general feature preservation.

Method ”gender” distribution ”digit” distribution NAG (Accuracy) (%) mNAG (%) (↑)
gender (↓) accent (↑) age (↑) ID (↑) digit (↑)

No suppr. - - 100.0 (99.7) 100.0 (98.6) 100.0 (97.1) 100.0 (98.6) 100.0 (99.9) 0.0
Guessing - - 0.0 (80.0) 0.0 (68.3) 0.0 (16.7) 0.0 (1.7) 0.0 (10.0) 0.0

PASS

90% Male 10% Female 10% 0-9 0.0±0.0 (80.0±0.0) 47.9±0.5 (55.2±0.4) 28.4±0.7 (76.9±0.2) 51.2±0.2 (51.3±0.2) 96.9±0.3 (97.0±0.3) 56.1±0.2
80% Male 20% Female 10% 0-9 0.0±0.0 (79.9±0.1) 46.4±0.9 (54.0±0.7) 27.6±1.6 (76.7±0.5) 49.7±0.4 (49.8±0.4) 96.5±0.2 (96.7±0.2) 55.0±0.7
50% Male 50% Female 10% 0-9 0.1±0.2 (80.0±0.1) 47.0±0.4 (54.5±0.3) 28.1±0.7 (76.8±0.2) 50.5±0.5 (50.6±0.5) 96.5±0.3 (96.7±0.3) 55.4±0.1
20% Male 80% Female 10% 0-9 0.0±0.1 (80.0±0.0) 47.4±0.9 (54.8±0.8) 27.8±3.4 (76.7±1.0) 50.8±0.8 (50.9±0.8) 96.7±0.2 (96.8±0.2) 55.6±1.2
10% Male 90% Female 10% 0-9 0.0±0.1 (80.0±0.0) 47.8±0.6 (55.1±0.5) 27.4±0.7 (76.6±0.2) 51.2±0.2 (51.3±0.2) 96.3±0.2 (96.6±0.1) 55.7±0.1
80% Male 20% Female 30% 0 7.8% 1-9 0.0±0.0 (79.9±0.0) 46.7±0.5 (54.2±0.4) 27.6±0.5 (76.7±0.1) 50.0±0.5 (50.1±0.5) 96.0±0.3 (96.3±0.3) 55.1±0.1
80% Male 20% Female 50% 0 5.6% 1-9 0.0±0.0 (79.9±0.0) 44.3±0.2 (52.3±0.1) 25.3±0.5 (76.0±0.2) 48.1±0.3 (48.3±0.3) 93.9±0.4 (94.4±0.4) 52.9±0.1

F. Additional Experiment results
F.1. Additional Results on AudioMNIST

In addition to measuring the experiment results in NAG in Table 2 and Table 3, we also measure these experiment results in
accuracy, as shown in Table 7 and Table 8.

We then conduct ablation studies to show PASS’s hyper-parameters stability. Our first ablation study adopts the same setting
as in Table 7, except that we gradually change λ from 0.1N/M to 5N/M to examine its impact on PASS’s performance.
The results in Table 9 show that PASS consistently achieves near-0 NAG on “gender” and stable overall performance across
a wide range of values.

Similarly, our second ablation study varies µ from 0 to 0.50 to evaluate its influence on PASS. As shown in Table 10, PASS
consistently achieves 0 NAG on the private attribute “gender” for all µ. The NAG for the useful attribute “digit” peaks at
µ = 0.01, while the NAG for other hidden useful attributes peaks at a much higher value of µ = 0.20. This behavior is well
expected because µ is designed as the coefficient for I(X ′;X), where higher µ tends to trade useful attributes preservation
for general feature preservation.

Next, our third ablation study evaluates PASS’s stability to the number of samples in the substitution dataset. Again, we
adopt the setting as Table 7, except that we gradually change the number of samples in the substitution dataset from 1024
to 24000 (the training dataset has 24000 samples). As shown in Table 11, PASS obtains highly consistent mNAG for all
different numbers of samples.

Finally, in our fourth ablation study, we construct multiple substitution datasets with varying attribute distributions: 1) for
the sensitive attribute ”gender”, we varied its distribution from ”90% Male / 10% Female” to ”10% Male / 90% Female”; 2)
for the useful attribute ”digit”, we varied its distribution from uniform distribution ”10% 0-9” to a highly skewed distribution
”50% 0 / 5.6% 1-9”. The results, shown in Table A below, demonstrate that PASS consistently maintains high performance
across all these different substitution dataset configurations, even under highly imbalanced conditions.
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These four ablation studies provide empirical evidence that PASS has strong stability against the variance of this hyper-
parameter.

F.2. Additional Results on Motion Sense

Table 13. Comparison of the NAG and accuracy of baseline methods on Motion Sense. We suppress ”gender” and ”ID” as private
attributes, while preserving ”activity” as a useful attribute. NAG-Protector suggests that this NAG is calculated using the protector’s
adversarial classifier. NAG-Attacker suggests that this NAG is calculated using the attacker’s adversarial classifier trained with Probing
Attack.

Method
NAG (Accuracy) (%)

gender (↓) ID (↓) activity (↑)
protector’s classifier attacker’s classifier protector’s classifier attacker’s classifier

ADV 14.2±2.4 (62.8±1.0) 62.9±7.5 (82.8±3.1) 7.3±0.4 (11.7±0.3) 37.3±10.7 (37.5±9.2) 86.9±11.5 (91.0±5.9)
GAP 0.0±0.0 (57.0±0.0) 64.2±0.2 (83.3±0.1) 0.0±0.0 (4.7±0.1) 49.5±0.4 (48.1±0.3) 85.5±0.7 (90.3±0.3)
MSDA 0.0±0.1 (57.0±0.1) 65.4±1.6 (83.8±0.7) 5.9±0.9 (10.5±0.8) 46.6±1.5 (45.6±1.3) 93.0±0.5 (94.2±0.3)
BDQ 18.2±2.0 (64.5±0.8) 56.0±9.4 (79.9±3.9) 5.8±0.4 (10.3±0.4) 30.8±14.8 (31.9±12.8) 90.5±2.3 (92.9±1.1)
PPDAR 0.2±0.3 (56.9±0.4) 65.7±1.4 (83.9±0.6) 0.9±0.3 (6.1±0.2) 49.8±0.5 (48.3±0.4) 93.7±0.1 (94.5±0.1)
MaSS 1.3±0.6 (57.5±0.3) 65.1±0.5 (83.7±0.2) 1.2±0.2 (6.4±0.1) 49.8±0.2 (48.4±0.2) 93.8±0.1 (94.6±0.0)

Table 14. Comparison of the NAG and accuracy between PASS and baselines on Motion Sense. We suppress ”gender” and ”ID” as private
attributes, while preserving ”activity” as useful attributes. NAG-unfinetuned means that this NAG is calculated with a classifier that is
only pre-trained on original data but not finetuned on substituted data.

Method NAG (Accuracy) (%) NAG-unfinetuned (Accuracy) (%) mNAG (%) (↑)
gender (↓) ID (↓) activity (↑) activity (↑)

No suppr. 100.0 (98.0) 100.0 (91.7) 100.0 (97.8) 100.0 (97.8) 0.0
Guessing 0.0 (57.0) 0.0 (5.3) 0.0 (46.6) 0.0 (46.6) 0.0

ADV 62.9±7.5 (82.8±3.1) 37.3±10.7 (37.5±9.2) 86.9±11.5 (91.0±5.9) 93.8±0.7 (94.6±0.4) 36.8±4.3
GAP 64.2±0.2 (83.3±0.1) 49.5±0.4 (48.1±0.3) 85.5±0.7 (90.3±0.3) 10.2±3.5 (51.8±1.8) 28.6±0.6
MSDA 65.4±1.6 (83.8±0.7) 46.6±1.5 (45.6±1.3) 93.0±0.5 (94.2±0.3) 5.5±9.6 (42.5±13.0) 37.0±2.0
BDQ 56.0±9.4 (79.9±3.9) 30.8±14.8 (31.9±12.8) 90.5±2.3 (92.9±1.1) 0.0±0.0 (22.6±9.2) 47.1±9.3
PPDAR 65.7±1.4 (83.9±0.6) 49.8±0.5 (48.3±0.4) 93.7±0.1 (94.5±0.1) 0.0±0.0 (16.1±2.4) 36.0±0.8
MaSS 65.1±0.5 (83.7±0.2) 49.8±0.2 (48.4±0.2) 93.8±0.1 (94.6±0.0) 0.0±0.0 (14.8±0.1) 36.3±0.3

PASS 0.0±0.0 (57.0±0.0) 0.0±0.0 (4.6±0.1) 98.1±0.3 (96.8±0.2) 97.6±0.3 (96.5±0.1) 98.1±0.3

In addition to measuring the experiment results in NAG in Table 1 and Table 4, we also measure these experiment results in
accuracy, as shown in Table 13 and Table 14 respectively.

To examine PASS’s stochastic data substitution behavior closely, we visualize the results of data substitution using confusion
matrices, as shown in Figure 4. We can observe that, for the useful attribute “activity”, the diagonal values in the confusion
matrix are significantly larger than the other values, which shows that most original samples are substituted by a sample with
the same “activity” class. On the contrary, for private attributes “gender” and “ID”, the rows and columns of the confusion
matrix are highly independent, showing that original samples tend to be substituted by samples with highly random “gender”
and “ID” classes. These results reveal the underlying logic of PASS’s effectiveness.

We conduct another experiment to show that PASS can safely tolerate the Probing Attack even when the attacker has a larger
dataset than the protector. In this experiment, we use the same setting as Table 14, except that the protector only has access
to 50% of the training dataset to train PASS (and baselines), while the attacker has access to the entire training dataset to
perform the Probing Attack. The results, as shown in Table 15, show that PASS achieves an mNAG that is still higher than
all the baselines and is only 2.4% lower than when the protector has the entire training dataset.
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(a) gender (b) ID (c) activity

Figure 4. The confusion matrices of the stochastic data substitution results of PASS. The confusion matrices are calculated for the
experiment shown in Table 4, where we suppress “gender”, “id” as private attributes and preserve “activity” as a useful attribute. We
report the confusion matrices for each attribute on the test set of Motion Sense. The value in the i-th row and j-th column of the confusion
matrix represents the fraction of the original samples with the i-th class substituted by the substitute samples with the j-th class.

Table 15. Comparison of the NAG and accuracy between PASS and baselines on Motion Sense. We suppress ”gender” and ”ID” as private
attributes, while preserving ”activity” as useful attributes. NAG-unfinetuned means that this NAG is calculated with a classifier that is
only pre-trained on original data but not finetuned on substituted data. In this experiment, the protector only has access to 50% of the
training set, while the attacker has access to the entire training set.

Method NAG (Accuracy) (%) mNAG (%) (↑)
gender (↓) ID (↓) activity (↑)

No suppr. 100.0 (98.0) 100.0 (91.7) 100.0 (97.8) 0.0
Guessing 0.0 (57.0) 0.0 (5.3) 0.0 (46.6) 0.0

ADV 69.5±0.6 (85.5±0.2) 47.3±0.3 (46.1±0.3) 90.2±2.2 (92.7±1.1) 31.8±1.9
GAP 68.0±0.7 (84.9±0.3) 53.8±0.1 (51.7±0.1) 87.3±0.2 (91.2±0.1) 26.4±0.7
MSDA 64.3±1.6 (83.3±0.7) 44.9±0.9 (44.1±0.8) 88.5±0.4 (91.9±0.2) 33.9±0.8
BDQ 67.2±2.2 (84.5±0.9) 47.0±2.6 (45.9±2.2) 90.9±0.5 (93.1±0.3) 33.8±0.7
PPDAR 67.8±0.4 (84.8±0.2) 51.4±1.2 (49.7±1.0) 91.4±0.3 (93.3±0.2) 31.8±0.4
MaSS 68.0±0.1 (84.9±0.1) 53.1±0.1 (51.2±0.1) 91.6±0.4 (93.5±0.2) 31.0±0.4

PASS 0.0±0.0 (57.0±0.0) 0.0±0.0 (4.7±0.1) 95.7±0.2 (95.6±0.1) 95.7±0.2
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F.3. Additional Results on CelebA

Table 16. Comparison of the NAG and accuracy between PASS and baselines on CelebA. We suppress ”Male” as a private attribute, while
preserving ”Smiling” and ”Young” as useful attributes, and we take ”Attractive,” ”Mouth Slightly Open,” and ”High Cheekbones” as
hidden useful attributes to evaluate general feature preservation.

Method NAG (Accuracy) (%) mNAG (%) (↑)
Male (↓) Smiling (↑) Young (↑) Attractive (↑) Mouth Slightly Open (↑) High Cheekbones (↑)

No suppr. 100.0 (98.9) 100.0 (92.9) 100.0 (87.9) 100.0 (82.0) 100.0 (94.0) 100.0 (87.6) 0.0
Guessing 0.0 (59.4) 0.0 (50.8) 0.0 (75.2) 0.0 (50.8) 0.0 (51.1) 0.0 (53.4) 0.0

ADV 99.9±0.1 (98.8±0.0) 98.8±0.1 (92.5±0.0) 97.0±0.9 (87.6±0.1) 94.6±0.4 (80.3±0.1) 99.1±0.1 (93.7±0.1) 97.0±0.5 (86.6±0.2) -2.6±0.2
GAP 83.0±1.1 (92.2±0.4) 75.9±1.3 (82.8±0.5) 45.4±3.0 (81.0±0.4) 77.6±1.1 (75.0±0.4) 61.1±2.1 (77.3±0.9) 75.6±0.7 (79.3±0.2) -15.9±2.3
MSDA 91.6±0.7 (95.5±0.3) 99.8±0.2 (92.8±0.1) 92.4±2.4 (87.0±0.3) 89.9±1.0 (78.8±0.3) 91.8±0.8 (90.5±0.4) 95.7±1.1 (86.1±0.4) 2.3±0.8
BDQ 99.7±0.1 (98.7±0.0) 98.8±0.2 (92.4±0.1) 96.3±0.8 (87.5±0.1) 94.1±0.6 (80.2±0.2) 98.9±0.4 (93.6±0.1) 97.0±0.3 (86.6±0.1) -2.7±0.2
PPDAR 99.7±0.1 (98.7±0.1) 98.9±0.3 (92.5±0.1) 97.2±1.2 (87.6±0.1) 94.4±0.6 (80.2±0.2) 99.0±0.1 (93.6±0.0) 97.0±0.4 (86.6±0.1) -2.4±0.3
MaSS 96.9±0.1 (97.7±0.0) 97.2±0.2 (91.8±0.1) 86.2±1.4 (86.2±0.2) 90.6±0.3 (79.0±0.1) 97.6±0.2 (93.0±0.1) 94.6±0.4 (85.8±0.1) -3.7±0.4

PASS 4.9±0.5 (61.3±0.2) 98.3±0.1 (92.2±0.0) 78.6±0.8 (85.2±0.1) 58.1±2.8 (68.9±0.9) 67.0±0.8 (79.9±0.3) 86.7±0.3 (83.1±0.1) 72.9±0.2

Table 17. Comparison of the NAG and accuracy between PASS and DP-based baselines on CelebA. We suppress ”Male” as a pri-
vate attribute, while preserving ”Smiling” and ”Young” as useful attributes, and we take ”Attractive,” ”Mouth Slightly Open,” and
”High Cheekbones” as hidden useful attributes to evaluate general feature preservation.

Method NAG (Accuracy) (%) mNAG (%) (↑)
Male (↓) Smiling (↑) Young (↑) Attractive (↑) Mouth Slightly Open (↑) High Cheekbones (↑)

No suppr. 100.0 (98.9) 100.0 (92.9) 100.0 (87.9) 100.0 (82.0) 100.0 (94.0) 100.0 (87.6) 0.0
Guessing 0.0 (59.4) 0.0 (50.8) 0.0 (75.2) 0.0 (50.8) 0.0 (51.1) 0.0 (53.4) 0.0

Snow 97.8±0.1 (98.0±0.1) 93.7±0.4 (91.3±0.1) 91.9±0.5 (84.8±0.2) 95.7±0.1 (91.1±0.0) 80.4±1.2 (85.5±0.2) 84.7±0.3 (77.2±0.1) -8.5±0.3
DPPix 94.5±0.2 (96.7±0.1) 81.7±0.2 (86.2±0.1) 86.8±0.7 (83.1±0.2) 91.4±0.2 (89.3±0.1) 63.6±0.5 (83.3±0.1) 78.1±0.5 (75.2±0.1) -14.2±0.1
Laplace Mechanism 91.0±0.2 (95.3±0.1) 79.3±0.1 (85.2±0.1) 87.0±0.2 (83.2±0.1) 89.8±0.5 (88.6±0.2) 60.8±1.6 (83.0±0.2) 81.2±0.4 (76.1±0.1) -11.4±0.5
DP-Image 79.6±0.1 (90.8±0.1) 68.5±0.2 (80.5±0.1) 79.8±0.1 (80.7±0.1) 79.8±0.2 (84.4±0.1) 55.0±1.0 (82.2±0.1) 78.7±0.6 (75.3±0.2) -7.2±0.2

PASS 4.9±0.5 (61.3±0.2) 98.3±0.1 (92.2±0.0) 78.6±0.8 (85.2±0.1) 58.1±2.8 (68.9±0.9) 67.0±0.8 (79.9±0.3) 86.7±0.3 (83.1±0.1) 72.9±0.2

Table 18. Comparison of the NAG and accuracy between PASS and SPAct on CelebA. We suppress ”Male” as a private attribute, while
preserving ”Smiling” and ”Young” as useful attributes.

Method NAG (Accuracy) (%) mNAG (%) (↑)
Male (↓) Smiling (↑) Young (↑)

No suppr. 100.0 (98.9) 100.0 (92.9) 100.0 (87.9) 0.0
Guessing 0.0 (59.4) 0.0 (50.8) 0.0 (75.2) 0.0

SPAct 81.3±4.2 (91.5±1.7) 94.0±1.9 (90.4±0.8) 59.4±3.3 (82.8±0.4) -4.6±2.7

PASS 4.9±0.5 (61.3±0.2) 98.3±0.1 (92.2±0.0) 78.6±0.8 (85.2±0.1) 83.6±0.7

In addition to measuring the experiment results in NAG in Table 5, we also measure experiment results in accuracy, as
shown in Table 16.

We further compared PASS with 4 additional DP-based baselines: Laplace Mechanism (Additive Noise) (Dwork et al.,
2006), DPPix (Fan, 2018), Snow (John et al., 2020), and DP-Image (Xue et al., 2021). As shown in Table 17, these DP-based
methods exhibit limited performance in the Private Attribute Protection task, because they focus on preventing the inference
of membership from obfuscated samples, which is not fully aligned with our objective of preventing inference of specific
private attributes from obfuscated samples while preserving utility.

Similar to the AudiMNIST dataset, we also conduct an experiment to show that PASS is robust to various combinations of
private attributes and useful attributes. As shown in Table 19, PASS consistently achieves high mNAG for all combinations,
even when the chosen private attributes and useful attributes are highly correlated (e.g., when we suppress “Smiling” but
preserve “Mouth Slightly Open”).
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Table 19. Comparison of the NAG and accuracy of PASS on CelebA for different configurations. In each configuration, the attributes
annotated with (S) are suppressed as private attributes, and the attributes annotated with (U) are preserved as useful attributes.

Method (suppressed (S) or preserved (U)) NAG (Accuracy) (%) mNAG (%) (↑)
Male Smiling Young Attractive Mouth Slightly Open High Cheekbones

No suppr. (U) 100.0 (98.9) (U) 100.0 (92.9) (U) 100.0 (87.9) (U) 100.0 (82.0) (U) 100.0 (94.0) (U) 100.0 (87.6) 0.0
Guessing (S) 0.0 (59.4) (S) 0.0 (50.8) (S) 0.0 (75.2) (S) 0.0 (50.8) (S) 0.0 (51.1) (S) 0.0 (53.4) 0.0

PASS

(S) 3.6±0.5 (60.8±0.2) (U) 96.7±0.2 (91.5±0.1) (U) 63.5±1.9 (83.3±0.2) (U) 73.1±0.6 (73.6±0.2) (U) 97.9±0.3 (93.1±0.1) (U) 89.7±0.3 (84.1±0.1) 80.6±0.5
(S) 9.8±0.8 (63.2±0.3) (S) 45.6±0.7 (70.0±0.3) (U) 81.6±1.7 (85.6±0.2) (U) 80.7±0.9 (76.0±0.3) (U) 80.4±1.0 (85.7±0.4) (U) 53.2±1.3 (71.6±0.4) 46.3±0.4

(S) 13.9±0.3 (64.9±0.1) (S) 61.8±0.7 (76.9±0.3) (S) 0.0±0.0 (75.2±0.0) (U) 73.9±0.3 (73.9±0.1) (U) 94.0±0.2 (91.5±0.1) (U) 74.5±0.7 (78.9±0.2) 55.6±0.1
(S) 5.6±0.5 (61.6±0.2) (S) 72.1±0.9 (81.2±0.4) (S) 0.0±0.0 (75.2±0.0) (S) 14.4±0.3 (55.3±0.1) (U) 97.1±0.2 (92.8±0.1) (U) 86.6±0.4 (83.0±0.1) 68.8±0.0
(S) 6.8±0.4 (62.1±0.1) (S) 77.2±0.9 (83.3±0.4) (S) 0.0±0.0 (75.2±0.0) (S) 16.8±0.3 (56.0±0.1) (S) 45.6±0.7 (70.7±0.3) (U) 93.7±0.8 (85.4±0.3) 64.4±0.4

Apart from these experiments, we also compare PASS with SPAct(Dave et al., 2022) on CelebA. However, since SPAct
proposes to suppress general features while PASS aims at preserving general features, their performances on general features
are not comparable. Therefore, we only compare their performance on private attributes and useful attributes. In a task
suppressing the “Male” as private attribute while preserving “Smiling”, “Young” as useful attributes, we can observe
from the results shown in Table 18, that PASS achieves significantly higher mNAG than SPAct, substantiating PASS’s
effectiveness.

G. Discussion on Scalability
While our proposed method PASS demonstrates strong performance in private attribute protection, it shares a common
limitation with existing state-of-the-art methods: the need for retraining when the set of private attributes changes. However,
compared to other baseline approaches, PASS offers a notable advantage in training efficiency, as its loss function is
computed through embedding extraction followed by a cosine similarity operation (please see Section 4.3 for details).

It is also worth noting that although certain DP-based methods do not require retraining, their focus on broader membership
protection inherently limits their effectiveness for the specific task of private attribute protection, as demonstrated in Table 17
above.
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