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Abstract

There has been significant interest in “extreme” compression of large language
models (LLMs), i.e., to 1-2 bits per parameter, which allows such models to be
executed efficiently on resource-constrained devices. Existing work focused on
improved one-shot quantization techniques and weight representations; yet, purely
post-training approaches are reaching diminishing returns in terms of the accuracy-
vs-bit-width trade-off. State-of-the-art quantization methods such as QuIP# and
AQLM include fine-tuning (part of) the compressed parameters over a limited
amount of calibration data; however, such fine-tuning techniques over compressed
weights often make exclusive use of straight-through estimators (STE), whose
performance is not well-understood in this setting. In this work, we question the
use of STE for extreme LLM compression, showing that it can be sub-optimal, and
perform a systematic study of quantization-aware fine-tuning strategies for LLMs.
We propose PV-Tuning — a representation-agnostic framework that generalizes and
improves upon existing fine-tuning strategies, and provides convergence guarantees
in restricted cases. On the practical side, when used for 1-2 bit vector quanti-
zation, PV-Tuning outperforms prior techniques for highly-performant models
such as Llama and Mistral. Using PV-Tuning, we achieve the first Pareto-optimal
quantization for Llama-2 family models at 2 bits per parameter.

1 Introduction
Recent years have seen the development of ever more capable large language models, attracting
immense interest from both researchers and industry. One of the driving factors behind progress
in this area is the availability of powerful open LLMs such as Llama [69], Mistral [34, 35], or
Phi [41]. The main advantage of open LLMs is that they can be run and fine-tuned locally by end
users; however, as state-of-the-art LLMs grow larger, they also become harder to run on commodity
hardware. For instance, in order to fit the best available Llama-3 model on a consumer GPU, the
model would have to be compressed to below 2 bits per parameter1.

To achieve such “extreme” degrees of compression accurately, researchers have proposed a variety
of techniques, which can be roughly categorized into i) better quantized weight representations and
ii) better algorithms to learn these representations. The weight representations used for extreme
quantization include group quantization [22, 20], sparse high-precision outliers [17, 32], incoherence
processing of the weights [9, 70], or additive and residual quantization [21, 72]. In turn, the
calibration algorithms also vary between data-free methods [20], layer-wise calibration [22, 18],
block-wise or global fine-tuning [21, 71] or even quantization-aware training [78, 75]. However, the

†Equal contribution. ‡ Equal senior authors. ⋄ Moscow Institute of Physics and Technology, Russia
¶ Work performed while at Yandex. * King Abdullah University of Science and Technology, Saudi Arabia
1At the time of writing, the best open model (Llama-3 70B) occupies 130GB in FP16, while most consumer

GPUs have 8-24GiB DRAM, some of which must be reserved for the attention cache.
38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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Figure 1: WikiText-2 perplexity (left) and average zero-shot accuracy (right) of 2-bit quantized
LLAMA 2 models as a function of model size (GiB). See detailed setup in Section 4.3.

weight representation and the fine-tuning algorithm are largely orthogonal: most popular quantized
representations could be obtained layer-wise in one-shot, fine-tuned layer-wise to a variety of
optimization objectives, or even trained entirely from scratch.

Surprisingly, there is a clear disparity between the degree of interest shown to accurate one-shot2

quantization versus accurate fine-tuning. Specifically, one-shot quantization is very well-studied,
to the extent that, as shown in Figure 2, improvements in this direction are clearly saturating. At
the same time, the impact of fine-tuning strategy is largely unknown: while many recent works use
some form of fine-tuning [63, 21, 71], they typically consider a single fine-tuning regimen based on
straight-through estimation (STE) [6, 15]. Thus, given the multitude of representations considered, it
is not at all clear whether current fine-tuning strategies are optimal.

In this work, we analyze the problem of fine-tuning over highly-compressed weights from the
optimization perspective. We begin by analyzing popular fine-tuning strategies for extreme LLM
quantization. The key challenge in this context is that the quantized representations may contain both
continuous and discrete variables: while continuous parameters, such as learnable scales or codebooks,
can be optimized by backpropagation, the discrete parameters (e.g., integer assignments for the
weights) cannot. Existing fine-tuning techniques either do not optimize over discrete parameters at
all [71, 21] or fine-tune them using heuristics such as STE or stochastic rounding [3]. Unfortunately,
these methods are not well-justified for weight quantization from the point of view of optimization
theory, and, as we show in Section 3, can provide poor practical performance.

We propose an alternative solution: instead of following heuristic gradient estimates, our approach
follows the actual gradient of the objective in a small subspace of optimized parameters where it
can be meaningfully improved. Following this insight, we formulate the PV-tuning framework for
fine-tuning arbitrary quantized representations. We update both discrete and continuous components
to minimize a global objective function, such as the KL divergence relative to the original model
predictions. Our results show that this strategy leads to significant improvements across weight
representations, achieving new state-of-the-art in compression-accuracy trade-offs.

The main contributions of our work can be summarized as follows:

1. We analyze the problem for training discrete quantized representations for better understanding
of the limitations of existing optimization algorithms. We then propose a novel algorithm
inspired by compressed gradient methods that addresses these limitations. When compared to
straight-through estimation and stochastic rounding, our approach 1) can be shown to converge
to a stable solution; and 2) this solution is significantly more accurate in practice.

2. We generalize the proposed algorithm into the PV-Tuning framework3, which can minimize a
global objective function over a general quantized representation, by optimizing both continuous
and discrete parameters via a variant of coordinate descent.

3. We demonstrate that PV-tuning can improve quantized model accuracy for leading existing
approaches, including GPTQ and AQLM, on popular LLMs including Llama-2 & 3 and Mistral.
Our procedure achieves state-of-the-art accuracy (measured through perplexity) in 1- and 2-bit
quantization regimes while using the same amount of calibration data as the original algorithms.
Importantly, the PV-tuned models use the same underlying weight representations, and are
compatible with existing inference kernels. In terms of accuracy per model size, PV-tuning of
vector quantization outperforms all prior techniques in the 1-3 bits/parameter range, and is the
first to achieve Pareto-optimal quantization for Llama-2 models at around 2 bits per parameter.

2By “one-shot” we refer to methods that quantize quantize the model in a single pass over calibration data.
3The official implementation is available at https://github.com/Vahe1994/AQLM/tree/pv-tuning.
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2 Background

Post-Training LLM Quantization (PTQ). There has been significant interest in PTQ meth-
ods [49, 25] that would scale to LLMs. Early work [17, 78, 50] used direct round-to-nearest
(RTN) quantization over weight groups of well-chosen size. GPTQ [22] improved upon these results
significantly via an accurate one-shot solver for minimizing layer-wise compression errors. Next,
AWQ [42] improved upon these results by employing per-channel scaling to reduce the error on
important weights while SqueezeLLM [36] implemented non-uniform quantization. QuIP [9] pro-
posed a more accurate weight representation by leveraging incoherence matrices. Another line of
works [18, 39] proposes an improved quantized weight representation, which saves a small fraction
of outliers in full precision. Other recent works propose augmenting quantized representations with
lowrank “adapters” that compensate quantization error [28, 84]. Recently, BiLLM [32] developed
residual binarization that stores salient weights in progressively higher bitwidth, quantizing models
to nearly 1 bit per parameter at non-catastrophic accuracy loss.

Currently, the state-of-the-art methods in terms of accuracy-vs-size are QuIP# [71] and AQLM [21].
Both methods work roughly by mapping weight groups to points on highly-dimensional lattices,
which are either chosen to satisfy some optimality properties (for QuIP#) or are learned (for AQLM).
Interestingly, AQLM showed that fine-tuning the continuous parameters (codebooks) can improve
accuracy significantly relative to pure one-shot compression; a variant of this approach was also
adopted by QuIP#. PV-Tuning is compatible with both methods: as we show, it can lead to state-of-
the-art compression results for such representations.

Fine-tuning over Quantized Weights. As mentioned above, the two SOTA quantization techniques
apply fine-tuning, but only update continuous parameters, such as quantization scales. When
optimizing over discrete parameter sets, a standard choice in deep learning is the Straight-Through
Estimator (STE) [6, 15, 73]. Prior work on LLM compression proposed to update both continuous and
discrete parameters, via STE, both for post-training quantization [78, 63] and for training quantized
networks from scratch [32]. However, it was observed early on that STE leads to instability when
fine-tuning heavily quantized LLMs [78]. While early results suggest that STE can perform well when
training quantized models from scratch [44], this behavior is yet to be validated for highly-performant
multi-billion-parameter models, which are the focus of our work.

In summary, the two standard approaches for fine-tuning quantized LLMs are 1) fine-tuning only over
the continuous parameters, such as quantization scales, which heavily limits the number of trainable
parameters; and 2) optimizing all parameters via the STE, which however is known to be quite noisy
especially for extreme quantization. In this context, our work proposes alternative approaches in the
post-training compression setting, which lead to state-of-the-art results relative to both options.

3 Fine-Tuning Quantized Models

In this section, we study the problem of fine-tuning quantized models to minimize a global objective,
such as cross-entropy. Section 3.1 formulates this problem from an optimization perspective and
introduces our notation. In Section 3.2, we analyze several popular strategies for solving this problem
and highlight some of their limitations. To circumvent these limitations, we propose an alternative
optimization algorithm in Section 3.3 and discuss implementation details in Section 3.4.

3.1 Problem description

Consider the problem of minimizing objective (loss) ϕ,

min
x∈Rd

c

ϕ(x), (1)

where ϕ : Rd → R is a differentiable function bounded from below (e.g., by zero), and Rd
c ⊂ Rd

is a set of all possible quantized weights that can be represented with a given quantization method.
Without loss of generality4, we first analyze the case of scalar nonlinear quantization. In this scenario,
c ∈ [d] := {1, 2, . . . , d} (typically c ≪ d), and Rd

c ⊂ Rd is the set of all vectors in Rd whose d
entries take exactly c distinct values. In other words, the cardinality of the set V (x) := {x1, . . . , xd}
is equal to c, and we can therefore write Rd

c := {x ∈ Rd : |V (x)| = c}.
4We explain how this generalizes to other quantized representations in Appendix C
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Useful notation. A vector x ∈ Rd
c naturally induces a partition, which we shall call P (x), of the set

{1, . . . , d} into c nonempty subsets P1(x), . . . , Pc(x) characterized by

xi = xj ⇔ ∃k : i ∈ Pk and j ∈ Pk.

Let’s denote P (x) := {P1(x), . . . , Pc(x)}. Moreover, we shall write P (y) ⊒ P (x) if each element
of P (x) is a subset of some element of P (y). For distinct i, j ∈ [d], let us introduce the notation
δij(x) = 1 if there exists k such that i, j ∈ Pk(x), and δij(x) = 0 otherwise. Given this notation,
notice that P (y) ⊒ P (x) if and only if for all i ̸= j we have δij(x) = 1 ⇒ yi = yj . Finally, we
define Rd

≤c := Rd
1 ∪ · · · ∪ Rd

c as the set of all vectors in Rd whose d entries take at most c distinct
values. So, if x ∈ Rd

c and P (y) ⊒ P (x), then y ∈ Rd
≤c.

PV method. Following this notation, we define an optimization algorithm that alternates between
optimizing ϕ with fixed P or fixed V . From a practitioner’s point of view, these represent optimizing
continuous parameters (scales, codebooks, zeros) and discrete codes (assignments), respectively.

⋄ The P step (fixing P ). Given x ∈ Rd
c , consider the mapping

MP (x) = MP,ϕ(x) := arg min
y∈Rd

{ϕ(y) : P (y) ⊒ P (x)}. (2)

Notice that, necessarily, MP (x) ∈ Rd
≤c and ϕ(MP (x)) ≤ ϕ(MP (x)) ≤ ϕ(x). Evaluating MP

amounts to solving an unconstrained optimization problem in a c-dimensional space.

⋄ The V step (fixing V ). Similarly, given y ∈ Rd
c , we define the mapping

MV (y) = MV,ϕ(y) := arg min
x∈Rd

{ϕ(x) : V (x) ⊆ V (y)}. (3)

Likewise, MV (y) ∈ Rd
≤c and ϕ(MV (y)) ≤ ϕ(MV (y)) ≤ ϕ(y). Evaluating MV amounts to solving

difficult discrete optimization problems with a search space of size |V (x)|d ≤ cd (exponential in d).

Algorithm 1 PV algorithm

1: Initialization: starting point x0 ∈ Rd
≤c

2: for k = 0, 1, . . . do
3: yk = MP (x

k) := argminy∈Rd

{
ϕ(y) : P (y) ⊒ P (xk)

}
(P step: continuous)

4: xk+1 = MV (y
k) := argminx∈Rd

{
ϕ(x) : V (x) ⊆ V (yk)

}
(V step: discrete)

5: end for

Our key algorithmic idea, in its simplest form, is to optimize ϕ by alternating the P and V steps, i.e.,
iteratively applying the MP and MV operators. (We will propose several more practically-useful
approximations and variations later; see Sections 3.2–3.3 and also Appendix B.) This resulting
method, which we call the PV method, is formalized as Algorithm 1. Our key guarantee for the PV
method is formalized in the next result.
Theorem 3.1 (Convergence of the PV method). Assume ϕ is bounded below, and let x0 ∈ Rd

c . Then
(i) yk ∈ Rd

≤c and xk ∈ Rd
≤c for all k ≥ 0; (ii) ϕ(xk+1) ≤ ϕ(yk) ≤ ϕ(xk) for all k ≥ 0; and (iii)

the sequence {ϕ(xk)}k≥0 converges.

The proof can be found in Appendix A.1. Note that we do not claim that the method converges
to a minimizer of ϕ; the optimization problem is too difficult for us to be able to guarantee this.
However, as we shall see in the numerical results, we nevertheless obtain great empirical performance,
especially when coupling the PV approach with some additional algorithmic tricks.

This general approach is popular in “shallow” machine learning problems; for instance, if ϕ(x) =
∥x− z∥2 is the squared error with respect to some user-specified vector z, then the above algorithm
recovers 1-dimensional K-means on the data vector z. Likewise, if ϕ(·) is the log-likelihood, then,
depending on the choice of the set Rd

c , the approach is related to the EM algorithm [16].

In turn, we apply the PV method to obtaining highly-accurate quantized LLMs. Applying the PV
method “as is”, would be infeasible in practice: computing the P and V mappings requires solving
difficult optimization problems especially due to LLM parameter scales. However, both mappings can
be approximated. The P step can be reparameterized as an unconstrained optimization problem on the
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unique values in the weight matrix. Practically it means that the “codebooks” can be optimized using
an automated differentiation engine (i.e. PyTorch). However, for many quantized representations,
MP (x) can be approximated by one or more steps of GD, directly optimizing ϕ over the set V (x) of
its c unique values. The c-dimensional gradient can be computed efficiently by backprop, as described
in prior works [63, 71]. On the other hand, the V step (MV (·)) is more difficult to approximate as it
involves searching a discrete space of size cd. We dedicate the next two sections to this task.

3.2 Linearized V step & gradient-based discrete updates

The V mapping (3) can be approximated by solving a discrete least squares problem using an
approximation of ϕ(x) around y:

ϕ(x) ≈ ϕ̃y(x) := ϕ(y) + ⟨∇ϕ(y), x− y⟩+ L
2 ∥x− y∥2, (4)

where L > 0 is a sufficiently large constant. Subsequently, we perform the V step using the simpler
convex quadratic function ϕ̃y instead of the typically more complicated function ϕ:

MV,ϕ(y)
(4)
≈ MV,ϕ̃y

(y)
(3)
= arg min

x∈Rd

{
ϕ̃y(x) : V (x) ⊆ V (y)

}
.

Our first lemma shows that we can replace ϕ̃y by a more convenient function ϕ̂y measuring the
squared distance between x and y+ := y − 1

L∇ϕ(y), the latter being the point obtained after taking
a single GD step from y with learning rate 1

L , disregarding the constraint:

Lemma 3.2. For any y ∈ Rd
≤c we have MV,ϕ̃y

(y) = MV,ϕ̂y
(y), where

ϕ̂y(x) :=
∥∥x−

(
y − 1

L∇ϕ(y)
)∥∥2 = ∥x− y+∥2 =

d∑
i=1

(
xi − y+i

)2
. (5)

The proof can be found in Appendix A.2. To summarize, the V step of the PV method (Algorithm 1),
i.e., x = MV,ϕ(y), can be approximated via the “linearized V step”

x := MV,ϕ(y) ≈ MV,ϕ̂y
(y) := x̂. (6)

Our next lemma says that the above approximation is in a certain sense natural reasonable provided
that ϕ is L-smooth5 on Rd

≤c, i.e., provided that

ϕ(x) ≤ ϕ(y) + ⟨∇ϕ(y), x− y⟩+ L
2 ∥x− y∥2, ∀x, y ∈ Rd

≤c. (7)

Lemma 3.3 (Monotonicity). Let y ∈ Rd
≤c. If ϕ is L-smooth on Rd

≤c, then ϕ (MV,ϕ(y)) ≤ ϕ(x̂) ≤
ϕ(y), where x̂ is the point obtained from y by the linearized V step (6).
Indeed, the point x̂ obtained via the linearized V step can not have a worse loss than the previous
point y. Of course, one hopes that the loss will strictly decrease so that the method makes progress.
From a practical perspective, the key advantage of linearized V step is that it can be performed much
faster compared to the vanilla V step. The proof of Lemma 3.3 can be found in Appendix A.3.

Note that since ϕ̂y(x) is separable (see (8)), each entry/weight of x can be optimized independently
of others. For scalar quantization, each individual problem can be solved in O(log2(c)) time using
binary search in sorted version of V (y). For vector quantization, there are specialized optimization
procedures for efficiently minimizing the L2 error (see Appendix D)

Key challenge. The main caveat with linearized V step is that it may be impossible to make small
gradient-based updates to low-bitwidth discrete weights. More specifically, in (6), one must update
the discrete assignments to approximate yk − 1

L∇ϕ(yk). However, for low-bit weights, the desired
update 1

L∇ϕ(yk) can be smaller than the lowest possible increment to obtain a quantized vector. As
a result, the optimal solution to (6) is often yk itself. In such a situation, the algorithm will get stuck
on yk, which is undesirable. This problem is especially pronounced in deep LLMs, where L can be
very large, or, from a practitioner’s point of view, where one needs a small learning rate. In practice,
as we explore in Section 4.2, the lowest learning rate where the algorithm makes any updates at all is
already too large for optimization, leading to divergence.

5It is possible to consider different class of functions instead; e.g., Lipschitz functions. In such a case, we
would us a different approximation. For simplicity of exposition, we work with L-smooth functions.
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Algorithm 2 PV-Tuning: Optimization

Require: initial parameters x0 ∈ Rd
c ,

objective function ϕ : Rd → R ,
subspace size τ ∈ [d]

1: for k = 0, . . . ,K − 1 do
2: ▷ P step: update V (x) by backprop
3: yk = argmin

y∈Rd
≤c

{ϕ(y) : P (y) ⊇ P (xk)}

4: ▷ V step: choose a subspace Sk & update P (x)
5: Sk = arg top τ

1≤i≤d
|∇iϕ(y

k)| ▷ find τ largest

6: ϕ̂y,Sk (x) :=
∥∥∥x−

(
y − 1

L
Sk

Zk (∇ϕ(y))
)∥∥∥2

7: xk+1= argminx

{
ϕ̂yk,Sk (x) :V (x)⊆V (yk)

}
8: end for

Algorithm 3 PV-Tuning: Implementation, one step
Require: quantized model, subspace size tau
1: deq_model := dequantize_weights(model)
2: for t = 1, . . . , T do
3: loss = deq_model(next_batch()).loss
4: loss.backward() ▷ accumulate gradients
5: end for for P and V steps

6: ▷ P step: update codebooks by backprop
7: grad_phi = deq_model.weight.grad
8: grad_codebooks = backprop(grad_phi)
9: model.codebooks = adam(grad_codebooks)

10: ▷ V step: choose a subspace s and update codes
11: update = adam(grad_phi)- deq_model.weight
12: s = choose_subspace(update, tau)
13: model.codes[s] = find_nearest(update[s])

Many popular strategies for discrete fine-tuning can be seen as attempts to reconcile coarse low-
precision weights with the need to make small updates. These include straight-through estimation,
stochastic rounding, or adding regularizers that push the solution to (6) away from yk. We review
straight-through estimation in Appendix E.1 and stochastic rounding in Appendix E.2.

3.3 Linearized subspace V step
Here we ask the following question: Can we modify the PV method so as to force the V step to
make a larger update? In other words, we need an optimization algorithm that updates quantized
weights either by a sufficiently large increment, or not at all.

A natural example of such an algorithm is coordinate descent (CD) [43, 58], or more generally,
subspace descent [26, 38]. Instead of updating all parameters by a small margin, CD in each iteration
chooses a single parameter, and makes a large update instead. This strategy can be generalized
to updating more parameters at the same time, which leads to subspace descent methods.6 The
parameters to be updated can be chosen either greedily, (e.g., several i ∈ [d] with the largest
magnitude of the partial derivative |∇iϕ(·)|), or at random, or through a variety of other means.

Let Sk ⊂ [d] be the set of parameters/weights/coordinates we wish to update at iteration k. We
choose |Sk| = τ ≪ d. Let Zk : Rd → Rd be the linear mapping defined as follows:

(
Zk(x)

)
i
= xi

if i ∈ Sk and
(
Zk(x)

)
i
= 0 if i /∈ Sk. We now formulate the linearized subspace V step:

x+ := MV,ϕ̂
y,Sk

(y) := arg min
x∈Rd

{
ϕ̂y,Sk(x) : V (x) ⊆ V (y)

}
,

where ϕ̂y,Sk(x) :=
∥∥∥x−

(
y − 1

LSk
Zk (∇ϕ(y))

)∥∥∥2, (8)

and LSk > 0 is a smoothness parameter of ϕ associated with the subspace spanned by the parameters
belonging to Sk. This detail is important because LSk ≪ L when τ ≪ d. When estimating Lipschitz
constants for real LLMs, we found that it is lower by at least one order of magnitude, making it
possible to train with sufficiently large step sizes (see details and LSk estimates in Appendix F).

Note that, necessarily, x+
i = yi for i /∈ Sk. The remaining τ entries of x+ can be identified exactly by

searching a discrete space of size |V (y)|τ , which is feasible if c = O(1) and τ = O(1), for example.

In practice, it means that the algorithm can apply large updates to quantized LLM weights, with the
caveat that should only update a fraction of them at a time. This allows us to perform the linearized
V step with sufficiently large “learning rate” to make non-trivial (i.e., xk+1 ̸= yk) improvements to
quantized weights even without straight-through estimation or stochastic rounding.

We formulate the full procedure in Algorithm 2. The algorithm performs the P step by directly
optimizing V (x) (i.e., codebooks) by backprop as described in Section 3.1. For the V step, the
algorithm greedily chooses a subset of τ quantized weights for update, then updates them using
Eq. (8). The arg top τ operator finds τ indices with the largest absolute gradient values and builds a
subspace of Rd

≤c where only these values can be changed, and the rest must be equal to yk.
6Very closely related methods include block coordinate descent and compressed gradient descent with

sparsification operators such as RandK or TopK [4, 7].
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3.4 Implementation details
To speed up convergence, we use adaptive learning rates for both P and V steps. In Eq. 8, we replace
∇ϕ(y) with a single Adam [37] update, as depicted in Algorithm 3. In preliminary experiments, we
found that this results in a significant convergence speedup. When choosing the subspace Sk, we
select weights based not on |∇iϕ(y)|, but on the magnitude of Adam update for that weight. For
simplicity, we greedily choose the τ weights with the largest update norm within each weight matrix.

This could be further improved through better techniques for choosing Sk explored in Appendix Q.
We also found that, despite the fact that PV-tuning by itself outperforms straight-through estimation,
we could achieve slightly better accuracy by combining PV-tuning with straight-through estimation.
We explore this in more detail in Section 4.2).

We describe our approach for preparing the calibration data in Appendix G. We found that the prepro-
cessing used in several recent PTQ works introduce a small bias when sampling the calibration data,
leading to somewhat worse fine-tuning accuracy. For fairness, we always compare representations
(Section 4.1) and algorithms (Section 4.2) using the same pre-processing.

Fine-tuning efficiency. The most compute-intensive part of PV tuning is computing the gradients
∇ϕ(·), which is done through repeated forward and backward passes on an LLM. To reduce the
number of gradient accumulations, we reuse gradients for P and V steps within one iteration. We
use mixed precision, gradient checkpointing and batch accumulation to train more efficiently; for
larger LLMs such as LLAMA 3 70B we also use sharding and optimizer offloading (see Appendix H).
Our code can train 7B LLMs on a single GPU, while larger ones (e.g. 70B) fit into a single machine
with 8×A100. In terms of wall-clock time, PV-tuning takes up to 1.5× longer than the fine-tuning
procedure of [71] and requires additional memory in order to hold ∇ϕ(x).

4 Experiments
4.1 Evaluating quantized representations with finetuning
Before evaluating PV-tuning, we need to choose the quantized representation to be fine-tuned. We
therefore compare popular weight representations from recent works on LLM quantization (see
Section 2). To better isolate the effect of the weight representation, we evaluate them in three
configurations: i) when quantizing a single LLM layer, in terms of MSE, ii) full model quantization
in terms of perplexity without finetuning and iii) with finetuning.

We compare several recently proposed quantized representations (see details in Appendix J):

1. GPTQ: scalar uniform quantization with channel-wise and block-wise scales [22],

2. SpQR: an extension of block-wise GPTQ with learned sparse outliers [18],

3. VQ: basic vector quantization with a single codebook [72] with multi-step training.

4. AQLM: additive vector quantization with multiple learned codebooks [21],

5. QuIP#: vector quantization with lattices and incoherence processing [71],

6. VQ/AQ + outliers: vector/additive quantization with sparse outliers via pruning [66, 8],

7. VQ/AQ + lowrank: vector/additive quantization with Low-Rank Compensation (LoRC) [79],
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Figure 2: (left) L2 errors for 17th layer of LLAMA 2 7B with different representations. Full model
perplexity on WikiText-2 is reported without finetuning (middle) and with fine-tuning (right).
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We run all three experiments on LLAMA 2 7B model [69], calibrating on the RedPajama [13]
dataset that best approximates the original pre-training data. When evaluating single layer errors,
we report the L2 error in attention query projection outputs of a fixed transformer block, with
other blocks exhibiting similar behavior. For full model evaluation, we report quantized model
perplexity on WikiText-2 [45] dataset. We use the same data splits and preprocessing as in most
recent PTQ works [22, 42, 18, 70, 21, 71], including the biased preprocessing step that we mentioned
in Section 3.4. For fine-tuning, we train continuous parameters only, using the approach from [71]. To
compare these diverse representations, we evaluate their quantization errors as a function of average
number of bits per parameter. To get a diverse set of bits per parameter, we vary the hyperparameters
such as wbits, block size, codebook and group size for vector quantization and the rate of outliers.

Figure 2 summarizes our findings. Overall, vector quantization methods (VQ, QuIP# and AQLM)
outperform their scalar counterparts. Outliers and low-rank compensation both reduce error, but
this improvement comes at the cost of extra bits per parameter. Interestingly, the improvement
from outliers is significantly smaller when both methods have access to fine-tuning. Likewise, the
improvement from using low-rank adapters also diminishes when comparing fine-tuned models, to a
point where it no longer justifies the increase in model size. We provide a more detailed breakdown
of results and hyperparameter configurations in Appendix J.

Our main takeaway is that for sub 2 bits per parameter, the vector quantization (VQ) representation
can achieve near-optimal quantization accuracy, whether or not it uses outliers, LoRC or incoherence
processing. Naturally, this does not reduce the value of prior works since they were designed for
different scenarios, typically with a higher number of bits per parameter.

4.2 Evaluating Fine-tuning Algorithms

Next, we compare different fine-tuning strategies and ablate our PV-tuning protocol. We design our
protocol to be representation-agnostic, i.e. compatible with different quantized representations. To
showcase this, we pick three methods from the previous section: GPTQ, VQ and AQLM.

These methods differ not only in their weight representations, but also in how they search for the
optimal codes. Namely, GPTQ can scale the target weight and round it to nearest 2-bit integer. In turn,
VQ quantizes weights as a group and must find the nearest vector from its codebook, and AQLM uses
a multi-step beam search procedure to choose the best combination of codes from both codebooks.
Our PV-Tuning implementation uses these search algorithms during the subspace linearized V step
(find_nearest in Alg. 3). We describe the full PV configuration for each method in Appendix K.

We compare PV tuning against several popular fine-tuning regimens found in the literature. Our first
baseline is fine-tuning only continuous parameters, e.g., codebooks or input/output embeddings [71,
74]. The second baseline is training with Straight Through Estimation (STE) [75, 77]. We also test
stochastic rounding as described in Appendix E.2. Finally, we evaluate PV tuning combined with
STE, but otherwise the same configuration. We set the subspace size τ equal to the number of weights
such that the update satisfies ∥xk+1 − xk∥/∥xk∥ ≤ 0.01, also known as known as trust ratio [81].

The results in Table 1 show that PV-Tuning consistently finds better quantized models, with STE
coming consistently second. We explore this further by combining subspace updates with STE, which
leads to slightly better perplexity and accuracy in most (but not all) setups.

Table 1: Comparing different fine-tuning strategies for VQ, GPTQ and AQLM on LLAMA 2 7B in
terms of perplexity on WikiText-2, C4 and average zero-shot accuracy on tasks from Section 4.3.

Fine-tuning Method GPTQ 2.14 bit/w VQ, 1.58 bit/w AQLM, 2.01 bit/w

Wiki2↓ C4↓ Acc.↑ Wiki2↓ C4↓ Acc.↑ Wiki2↓ C4↓ Acc.↑

Calibration only (no global fine-tuning) 3290 4125 29.0 20.26 20.09 43.42 7.38 9.34 53.2

Continuous params only [71, 21] 16.77 17.53 46.27 8.17 10.99 52.14 6.69 8.77 56.57
Naive Linearized PV (no subspace) 16.73 17.48 47.68 8.19 10.94 52.08 6.68 8.75 56.51
Stochastic Rounding [53] (tuned) 11.97 13.07 49.79 8.02 10.64 52.31 6.56 8.39 56.68
Straight Through Estimation [77] 8.79 11.04 50.61 7.76 10.26 52.58 6.41 8.63 57.04
Subspace Linearized PV (ours, τ=0.01) 8.49 10.78 52.17 7.38 9.47 53.36 6.13 8.35 57.81
Subspace Linearized PV+STE (τ=0.01) 8.43 10.82 51.90 7.32 9.35 55.22 5.90 7.43 58.19
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PV-Tuning over QuIP# In addition to these three configurations, we also apply PV-tuning to
QuIP# [71] — a modification of vector quantization that applies Randomized Hadamard Transform
(RHT) before quantization and uses fixed lattices instead of learned codebooks. We experiment
with Llama-2 7B model quantized with QuIP# to 2 bits per weight and found that it is possible to
significantly improve the model through PV-Tuning. For instance, PV-tuning improves WikiText-2
perplexity from 6.19 (QuIP# with built-in continuous fine-tuning) to 5.71 (PV-Tuning + STE). Since
original 16-bit model has a perplexity of 5.13, this corresponds to almost halving the quantization
error in terms of perplexity. We report additional details for QuIP# with PV-Tuning and full evaluation
results in Appendix L and include it to Table 2 as “QuIP#+PV”.

On the choice of hyperparameters for 1-bit vector quantization. There are several possible
hyperparameter configurations for vector quantization (VQ) that fall into 1-1.1 bit range. One can
either use larger codebooks for longer groups (vectors), or smaller codebooks for shorter groups
accordingly. In our main evaluations, we quantized vectors of 16 consecutive weights with 14-16 bit
codebooks to fit into the desired bitwidth. However, we later found that it is more advantageous to
choose smaller groups as well as codebooks. We found that 8-bit code per 8 weights outperforms
14-bit code per 16 weights despite having near-identical bitwidth (due to smaller codebooks). We
report this configuration as “PV (gs8)” in Table 2 and provide additional experiments in Appendix M.

4.3 Large-scale Evaluation & Discussion
Finally, we evaluate the resulting PV algorithm with a vector quantization backbone and KL objective
on a range of popular LLM models. For this section, our goal is to evaluate our approach holistically
for different models and target bit-widths, comparing against the best known baselines in common
settings. To that end, we evaluate on LLAMA 2 & 3 [69], MISTRAL 7B [34] and PHI-3 Mini-4k-
Instruct [1] at 1–2.5 bits per parameter (averaged over all transformer layers).

We report perplexity on WikiText-2 [45] and C4 [54] validation sets, zero-shot accuracy on Wino-
Grande [60], PiQA [67], HellaSwag [83], ARC-easy and ARC-challenge [12] via the LM Eval
Harness [24]. We follow the exact evaluation setup from GPTQ [22]. We compare against QuIP [70],
BiLLM [32], PB-LLM [62], DB-LLM [10], AQLM [21], OneBit [77], QuIP# [71], the latter three
using fine-tuning. For LLAMA 3, we use baselines from [33] and re-evaluate perplexity in our setup.

Table 2: Quantized model perplexity on WikiText-2↓ [45] & C4↓ [54] and the Average↑ accuracy on
5 zero-shot tasks [24] for various models and bitwidths. Arrows ↑ / ↓ mean higher / lower is better.

Size Method Avg bits Wiki2↓ C4↓ Average↑

LLAMA 2 model family

7B

– 16 5.12 6.63 64.80
BiLLM 1.08 32.48 40.52 41.68
OneBit 1.01 9.73 11.11 50.06

PV-Tuning 1.02 8.28 10.37 50.66
PV (gs8) 1.00 7.62 9.73 53.77

AQLM 2.02 6.64 8.56 56.47
QuIP# 2.01 6.19 8.16 57.51

DB-LLM 2.01 7.23 9.62 55.12
PV-Tuning 2.02 5.84 7.62 61.35
QuIP#+PV 2.01 5.71 7.51 61.81

13B

– 16 4.57 6.05 67.82
AQLM 1.97 5.65 7.51 60.59
QuIP# 2.01 5.35 7.20 61.45

DB-LLM 2.01 6.19 8.38 59.41
PV-Tuning 1.97 5.12 6.83 64.92
PV-Tuning 2.19 5.05 6.74 66.05

70B

– 16 3.12 4.97 72.40
AQLM 2.07 3.94 5.72 68.75
QuIP# 2.01 3.91 5.71 68.60

DB-LLM 2.01 4.64 6.77 65.83
PV-Tuning 2.07 3.78 5.56 70.72
PV-Tuning 1.14 5.52 7.50 64.58

Size Method Avg bits Wiki2↓ C4↓ Average↑

LLAMA 3 model family

8B

– 16 5.54 7.10 68.61
BiLLM 1.1 28.8 257 37.90

PB-LLM 1.7 35.68 197.56 36.00
PV-Tuning 1.01 11.17 11.67 50.01

QuIP 2.01 76.95 98.47 36.8
PB-LLM 2.00 21.74 61.04 38.80
DB-LLM 2.01 12.77 14.82 51.8

PV-Tuning 2.01 6.99 8.29 64.36

70B

– 16 2.59 5.78 75.37
BiLLM 1.1 15.26 65.07 44.2

PV-Tuning 1.01 8.67 9.68 51.47

QuIP 2.00 11.63 18.54 48.71
PB-LLM 2.00 10.33 28.89 46.04

PV-Tuning 2.07 4.57 6.56 70.38

MISTRAL 7B v0.1 (A) and PHI 3 Mini-4k-Instruct (B)

7B
(A)

– 16 4.78 5.71 69.38
QuIP# 2.01 6.02 6.84 62.20

PV-Tuning 2.01 5.29 6.17 66.32

3.8B
(B)

– 16 5.83 9.35 70.5
AQLM 2.03 8.85 12.19 60.4

PV-Tuning 2.03 6.88 10.08 65.70
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Table 2 summarizes our findings: PV-tuning with vector quantization outperforms all known
methods for 1- and 2-bit per weight. The closest competitors on LLAMA 2 are QuIP#, AQLM and
OneBit, all of which use fine-tuning. The improvements on LLAMA 3 are also remarkable as this
model is notoriously hard to compress [33]. We report additional evaluations in Appendix N.

Pareto-optimality. A key practical question concerns obtaining optimal quality for the target model
size, where a smaller model compressed to 3-4 bits often dominates a larger model compressed to
1-bit. The best known Pareto-optimal bit-width for Llama 2 is 2.5 [21]: compressing a larger model
to less than 2.5 bits per weight is inferior to a smaller model quantized to the same total number of
bytes. From this perspective, PV-tuning pushes the Pareto-optimal frontier for LLAMA 2 to 2.0
bits. This is easiest to see in Table 12: a 2-bit 13B model outperforms any 7B quantization and is
comparable with the 16-bit 7B model. The same holds for the 2-bit 70B model.

Fine-tuning efficiency. One limitation of our algorithm is that it requires more compute and memory
during the fine-tuning procedure. The 7B models can be fine-tuned on a single GPU, our 70B runs
require a server with 8×A100 or rely on RAM offloading. PV-Tuning shares this drawback with
prior methods based on STE [21, 71], as both methods need gradients w.r.t. dequantized weights. Our
longest training run took 2 days on 8 GPUs to outperform all baselines and 8 days to fully converge.

Inference speed. PV-Tuning does not change the underlying compressed representation, allowing
us to reuse existing high-performance inference kernels. Specifically, VQ+PV can reuse efficient
kernels from [21, 71], while GPTQ+PV can use ExLlamaV2 kernels [14]. We report these inference
speed evaluations in Appendix O. From a practitioner’s point of view, PV-Tuning can significantly
improve the accuracy of extreme (1-2 bit) quantized models, making it possible to deploy large LLMs
on resource-constrained devices. As a proof of concept, we developed specialized inference engines
for running vector-quantized models with PV-Tuning on mobile devices7 or in the browser8.

5 Conclusions
Limitations. We focused our effort on evaluating PV-Tuning with multiple setups and models, but
spent relatively little effort tuning our algorithm for each specific setup. For instance, we always use
constant learning rate and τ with no schedule, and always train on the same data. While this shows
robustness of PV-Tuning, it also means that our results may be improved with better hyperparameters.
For instance, Appendix M shows how PV-Tuning with 1-bit vector quantization can be improved by
choosing smaller vector sizes, while Appendix L suggests that PV-Tuning can dramatically improve
models quantized with QuIP# and may similarly be applied to other quantized representations.
Furthermore, the algorithm could achieve better accuracy by simply training longer and on more data.

Future work. This work opens several new research directions. The first is about how to choose Sk:
while we found that a greedy strategy works in practice, there may be fundamentally better ways.
Another direction is applying PV-Tuning to other quantization niches: our evaluation focuses on
extreme weight-only quantization, but the proposed algorithm can be used in weight + activation
setting or KV cache quantization. Overall, PV-Tuning shows how an insight from optimization theory
can improve LLM quantization and we are excited to see how this develops in future research.
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A Proofs

A.1 Proof of Theorem 3.1

Part (i): First, by assumption, we know that x0 ∈ Rd
≤c. Assume that xk ∈ Rd

≤c for some k ≥ 0.
Since P (yk) ⊒ P (xk), this implies that yk ∈ Rd

≤c. Next, since V (xk+1) ⊆ V (yk), we conclude
that xk+1 ∈ Rd

≤c. The claim now follows by induction.

Part (ii): Since
yk = arg min

y∈Rd
{ϕ(y) : P (y) ⊒ P (xk)}

and because y = xk satisfies the constraint P (y) ⊒ P (xk), we conclude that ϕ(yk) ≤ ϕ(xk).
Further, since

xk+1 = arg min
x∈Rd

{ϕ(x) : V (x) ⊆ V (yk)}

and because x = yk satisfies the constraint V (y) ⊆ V (yk), we conclude that ϕ(xk+1) ≤ ϕ(yk). In
summary,

ϕ(xk+1) ≤ ϕ(yk) ≤ ϕ(xk).

Part (iii): In view of part (ii), the sequence {ϕ(xk)}∞k=0 is non-increasing. By assumption, it is
bounded below. Hence, it converges to its infimum:

lim
k→∞

ϕ(xk) = inf
k∈{0,1,... }

ϕ(xk).

A.2 Proof of Lemma 3.2

MV,ϕ̃y
(y) := arg min

x∈Rd
≤c

{
ϕ̃y(x) : V (x) ⊆ V (y)

}
= arg min

x∈Rd
≤c

{
ϕ(y) + ⟨∇ϕ(y), x− y⟩+ L

2
∥x− y∥2 : V (x) ⊆ V (y)

}
= arg min

x∈Rd
≤c

{
⟨∇ϕ(y), x⟩+ L

2
∥x− y∥2 : V (x) ⊆ V (y)

}
= arg min

x∈Rd
≤c

{
2

〈
1

L
∇ϕ(y), x

〉
+ ∥x− y∥2 : V (x) ⊆ V (y)

}

= arg min
x∈Rd

≤c

{∥∥∥∥x−
(
y − 1

L
∇ϕ(y)

)∥∥∥∥2 : V (x) ⊆ V (y)

}
= arg min

x∈Rd
≤c

{
ϕ̂y(x) : V (x) ⊆ V (y)

}
= MV,ϕ̂y

(y).

A.3 Proof of Lemma 3.3

First, note that

ϕ(x̂)
(8)
= ϕ

(
MV,ϕ̂y

(y)
)

Lemma 3.2
= ϕ

(
MV,ϕ̃y

(y)
)

(3)
= min

x∈Rd
{ϕ̃y(x) : V (x) ⊆ V (y)}

(4)
= min

x∈Rd

{
ϕ(y) + ⟨∇ϕ(y), x− y⟩+ L

2
∥x− y∥2 : V (x) ⊆ V (y)

}
. (9)
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Since y ∈ Rd
≤c, any x ∈ Rd satisfying V (x) ⊆ V (y) must also satisfy x ∈ Rd

≤c. So, in view of
L-smoothness of ϕ on Rd

≤c, we can bound the last expression in (9) from below via

ϕ(x̂)
(9)+(7)
≥ min

x∈Rd
{ϕ(x) : V (x) ⊆ V (y)}

(3)
= ϕ (MV,ϕ(y)) .

Finally, since x = y satisfies the constraint V (x) ⊆ V (y), we can upper bound the same expression
via

ϕ(x̂)
(9)
≤ ϕ(y) + ⟨∇ϕ(y), y − y⟩+ L

2
∥y − y∥2

= ϕ(y).

B Approximate PV Algorithm

We now introduce the pseudocode of an approximate PV meta-algorithm; the idea is to replace the P
and V steps with some approximate computations to be defined later.

Algorithm 4 Approximate PV Algorithm

1: Parameters: starting point x0 ∈ Rd
≤c

2: for k = 0, 1, . . . do
3: yk ≈ MP,ϕ(x

k)
4: xk+1 ≈ MV,ϕ(y

k) (for example, we can use the method from Section B.1 or the method from
Section B.2)

5: end for

Next, we describe two new approximations of the V step.

B.1 Approximate V step, variant 1 (non-accelerated)

We now describe an algorithm computing an approximation to MV,ϕ(y):

1. Start with some y ∈ Rd
c and choose sufficiently large L > 0, number of iterations T

2. Set z0 = y

3. For t = 0, . . . , T − 1 iterate:

(i) Define ϕ̂zt(·) :=
∥∥· − (

zt − 1
L∇ϕ(zt)

)∥∥2
(ii) Set zt+1 = MV,ϕ̂zt

(zt)

4. Output: zT

The method is constructed so that zT ≈ MV,ϕ(y). If use this subroutine with T = 1 to approximate
the V step in the PV method, we recover what we earlier called the linearized PV method. Choosing
sufficiently large T ≥ 2 may be advantageous.

B.2 Approximate V step, variant 2 (accelerated)

We now describe a different algorithm for computing an approximation to MV,ϕ(y):

1. Start with some y ∈ Rd
c and choose sufficiently large L > 0, number of iterations T

2. Choose a suitable decreasing sequence of positive scalars {αt}, with α0 = 1 and
limt→∞ αt = 0

3. Set z0 = y

4. For t = 0, . . . , T − 1 iterate:

19



(i) Define ϕ̂zt(·) :=
∥∥· − (

zt − 1
L∇ϕ(zt)

)∥∥2
(ii) Set zt+1 = (1− αt)MV,ϕ̂zt

(zt) + αtz
0

5. Output: zT

The method is constructed so that zT ≈ MV,ϕ(y). This approach is based on Halpern acceleration of
fixed point methods [51], and as such, may be sometimes effective.

C Generalization to Other Quantization Algorithms

In Section 3.1, we define Rd
≤c as a set of vectors with at most c unique items. This translates to the

idea of k-means quantization, a scalar nonlinear quantization where each weight is rounded to one of
c centroids found by clustering the weights. Below, we show how this can be generalized to linear
quantization, vector quantization, additive quantization, and others.

Linear quantization is the most basic and widely used type of quantization where weights are stored
as integers, possibly multiplied by a scale and added to a zero point. The simplest way to account for
this quantization type is to declare that weight values are integers up to c: V (x) = (0, 1, 2, ..., c− 1).
After that, one can treat scales / zero points as an extra non-quantized parameter, similar to biases or
layer-normalized scales. This extra parameter interacts with weights by multiplication or addition,
and hence it can be updated by backprop, similarly to other non-quantized weights. Equivalently,
once can declare that V (x) = (0, s, 2s, ..., s · (c − 1)) for arbitrary s ∈ R. Both options lead to
equivalent fine-tuning algorithms where the V step does not change and the P step has an additional
condition.

Next, let us discuss vector quantization. Consider a quantization that splits x into 2-dimensional
groups (non-intersecting pairs of adjacent weights) and encodes these weights as one of c 2-
dimensional codes that form its codebook. This can be viewed as two sets of weights (odd and even)
quantized with scalar quantization, except that values in the two sets have the same partitioning P (x).
In other words, if two values in the odd half belong to the same partition, the corresponding values in
the other half also belong to the same partition, though the values themselves can be different. Alter-
natively, one can simply write down a version of Rd

≤c, where V (·) is a set of 2-dimensional vectors,
not scalars. Likewise, higher-dimensional vector quantization translates to higher-dimensional items
in V (·).
Both the P and V steps for vector-quantized weights follow the same general principle: P-step can be
approximated by backprop with slightly more trainable parameters. In turn, the V step can be done
by trying all values in V(x) and selecting the one with the lowest ϕ̂(·). A more compute-efficient
version of the V step for this case is described in Appendix D.

RVQ and Additive Quantization can be treated as learning two separate sets of vector-quantized
parameters. However, a more efficient way would be to run the V step to find the best combination of
codes via beam search [5].

Quantization with sparse outliers [17, 18, 42] can be seen as learning two distinct matrices with
different definitions of Rd

c : one is quantized and the other is sparse (for outliers). Similarly, quantized
weights with low-rank adapters (e.g. [28]) can treat the adapter as an additional non-quantized
parameter for the P step. This makes PV-tuning potentially extensible to neural network pruning.

D Efficient Linearized V Step for Vector Quantization

As we describe in Section 3.2, the linearized V step minimizes the squared error between quantized
weights and the updated “target” weights. Here, we explain how one can compute and minimize the
squared error efficiently in practice. To simplify the notation for this section, we define the objective
as ∥x− B∥2 where B is the target vector set by the linearized V step. Following the definition of
squared L2 norm, this objective can be re-written as follows:

∥x−B∥2 = ∥x∥2 − 2⟨x,B⟩+ ∥B∥2. (10)
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Consider the first term: ∥x∥2 =
∑d

i=1 x
2
i . Since x ∈ Rd

≤c, this term is a sum of at most c unique
terms. Abusing your notation, this can be rewritten as

∥x∥2 =

c∑
i

Vi(x)
2 · |Pi(x)|,

where Vi(x) is i-th unique element in x and |Pi(x)| is the number of such elements.

The second term is also a sum of c unique values:

−2 · ⟨x,B⟩ = −2

d∑
i=1

xiBi = −2

c∑
i=1

Vi(x) ·
∑

i∈Pi(x)

Bi

 .

The third term does not depend on x.

If you know the objective for some given x, you can efficiently compute ϕ for all neighboring
x̂ ∈ N1(x) where you only change one index. For the sake of formality, let us define the set of such
neighboring x̂ as follows:

N1(x) := {x̂ ∈ Rd
≤c : V (x̂) = V (x), ∥x− x̂∥0 = 1} (11)

Consider one x̂ ∈ N1(x) where only k-th value changed (i.e. xk ̸= x̂k). Then,

ϕ(x̂)− ϕ(x) = ∥x̂∥2 − ∥x∥2 − 2 · ⟨x̂− x,B⟩+ ∥B∥2 − ∥B∥2 (12)

ϕ(x̂)− ϕ(x) = x̂2
k − x2

k − 2 · (x̂k − xk) ·Bk + 0 (13)

Note that, for any ∀x̂ ∈ N1(x), there are c2 possible values for x̂2
k − x2

k and another c2 unique values
for 2 · (x̂k − xk) ·Bk, regardless of d, since there are c unique values in both v and x̂. This allows
for an efficient local search algorithm:

1. Let x0 be the input to MP

2. Compute and save all 2c2 possible red and blue values

3. Compute ϕ0 = ϕ(x0)

4. for t = 0, . . . :

5. for x̂ ∈ N1(x
t):

6. find k : x̂k ̸= xt
k (there’s only one such k)

7. compute ϕ(x̂) = ϕ(xt) + x̂2
k − x2

k − 2 · (x̂k − xk) ·Bk

8. xt+1 := argmin
x̂∈N1(xt)

ϕ(x̂) (minimum from array of pre-computed values)

In practice, this can be extended from greedy (local) search to semi-greedy beam search. These
practical algorithms are described in AQ, LSQ, and LSQ++. Algorithms for ∥A(x − B)∥2 are
explained in AQLM and probably other works.

E Gradient-based Strategies for Training Quantized Models

In this section, we overview possible solution to the general problem of training / fine-tuning neural
networks with quantized weights. We focus on strategies that train by gradient descent with additional
measures to deal with coarse-grained weights.

In principle, there are also gradient-free methods for quantized training, such as Evolution Strate-
gies [56], Bayesian Optimization [48] and others. However, these gradient-free methods have so far
not gained popularity for large language model quantization. Adapting these methods to the scale
and dimensionality of LLMs would likely require extra effort. Thus, we leave these methods outside
the scope of our work and focus on gradient-based optimization.
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Reminder: gradient-based training of quantized models. We describe the general framework for
training quantized weights in Sections 3.1 and 3.2. To summarize, the training algorithm computes
the gradient w.r.t. de-quantized weights as though they were continuous, then uses these gradients to
update continuous (P step) and discrete (V step) parameters. The core problem with this approach
is that, when discrete parameters are very coarse (e.g. low-bit quantization), gradient updates are
no longer large enough to make any changes and are lost to the “rounding error”. We review two
strategies for circumventing this problem: straight-through estimation and stochastic rounding.

E.1 Straight-through Gradient Estimation

Straight-through gradient estimation is a technique for training neural networks with discrete com-
ponents that ignores these discrete components during backpropagation. Its usage goes back to
the Perceptron introduced by Rosenblatt [59]. There, the artificial neuron uses a step function as
activation, but the training procedure treats this function as though it was identity. Subsequent works
introduce variations of this idea, extend it to multi-layer networks [31], discuss its convergence
properties [76, 23, 80]. Other works use straight-through estimation or similar techniques to training
neural network with quantized weights [30, 64, 65].

STE for LLM quantization. As we discuss in Section 2, straight-through estimation introduces
an auxiliary non-quantized weight tensor that is updated using the gradients ∇ϕ(y) w.r.t. quantized
weights. The quantized weights are then updated to best approximate this auxiliary buffer, usually
in terms of L2 error. As a result, if an update to y − 1

L∇ϕ(y) is not large enough to change the
parameter, it is still accumulated in a straight-through “buffer”. Eventually, the cumulative effect of
several such updates will be large enough that yk will no longer be the solution to Equation (6).

This strategy prevents the algorithm from stalling, but it does so at the cost of convergence guar-
antees [80]. When applied to extreme LLM quantization (Section 4.2, straight-through estimation
initially improves yk, but then stops improving and oscillates. We also tried several a variant of
straight-through estimation [65] that introduce stochasticity to forward pass. When applied to extreme
LLM quantization, this variant did not diverge like naive STE, but trained much slower and did not
reach the same optimum as “deterministic” STE. We attribute this to the fact that adding noise during
training can slow down convergence, which also applies to stochastic rounding (Appendix E.2).

E.2 Stochastic Rounding

Stochastic (or probabilistic) rounding [82, 87, 2, 29] is one of the techniques that can circumvent
stalling when training low-precision weights. To recall, the linearized V step (6) can be seen as
rounding y+ := y − 1

L∇ϕ(y) to the nearest quantized weight in Rd
c , which often happens to be y

itself. To circumvent the problem of rounding back to y, one can instead round stochastically, to one
of the two adjacent values that y+ falls between. Let’s denote these two adjacent values xl and xr for
left and right. The probability of rounding is inversely proportional to the rounding error (distance),
or, in terms of the objective,

p(round to xl) =
ϕ̂(xl)

−1/2

ϕ̂(xl)−1/2 + ϕ̂(xr)−1/2
.

This way,

E
p(round to x)

x = y − 1

L
∇ϕ(y).

The main drawback of stochastic rounding is t introduces noise, it changes the underlying optimization
problem. Intuitively, if the optimal x⋆ is adjacent to a significantly worse solution, the method may
oscillate between rounding to either side. This rounding noise increases further as we consider
lower quantization width. In Section 4.2 we exploit his phenomenon for real-world LLMs and find
that stochastic rounding converges find significantly worse solutions, presumably because at every
step, some portion of LLM weights will be rounded poorly. On top of that, when used for vector
quantization, stochastic rounding is either intractable or biased.

Stochastic rounding for vector quantization. To recall, stochastic rounding for non-vector quanti-
zation needs to find two quantized values: the nearest neighbor above the solution, and the nearest
neighbor below it. It will then round to either of the two values inversely proportionally to their
rounding errors.
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However, this intuition no longer works if you consider more complex quantization schemes such
as vector quantization, additive quantization, quantized low-rank adapters, and others. In vector
quantization, a group of weights is encoded jointly as one vector from a fixed set (usually called
codebook or lattice). For simplicity, let us consider the case where the weight group size equals 2, i.e.
weights are quantized in pairs.

For a pair of two eights, we can no longer rely on the fact that they have one neighbor from above
and one from below. Instead, they may have any number of adjacent "clusters" they can be rounded
to. Intuitively, a pair of weights is a point in 2-dimensional that can have neighbors from left, right,
top, bottom, and any diagonals. Formally, to determine a full list of neighbors, we can run Delaunay
triangulation on all vectors from the codebook (or lattice) plus the target vector that needs to be
rounded, then find all points that share a triangle with the target vector.

Unfortunately, this procedure can be very expensive, especially for higher-dimensional vectors. A
popular practical approximation to stochastic rounding for vector quantizations is to find K (e.g. 2)
nearest vectors from the codebook, then use the probability formula from scalar stochastic rounding:

p(round to xi) = ϕ̂(xi)
−1/2/(

K∑
j

ϕ̂(xj)
−1/2)

However, unlike the original stochastic rounding, this approximation does not guarantee that

E
p(round to xi)

xi = y − 1

L
∇ϕ(y). (14)

For a (counter)example, if there is a high density of codes on one side of the target, all K (e.g. 2)
nearest neighbors will be on the same side. As a result, this approximate stochastic rounding is biased
and further changes the optimization result.

Stochastic rounding with temperature. When used for LLM quantization, the main problem with
stochastic rounding is that it introduces noise to the training procedure. This is important because
modern LLMs [69, 68, 1] typically train without dropout or similar noise layers. This is because the
dataset is huge and the training suffers not from overfitting, but from not fitting the data enough.

Training with stochastic rounding makes optimization inherently noisy as if using dropout, making it
harder to train. What is worse, low-bitwidth models produce more noise than high-bitwidth due to
larger intervals between quantized values. This additional noise makes it difficult for the model to
fit the training data tightly. For extreme 1-bit training, we often observed that the training objective
(cross-entropy) would increase instead of decreasing due to sheer amount of rounding noise.

To combat this issue, we introduce stochastic rounding with temperature τ (hyperparameter):

p(round to xl) =
ϕ̂(xl)

−1/(2τ)

ϕ̂(xl)−1/(2τ) + ϕ̂(xr)−1/(2τ)
.

Setting τ < 1 results the algorithm keeping the original weights more often, which reduces the
training noise at the cost of slower updates. In Table 1 (Section 4.2), we try τ ∈ {1, 0.5, 0.1, 0.01}
and choose the best result for each setup that involves stochastic rounding. It can be shown to
converge as long as τ is annealed, but it changes the underlying optimization problem similarly
to dropout. In principle, it is possible to gradually anneal τ during training to make the algorithm
unbiased in the limit.

E.3 Comparing Discrete Optimization Techniques

Finally, we can compare the two above strategies and our proposed approach from Section 3.3.

From the optimization perspective, the most popular variant of straight-through estimation is known
to not converge to a stable solution. While, in practice, STE can still significantly improve model
quality (see Table 1), it is still a heuristic. In turn, stochastic rounding can be seen as an additional
source of noise to stochastic gradient descent which can converge to a stable solution when τ is
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gradually reduced to 0. In contrast, subspace PV does not introduce noise or instability and does not
require annealing.

The most notable difference of PV-Tuning from STE is that the former tries to update all weights
on every step, whereas our algorithm only updates a chosen subset. We give an explanation on why
updating all weights is problematic at the end of Section 3.2.

From the efficiency perspective, training with straight-through estimation requires storing an
additional set of buffers on device memory to accumulate weight updates. Unlike the quantized
weights, these buffers need to be stored in higher precision (half or full) to accumulate smaller
updates that would be lost on quantized buffers. As a result, straight-through estimation requires
additional memory for fine-tuning. Stochastic rounding and subspace PV (w/o STE) do not need
these buffers, but they still need to accumulate high precision gradients w.r.t. de-quantized weights
and store optimizer statistics for those weights in higher precision. To summarize, all methods require
significantly more memory than naive (P-only) fine-tuning, but straight-through estimation has higher
memory overhead.

As for the computational overhead, both STE, stochastic rounding and subspace PV introduce
additional computations and therefore increase step complexity. Of the three alternatives, the
subspace PV algorithm is slightly faster since it only runs the discrete optimization on a small portion
(subspace) of model weights per step, while stochastic rounding has somewhat higher overhead due
to the complicated rounding procedure, especially for vector quantization. However, this overhead
is small in practice: most of the LLM training time is spent accumulating the gradients on a
large training batch, which is not affected by any of the three algorithms. In principle, it should
be possible to reduce the compute / memory overhead both with technical improvements and better
optimization algorithms, but we leave this investigation to future work.

F On L-smoothness of LLM Objective in Sparse Subspaces

The classical definition of L-smoothness for differentiable function f : Rd → R represented by
requirement

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rd.

If function f(x) is twice continuously differentiable, then it is easy to show that function f is L-
smooth if and only if ∥∇2f(x)∥ ≤ L. If striving to find the minimum value of L then via following
the definition, one has to select L as L = max

x∈Rd

(
∥∇2f(x)∥

)
.

If the domain of function f(x) is restricted to any subset S ⊆ Rd, then the global L smooth constant
can only decrease for a new function. It can be observed from the fact that ∀S ⊆ Rd we have

∥∇2f(x)∥ = max
v∈Rd\0

(
∇2f(x) · v/∥v∥

)
≥ max

v∈S\0

(
∇2f(x) · v/∥v∥

)
,∀x ∈ Rd.

Sparse sub-spaces satisfy this requirement; therefore, this theoretical observation is valid in this
circumstance.

Another observation is that the definition of L smooth constant has a global notion. However, for
practical purposes, for the first-order training algorithm what matters is L-smoothness constant for
the function f(x) with the domain restricted to the trajectory of iterates only. Unfortunately, the
training process iterates follow the prior unknown path in Rd space.

Below we demonstrate two approximate schemas for evaluating L-smoothness constant for a function
with a domain (artificially) restricted to the trajectory induced by iterates generated by Gradient
Descent (GD) for functions f(x) with different subspace sizes and in general with different optimiza-
tion trajectories, but with the same start iterate (model). We have performed 10 iterations of GD
for training auto-regressive Llama-like LLama-160M [46] and TinyLlama-1.1B [85] models using
automatic tokenizer from these models. We trained all linear layers in these models. The used step
size for GD is 10−4.

Schema I: Estimating L along the trajectory of iterates without capturing local curvature.
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After running GD for 10 iterations the L smooth constant has been estimated along trajectory
s = {x1, x2, . . . , x10} with approximated as

L̂ := max
xi,xj∈z,xi ̸=xi

(
∥∇f(xi)−∇f(xj)∥

∥xi − xj∥

)
.

Results are presented in Tables 3, 4. From them, we can see that L̂ estimate along the trajectory of
iterates have the same property as global L, namely during restricting subspace of training variables
the L-the smooth constant is non-increasing, and in practice substantially decreasing. This schema
exploits available information on gradient oracles in iterates in s and iterates s itself. This schema
represents an estimation of upper bound L̂ on the true value of L.

Table 3: Estimated L along the GD trajectory for LLama-160m (Schema I).
Subspace Size Number of Trainable Parameters Estimated L̂

5% 2.36M 10.01
10% 8.26M 14.40
20% 17.69M 305.72
30% 24.77M 498.16
40% 36.57M 919.82
60% 60.75M 5454.79
70% 85.52M 6915.06
85% 102.04M 7043.19
100% 113.25M 7251.50

Table 4: Estimated L along the GD trajectory for TinyLlama-1.1B (Schema I).
Subspace Size Number of Trainable Parameters Estimated L̂

5% 13.11M 33.24
10% 49.28M 143.00
20% 136.84M 2159.22
30% 242.75M 2369.63
40% 369.10M 2638.11
60% 582.48M 5185.92
70% 684.20M 5901.73
85% 831.52M 6091.04
100% 968.88M 9480.57

Schema II: Estimating L along the sequence of iterates with capturing local curvature.

The previous schema used a fixed sequence of iterates s = {x1, x2, . . . , x10} essentially estimate the
L-smoothness constant along the piece-wise linear interpolated path along s. In the next schema, we
approximate L-smoothness constant as

L̂ = max
xi∈s

(
∥∇2f(xi)∥

)
.

Therefore this schema exploits a sequence of points s and selects the maximum in absolute values
eigenvalue for all matrices ∇2f(xi). Computing any spectral information for a matrix with big
dimensions can be challenging.

The approximate schema that we have used to compute ∥∇2f(x)∥ leverages several observable facts.
First, ∥∇2f(x)∥ = max(|λi(∇2f(x))|), where λi is i − th eigenvalue for ∇2f(x). Second, to
identify the maximum eigenvalue in the absolute value we can use the normalized Power Iteration
algorithm [47], which requires execution only the hessian-vector product. Third, we can use Taylor
expansion and forward difference approximation for ∇f(x+ r):

∇f(x+ r)−∇f(x) = ∇2f(x) · r +O
(
∥r∥2

)
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The K approximate hessian-vector product can be accomplished with K + 1 gradient oracle calls.
For the experiment, we run Power Iteration for a prior known number of iterations equal to 10. In
fact Power Iteration does not converge in case of degeneracy such as a situation when the matrix has
two maximum eigenvalues in absolute values but with opposite signs, and the convergence rate is
determined by the absolute value of the ratio of the second-largest-magnitude eigenvalue to the first.
We ignore these aspects in our heuristic approximate Algorithm 5.

Algorithm 5 Approximate Matrix-free Algorithm for Computing ∥∇f(x)∥

1: Parameters: Point x ∈ Rd, fixed γ ∈ R such as γ = 10−5 · x for numerical stability.
2: r0 ∼u.a.r Rd

3: g = ∇f(x)
4: for k = 0, 1, . . . ,K do
5: r̂k = rk/∥rk∥

6: rk+1 = 1/γ
(
∇f(x+ γr̂k)− g

)
// Approximate computation of rk+1 ≈ ∇2(f) · r̂k.

7: end for
8: Output: Approximate eigenvector rK+1

/∥rK+1∥ corresponding to |λmax| ≈ ∥rK+1∥.

Results are presented in Tables 5, 6. From them, we can see that also this notion of L̂ estimate along
the set of iterates has the same property as global L, namely during restricting subspace of training
variables the L-the smooth constant is non-increasing similar to previous estimation method.

Table 5: Estimated L along the GD iterates for LLama-160m with local curvature (Schema II).
Subspace Size Number of Trainable Parameters Estimated L̂

5% 2.36M 10.96
10% 8.26M 791.30
20% 17.69M 878.37
30% 24.77M 1202.00
40% 36.57M 1918.04
60% 60.75M 5262.77
70% 85.52M 5325.83
85% 102.04M 5901.21
100% 113.25M 11522.45

Table 6: Estimated L along the GD iterates for TinyLlama-1.1B with local curvature (Schema II).
Subspace Size Number of Trainable Parameters Estimated L̂

5% 13.11M 40.30
10% 49.28M 146.93
20% 136.84M 4366.38
30% 242.75M 4487.38
40% 369.10M 6767.58
60% 582.48M 8983.85
70% 684.20M 15445.54
85% 831.52M 21167.06
100% 968.88M 28629.24

G Calibration Data Matters

For a fair comparison, we run our algorithm using the same calibration data as the baseline algorithms,
typically a sample from RedPajama [13]. However, the way we handle this calibration data differs
from most baselines [21, 18, 71].
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When analyzing their codebase, we found that these algorithms resample calibration data by taking
a random excerpt of a fixed length from a random document in the calibration data, both sam-
pled uniformly. However, with this approach, the data from longer documents (e.g. books) are
underrepresented compared to shorter ones (e.g. news articles), which biases the calibration data.

Upon further investigation, we believe that new methods blindly copied this code from each other,
going back to GPTQ [22] and possibly further. This choice was harmless for GPTQ since it requires
relatively little calibration data; however, full model fine-tuning like in QuIP# [9] and AQLM [21],
works better on unbiased data.

To remove the bias, we use standard11 LM preprocessing that concatenates all documents, then splits
them into evenly sized chunks that become training sequences. The benefits from debiasing range
from insignificant to as large as 0.15 perplexity for some models. To compensate for that, we run
experiments with the same preprocessing protocol unless explicitly stated otherwise.

H Additional Engineering Considerations

When done naively, the longest operation is the discrete update (8) that runs discrete optimization on
all LLM parameters. For scalar quantization, this step does simple rounding and runs nearly instantly.
In turn, applying it to vector quantization requires solving a discrete optimization algorithm (e.g.
beam search) for every group of weights. However, since equation (8) can only update weights within
Sk, we can skip discrete optimization for any weight that was not among the chosen few. As a result,
when training models with up to 70 billion parameters, we search less than one billion times per step.

The next longest operation is computing the gradients ∇ϕ(·), needed both for P and V steps. This
involves running LLM multiple forward and backward passes on batches of texts and accumulating
the gradients. To reduce the overhead from gradient computation, we compute the gradients once
using mixed precision, then reuse these gradients for one P and one V step, respectively. In other
words, we switch from alternating P and V steps to performing these steps simultaneously. We
also reuse these gradients to update any parameters not affected by quantization: input embeddings,
normalization layers, biases, etc.

To limit VRAM usage, we use gradient checkpointing [27], batch accumulation. For larger models,
we also use parameter sharding12 [55] and optimizer offloading [57]. We need these techniques so
that smaller 7B LLMs can be trained on a single GPU and larger ones with 70B parameters fit into
a single machine with 8×A100. Still, PV-tuning takes up to 1.5× longer than tuning continuous
parameters and uses more memory (during training) to hold the gradients w.r.t. dequantized weights.

11from e.g. https://github.com/huggingface/transformers/blob/main/examples/pytorch/
language-modeling/run_clm.py

12We use PyTorch FullyShardedDataParallel [52, 40] and wrap discrete weights as in bitsandbytes [19]
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I Additional evaluations of perplexity
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Figure 3: WikiText-2 perplexity of 2-bit quantized LLAMA 2 models as a function of model size
(GiB) compared to a theoretical lossless 3 bit compressed model (i.e. float16 perplexity numbers
paired with 3-bit model sizes).

J Additional Details for Section 4.1

Here, we describe some of the implementation details we used to optimize different quantized
representations. For every optimizations, we check that this optimization improves the algorithm
in both MSE and perplexity and does not require additional resources that would result in unfair
comparison.

Vector Quantziation. The original algorithm quantizes all weights a single pass over input channels.
We found that it works slightly better if we make multiple such passes and, between passes, update
codes by Adam to minimize the same objective [72]. This is resembles QuIP# with no RHT & lattices
or AQLM with no additive quantization. For simplicity, we also use a single shared codebook (e.g.
instead of groupwise codebooks).

VQ+outliers To select outlier coordinates, we use https://github.com/fmfi-compbio/
admm-pruning that outperforms the SpQR outlier criterion [18] in both L2 error and perplex-
ity (when both criteria are used alongside vector quantization). We re-run the ADMM procedure
multiple times during optimization, resulting in an EM-like algorithm.

VQ+lowrank. We experimented with two different initializations for low-rank correction: a)
quantizing weight matrix, then training LoRC on quantization error, as in [79] and b) initializing
LoRC to approximate the reference weight matrix, the applying vector quantization to LoRC errors.
Of these two approaches, we found that the latter one produces a (slightly) better solution in both
MSE and perplexity.

Additional representation evaluations. Below, we report some additional quantized representation
configurations that extend our evaluations from Section 4.1. For convenience, we report them both as
per-method perplexity values in Table 7 and the combined plots in Figure 4.
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Table 7: Comparison of WikiText-2 Perplexity for each method with and without fine-tuning for
quantizing Llama 2 7B model. For each method, PPL no FT denotes its perplexity without fine-
tuning, whereas PPL w/ FT is perplexity with fine-tuning. We use the same setup as in Section 4.1.

Method Avg bits PPL no FT↓ PPL w/ FT↓

– 16 5.12 –
VQ/AQ 2.01 6.64 6.17
VQ/AQ 2.29 6.31 5.92
VQ/AQ 3.04 5.46 5.39

QuIP# 2.00 8.22 6.19
QuIP# 3.00 5.60 5.41

Method Avg bits PPL no FT↓ PPL w/ FT↓

GPTQ 2 3290 16.77
GPTQ 3 8.52 7.26
GPTQ 4 5.87 5.74

SpQR 2.09 12.19 9.90
SpQR 3.45 5.48 5.37
SpQR 3.98 5.29 5.21
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Figure 4: Llama2 7B perplexity on WikiText-2 after compression without fine-tuning (left) and
with fine-tuning (middle). On the (right), there is a plot that combines the first two, allowing for a
better comparison of each method with and without fine-tuning. Compression algorithms without
fine-tuning are represented with dashed lines, while algorithms with fine-tuning are represented
with continuous lines.

Table 8: Evaluation of quantized LLAMA 2 models for 2.x bits per weight. We use the same
setup as in the main paper (Section 4.2 with an extra baseline). As requested, we finetune the
model in 16-bit precision for the same number of steps, then quantize it with AQLM, reported as
“FT+AQLM”. Finally, the “Finetuned” row corresponds to an uncompressed 16-bit model finetuned
without quantization. We hypothesize that fine-tuning the model has little effect since we train on a
dataset resembling its original pretraining data.

Size Method Avg bits Wiki2↓ C4↓ ArcC↑ ArcE↑ HellaSwag↑ PiQA↑ WinoGrande↑ Average↑

7B

– 16.00 5.12 6.63 43.43 76.3 57.14 78.07 69.06 64.80
AQLM 2.02 6.64 8.56 33.28 61.87 49.49 73.56 64.17 56.47

PV-Tuning 2.02 5.84 7.62 38.40 71.17 53.50 76.99 66.69 61.35

Finetuned 16 5.13 6.59 43.46 76.47 56.96 78.14 68.91 64.79
FT + AQLM 2.02 6.48 8.36 33.29 62.45 49.31 73.49 64.82 56.67
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Figure 5: Learning curve for PV-tuning and STE algorithms, when tuning tinyllama model with
2x8g8 AQLM quantization (2 codebooks with 8 bits per code and input groupsize equal to 8).
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K Additional Details for Section 4.2

VQ: vector quantization as a simple near-optimal algorithm. We use a single 16-bit codebook with
group size 16 (over input dimension) and per-channel trainable scales over output dimension. During
P step, we update the codebook, scales and non-quantized model layers by backprop. During V step,
we try every code in the codebook and choose the one that minimizes (6).

GPTQ: scalar quantization with block-wise scales and zero points. We use 2-bit base codes and
block size 128. During P step, we update the scales and non-quantized parameters by backprop. In
turn, V step performs simple rounding to nearest (scaled) integer.13.

AQLM: we perform scalar quantization with two 8-bit codebooks and group size 8 and channel-wise
steps. This was originally published in [21] as the “speed-optimized” configuration capable of fast
lookup-based inference. During P step, we update both codebooks, as well as scales an non-quantized
parameters by backprop. On V step, we run beam search with beam size 8 with gradient-updated
dequantized weight as target.

Training. We minimize Kullback–Leibler divergence as our loss function for all three representations.
More specifically, we fine-tune the quantized “student” model to approximate the predictions (logits)
of a “teacher” — the same model prior to quantization. We fine-tune on the same RedPajama sample
as in calibration. More specifically, we use the official one-billion-token sample14 provided by the
dataset authors [13]. We use a batch size of 220 (≈ 1M) tokens, split into batches of model-specific
sequence length (e.g. 4096 tokens for LLAMA 2, 8192 for LLAMA 3). In early experiments, we found
PV to be resilient to the choice of batch size, consistently training with up to 4× smaller batches.

Hyperparameter tuning: we tune the hyperparameters for each method individually. For all
algorithms, we tune learning rate on a logarithmic scale out of (1e-4, 3e-4, 1e-3, 3e-3, 1e-2). For
methods involving discrete optimization, we tune learning rate for P and V step separately. The
optimal configuration for STE and stochastic rounding is to use learning rate 3e-4 for both codes and
codebooks. The optimal configuration for subspace linearized PV and the same with STE is to use
learning rate 3e-4 for P step and 3e-3 for codes. Curiously, the subspace methods are stable even with
larger step sizes for codes, e.g. 1e-2, whereas unrestricted methods (e.g. pure STE) are not.

For stochastic rounding, we found that the unbiased rounding [53] causes the model quality to quickly
degrade, likely due to the fact that the algorithm makes too many weight changes due to rounding.
The results we reported in Table 1 use stochastic rounding with temperature 0.2. In other words, we
measure the distances to 2 nearest bins and round to each bin proportionally to distance−5. We also
tried gradually annealing the rounding temperature to 0, but achieved only insignificant improvements
in accuracy and perplexity (<0.01). To simplify evaluation, we do not use annealing in Table1.

For PV-tuning and PV-tuning with STE, we always set τ to maximum number of weights such that
updating them satisfies ||xk+1 − xk||/||xk|| < 0.01. We implement this by trying to update large
portions of weights (in our implementation, we update 0.01 of all weights at a time) until the total
change exceeds the constraint. Once it does, we rollback weights in the last chunk to xk until the
constraint is satisfied. As an implementation quirk, we always allow at least one weight to change
even if changing just one weight already exceeds 0.01 · ||xk||. However, we didn’t see this in practice.

We also found that Lamb15 [81] is more stable when training with large batch sizes, but converges
to approximately the same accuracy. We use β1=0.9 and β2=0.95, same as in most LLM training
configurations [69, 86, 61]. We do not use learning rate decay for simplicity. It is likely possibly to
improve our results by annealing the learning rates during training or using a warmup. We intentionally
avoid this to reduce the number of “moving parts” and simplify evaluation. Overall, we found that
PV-tuning is about as sensitive to hyperparameters as continuous-only LLM fine-tuning [71, 21, 63].

In the codebase, we release several additional PV-tuned models with a more careful choice of training
hyperparameters and calibration datasets: for instance, when quantizing instruction tuned models, we
found that calibrating the model on chat-like data results in better accuracy.

13We also found that we can perform V step by running the entire OPTQ calibration while using y− 1
L
∇ϕ(y)

as target weights, showing the flexibility of the general PV framework. This variant converges to the same values,
but is much slower due to having to re-accumulate the L2 error hessians for each V step.

14https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample
15Lamb is a variant of Adam that limits the norm of weight updates relative to the norm of weights.
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L PV-Tuning of QuIP#

QuIP# is a popular modification of classical vector quantization for neural network compression.
Unlike standard VQ, QuIP# does not quantize weights directly, but instead applies a Randomized
Hadamard Transform (RHT) and quantizes the projected weight representations. This is done by
applying the Hadamard transform to the rows and columns of the m×n matrix and multiplying them
by random vectors SV ∼ U{±1}n, SU ∼ U{±1}m after each transformation. These vectors do
not need to be stored, but may be generated on the fly from a random seed.

The main objective of this transformation is to ensure that the Hadamard-transformed weight matrix
adheres to a normal distribution. With this in mind, QuIP# no longer needs to learn the optimal
quantization “codebook”, but may instead use the optimal lattice for quantizing normal distribution.
As a result, QuIP# does not need to store the codebooks in memory, thereby reducing its overall
bitwidth. For instance, for Llama-2 7B vector quantization with group size 8 and 16-bit codes, VQ
produces a 2.29 bit model while QuIP# has slightly less than 2.01 bits per parameter.

We apply PV-Tuning to QuIP# in a manner similar to Vector Quantization. We start with a model
already quantized using the original QuIP# algorithm, specifically employing the official 2-bit
quantization of the Llama 2 7B model16. We then optimize this model using the same hyperparameters
as those for Vector Quantization (see Appendix K).

During P step, we optimize quantization scales (SU, SV), as well as any non-quantized model
parameters (embeddings, LM head, normalization scales and biases), but not the codebook, since
QuIP# relies on a predefined lattice structure that cannot be trained directly. During V step, we update
the discrete codes responsible for choosing a vector out of the said lattice using the same procedure
as in standard vector quantization.

We compare PV-Tuning against several other fine-tuning strategies: no fine-tuning, the built-in fine-
tuning procedure proposed in [71], as well as the technically improved version of that procedure using
the observations described in in G (denoted as “improved FT”). We report the resulting perplexities
and zero-shot accuracies in Table 9 and include them in other relevant tables as “QuIP#+PV”.

Table 9: Evaluation of LLAMA-2 7B quantized using QuIP# with various fine-tuning strategies. We
report perplexity on WikiText-2 [45] & C4 [54] and zero-shot accuracy. The Average is the mean
accuracy of 5 zero-shot tasks. Primary metrics are Wiki2 (PPL), C4 (PPL) and Average (Accuracy).

Method Avg bits Wiki2↓ C4↓ ArcC↑ ArcE↑ HellaSwag↑ PiQA↑ WinoGrande↑ Average↑

– 16.00 5.12 6.63 43.43 76.3 57.14 78.07 69.06 64.80
QuIP# (w/o FT) 2.01 8.22 11.01 28.84 55.56 42.94 71.38 62.43 52.23
QuIP# (built-in FT) 2.01 6.19 8.16 34.60 64.60 48.34 75.10 64.90 57.51
QuIP# (improved FT) 2.01 5.92 7.82 37.63 72.39 53.07 76.12 65.35 60.91
QuIP# + PV 2.01 5.71 7.51 39.33 72.01 54.10 77.20 66.38 61.81

In general, we found that QuIP# shows similar if not better improvements from PV-Tuning as VQ
and AQLM. Furthermore, when compared to only fine-tuning continuous parameters, QuIP# shows
better relative improvement from V steps than traditional vector quantization. We attribute this to
the fact that VQ can fine-tune its codebook even without PV-Tuning, whereas QuIP# relies on fixed
codebooks that cannot be learned. As a result, discrete parameters (codes) take up a larger fraction of
the total model size in QuIP#, allowing V steps to make more significant improvements. The detailed
instructions for running these experiments can be found in our official implementation17, in a separate
subsection of the common README file.

M On 1-bit Vector Quantization Options

As discussed above, there are several ways to achieve the same number of bits per parameter with
vector quantization. In this section, we explore the effect of varying the group size: either quantizing

16https://huggingface.co/relaxml/Llama-2-7b-E8P-2Bit
17https://github.com/Vahe1994/AQLM/tree/pv-tuning
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groups of 16 weights with larger codebooks, or groups of 8 weights with smaller ones. The results
with different group and codebook sizes are reported in Table 10.

Table 10: Evaluation of LLAMA-2 7B quantized using VQ+PV with different group size (GS, also
known as vector dimension) and code bits (CB, s.t. codebook size is 2CB). We report perplexity on
WikiText-2 [45] & C4 [54] and zero-shot accuracy. The Average is the mean accuracy of 5 zero-shot
tasks. Primary metrics are Wiki2 (PPL), C4 (PPL) and Average (Accuracy).

GS CB Avg bits Wiki2↓ C4↓ ArcC↑ ArcE↑ HellaSwag↑ PiQA↑ WinoGrande↑ Average↑

– – 16.00 5.12 6.63 43.43 76.3 57.14 78.07 69.06 64.80
8 8 1.00 7.62 9.73 28.84 61.66 44.66 72.14 61.56 53.77
8 9 1.13 7.15 9.20 30.55 65.11 46.68 72.63 62.04 55.40

16 14 1.02 8.28 10.37 25.85 57.58 40.88 68.99 57.77 50.21
16 16 1.58 7.32 9.35 29.44 64.14 46.03 73.12 63.38 55.22

Overall, we figure out that smaller groups provide better performance for the same model size. We
hypothesize that PV-Tuning is better able to deal with these configurations because with smaller
group size, discrete codes constitute a larger fraction of model parameters, which allows the V step
of our algorithm to achieve more significant improvements. In the initial version of manuscript we
performed all 1-bit experiments with suboptimal group size 16. More recent results for group size 8
are provided under a separate name “PV (gs 8)” in Table 2.

N Additional Details and Evaluations for Section 4.3

In this section, we report additional results for LLAMA 2 & 3, MISTRAL and PHI-3 and discuss
baselines. In this section, we always evaluate PV-tuning for vector quantization, using 14-16 bits
per codebook for a group of 8 or 16 weights, with each combination fitting a particualr niche. For
instance, 16 bits per 8 weights is slightly over 2 bits per weight, whereas 14 bits per 16 weights is
either at or below 1 bit per weight, depending on the model size.

We use LLAMA 2 models as our main benchmark as they are well studied in the PTQ community.
Here, we gather the latest state-of-the-art algorithms at the time of publication and group them
according to their target number of bits, roughly 1-1.7 bits per weight (Table 11) and 2-2.5 bits per
weight (Table 12).

Both our training runs and almost all baselines use the same sample of RedPajama data from previous
sections18. The only exception to this is OneBit that uses a corpora of LLM outputs gathered
specifically for that paper [77].

The source code for this method was unavailable until very recently. The official link
https://github.com/xuyuzhuang11/OneBit used to point to an empty repository until
the code was released in a commit https://github.com/xuyuzhuang11/OneBit/commit/
380a6aedc3c060993056ff50b79065e893be99ae on May 10th. Thus, unfortunately, we did not
have time to make OneBit compatible with models except LLAMA 2 7B and 13B that were featured
in the original paper.

For LLAMA 3, we evaluate PV-tuning of vector quantization against the baselines introduced in [33].
Curiously, their paper seems to compute perplexity differently than our paper. Since our protocol
matches with most prior works [22, 18, 21, 71], we chose to re-evaluate the results from [33] with
our perplexity code and not the other way around. We calibrate using the official code 19 and reuse
published models where available.

O Inference Speed with Vector Quantization Kernels

In this section, we demonstrate that PV-Tuning can achieve speedups by using fast inference kernels
from the underlying quantized representation. Since our main experiments use vector quantization,

18https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample
19https://github.com/Macaronlin/LLaMA3-Quantization
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Table 11: Evaluation of quantized LLAMA 2 models for 1-1.7 bits per weight, grouped by bitwidth.
We report perplexity on WikiText-2 [45] & C4 [54] and zero-shot accuracy. The Average is the mean
accuracy of 5 zero-shot tasks. Primary metrics are Wiki2 (PPL), C4 (PPL) and Average (Accuracy).

Size Method Avg bits Wiki2↓ C4↓ ArcC↑ ArcE↑ HellaSwag↑ PiQA↑ WinoGrande↑ Average↑

7B

– 16.00 5.12 6.63 43.43 76.3 57.14 78.07 69.06 64.80
BiLLM 1.08 32.48 40.52 24.4 36.2 34.8 60.6 52.4 41.68
OneBit 1.0 9.73 11.11 29.61 41.58 52.58 68.12 58.41 50.06

PV-Tuning 1.02 8.28 10.37 25.85 57.58 40.88 68.99 57.77 50.21

PB-LLM 1.70 69.20 80.15 25.00 28.00 27.70 53.80 49.30 36.76
PV-Tuning 1.58 7.32 9.35 29.44 64.14 46.03 73.12 63.38 55.22

13B

– 16.00 4.57 6.05 48.38 79.42 60.03 79.05 72.22 67.82
BiLLM 1.10 16.77 27.54 21.84 46.84 30.97 60.61 56.75 43.40
OneBit 1.00 8.76 10.15 33.62 43.10 56.43 70.13 61.72 53.00

PV-Tuning 0.97 7.23 9.31 30.8 63.09 47.03 72.25 62.35 55.10

PB-LLM 1.70 151.09 144.59 21.89 35.08 24.82 54.17 52.76 37.74
PV-Tuning 1.37 6.65 8.72 34.04 67.38 49.14 73.94 65.51 58.00

70B

– 16.00 3.12 4.97 54.35 82.74 64.79 82.15 77.98 72.40
BiLLM 1.08 8.41 15.19 38.91 67.3 45.71 69.7 67.64 57.85

PV-Tuning 1.01 6.09 8.20 38.31 71.80 53.98 75.24 68.43 61.55

PB-LLM 1.70 28.37 32.63 39.89 49.50 36.62 61.43 62.80 50.05
PV-Tuning 1.14 5.52 7.50 42.66 74.96 56.42 77.37 71.51 64.58

Table 12: Evaluation of quantized LLAMA 2 models for 2-2.3 bits per weight, grouped by bitwidth.
We report perplexity on WikiText-2 [45] & C4 [54] and zero-shot accuracy. The Average is the mean
accuracy of 5 zero-shot tasks. Primary metrics are Wiki2 (PPL), C4 (PPL) and Average (Accuracy).

Size Method Avg bits Wiki2↓ C4↓ ArcC↑ ArcE↑ HellaSwag↑ PiQA↑ WinoGrande↑ Average↑

7B

– 16.00 5.12 6.63 43.43 76.30 57.14 78.07 69.06 64.80
QuIP# 2.02 8.22 11.01 34.60 64.60 48.34 75.10 64.90 57.51
AQLM 2.02 6.64 8.56 33.28 61.87 49.49 73.56 64.17 56.47

PV-Tuning 2.02 5.84 7.62 38.40 71.17 53.50 76.99 66.69 61.35

AQLM 2.29 6.29 8.11 34.90 66.50 50.88 74.92 65.67 58.57
PV-Tuning 2.29 5.68 7.47 38.91 72.90 53.94 77.37 67.72 62.17

13B

– 16.00 4.57 6.05 48.38 79.42 60.03 79.05 72.22 67.82
QuIP# 2.01 6.06 8.07 39.50 69.30 53.44 77.30 67.70 61.45
AQLM 1.97 5.65 7.51 37.80 69.78 53.74 76.22 65.43 60.59

PV-Tuning 1.97 5.12 6.83 43.00 75.38 57.96 78.24 70.01 64.92

AQLM 2.19 5.41 7.21 41.98 75.04 55.49 76.99 69.53 63.81
PV-Tuning 2.19 5.05 6.74 45.65 77.57 58.00 78.07 70.96 66.05

70B

– 16.00 3.12 4.97 54.35 82.74 64.79 82.15 77.98 72.40
QuIP# 2.00 4.16 6.01 48.70 77.30 60.79 80.30 75.90 68.60
AQLM 2.07 3.94 5.72 51.96 81.44 61.46 80.25 76.64 70.35

PV-Tuning 2.07 3.78 5.56 51.88 81.02 63.07 80.74 76.87 70.72

we adopt simplified version of AQLM inference kernels with one codebook of size 16 for groups
of 8 consecutive weights. This kernel is not written by us: it was added to the official AQLM
implementation by an open-source contributor.

We adapt this inference code to our codebase and switch it to using group size 16 to support out 1.1-
1.58 bit models. We evaluate inference speeds on a single Nvidia RTX 3090 GPU using transformers
with cuda graphs20.

20The specific version of each library can be found in ‘requirements.txt‘
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Table 13: Evaluation of quantized LLAMA 3 models for 1-2.3 bits per weight, grouped by bitwidth.
We report perplexity on WikiText-2 [45] & C4 [54] and zero-shot accuracy. The Average is the mean
accuracy of 5 zero-shot tasks. Primary metrics are Wiki2 (PPL), C4 (PPL) and Average (Accuracy).

Size Method Avg bits Wiki2↓ C4↓ ArcC↑ ArcE↑ HellaSwag↑ PiQA↑ WinoGrande↑ Average↑

8B

– 16.00 5.54 7.10 50.43 80.09 60.19 79.71 72.61 68.60
BiLLM 1.10 28.80 65.00 17.70 36.00 28.90 56.10 51.00 37.90

PV-Tuning 1.01 11.13 11.63 25.43 59.09 41.01 68.26 56.27 50.01

PB-LLM 1.70 35.68 197.56 17.50 31.70 27.70 52.50 50.40 36.00
PV-Tuning 1.54 9.43 10.26 32.68 65.78 46.66 72.63 64.40 56.43

QuIP 2.00 76.95 98.47 21.30 29.00 29.20 52.90 51.70 36.80
PB-LLM 2.00 21.74 61.04 17.20 37.80 29.80 57.00 52.50 38.80
DB-LLM 2.00 12.77 14.82 28.20 59.10 42.10 68.90 60.40 51.80

PV-Tuning 2.00 6.99 8.29 42.75 75.84 55.52 77.75 69.93 64.36

PV-Tuning 2.30 6.76 8.10 42.32 75.46 56.21 78.45 71.67 64.82

70B

– 16.00 2.59 5.78 60.41 86.7 66.34 82.48 80.9 75.366
BiLLM 1.10 15.26 65.07 25.11 46.42 37.48 58.21 53.63 44.17

PV-Tuning 1.00 8.67 9.68 25.51 54.34 48.71 65.56 63.22 51.47

PB-LLM 1.70 16.27 54.03 25.8 49.90 34.90 56.5 53.10 44.1
PV-Tuning 1.14 7.76 8.93 33.28 63.89 53.39 69.86 69.61 58.01

QuIP 2.00 11.63 18.54 26.50 48.90 40.90 65.30 61.70 48.70
PB-LLM 2.00 10.33 28.89 25.10 40.60 42.70 65.20 56.40 46.00

PV-Tuning 2.07 4.55 6.54 50.77 80.22 63.85 79.22 78.06 70.42

Table 14: Evaluation of quantized MISTRAL V0.1 7B (A) and PHI 3-MINI-4K-INSTRUCT 3.8B (B)
models for 1-2.3 bits per weight, grouped by bitwidth. We report perplexity on WikiText-2 [45] &
C4 [54] and zero-shot accuracy. The Average is the mean accuracy of 5 zero-shot tasks. Primary
metrics are Wiki2 (PPL), C4 (PPL) and Average (Accuracy).

Size Method Avg bits Wiki2↓ C4↓ ArcC↑ ArcE↑ HellaSwag↑ PiQA↑ WinoGrande↑ Average↑

7B
(A)

– 16.00 4.77 5.71 50.43 80.09 60.19 79.71 72.61 68.60
AQLM 1.01 70.88 34.67 19.11 27.36 26.3 52.99 48.38 34.83

PV-Tuning 1.01 7.58 8.14 27.73 60.82 44.33 69.97 60.38 52.65

QuIP# 2.01 6.02 6.84 39.76 72.14 52.95 76.71 69.30 62.20
AQLM 2.01 6.19 6.90 30.8 49.87 25.63 56.53 57.06 43.98

PV-Tuning 2.01 5.29 6.17 44.20 77.36 58.21 79.05 72.77 66.32
AQLM 2.27 5.78 6.55 42.06 75.17 55.09 76.93 70.24 63.90

PV-Tuning 2.27 5.22 6.10 45.31 77.57 58.61 79.22 70.96 66.33

3.8B
(B)

– 16.00 4.77 5.71 60.41 86.7 66.34 82.48 80.90 75.37
AQLM 1.03 102.54 85.20 18.86 28.16 27.13 53.54 49.80 35.50

PV-Tuning 1.03 11.71 14.59 21.50 49.87 34.62 65.67 54.70 45.27
AQLM 1.60 34.36 35.16 19.62 35.10 29.71 57.24 51.7 38.67

PV-Tuning 1.60 9.21 12.16 30.89 63.55 43.09 70.35 61.4 53.86

AQLM 2.03 8.85 12.19 41.04 74.49 47.25 72.36 66.93 60.41
PV-Tuning 2.03 6.88 10.08 46.84 78.24 53.75 78.67 71.03 65.71

AQLM 2.30 8.07 11.23 47.01 78.03 50.51 75.95 70.8 64.46
PV-Tuning 2.30 6.63 9.89 50.51 79.5 55.32 79.49 73.01 67.57

We were able to acheve 47.4 tokens per second for 7B model, 32.8 tokens per second for 13B model
and 7.2 tokens per second for LLAMA 2 70B model. Compared to 16-bit inference code, this results
in speedups of 14%, 22% and 28% respectively. Note that PV-Tuning does not make the model
inherently faster than, for instance, AQLM. Instead, it can achieve better quality with lower bit
models, allowing practitioners to run smaller and faster models for the same accuracy target.
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P The Choice of the Initial Point x0

Algorithm 1 converges from any initial point x0 ∈ Rd
c (3.1), but it might converge to a different final

point x̂(x0). In this section, we discuss two possible variants of instantiating the initial point.

P.1 Clipping of x⋆

Notation: [d] := {1, · · · , d} is the set of d distinct natural numbers from 1 to d.

Assume we have the vector x with dimensionality d and let c ∈ [d]. Let us define the clipping operator
C(x) : Rd → Rd

≤c in the following way:

C(x) = x̃ : V (x̃) ⊆ V (x) and |V (x̃)| ≤ c (15)
We can come up with different variants of clipping operators C(x), but in our experiments, we choose
C(x) such that V (x̃) consists of the smallest distinct elements from V (x). We will call this clipping
operator by C−(x).
Example P.1. If x = {1, 1, 3, 5, 9}, then having c = 2 the clipping operator C−(x) = x̃ =
{1, 1, 3, 3, 3}. So, x̃ consists of smallest 2 elements from V (x) = {1, 3, 5, 9}.

P.2 Random x0 ∈ Rd
c

Now let us define the algorithm for generating random points from Rd
c (Alg. 6).

Algorithm 6 Generation of Random Point x0 ∈ Rd
c

1: Parameters: dimensionality d, number of distinct values c
2: Generate a set U with c unique elements: U = {ui ∈ Rd} : |U | = c.
3: Sample d random elements x0

i ∈ U : x0 = (x0
1, · · · , x0

d)
T such that |V (x0)| = c.

Different random x0 ∈ Rd
c provide different loss functions. To get more stable and smoothed results

we ran the algorithm (1) with different initial points, generated by algorithm (6). We will denote r as
the number of runs with different random initialization.

Q Small-Scale Experiments and Interpretation

Q.1 Objective function

Let c ∈ [d] and consider the problem

min
x∈Rd

≤c

ϕ(x), (16)

where ϕ : Rd → R, and Rd
≤c ⊂ Rd is the set of all vectors in Rd whose d entries take at most c

distinct values. In other words, the cardinality of the set
V (x) := {x1, · · · , xd} (17)

is at most c. For small experiments, we aim to minimize the following objective

ϕ(x) =

d∑
i=1

ai(xi − x⋆
i )

2 = (x− x⋆)TΛ(x− x⋆), (18)

where ai ∈ Rd, x⋆ is a unique optimal point: ∇ϕ(x⋆) = 0 and

Λ = diag(a1, · · · , ad) =

a1 · · · 0
...

. . . 0
0 0 ad

 . (19)

We set ai = i/d for i ∈ [d]. Hence, we have the Lipschitz continuity for (18) with L = 1. Note that
the Algorithm 1 does not guarantee to converge to x⋆. Let x̂ denote the vector to which the Algorithm
1 converges.
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Q.2 Tiny-scale experiments (d = 6, c ∈ [1, 6])

We applied PV algorithm to the problem (16) with ϕ(x) being (18) (Fig. 6). Number of runs with
different random initial points r = 50.
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(a) PV algorithm with different values of c ∈
[1, 6], d = 6.
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(b) The influence of P and V steps on the loss
function ϕ(x), c = 3.

Figure 6: PV algorithm (1) applied on the very small dimensional (d = 6) quadratic objective (18).
The starting point x0 is chosen randomly using the ng algorithm (6).

When c = 1 we converge just in one step of PV (red line on Fig.6a) because we have only one degree
of freedom to play with and we fully utilize it on the first step. One can show that the solution for the

case c = 1 will be x̂ =
(∑d

i=1 ai

)−1 ∑d
i=1 aix

⋆
i .

Note that as we increase the maximum number of unique elements c, the final loss ϕ(x̂) decreases up
until the moment when c = d, when the loss is zero (the plot 6a is in logarithmic scale and that is
why we cannot see the last line).

We run PV algorithm (1) with different random starting points x0 ∈ Rd
c (6). Different starting points

can lead to different local optimum. That is why we ran the algorithm (1) several times with different
random initial points x0. A number of runs r = 50, we used this value for all further experiments.

Each of the two steps of the PV algorithm contributes to the convergence. To observe this we plotted
the loss function over the iterates and explicitly marked the progress of both P and V steps (Fig. 6b).
We can see that we have progress during each of these steps and one single P and V step is not enough
to obtain a solution even in this very small and simple case.

These simple experiments demonstrate that

1. larger c (smaller compress ratio) provides better final accuracy
2. several P and V steps are needed to converge to the solution

Q.3 Interpretation of P (y) ⊒ P (xk)

As we mentioned before, we select the initial point x0 ∈ Rd
c randomly such that it has c unique

elements in its linear shell V (x0). To understand the notation P (y) ⊒ P (xk), defined in the chapter
(3.1), let us consider the first step of the algorithm, specifically the P step.

On the first step of the algorithm we select a new point by solving the following optimization problem:

y0 = argmin
y∈Rd

≤c

{ϕ(y) : P (y) ⊒ P (x0)}. (20)

Here we have a random point x0, with some partition P (x0) = {P1(x
0), · · · , Pc(x

0)} – c sets of
equal elements from x0. We find y0 such that minimizes ϕ(y0) and have the same or smaller number
of partitions: P (y0) = {P1(y

0), · · · , Ps(y
0)}, where s ≤ c.
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Strict equality of two sets, P (x0) and P (y0) would mean that the linear shell – the number of unique
elements of the vector x0 is equal to the number of unique elements from y0 (c = s). In our PV
algorithm we allow y0 to have smaller number of unique elements than x0, so we possibly merge
some partitions of x0.

It is worth to mention that in real experiments we observe that the number of unique elements did not
change or the change is not significant.

Q.4 Simple example of P (y) ⊒ P (xk)

Let d = 8 and x = (1, 3, 1, 4, 4, 5, 1, 3). Then x ∈ Rd
c , where c = 4 since x consists of 4 unique

floats: 1, 3, 4 and 5. We have P1(x) = {1, 3, 7}, P2(x) = {2, 8}, P3(x) = {4, 5} and P4(x) = {6}.
So, P (x) = {P1(x), P2(x), P3(x), P4(x)} = {{1, 3, 7}, {2, 8}, {4, 5}, {6}}. P (x) is a set whose
elements are four sets, forming a partition of {1, 2, · · · , 8}.

Let y = {1, 1, 1, 4, 4, 4, 1, 1}. Then y ∈ Rd
c , where c = 2. We have P1(y) = {1, 2, 3, 7, 8} and

P2(y) = {4, 5, 6}. So, P (y) = {{1, 2, 3, 7, 8}, {4, 5, 6}}. Notice that each element of P (x) is a
subset of some element of P (y). For example, {2, 8} is a subset of {1, 2, 3, 7, 8} and {6} is a subset
of {4, 5, 6}. Because of this, by our definition, P (y) ⊒ P (x).

Q.5 Small-scale experiments (d = 100, c ∈ [1, 100])

The problem of the algorithm (1) is that the V step requires the full parameter search which gives us
the complexity O(cd). Even for small tasks, this becomes unpractical to solve.
Example Q.1. Let us take d = 100 and c = 10, then the complexity of one V step will be O(10100).
Modern computers can make roughly 10 petaflops or 1016 calculations per second, hence we will
have to wait ∼ 1076 years to make a single V step.

Let us consider special sets of function ϕ(x) that we will call separable functions. This class of
functions should satisfy the assumption (Q.2).
Assumption Q.2 (Separable function). The function ϕ(x) : Rd → R can be written in the form
ϕ(x) =

∑d
i=1 ϕi(xi), where ϕi(·) is a mapping ϕi(·) : R → R.

Example Q.3. The objective function (18) is a sum of squares that can be written in the following
form:

ϕ(x) =

d∑
i=1

ai(xi − x⋆
i )

2 =

d∑
i=1

ϕi(xi), (21)

where ϕi(xi) = ai(xi − x⋆
i )

2. Hence, the objective (18) is a separable function.

One can show that for separable functions (Q.2) the algorithm (1) can be written in the form (7).
Hence, for separable functions, we can compute the V step in O(c · d) operations (instead of O(cd)),
which makes the algorithm (1) practical to use.

Algorithm 7 PV Algorithm with Optimized V step

1: Initialization: starting point x0 ∈ Rd
c

2: for k = 0, 1, . . . do
3: yk = argminy∈Rd

{
ϕ(y) : P (y) ⊒ P (xk)

}
(P step)

4: for i = 0, 1, . . . , d do
5: xk+1

i = argminxi∈R
{
ϕi(xi) : xi ∈ V (yk)

}
(Optimized V step)

6: end for
7: end for

Then we ran the optimized PV algorithm (7) on the quadratic objective (18). The results are presented
in (Figure 7). Number of runs with different random initial points r = 50.

For these experiments, we see the same results as for tiny scale with d = 6 (Q.2): larger c (smaller
compress ratio) provides better final accuracy, and several P and V steps have to be done to obtain
better solution. In addition, we observe that the PV algorithm does not decrease the dimensionality
(number of unique elements) of V (x).
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As it was mentioned before, the algorithm (1) is conceptual only and cannot be used in the raw form
in practice. That is why we need to move to the experiments with linearized V step.
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Figure 7: Optimized PV algorithm (7) applied on the quadratic objective (18), d = 100. Number of
runs with different random initial points r = 50.

Q.6 Linearized PV

Linearized V step (B.1) allows us to greatly reduce the cost of one V step. We ran Linearized PV on
the quadratic objective (18) (Fig. 8).
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(a) Linearized PV algorithm (B.1) with different
T ∈ [1, 5]. Larger T provides faster convergence
rates, but the same final accuracy.
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Figure 8: Experiments with Linearized PV algorithm (B.1).

From the first experiment (Fig. 8a) we can see that

1. increasing T provides slightly better convergence rates and approximately the same final
accuracy. We saw the similar results on large-scale experiments. Hence, we can use T = 1
to save computations.

2. Linearized PV algorithm (B.1) converges to a worse accuracy than the exact PV (1).

3. Linearized PV has to make more iterations than PV to converge

The second plot (Fig.8b) demonstrates the effect of multiple Linearized V step. We can see that the
largest effect comes from the first V step.
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Q.7 Linearized PV + sparse updates

In previous section (Q.6) we have seen that Linearized PV algorithm converges to a worse accuracy
than the exact PV (1).

Linearized PV (B.1) with combination of sparse updates (3.3) is intended to mitigate this issue.

On (Fig. 9a) we can see comparison of three methods: exact PV (1) – red line, Linearized PV (B.1) –
blue line and Linearized PV with sparse updates (3.3) – green line.

From this experiment we observe

1. Linearized PV with sparse updates converges to a better accuracy than Linearized PV

2. inearized PV + sparse updates has to make more iterations than Linearized PV and exact PV
to converge

Hence, this approach helps us to converge to a better accuracy, but with a price of larger number of
iterations to converge.
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Figure 9: Comparison of the exact PV algorithm (1) with Linearized PV (B.1) and Linearized PV +
sparse updates (3.3).

We can use different rules for choosing the subspace Sk which produce different convergence rates
and the final accuracy levels (9b).

0 10 20 30 40 50
Iteration k

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L
k

L
L k  greedy Top-K
L k  random uniform
L k  random proportional

(a) The behaviour of LSk in Linearized PV +
sparce updates.

0 10 20 30 40 50 60 70 80
Iteration k

55

60

65

70

75

80

|V
(x

k )|

x0 is random
x0 is random
x0 is random
x0 is random
x0 is random
x0 is random
x0 is random
x0 is random
x0 is random
x0 is random

(b) Degradation of dimensionality of V (x) for
Linearized PV algorithm (B.1).

Figure 10: Comparison of the exact PV algorithm (1) with Linearized PV (B.1) and Linearized PV +
Sparse Updates (3.3).
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In large scale experiments we used sparse updates with Sk being chosen greedily based on the
absolute values of the entries of gradient vector |∇iϕ(y

k)| – green line. Here we demonstrated that
other strategies based on random uniform sampling or random proportional to |∇iϕ(y

k)| sampling
can be even more advanced providing better final accuracy at cost of larger number of iterations to
converge – purple and orange lines (Fig. 9b).

We can see that Linearized PV with sparse updates can converge to even a better accuracy than the
exact PV algorithm. The problem of Linearized PV algorithm is that we come to the local minimum
and cannot get out of that minima because of the small value of the gradient (we are near to a real
solution) and small stepsize.

Linearized PV with sparse updates allows us to mitigate this problem by reducing the subspace from
Rd to Sk in which we are solving this optimization problem. This allows us to greatly reduce the
local Lipschitz constant from L to LSk and hence significantly increase the stepsize γ = 1/LSk . We
demonstrated how LSk changes for Linearized PV with different sparse updates sampling methods
(Fig. 10a).

R PV+ Algorithm

We can have degradation of |V (xk)| during both the P and V steps. Here are examples for both of
them with optimizing simple quadratic objective ϕ(x) =

∑d
i=1 (xi − x⋆

i ) (case when all ai, i ∈ [d]
in (18) are equal to one).

1. Degradation during the P step: Let x⋆ = {0, 2, 1}, x0 = {x, x, y}, so |V (x0)| = 2, then
after the P step we will have y0 = {1, 1, 1}, hence |V (y0)| = 1.

2. Degradation during the V step: Let x⋆ = {2, 10, 0, 11}, x0 = {x, y, y, z}, so |V (x0)| =
3, then after the P step we will have y0 = {2, 5, 5, 11}. Finally, after the V step we have
x1 = {2, 11, 2, 11}, so |V (x1)| = 2.

In real experiments we observe decreasing of |V (x)|. You can observe this phenomena with Lin-
earized PV algorithm (10b). As we can see we have a big decreasing of |V (x)| during the first several
iterations. We can use this gap to find even better solution with improved final accuracy and faster
convergence rate.

To add additional unique element in V (x) we considered the modification of V step: V+ step, where
we allow |V (x)| to become larger up to some upper bound.

Let ϕ(·) is a mapping ϕ(·) : Rd → R and the vector x⋆ ∈ Rd be the optimal point: ∇ϕ(x⋆) = 0. Let
the vector x ∈ Rd

≤c and define the set W (x, x⋆, c) such that it contains at most c − |V (x)| unique
elements from V (x⋆) without elements from V (x):

W (x, x⋆, c) = V (x⋆) \ V (x) : |W (x, x⋆, c)| = c− |V (x)| (22)

Algorithm 8 PV+ Algorithm

1: Parameters: starting point x0 ∈ Rd
≤c, the optimal point x⋆, maximal number of distinct values

c,
2: for k = 0, 1, . . . do
3: yk = argminy∈Rd

{
ϕ(y) : P (y) ⊒ P (xk−1)

}
(P step)

4: xk+1 = argminx∈Rd

{
ϕ(x) : V (x) ⊆ V (yk)

⋃
W (yk, x⋆, c)

}
(Modified V step)

5: end for

Theorem R.1. Assume ϕ is bounded below, and let x0 ∈ Rd
≤ĉ. Then the algorithm PV+ has the

following guarantees

(i) yk, xk ∈ Rd
≤ĉ for all k ≥ 0,

(ii) ϕ(xk+1) ≤ ϕ(yk) ≤ ϕ(xk) for all k ≥ 0, and

(iii) the sequence {ϕ(xk)}k≥0 converges to some value, which is smaller or equal to one
produced by PV algorithm
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Proof. Part (ii): Since

xk+1 = arg min
x∈Rd

{
ϕ(x) : V (x) ⊆ V (yk)

⋃
W (yk, x⋆, c)

}
and because x = yk satisfies the constraint V (x) ⊆ V (yk)

⋃
W (yk, x⋆, c), we conclude that

ϕ(xk+1) ≤ ϕ(yk).

The rest of the proof is identical to (A.1).

S Broader Impact

The main impact of our work, both positive and negative, is in the ability to deploy higher-quality
LLMs to run on memory-limited devices like desktops, laptops, and phones. On the positive side, this
would allow practitioners to develop offline LLM applications (e.g. translate service), lower-latency
chat assistants that are not dependant on network latency, or privacy-sensitive LLM applications
where the user’s private data never leaves their device. Furthermore, this can facilitate the creation
of free open-source software based on LLMs by eliminating the need to maintain costly inference
servers on the backend. Since phones are everywhere and LLMs are powerful general-purpose tools,
PV-tuned models could significantly impact how the general population uses LLMs to complete tasks.

However, LLMs are still a dual-use technology with the potential for significant benefits and serious
harm. Risks range from deliberate misuse (e.g. spam generation) and accidental misuse to negative
economic side-effects. An upper bound on these risks is that PV tuning does not create new
(potentially risky) LLM capabilities, merely making existing ones more accessible.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims are that the PV-tuning algorithm 1) achievstate-of-the-artart
quantized LLM quality for 1-2 bits per parameter (backed by Section 4.3), 2) Pareto optimal
at around 2 bits (also Section 4.3), 3) and is compatible with various methods (Section 4.2).
In the introduction, we also claim that the advanced quantized representations, such as those
having sparse outliers, do not give significant benefit on top of simple vector quantization
with fine-tuning: this part is backed by 4.1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the methodological limitations of our study near the end, after
Section 4.3. We also explain limitations for practitioners in Section 3.4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when the image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
addressing problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We carefully introduced the assumptions (e.g. that ϕ(·) is L-smooth) and
provided proofs in appendix. To the best of our knowledge, these proofs are both correct
and complete.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided the in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We train open-access LLMs on open datasets and release our full training code.
We do our best to provide instructions and hyperparameters in the code, though running our
algorithm in different conditions may require basic tuning.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: As we state above, we release the full implementation for the PV algorithm
with requisite instructions. We do not introduce new datasets and use openly available ones.
We also plan to release the main quantized models in the non-anonymized version of the
paper, since it would be impractical to upload them with the supplementary zip archive.

Guidelines:

• The answer NA means the paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe our setup in Sections 3.4 and 4, with additional hyperparameters
baked into the supplementary code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, the in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

44

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Justification: We report error bars for small-scale experiments Q. For full fine-tuning runs,
we do not include error bars since running those would be prohibitively costly for us.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar and then state that they have a 96%CI if the
hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type computing workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the hardware setting, calibration setting, time, and memory require-
ments in Section 4, which is sufficient for practitioners to reproduce our results. We omit
some details, e.g. which runs were restarted due to unrelated server infrastructure issues.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute worker CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required mocomputingute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research is focused on the base capability and accessibility of LLMs.
While working on LLMs always has potential externalities, our specific work adheres to the
ethics guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (eg. if there is a special consider-
ation due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: While our work is more concerned with fundamental matters of discrete
optimization and LLM quantization, we provide a brief overview of its societal impacts in
Appendix S.
Guidelines:

• The answer NA means that there is no societal impact on the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not release any newer models, and quantizing existing models
typically results in a less capable (and therefore less risky) model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make the best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited, and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: We use academically published artifacts (datasets, models, etc) and cite their
respective authors.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release the code and provide documentation in the form of README and
detailed docstrings. Both are included in the supplementary archive.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not use human subjects in our experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

47

paperswithcode.com/datasets


Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not conduct any research on human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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