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Abstract001

Retrieval-augmented generation (RAG) and002
long-context language models (LCLMs) both003
address context limitations of LLMs in open-004
domain question answering (QA). However, op-005
timal external context to retrieve remains an006
open problem: fixing the retrieval size risks007
either wasting tokens or omitting key evidence.008
Existing adaptive methods like Self-RAG and009
SELF-ROUTE rely on iterative LLM prompting010
and perform well on factoid QA, but struggle011
with aggregation QA, where the optimal con-012
text size is both unknown and variable.013

We present Adaptive-k retrieval, a simple and014
effective single-pass method that adaptively se-015
lects the number of passages based on the dis-016
tribution of the similarity scores between the017
query and the candidate passages. It does not018
require model fine-tuning, extra LLM infer-019
ences or changes to existing retriever–reader020
pipelines. On both factoid and aggregation021
QA benchmarks, Adaptive-k matches or outper-022
forms fixed-k baselines while using up to 10×023
fewer tokens than full-context input, yet still024
retrieves 70% of relevant passages. It improves025
accuracy across five LCLMs and two embed-026
ding models, highlighting that dynamically ad-027
justing context size leads to more efficient and028
accurate QA.029

1 Introduction030

Despite remarkable progress in LLMs, efficiently031

incorporating external knowledge during inference032

for long or dynamic contexts remains a key chal-033

lenge. Two major paradigms have emerged to ad-034

dress this: long-context language models (LCLMs),035

which extend the model’s context window to036

directly ingest more information, and retrieval-037

augmented generation (RAG), which retrieves rele-038

vant documents from an external corpus to con-039

dition the generation. While these approaches040

are sometimes presented as alternatives (Li et al.,041

2024a; Yu et al., 2024), recent studies highlight 042

their complementary nature (Li et al., 2024b). 043

A central bottleneck in both paradigms is deter- 044

mining how much context to include. Fixed-size 045

retrieval budgets (e.g., top-k retrieval) are subopti- 046

mal, because they either retrieve too little and risk 047

omitting key evidence, or retrieve too much, which 048

can overwhelm the model, increase latency and 049

costs, and degrade performance (Yu et al., 2024; 050

Leng et al., 2024; Jin et al., 2024). As Yang (2024) 051

observes, the challenge in long-context reasoning 052

lies not only in document length but also in how 053

relevant information is distributed and duplicated 054

within the context. Crucially, query type plays a 055

major role: factoid questions may need only a few 056

targeted facts, while aggregation queries (Maekawa 057

et al., 2025) often require reasoning based on infor- 058

mation from multiple evidence spans. This variabil- 059

ity makes fixed-k retrieval suboptimal for complex 060

tasks. 061

To address this, several hybrid and adaptive re- 062

trieval methods such as Self-RAG (Asai et al., 063

2023), Adaptive-RAG (Jeong et al., 2024), and Dy- 064

namic context cutoff (Xie et al., 2025) have been 065

proposed, which estimate retrieval depth via iter- 066

ative prompting, each time fetching a fixed num- 067

ber of documents. However, they assume white- 068

box access to the LLM: Self-RAG requires fine- 069

tuning the LLM, while dynamic context cutoff de- 070

pends on access to internal KV cache states. This 071

makes them incompatible with closed-source or 072

API-based LLMs. While effective on factoid-style 073

questions, they also face significant limitations in 074

terms of scalability, latency, and deployment flex- 075

ibility. Although SELF-ROUTE (Li et al., 2024b) 076

offers a more modular solution, it still relies on a 077

fixed retrieval size and lacks the ability to adapt to 078

varying information needs across queries and con- 079

text documents. This motivates our core research 080

question: How can we estimate the optimal number 081

of passages to retrieve for a given query and set of 082
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context documents, without supervision or iterative083

prompting?084

To address this question, we introduce Adaptive-085

k retrieval, a simple yet effective plug-and-play086

method for dynamically selecting a query- and087

context-specific number of documents in a sin-088

gle retrieval pass. Our approach relies on analyz-089

ing the distribution of similarity scores between a090

query and candidate documents. By identifying the091

largest gap in the sorted similarity distribution, it092

estimates an optimal cutoff point, retrieving the top-093

k documents before the gap. Unlike prior adaptive094

retrieval methods, Adaptive-k requires no model095

fine-tuning, no access to internal components and096

no iterative prompting. It is fully modular, allowing097

seamless integration with existing retriever–reader098

pipeline and compatibility with black-box LLMs.099

By relying solely on the distributional structure of100

similarity scores, Adaptive-k adjusts the retrieval101

size on a per-query basis. This simple yet prin-102

cipled strategy leads to significant reductions in103

input length and inference cost, while maintaining104

or even improving the answer quality across both105

factoid and aggregation-style QA tasks. We com-106

pare Adaptive-k retrieval to prior approaches in107

Table 1.108

We evaluate Adaptive-k on both factoid and109

aggregation-style QA tasks across multiple LCLMs110

and embedding models. Our experiments span111

two representative long-context benchmarks: HEL-112

MET (Yen et al., 2025), which includes factoid113

QA tasks with up to 128k-token contexts, and114

HoloBench (Maekawa et al., 2025), which focuses115

on aggregation-style queries. Our results show that116

on aggregation-QA, Adaptive-k outperforms SELF-117

ROUTE by up to +9 points in answer accuracy on118

high-information tasks. It consistently maintains119

∼70% context recall and reduces token usage by120

2× to 10× compared to full-context baselines. On121

factoid QA, Adaptive-k matches or exceeds the122

accuracy of fixed-size retrieval with up to 99% re-123

duction in input tokens, effectively pruning irrele-124

vant content. These findings highlight the impor-125

tance of query-specific context sizing and establish126

Adaptive-k as a simple, robust, and efficient alterna-127

tive to more complex adaptive retrieval strategies.128

In summary, our key contributions are:129

• We propose Adaptive-k, a simple yet effective130

plug-and-play method for adaptive document131

retrieval that dynamically adjusts context size132

based on similarity distribution statistics.133

• Adaptive-k achieves higher accuracy than 134

prior methods and up to 99% token reduc- 135

tion on factoid and aggregation QA against 136

LCLMs with full context. 137

• We show that no single fixed-size retrieval 138

strategy fits all settings. In contrast, Adaptive- 139

k shows robust performance across multiple 140

LLMs, embedding models and benchmarks. 141

2 Related Work 142

RAG and LCLMs are two prominent paradigms for 143

equipping LLMs with external knowledge. Recent 144

studies show that LCLMs can match or outperform 145

RAG in certain QA tasks (Li et al., 2024a; Yu et al., 146

2024), yet the two methods are fundamentally com- 147

plementary. 148

Several approaches have been proposed to lever- 149

age both the strengths of RAG and LCLMs with 150

flexible retrieval strategies. Self-RAG (Asai et al., 151

2023) trains an LLM to generate reflection tokens 152

that enable retrieval on the fly, so that the LLM can 153

determine whether it needs any additional docu- 154

ment by itself. SELF-ROUTE (Li et al., 2024b) asks 155

an LLM whether it can answer the query with the 156

retrieved context; if not, the LLM is given the full 157

context. Adaptive-RAG (Jeong et al., 2024) uses a 158

workflow that iteratively asks an LLM whether it 159

can answer the given query with the retrieved con- 160

text. LC-Boost (Qian et al., 2024) enables short- 161

context LLMs to tackle long-context tasks by first 162

identifying relevant information, then reasoning 163

over it, without needing extended context windows 164

or fine-tuning. 165

While effective in controlled settings, these 166

methods often rely on white-box access to the LLM, 167

fine-tuning, or multiple LLM inferences. Existing 168

research has highlighted key limitations in RAG 169

systems, particularly in terms of cost, modularity, 170

and retrieval granularity. However, prior methods 171

typically address these issues in isolation, and to 172

our knowledge, no single approach has tackled all 173

three challenges holistically. Our method is the 174

first to offer a unified solution that is cost-efficient, 175

modular, and capable of adaptive, query-specific 176

retrieval in a single pass. 177

Cost. High-quality inference often comes with 178

high token usage, energy consumption, and latency 179

(Li et al., 2024b; Qian et al., 2024), underscoring 180

the need for more cost-effective alternatives. 181
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Plug-and-Play via API Retrieval Amount Variability Single Retrieval Operation

No RAG (LCLM) ✓ ✗ No Retrieval
RAG (traditional) ✓ ✗ ✓

Self-RAG (Asai et al., 2023) ✗ ✓ ✗

Adaptive-RAG (Jeong et al., 2024) ✓ ✓ ✗

SELF-ROUTE (Li et al., 2024b) ✓ ✗ ✓

LC-Boost (Qian et al., 2024) ✓ ✓ ✗

Dynamic context cutoff (Xie et al., 2025) ✗ ✓ ✗

Adaptive-k RAG (ours) ✓ ✓ ✓

Table 1: The comparison of previously proposed approaches as enhanced RAG. Plug-and-Play via API refers to
whether the approach can be easily plugged in to various LLM pipelines. Retrieval Amount Variability refers to
whether the system can flexibly change the retrieval amount depending on different queries and context. Single
Retrieval Operation refers to whether the retrieval is performed in a single step or in multiple steps.

Modularity. Modularity is crucial for real-world182

deployment (Wang et al., 2024), but many existing183

methods require fine-tuning or training the LLM184

itself. This tight coupling reduces compatibility185

with API-based or closed-source models, limiting186

practical applicability.187

Retrieval granularity. Aggregation-type queries188

often require comprehensive evidence and holistic189

understanding. For example, answering “Which190

colleges in California have over 10,000 students?”191

demands access to the full set of relevant entries.192

Fixed-size or iterative retrieval methods struggle193

with such cases, as they cannot dynamically adjust194

retrieval depth based on query complexity.195

3 Method196

This section details our approach to adaptive re-197

trieval, grounded in the analysis of similarity score198

patterns to determine retrieval sizes adaptively199

based on the query and the context. We first review200

the standard RAG retrieval process, then present201

our methodology to identify the optimal threshold202

in similarity distributions to efficiently select rele-203

vant documents.204

3.1 Retrieval in vanilla RAG205

RAG consists of two steps: retrieval and genera-206

tion. Given a query q and N context documents207

C = {ci}N1 , the retriever module identifies top-k208

semantically similar context documents C ′. Mod-209

ern RAG approaches convert the query and the210

context documents in natural language into the211

query embedding q ∈ Rd and context embeddings212

C ∈ RN×d. Similarity scores s ∈ RN are then213

computed to quantify relevance, commonly using214

cosine similarity:215

s = fsim(q,C) =
Cq⊤

||q|| · ||C||rows

RAG typically retrieves a fixed number of top-k 216

documents (or tokens) based on the practitioner’s 217

choice. This fixed retrieval size is simple and mod- 218

ular but may result in inefficient token usage, either 219

retrieving irrelevant documents or missing critical 220

information, especially when the amount of rel- 221

evant context varies depending on the provided 222

context documents and the query type. 223

3.2 Toward efficient adaptive retrieval 224

Design motivation and principles. While 225

vanilla RAG offers modularity and straightforward 226

integration, its fixed retrieval size limits perfor- 227

mance and efficiency in scenarios where the quan- 228

tity of relevant context varies unpredictably such 229

as in aggregation QA in the HoloBench benchmark 230

(Maekawa et al., 2025). To address these limita- 231

tions, we aim to design an adaptive retrieval mecha- 232

nism that: (1) operates independently of the under- 233

lying inference model and requires no additional 234

training or fine-tuning (Plug-and-Play), (2) flex- 235

ibly controls the retrieval amount for each query, 236

avoiding both wasting tokens and omitting key ev- 237

idence (Retrieval Amount Variability), and (3) 238

operates in a single pass without requiring iterative 239

LLM calls (Single Retrieval Operation). 240

Preliminary analysis. To ground our design in 241

empirical evidence, we conduct an in-depth analy- 242

sis of the distributional patterns of cosine similarity 243

scores between queries and candidate documents, 244

which, crucially, are inference model-agnostic sig- 245

nals. This preliminary analysis reveals distinct dis- 246

tributional characteristics that inform our adaptive 247

retrieval strategy. 248
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Figure 1: Example distributions of sorted cosine similar-
ities from the long-context version of HotpotQA (Yang
et al., 2018) included in HELMET (Yen et al., 2025)
with 1,000 context documents (top) and HoloBench
(Maekawa et al., 2025) with 10% relevant information
amount (bottom). BAAI’s bge-large-en-v1.5 is used as
the embedding model.

As shown in Figure 1, for factoid QA tasks such249

as HotpotQA, the sorted similarity scores typically250

exhibit a pronounced gap separating a cluster of251

highly relevant documents from the rest, suggest-252

ing a natural threshold for retrieval. In contrast,253

aggregation tasks (e.g., HoloBench) show more ir-254

regular patterns, with gaps dispersed throughout255

the distribution – reflecting the variable spread of256

relevant information. In the bottom example in257

Figure 1, the 100k-token context is generated such258

that 10% of it is information relevant to the query.259

Indeed, the large gaps are observed around the top260

5% to 20% context, aligning with our expectations.261

These insights lead to the hypothesis that the262

largest gap in sorted similarity scores corresponds263

to the boundary between relevant and irrelevant264

documents, thus providing a data-driven criterion265

for adaptive retrieval size selection.266

3.3 Proposed method267

Building on these observations, we formalize an268

algorithm that adaptively estimates the retrieval269

Algorithm 1 Adaptive k Estimation via Largest
Similarity Gap

Require: q, C, Embedder(·), Similarity(·)
Ensure: Estimated k such that the largest similar-

ity drop occurs before the k-th item
q ← Embedder(q)
C ← Embedder(C) ▷ Precomputed
s← Similarity(q,C)
Sort s in descending order
g ← array() ▷ For storing the gap
for i = 0 to |s| − 2 do

Append s[i]− s[i+ 1] to g
end for
k ← argmax(g) ▷ Index at the largest gap
return k

threshold k by identifying the position of the steep- 270

est drop in the similarity score distribution. The 271

method proceeds as follows: Compute the cosine 272

similarities s of the query q and context documents 273

C. Sort the scores in descending order. Compute 274

their first discrete differences g and choose the 275

index k where the similarity drop is the largest. 276

Figure 2 depicts this process within the RAG work- 277

flow. Under the assumption that the embeddings of 278

documents are precomputed, the time complexity 279

of this algorithm is O(n log n). The algorithm is 280

described in Algorithm 1. 281

In practice, while determining the threshold k 282

based on the largest similarity gap is effective, a 283

naïve implementation might miss relevant docu- 284

ments located immediately beyond the identified 285

threshold. To address this, we incorporate a small 286

fixed buffer, retrieving an additional B documents 287

after the k-th document. In our experiments, we set 288

B = 5. Furthermore, as depicted in Figure 1, the 289

largest gap may occasionally manifest among the 290

least relevant documents, leading to the retrieval 291

of an excessively large portion of the context. To 292

avoid this and align with our focus on retrieval from 293

extremely long contexts, we restrict the search for 294

the largest gap to the top 90% of documents sorted 295

by their similarity scores. 296

4 Experimental setup 297

In our experiments, we aim to answer the following 298

research questions: 299

• How does the proposed adaptive-k method 300

compare to other modular retrieval approaches 301

on aggregation tasks with varying amounts of 302
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What are the names of colleges that have
more than 10,000 students and are located
in California?

Query

The University of California, Los Angeles
(UCLA) has a student population exceeding
45,000, making it one of the largest univer-
sities in California.

Context

relevant

Amherst College and Williams College,
located in Massachusetts, have fewer than
2,500 students each. irrelevant

In California, public universities such as
San Diego State University and California
State University, Fullerton each enroll more
than 30,000 students annually. relevant

...

Embedder

Query embedding

...
Context embeddings

fsim

Similarity distribution

Largest gap

⇒ threshold k

Retrieve this

What are the names of colleges that have
more than 10,000 students and are located
in California?

Prompt

The University of California, Los Angeles
(UCLA) has a student population exceeding
45,000, making it one of the largest univer-
sities in California.

In California, public universities such as
San Diego State University and California
State University, Fullerton each enroll more
than 30,000 students annually.

...

LLM

Here are some colleges and uni-
versities in California with more
than 10,000 students enrolled: ...

Figure 2: The proposed method in the RAG workflow. The method chooses the threshold k for retrieval based on a
large gap in the sorted similarity score distribution.

relevant context?303

• How does performance of Adaptive-k vary304

across factoid QA and aggregation QA tasks?305

• How does the performance gain from306

Adaptive-k retrieval vary across LLMs?307

• How do different embedding models influence308

the performance of Adaptive-k?309

To answer these questions, we employ the experi-310

mental settings detailed below.311

4.1 Dataset312

For testing on factoid QA tasks, we use Hot-313

potQA (Yang et al., 2018), Natural Questions (NQ)314

(Kwiatkowski et al., 2019), and TriviaQA (Joshi315

et al., 2017), as curated by HELMET (Yen et al.,316

2025) for long-context benchmarking with 128k317

input tokens. Due to the high computational cost318

of long-context inference, we evaluate on a subset319

of 100 examples per dataset.320

For aggregation tasks, we employ HoloBench321

(Maekawa et al., 2025), which provides 90 evalua-322

tion samples. HoloBench allows control over both323

total context size and the amount of information324

relevant to the query. We fix the total context to325

100k tokens and evaluate under varying levels of326

relevant information, with info_amount = {5000,327

10000, 25000, 50000} tokens.328

4.2 Models 329

Retriever. We test our method on small and large 330

embedding models: BAAI’s bge-en-large-v1.51 331

(Xiao et al., 2023) and Alibaba NLP’s gte-Qwen2- 332

1.5B-instruct2 (Li et al., 2023). 333

Reader. We use five closed and open mod- 334

els: GPT-4o-mini, GPT-4o (OpenAI et al., 2024), 335

Gemini-2.5-Flash (Team et al., 2024), Llama4- 336

Scout, and Llama4-Maverick (Touvron et al., 2023). 337

The model details are provided in Appendix A.2. 338

4.3 Compared methods 339

We compare the proposed adaptive-k method 340

against zero-shot LLMs (without context), LLMs 341

with full context, and SELF-ROUTE (Li et al., 342

2024b), which is another modular retrieval method 343

with a single retrieval step. In SELF-ROUTE, fixed 344

top 5k tokens are retrieved for the first inference 345

step. We also show the results of the fixed-n re- 346

trieval method with varying numbers of tokens n 347

as performance references. Specifically, we run 348

experiments with n ∈ {1000, 5000, 10000, 25000, 349

50000} and regard the best-performing setting as 350

the oracle. In this way, we can compare the perfor- 351

mance of adaptive-k against the best possible score 352

of the fixed retrieval method. 353

4.4 Metrics 354

To evaluate the retrieval performance, context recall 355

(Ru et al., 2024) is computed, which represents how 356

1https://huggingface.co/BAAI/bge-large-en-v1.
5

2https://huggingface.co/Alibaba-NLP/
gte-Qwen2-1.5B-instruct

5

https://huggingface.co/BAAI/bge-large-en-v1.5
https://huggingface.co/BAAI/bge-large-en-v1.5
https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct
https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct
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Figure 3: The results with different amounts of relevant information in the HoloBench tasks. The best-performing
fixed-n setting is chosen as the oracle. is for performance improvement, and for the number of input tokens.

much of the relevant context documents were able357

to be retrieved. For the evaluation of generation per-358

formance, we use substring exact match (SubEM)359

for HotpotQA, NQ, and TriviaQA, and LLM-as-a-360

judge for HoloBench, following the metrics used361

in their original implementation in HELMET (Yen362

et al., 2025) and HoloBench, respectively. LLM-363

as-a-judge evaluates whether the generated answer364

contains a correct mention of the gold answer, as-365

signing a score of 1 if it finds a correct mention, 0.5366

for a partially correct mention, and 0 otherwise. For367

the judge model, GPT-4o-mini is used. To evaluate368

the inference cost, we count the number of input369

and output tokens, assuming that the financial cost370

on the user’s end and energy consumption depends371

on the amount of tokens (Husom et al., 2024).372

5 Results373

This section provides the results of the experiments374

with a focus on different task types, reader models,375

and embedding models. For the full results, see376

Appendix A.3.377

5.1 Aggregation-type QA378

Figure 3 shows GPT-4o’s results in the HoloBench379

tasks where each task is designed to contain differ-380

ent amounts of relevant information (info_amount:381

10k, 25k, 50k tokens) in the context. It can be382

observed that our Adaptive-k method constantly383

outperforms SELF-ROUTE. The performance im-384

provements of Adaptive-k are particularly notable385

when the amount of relevant information in the con-386

text is high. Also, our method flexibly increases387

the amount of retrieved context chunks when there388

is a higher amount of relevant information in the389

info5k info10k info25k info50k

SELF-ROUTE 65.79 45.04 30.42 21.54
Adaptive-k 75.74 68.54 66.16 67.43

fixed-1k 12.05 6.53 2.77 1.47
fixed-5k 51.92 31.77 14.06 7.54
fixed-10k 66.68 59.10 28.80 15.39
fixed-25k 78.48 78.18 68.13 39.55
fixed-50k 86.79 87.34 86.88 76.90

Table 2: A comparison of the context recall scores
across different relevant information amounts in the
HoloBench tasks. The query and contexts are embed-
ded by bge-large-en-v1.5. The scores compared are
SELF-ROUTE and Adaptive-k, as well as the results of
fixed-n token retrieval as references.

entire context. In contrast, SELF-ROUTE tends to 390

underestimate the amount of relevant context and 391

jump to a conclusion that the LLM can answer the 392

query with the 5k-token context retrieved in the 393

first round, leading to lower performance in a high 394

amount of relevant information. 395

This contrast is also reflected in the context recall 396

scores. As shown in Table 2, Adaptive-k consis- 397

tently achieves a context recall score of approxi- 398

mately 70 across varying levels of relevant infor- 399

mation, indicating that it retrieves approximately 400

70% of truly relevant chunks regardless of their 401

proportion in the full context. The contrast is even 402

more pronounced when compared to context recall 403

of SELF-ROUTE, with Adaptive-k achieving more 404

than three times higher context recall. 405

5.2 Factoid-type QA 406

Figure 4 shows the comparison of Adaptive-k 407

against the zero-shot setting, fixed 1k-token re- 408

trieval, full context, and SELF-ROUTE. All meth- 409

6



ze
ro

-s
ho

t

fix
ed

-1
k

fu
ll-

co
nt

ex
t

SE
LF

-R
O

U
TE

ad
ap

tiv
e-

k
(o

ur
s)

40

60

80

100

102

103

104

105
Sc

or
e

#
In

pu
tT

ok
en

s

Figure 4: A performance comparison of our proposed
method (Adaptive-k) in the factoid QA tasks against
existing methods. The embedding model is bge-large-
en-v1.5, and the reader model is GPT-4o. is for the
SubEM scores, and for the number of input tokens.

ods are implemented using GPT-4o. Our method410

achieves a 99% reduction in input cost compared411

to the full context input, and a 90% reduction412

compared to SELF-ROUTE. Since users generally413

lack prior knowledge of the optimal retrieval size,414

Adaptive-k successfully reduces the cost while im-415

proving the generation quality compared to zero-416

shot question answering.417

5.3 Comparison across LLMs418

Since our methods only modify the retriever mod-419

ule, the retrieved documents to be fed into an420

LLM’s prompt remain the same across different421

LLMs. However, we observe that its effectiveness422

varies notably by model. Figure 5 shows the aver-423

age score improvements and input token counts424

across different relevant information settings in425

HoloBench. Larger high-performance LLMs such426

as GPT-4o (Figure 5b), Gemini-2.5-Flash (Fig-427

ure 5c), and Llama4-Maverick (Figure 5e) show428

substantial gains from Adaptive-k retrieval com-429

pared to SELF-ROUTE. In contrast, smaller LLMs430

such as GPT-4o-mini (Figure 5a) and Llama4-431

Scout (Figure 5d) exhibit more modest improve-432

ments. Nonetheless, even for smaller models,433

Adaptive-k effectively reduces context length while434

maintaining performance close to the full-context435

and oracle fixed-n baselines.436

5.4 Embedding bottleneck437

We observed that the effectiveness of our adap-438

tive method is sensitive to the choice of embed-439

ding model. As shown in Table 3, bge-large-en-440

v1.5 embeddings and gte-Qwen2-1.5B-instruct em-441

Retrieval BGE GTE

HotpotQA SELF-ROUTE 90.83 25.83
adaptive-k 70.83 5.50

NQ SELF-ROUTE 51.90 20.67
adaptive-k 27.20 2.85

TriviaQA SELF-ROUTE 46.52 10.20
adaptive-k 31.21 3.00

HoloBench-5k SELF-ROUTE 65.79 65.18
adaptive-k 75.74 82.20

HoloBench-10k SELF-ROUTE 45.04 45.87
adaptive-k 68.54 78.99

HoloBench-25k SELF-ROUTE 30.42 31.02
adaptive-k 66.16 76.47

HoloBench-50k SELF-ROUTE 21.54 21.90
adaptive-k 67.43 72.54

Table 3: A comparison of the context recall scores
across tasks between BGE (bge-large-en-v1.5) and GTE
(gte-Qwen2-1.5B-instruct).

beddings have different strengths depending on 442

the task. In factoid QA tasks, BGE embeddings 443

consistently yield higher context recall than GTE, 444

whereas GTE performs better on HoloBench. The 445

underlying cause remains unclear, but we iden- 446

tify a few potential factors: (1) Context chunk 447

length: the factoid QA tasks in HELMET generally 448

have a longer context chunk length (up to ∼100 449

tokens) than HoloBench (∼40 tokens); (2) Chunk- 450

ing scheme (Zhong et al., 2025): while the context 451

chunks in HoloBench contain well-formed natural- 452

language sentences, those in the factoid QA tasks 453

often contain mid-sentence breaks; (3) Training 454

scheme: differences in pretraining corpora and for- 455

matting may lead to divergent performance across 456

embedding models. Overall, choosing the right 457

embedding model is critical for ensuring RAG ef- 458

fectiveness. For general use, we recommend bge- 459

large-en-v1.5 for Adaptive-k due to its strong and 460

consistent performance across settings. 461

5.5 Limitation of fixed retrieval 462

While fixed-n retrieval occasionally outperforms 463

Adaptive-k method, it requires prior knowledge of 464

the optimal n, which is difficult to estimate in prac- 465

tice. Our results show that the best-performing n 466

varies across task types, query types, embedding 467

models, reader models, and the distribution of rel- 468

evant information. In contrast, Adaptive-k is able 469

to dynamically adjust the retrieval amount based 470

on the query and context chunks, eliminating the 471

need for manual tuning. This not only removes the 472
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Figure 5: A performance comparison across the different reader models in the HoloBench task. The emnbedding
model is bge-large-en-v1.5. is for performance improvement, and for the number of input tokens.

burden and risk of heuristically selecting an n but473

also provides a more robust and generalizable so-474

lution across a wide range of scenarios, especially475

in cases where the relevant context size is highly476

variable or unknown a priori.477

6 Conclusion478

We presented a simple yet effective and efficient479

plug-and-play method, adaptive-k, that dynami-480

cally selects the number of context chunks to re-481

trieve in a single step, based on the similarity dis-482

tribution between the query and context chunks.483

Unlike existing adaptive retrieval methods that re-484

quires iterative inference steps, our method only485

requires a single matrix calculation to estimate the486

retrieval threshold, achieving a fast and flexible487

retrieval module. This method is particularly ef-488

fective for aggregation-type QA tasks, where the489

optimal number of context chunks varies across490

examples and cannot be predetermined by a fixed-491

token retrieval strategy. Results on HoloBench492

demonstrate that Adaptive-k flexibly adjusts re-493

trieval size to align with the amount of relevant494

information in the context. In factoid QA tasks,495

where relevant information is sparse, our method 496

aggressively prunes the context while still outper- 497

forming zero-shot QA in answer quality. Com- 498

pared to SELF-ROUTE, our method consistently 499

achieves superior performance in aggregation-type 500

QA tasks, while drastically reducing the input size 501

and maintaining higher context recall. 502

Our adaptive-k retrieval is a plug-and-play, 503

single-pass alternative to fixed-size retrieval, yet 504

several directions remain. First, because the 505

method is orthogonal to most RAG pipelines, pair- 506

ing it with techniques such as query-expansion, 507

iterative reranking, or generative feedback loops 508

could further improve accuracy and latency. Sec- 509

ond, embedding models excel on different query 510

and corpus traits; a runtime system that selects—or 511

ensembles—embeddings per query may unlock ex- 512

tra gains in recall and robustness. 513

Limitations 514

While our proposed method shows promising re- 515

sults in adaptive retrieval for question answering 516

tasks, it has several limitations that warrant discus- 517

sion. 518

8



First, the method is not directly applicable to519

tasks such as summarization, where the objective520

is to process the entire input holistically rather than521

retrieve a subset of relevant context. In such cases,522

aggressive filtering may omit important informa-523

tion that contributes to the overall summary. In524

addition, an embedding model is not able to iden-525

tify the relevant context documents with a general526

summarization-type query. For instance, when the527

query for a summarization task is a general state-528

ment like “The summary of this book is:”529

(an example from ∞BENCH Sum (Zhang et al.,530

2024)), the high-similarity context chunks do not531

necessarily reflect the importance to the answer be-532

cause the query does not quite contain semantically533

significant information.534

Second, our method is designed for natural lan-535

guage inputs and assumes meaningful semantic536

similarity between queries and context chunks. It537

does not generalize well to non-natural-language538

tasks, such as those involving structured key-value539

formats (e.g., JSON), where semantic embeddings540

may not capture relevance effectively.541

Third, the approach is sensitive to surface-level542

variations in text. For example, typographical er-543

rors in the query or context can negatively affect544

embedding quality and distort similarity scores,545

leading to suboptimal retrieval decisions. If the546

queries are expected to be noisy with non-standard547

spellings or grammar, adding a query standard-548

ization module (Chan et al., 2024) on top of our549

adaptive-k method would be helpful.550

Lastly, the method may be vulnerable to adver-551

sarial or malicious inputs (Wallace et al., 2019).552

A specially crafted context chunk could receive553

an artificially high or low similarity score, thereby554

introducing a large gap in the similarity distribu-555

tion and misleading the algorithm into selecting556

an incorrect retrieval threshold (Su et al., 2024).557

Mitigating such risks would require additional ro-558

bustness checks or adversarial training techniques,559

which are beyond the scope of this work.560

Ethical considerations561

One of the key advantages of our proposed adap-562

tive retrieval method is its potential to reduce the563

environmental impact of LLM inference. By dis-564

carding irrelevant context chunks and only retriev-565

ing a minimal yet sufficient subset of documents,566

our approach significantly reduces the number of567

input tokens processed. In our experiments, our568

proposed method discarded nearly 99% of the in- 569

put tokens in factoid QA tasks, and substantially 570

reduced input size in aggregation QA tasks while 571

maintaining high context recall. 572

This reduction translates into lower computa- 573

tional overhead, leading to more energy-efficient 574

inference. As a result, our method contributes to 575

decreasing the carbon footprint associated with de- 576

ploying LLMs at scale. With the growing trend of 577

longer context windows, flexibly filtering out irrele- 578

vant context is necessary to ensure energy-efficient 579

inference. 580

While efficiency is a central goal, we empha- 581

size that any optimization must not compromise 582

fairness or content coverage. Our method is de- 583

signed to be model-agnostic and does not introduce 584

or amplify biases beyond those present in the sim- 585

ilarity scoring mechanism, e.g., cosine similarity 586

over embedding spaces. However, care should be 587

taken when applying this method in high-stakes 588

domains, e.g., medical or legal QA, where discard- 589

ing seemingly low-similarity context could result 590

in the omission of critical information. Further re- 591

search is needed to quantify such risks and guide 592

responsible deployment. 593

While we used AI assitants such as ChatGPT 594

and Copilot to assist in coding and revising this 595

paper, we carefully reviewed and edited all content 596

to ensure it meets our standards and aligns with our 597

research goals. 598
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A Appendix756

A.1 Prompt templates757

A.1.1 Prompt template for the factoid QA tasks758

Your task is to answer the question provided. To help you answer accurately, some relevant
context documents have been retrieved. After reviewing them, you'll be asked the same question
again. Please respond succinctly.

**Input:**
- **Question:**
```
{question}
```

- **Context:**
```
{context}
```

- **Question:**
```
{question}
```

**Response:**
- **Answer:**

759

A.1.2 Prompt template for the HoloBench tasks760

You'll be given a set of sentences to read through carefully. Once you've reviewed them, I'll
ask you a question related to the information in those sentences. Your job is to think
critically about the details, analyze the sentences in relation to the question, and then
provide your answer. If the information clearly supports a partial answer, provide that.
However, if the evidence is unclear or insufficient, it is okay to respond with "No answer."

**Input:**
- **Sentences:**
```
{context}
```

- **Question:**
```
{question}
```

**Response:**
- **Reasoning:**

- [Describe how you thought through the sentences and how they helped you reach your
conclusion. If the evidence is unclear or insufficient to provide a reliable answer,
explain why. Your reasoning should not exceed 10,000 words.]

- **Answer:** [Provide an answer only if it is clearly supported by the information in the
sentences. If the evidence is unclear or insufficient, respond with "No answer."]

761
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A.1.3 Prompt template for LLM-as-a-Judge 762

You will be given a question along with a response generated by an assistant and the
corresponding ground truth data. Your task is to assess the response based on its accuracy
and completeness in comparison to the ground truth. For each entry in the ground truth,
determine whether the information provided by the assistant is an "Exact Match," a "Partial
Match," or a "No Match."

#### **Evaluation Criteria:**

- **Exact Match**: The assistant's response precisely matches the ground truth in both
content and detail.

- **Partial Match**: The assistant's response includes some correct information but is either
incomplete, incorrectly ordered, or contains inaccuracies.

- **No Match**: The assistant's response does not accurately reflect the ground truth or is
missing entirely.

#### **Special Cases:**

**Ground Truth is None**:
- If the ground truth is `None` (represented as an empty list `[]`):

- **Exact Match**: If the assistant's response indicates that there is no information or
content.

- **No Match**: If the assistant's response provides any information when the ground truth
is `None`.

#### **Output Format:**

- The output should be a list of objects where each object contains:
- An `"id"` that matches the `id` of the corresponding ground truth entry.
- A `"label"` indicating whether the assistant's response is an `"Exact Match"`, `"Partial

Match"`, or `"No Match"`.

- The number of output objects should match the number of entries in the ground truth.

---

### **Examples:**
{in_context_examples}

====== Your task starts here ======

**Question:**
```
{question}
```

**Assistant's Response:**
```
{pred}
```

**Ground Truth:**
```
{gold}
```

**Output Format:**
```
{output_format}
```

763
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A.2 Detailed experimental setup764

We set temperature and top-p parameters to 0.0 and 1.0, respectively, for all our experiments. For765

Gemini-2.5-Flash, we set its thinking budget to 0. Table 4 lists the models used in our experiments.766

Model Size Context Model name / snapshot License

GPT-4o — 128k gpt-4o-2024-08-06 OpenAI Service Terms3

GPT-4o-mini — 128k gpt-4o-mini-2024-07-18 OpenAI Service Terms
Gemini-2.5-Flash — 1M gemini-2.5-flash-preview-04-17 Gemini API Additional Terms of Service4

Llama-4-Maverick 400B 1M meta-llama/Llama-4-Maverick-17B-128E-Instruct Llama 4 Community License Agreement5

Llama-4-Scout 109B 10M meta-llama/Llama-4-Scout-17B-16E-Instruct Llama 4 Community License Agreement

Table 4: A list of the LLMs used in the experiments. An em-dash (—) means that the model size is not publicly
disclosed.

3https://openai.com/policies/services-agreement/ [Accessed: May 12, 2025]
4https://ai.google.dev/gemini-api/terms [Accessed: May 12, 2025]
5https://www.llama.com/llama4/license/ [Accessed: May 12, 2025]
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A.3 Full results 767

A.3.1 Factoid QA tasks (BGE embeddings) 768

Task Method Score Context recall Reduction (%) nin nout

HotpotQA

zeroshot 39 0.00 ± 0.00 100.00 ± 0.00 63.03 ± 6.98 15.56 ± 9.92
fixed-1k 60 69.33 ± 30.77 99.33 ± 0.09 852.30 ± 57.33 20.53 ± 13.61
fixed-5k 66 84.50 ± 26.93 96.46 ± 0.29 3983.81 ± 219.82 20.87 ± 14.45
fixed-10k 66 88.50 ± 23.05 92.89 ± 0.55 7911.32 ± 440.28 21.85 ± 14.35
fixed-25k 67 92.50 ± 20.15 82.19 ± 1.32 19763.59 ± 1109.32 22.36 ± 14.48
fixed-50k 66 95.33 ± 14.23 64.46 ± 2.45 39597.66 ± 2224.65 24.00 ± 15.87
full-context 45 100.00 ± 0.00 0.00 ± 0.00 109666.92 ± 5537.59 16.49 ± 18.35

SELF-ROUTE 61 90.83 ± 22.77 75.25 ± 40.17 28008.57 ± 45573.55 17.31 ± 17.84
adaptive-k 63 70.83 ± 31.01 99.24 ± 0.17 954.33 ± 206.78 20.46 ± 14.43

NQ

zeroshot 49 0.00 ± 0.00 100.00 ± 0.00 53.37 ± 2.29 23.36 ± 15.22
fixed-1k 54 26.45 ± 30.50 99.36 ± 0.09 806.77 ± 70.12 28.50 ± 18.53
fixed-5k 59 42.45 ± 36.68 96.66 ± 0.28 3837.48 ± 333.10 31.33 ± 21.80
fixed-10k 58 50.35 ± 35.94 93.27 ± 0.52 7632.00 ± 655.62 32.11 ± 23.94
fixed-25k 62 62.78 ± 32.87 83.10 ± 1.25 19051.28 ± 1574.22 33.91 ± 26.90
fixed-50k 59 68.89 ± 29.96 66.16 ± 2.45 38102.93 ± 2989.91 37.39 ± 29.33
full-context 41 100.00 ± 0.00 0.00 ± 0.00 110607.54 ± 4711.16 23.10 ± 27.28

SELF-ROUTE 55 52.72 ± 36.37 77.33 ± 38.86 25839.53 ± 44249.67 23.60 ± 20.09
adaptive-k 54 27.20 ± 31.58 99.25 ± 0.25 927.69 ± 283.52 28.83 ± 18.99

TriviaQA

zeroshot 83 0.00 ± 0.00 100.00 ± 0.00 60.09 ± 7.79 7.85 ± 6.27
fixed-1k 94 31.21 ± 36.58 99.34 ± 0.10 833.75 ± 67.42 11.86 ± 9.07
fixed-5k 93 42.10 ± 39.93 96.53 ± 0.26 3913.01 ± 260.44 11.73 ± 9.41
fixed-10k 92 49.90 ± 40.11 93.03 ± 0.49 7772.18 ± 488.60 12.64 ± 11.19
fixed-25k 93 54.74 ± 40.26 82.59 ± 1.14 19384.51 ± 1164.94 13.64 ± 11.10
fixed-50k 94 61.66 ± 37.83 65.21 ± 2.27 38819.58 ± 2326.33 15.72 ± 11.95
full-context 61 100.00 ± 0.00 0.00 ± 0.00 110733.69 ± 3419.97 11.95 ± 13.89

SELF-ROUTE 90 48.19 ± 39.84 84.95 ± 31.53 17112.00 ± 35900.97 8.69 ± 8.41
adaptive-k 92 31.21 ± 36.58 99.26 ± 0.23 918.86 ± 240.86 11.69 ± 9.15

Average

zeroshot 57.00 0.00 0.00 58.83 15.59
fixed-1k 69.33 42.33 99.34 830.94 20.30
fixed-5k 72.67 56.35 96.55 3911.43 21.31
fixed-10k 72.00 62.92 93.07 7771.83 22.20
fixed-25k 74.00 70.00 82.63 19399.79 23.30
fixed-50k 73.00 75.29 65.28 38840.06 25.70
full-context 49.00 100.00 0.00 110336.05 17.18

SELF-ROUTE 68.67 63.91 79.18 23653.37 16.53
adaptive-k 69.67 43.08 99.25 933.63 20.33

Table 5: Full GPT-4o-mini’s results in the factoid QA tasks.
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Task Method Score Context recall Reduction (%) nin nout

HotpotQA

zeroshot 50 0.00 ± 0.00 100.00 ± 0.00 63.03 ± 6.98 19.31 ± 16.53
fixed-1k 61 69.33 ± 30.77 99.33 ± 0.09 852.30 ± 57.33 27.72 ± 18.35
fixed-5k 70 84.50 ± 26.93 96.46 ± 0.29 3983.81 ± 219.82 27.25 ± 17.25
fixed-10k 76 88.50 ± 23.05 92.89 ± 0.55 7911.32 ± 440.28 29.16 ± 18.31
fixed-25k 74 92.50 ± 20.15 82.19 ± 1.32 19763.59 ± 1109.32 28.66 ± 20.86
fixed-50k 73 95.33 ± 14.23 64.46 ± 2.45 39597.66 ± 2224.65 27.89 ± 20.22
full-context 48 100.00 ± 0.00 0.00 ± 0.00 109666.92 ± 5537.59 18.91 ± 20.30

SELF-ROUTE 66 84.50 ± 26.93 96.46 ± 0.29 23663.11 ± 42241.38 22.49 ± 20.04
adaptive-k 63 70.83 ± 31.01 99.24 ± 0.17 954.33 ± 206.78 28.24 ± 19.56

NQ

zeroshot 57 0.00 ± 0.00 100.00 ± 0.00 53.37 ± 2.29 27.38 ± 24.23
fixed-1k 59 26.45 ± 30.50 99.36 ± 0.09 806.77 ± 70.12 33.62 ± 26.13
fixed-5k 64 42.45 ± 36.68 96.66 ± 0.28 3837.48 ± 333.10 37.37 ± 30.24
fixed-10k 64 50.35 ± 35.94 93.27 ± 0.52 7632.00 ± 655.62 38.41 ± 32.61
fixed-25k 64 62.78 ± 32.87 83.10 ± 1.25 19051.28 ± 1574.22 38.48 ± 33.35
fixed-50k 63 68.89 ± 29.96 66.16 ± 2.45 38102.93 ± 2989.91 39.76 ± 33.99
full-context 41 100.00 ± 0.00 0.00 ± 0.00 110607.54 ± 4711.16 24.74 ± 33.79

SELF-ROUTE 61 42.45 ± 36.68 96.66 ± 0.28 24713.66 ± 43308.30 33.64 ± 34.15
adaptive-k 61 27.20 ± 31.58 99.25 ± 0.25 927.69 ± 283.52 34.85 ± 27.40

TriviaQA

zeroshot 91 0.00 ± 0.00 100.00 ± 0.00 60.09 ± 7.79 8.33 ± 7.16
fixed-1k 96 31.21 ± 36.58 99.34 ± 0.10 833.75 ± 67.42 16.10 ± 11.89
fixed-5k 95 42.10 ± 39.93 96.53 ± 0.26 3913.01 ± 260.44 16.01 ± 11.49
fixed-10k 94 49.90 ± 40.11 93.03 ± 0.49 7772.18 ± 488.60 15.55 ± 9.91
fixed-25k 93 54.74 ± 40.26 82.59 ± 1.14 19384.51 ± 1164.94 15.96 ± 9.81
fixed-50k 93 61.66 ± 37.83 65.21 ± 2.27 38819.58 ± 2326.33 16.31 ± 10.62
full-context 62 100.00 ± 0.00 0.00 ± 0.00 110733.69 ± 3419.97 12.94 ± 12.48

SELF-ROUTE 92 42.10 ± 39.93 96.53 ± 0.26 13900.19 ± 31870.44 11.39 ± 10.31
adaptive-k 96 31.21 ± 36.58 99.26 ± 0.23 918.86 ± 240.86 16.10 ± 12.07

Average

zeroshot 66.00 0.00 0.00 58.83 18.34
fixed-1k 72.00 42.33 99.34 830.94 25.81
fixed-5k 76.33 56.35 96.55 3911.43 26.88
fixed-10k 78.00 62.92 93.07 7771.83 27.71
fixed-25k 77.00 70.00 82.63 19399.79 27.70
fixed-50k 76.33 75.29 65.28 38840.06 27.99
full-context 50.33 100.00 0.00 110336.05 18.86

SELF-ROUTE 73.00 56.35 96.55 20758.99 22.51
adaptive-k 73.33 43.08 99.25 933.63 26.40

Table 6: Full GPT-4o’s results in the factoid QA tasks.
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Task Method Score Context recall Reduction (%) nin nout

HotpotQA

zeroshot 46 0.00 ± 0.00 100.00 ± 0.00 57.25 ± 7.72 3.00 ± 1.62
fixed-1k 54 69.33 ± 30.77 99.33 ± 0.09 883.55 ± 67.88 15.24 ± 23.19
fixed-5k 63 84.50 ± 26.93 96.46 ± 0.29 4170.89 ± 274.70 12.92 ± 19.22
fixed-10k 66 88.50 ± 23.05 92.89 ± 0.55 8295.62 ± 548.91 12.62 ± 17.17
fixed-25k 66 92.50 ± 20.15 82.19 ± 1.32 20727.06 ± 1379.61 15.09 ± 20.48
fixed-50k 72 95.33 ± 14.23 64.46 ± 2.45 41530.89 ± 2780.34 16.97 ± 22.12
full-context 71 100.00 ± 0.00 0.00 ± 0.00 115121.31 ± 5964.79 17.60 ± 19.32

SELF-ROUTE 68 95.33 ± 17.42 69.45 ± 43.53 36820.47 ± 52663.73 13.95 ± 19.00
adaptive-k 55 70.83 ± 31.01 99.24 ± 0.17 990.43 ± 216.72 15.29 ± 24.47

NQ

zeroshot 47 0.00 ± 0.00 100.00 ± 0.00 46.30 ± 2.46 4.67 ± 3.92
fixed-1k 44 26.45 ± 30.50 99.36 ± 0.09 826.53 ± 80.39 26.14 ± 33.25
fixed-5k 59 42.45 ± 36.68 96.66 ± 0.28 3959.77 ± 351.93 31.82 ± 32.77
fixed-10k 59 50.35 ± 35.94 93.27 ± 0.52 7891.38 ± 704.11 115.35 ± 816.66
fixed-25k 62 62.78 ± 32.87 83.10 ± 1.25 19730.89 ± 1697.34 34.87 ± 53.13
fixed-50k 61 68.89 ± 29.96 66.16 ± 2.45 39505.22 ± 3266.78 35.23 ± 47.76
full-context 64 100.00 ± 0.00 0.00 ± 0.00 115142.91 ± 5115.01 28.15 ± 22.01

SELF-ROUTE 60 54.71 ± 36.63 74.41 ± 40.87 30547.34 ± 48902.74 27.40 ± 30.96
adaptive-k 47 27.20 ± 31.58 99.25 ± 0.25 951.38 ± 295.47 29.04 ± 32.84

TriviaQA

zeroshot 93 0.00 ± 0.00 100.00 ± 0.00 54.36 ± 8.36 2.55 ± 1.48
fixed-1k 87 31.21 ± 36.58 99.34 ± 0.10 859.44 ± 78.27 8.99 ± 16.82
fixed-5k 93 42.10 ± 39.93 96.53 ± 0.26 4073.06 ± 317.10 8.74 ± 15.25
fixed-10k 92 49.90 ± 40.11 93.03 ± 0.49 8097.22 ± 589.74 9.30 ± 14.94
fixed-25k 93 54.74 ± 40.26 82.59 ± 1.14 20213.64 ± 1424.47 8.41 ± 11.68
fixed-50k 92 61.66 ± 37.83 65.21 ± 2.27 40490.49 ± 2852.03 11.95 ± 14.79
full-context 95 100.00 ± 0.00 0.00 ± 0.00 115669.41 ± 4229.98 10.48 ± 8.73

SELF-ROUTE 94 49.19 ± 39.24 84.95 ± 31.53 17948.59 ± 37786.95 7.39 ± 10.84
adaptive-k 86 31.21 ± 36.58 99.26 ± 0.23 947.50 ± 244.93 7.53 ± 13.74

Average

zeroshot 62.00 0.00 0.00 52.64 3.41
fixed-1k 61.67 42.33 99.34 856.51 16.79
fixed-5k 71.67 56.35 96.55 4067.91 17.83
fixed-10k 72.33 62.92 93.07 8094.74 45.76
fixed-25k 73.67 70.00 82.63 20223.86 19.46
fixed-50k 75.00 75.29 65.28 40508.87 21.38
full-context 76.67 100.00 0.00 115311.21 18.74

SELF-ROUTE 74.00 66.41 76.27 28438.80 16.25
adaptive-k 62.67 43.08 99.25 963.10 17.29

Table 7: Full Gemini-2.5-Flash’s results in the factoid QA tasks.
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Task Method Score Context recall Reduction (%) nin nout

HotpotQA

zeroshot 38 0.00 ± 0.00 100.00 ± 0.00 61.17 ± 7.05 226.87 ± 1635.13
fixed-1k 65 69.33 ± 30.77 99.33 ± 0.09 850.33 ± 59.50 59.78 ± 97.50
fixed-5k 65 84.50 ± 26.93 96.46 ± 0.29 4006.32 ± 227.71 41.23 ± 63.66
fixed-10k 68 88.50 ± 23.05 92.89 ± 0.55 7963.66 ± 456.87 38.49 ± 60.86
fixed-25k 68 92.50 ± 20.15 82.19 ± 1.32 19912.13 ± 1152.36 33.14 ± 50.95
fixed-50k 67 95.33 ± 14.23 64.46 ± 2.45 39898.83 ± 2310.69 36.25 ± 56.47
full-context 67 100.00 ± 0.00 0.00 ± 0.00 110457.05 ± 5390.30 36.77 ± 65.52

SELF-ROUTE 73 89.50 ± 23.53 84.89 ± 31.51 17292.33 ± 36140.60 60.39 ± 78.22
adaptive-k 63 70.83 ± 31.01 99.24 ± 0.17 952.64 ± 206.19 53.92 ± 87.49

NQ

zeroshot 58 0.00 ± 0.00 100.00 ± 0.00 51.54 ± 2.41 62.84 ± 53.57
fixed-1k 62 26.45 ± 30.50 99.36 ± 0.09 802.11 ± 71.62 60.35 ± 48.38
fixed-5k 66 42.45 ± 36.68 96.66 ± 0.28 3847.40 ± 341.79 73.75 ± 67.45
fixed-10k 64 50.35 ± 35.94 93.27 ± 0.52 7660.11 ± 675.79 76.13 ± 61.56
fixed-25k 66 62.78 ± 32.87 83.10 ± 1.25 19136.92 ± 1631.03 85.91 ± 81.62
fixed-50k 68 68.89 ± 29.96 66.16 ± 2.45 38284.28 ± 3103.43 288.08 ± 1664.19
full-context 68 100.00 ± 0.00 0.00 ± 0.00 111154.46 ± 4416.57 113.88 ± 202.07

SELF-ROUTE 66 48.21 ± 36.70 85.06 ± 31.57 17228.44 ± 36372.48 142.10 ± 316.76
adaptive-k 61 27.20 ± 31.58 99.25 ± 0.25 923.58 ± 286.51 67.89 ± 59.55

TriviaQA

zeroshot 85 0.00 ± 0.00 100.00 ± 0.00 58.29 ± 7.89 20.12 ± 39.32
fixed-1k 98 31.21 ± 36.58 99.34 ± 0.10 830.54 ± 66.35 24.97 ± 54.24
fixed-5k 98 42.10 ± 39.93 96.53 ± 0.26 3928.14 ± 261.91 24.80 ± 63.48
fixed-10k 97 49.90 ± 40.11 93.03 ± 0.49 7808.89 ± 495.48 18.29 ± 42.28
fixed-25k 96 54.74 ± 40.26 82.59 ± 1.14 19486.58 ± 1189.90 19.47 ± 51.48
fixed-50k 95 61.66 ± 37.83 65.21 ± 2.27 39032.69 ± 2399.86 12.60 ± 22.71
full-context 96 100.00 ± 0.00 0.00 ± 0.00 111322.11 ± 3373.09 23.69 ± 52.77

SELF-ROUTE 97 47.69 ± 40.13 89.78 ± 24.76 11742.38 ± 28544.35 34.38 ± 63.98
adaptive-k 98 31.21 ± 36.58 99.26 ± 0.23 915.89 ± 238.98 30.32 ± 73.20

Average

zeroshot 60.33 0.00 0.00 57.00 103.28
fixed-1k 75.00 42.33 99.34 827.66 48.37
fixed-5k 76.33 56.35 96.55 3927.29 46.59
fixed-10k 76.33 62.92 93.07 7810.89 44.30
fixed-25k 76.67 70.00 82.63 19511.88 46.17
fixed-50k 76.67 75.29 65.28 39071.93 112.31
full-context 77.00 100.00 0.00 110977.87 58.11

SELF-ROUTE 78.67 61.80 86.57 15421.05 78.96
adaptive-k 74.00 43.08 99.25 930.70 50.71

Table 8: Full Llama4-Scout’s results in the factoid QA tasks.
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Task Method Score Context recall Reduction (%) nin nout

HotpotQA

zeroshot 52 0.00 ± 0.00 100.00 ± 0.00 61.17 ± 7.05 99.43 ± 110.61
fixed-1k 71 69.33 ± 30.77 99.33 ± 0.09 850.33 ± 59.50 110.04 ± 141.75
fixed-5k 78 84.50 ± 26.93 96.46 ± 0.29 4006.32 ± 227.71 68.99 ± 88.75
fixed-10k 74 88.50 ± 23.05 92.89 ± 0.55 7963.66 ± 456.87 44.12 ± 63.11
fixed-25k 71 92.50 ± 20.15 82.19 ± 1.32 19912.13 ± 1152.36 43.30 ± 55.48
fixed-50k 72 95.33 ± 14.23 64.46 ± 2.45 39898.83 ± 2310.69 45.51 ± 66.82
full-context 75 100.00 ± 0.00 0.00 ± 0.00 110457.05 ± 5390.30 41.18 ± 54.88

SELF-ROUTE 79 86.00 ± 26.35 92.61 ± 19.00 8383.42 ± 21450.47 90.55 ± 120.15
adaptive-k 71 70.83 ± 31.01 99.24 ± 0.17 952.64 ± 206.19 112.62 ± 146.43

NQ

zeroshot 53 0.00 ± 0.00 100.00 ± 0.00 51.54 ± 2.41 54.22 ± 54.55
fixed-1k 63 26.45 ± 30.50 99.36 ± 0.09 802.11 ± 71.62 68.16 ± 58.41
fixed-5k 65 42.45 ± 36.68 96.66 ± 0.28 3847.40 ± 341.79 75.36 ± 69.75
fixed-10k 67 50.35 ± 35.94 93.27 ± 0.52 7660.11 ± 675.79 75.90 ± 79.63
fixed-25k 64 62.78 ± 32.87 83.10 ± 1.25 19136.92 ± 1631.03 69.41 ± 69.85
fixed-50k 64 68.89 ± 29.96 66.16 ± 2.45 38284.28 ± 3103.43 71.23 ± 77.03
full-context 67 100.00 ± 0.00 0.00 ± 0.00 111154.46 ± 4416.57 66.25 ± 66.57

SELF-ROUTE 65 45.95 ± 37.23 90.86 ± 23.07 10536.57 ± 26530.78 69.87 ± 75.65
adaptive-k 62 27.20 ± 31.58 99.25 ± 0.25 923.58 ± 286.51 75.56 ± 73.03

TriviaQA

zeroshot 91 0.00 ± 0.00 100.00 ± 0.00 58.29 ± 7.89 25.52 ± 54.17
fixed-1k 96 31.21 ± 36.58 99.34 ± 0.10 830.54 ± 66.35 39.52 ± 57.18
fixed-5k 98 42.10 ± 39.93 96.53 ± 0.26 3928.14 ± 261.91 31.02 ± 48.63
fixed-10k 98 49.90 ± 40.11 93.03 ± 0.49 7808.89 ± 495.48 21.72 ± 32.93
fixed-25k 96 54.74 ± 40.26 82.59 ± 1.14 19486.58 ± 1189.90 22.79 ± 46.88
fixed-50k 96 61.66 ± 37.83 65.21 ± 2.27 39032.69 ± 2399.86 15.46 ± 34.71
full-context 96 100.00 ± 0.00 0.00 ± 0.00 111322.11 ± 3373.09 19.58 ± 34.15

SELF-ROUTE 98 44.60 ± 40.03 93.64 ± 16.55 7440.28 ± 19973.57 37.87 ± 63.00
adaptive-k 96 31.21 ± 36.58 99.26 ± 0.23 915.89 ± 238.98 49.73 ± 70.11

Average

zeroshot 65.33 0.00 0.00 57.00 59.72
fixed-1k 76.67 42.33 99.34 827.66 72.57
fixed-5k 80.33 56.35 96.55 3927.29 58.46
fixed-10k 79.67 62.92 93.07 7810.89 47.25
fixed-25k 77.00 70.00 82.63 19511.88 45.17
fixed-50k 77.33 75.29 65.28 39071.93 44.07
full-context 79.33 100.00 0.00 110977.87 42.34

SELF-ROUTE 80.67 58.85 92.37 8786.76 66.10
adaptive-k 76.33 43.08 99.25 930.70 79.30

Table 9: Full Llama4-Maverick’s results in the factoid QA tasks.
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A.3.2 HoloBench (BGE embeddings)769

Info amount Method Score Context recall Reduction (%) nin nout

info5k

zeroshot 10.00 0.00 ± 0.00 100.00 ± 0.00 58.13 43.34
fixed-1k 28.19 12.05 ± 6.42 99.18 ± 0.43 1000.07 325.14
fixed-5k 38.74 51.92 ± 29.82 95.85 ± 1.86 4194.01 923.67
fixed-10k 43.50 66.68 ± 30.73 91.80 ± 2.92 8011.64 801.81
fixed-25k 39.81 78.48 ± 26.96 79.59 ± 4.56 19574.94 1489.67
fixed-50k 37.67 86.79 ± 20.88 57.76 ± 5.92 39224.80 2342.40
full-context 37.76 100.00 ± 0.00 0.00 ± 0.00 85882.50 3147.27

SELF-ROUTE 31.32 69.46 ± 27.62 74.68 ± 40.18 23044.97 1523.99
adaptive-k 40.86 75.74 ± 30.48 74.07 ± 25.68 24625.02 2220.94

info10k

zeroshot 6.22 0.00 ± 0.00 100.00 ± 0.00 58.13 45.28
fixed-1k 22.55 6.53 ± 3.11 99.19 ± 0.40 1003.83 322.87
fixed-5k 34.06 31.77 ± 14.86 95.84 ± 1.90 4228.71 987.09
fixed-10k 34.85 59.10 ± 27.14 91.74 ± 3.47 8235.02 1712.06
fixed-25k 36.44 78.18 ± 26.55 79.55 ± 5.42 19838.92 1716.79
fixed-50k 29.98 87.34 ± 20.51 57.88 ± 6.41 39437.42 2910.81
full-context 26.59 100.00 ± 0.00 0.00 ± 0.00 86139.74 4370.90

SELF-ROUTE 28.56 48.18 ± 27.16 77.76 ± 37.78 19627.93 2228.59
adaptive-k 33.16 68.54 ± 32.55 79.22 ± 21.59 20233.99 2338.73

info25k

zeroshot 4.22 0.00 ± 0.00 100.00 ± 0.00 58.13 43.17
fixed-1k 16.67 2.77 ± 1.15 99.21 ± 0.32 999.62 331.77
fixed-5k 25.76 14.06 ± 5.50 95.96 ± 1.56 4215.72 670.87
fixed-10k 28.61 28.80 ± 9.87 91.86 ± 3.09 8269.06 1554.73
fixed-25k 32.63 68.13 ± 22.77 79.60 ± 7.10 20475.06 2249.00
fixed-50k 30.89 86.88 ± 20.14 58.46 ± 8.58 40152.73 3203.13
full-context 29.53 100.00 ± 0.00 0.00 ± 0.00 86751.63 3767.70

SELF-ROUTE 27.01 34.19 ± 35.59 74.68 ± 40.17 22726.84 1090.31
adaptive-k 25.68 66.16 ± 36.90 73.86 ± 23.04 25778.38 2818.23

info50k

zeroshot 5.28 0.00 ± 0.00 100.00 ± 0.00 58.13 43.59
fixed-1k 11.73 1.47 ± 0.55 99.22 ± 0.23 1006.91 310.46
fixed-5k 20.88 7.54 ± 2.52 96.02 ± 1.12 4235.36 511.71
fixed-10k 21.53 15.39 ± 4.25 92.01 ± 2.13 8288.68 1556.82
fixed-25k 25.29 39.55 ± 8.89 79.75 ± 5.38 20622.82 2609.31
fixed-50k 30.18 76.90 ± 16.82 58.85 ± 9.99 41264.63 2885.44
full-context 27.98 100.00 ± 0.00 0.00 ± 0.00 87936.41 3051.19

SELF-ROUTE 19.57 26.38 ± 37.06 76.86 ± 38.66 21444.74 945.72
adaptive-k 22.93 67.43 ± 38.13 60.73 ± 25.94 39654.20 2781.81

Average

zeroshot 6.43 0.00 0.00 58.13 43.84
fixed-1k 19.78 5.70 99.20 1002.61 322.56
fixed-5k 29.86 26.32 95.92 4218.45 773.33
fixed-10k 32.12 42.49 91.85 8201.10 1406.36
fixed-25k 33.54 66.09 79.62 20127.94 2016.19
fixed-50k 32.18 84.48 58.24 40019.90 2835.45
full-context 30.47 100.00 0.00 86677.57 3584.26

SELF-ROUTE 26.61 44.55 76.00 21711.12 1447.15
adaptive-k 30.66 69.47 71.97 27572.90 2539.93

Table 10: Full GPT-4o-mini’s results in the HoloBench tasks.
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Info amount Method Score Context recall Reduction (%) nin nout

info5k

zeroshot 7.22 0.00 ± 0.00 100.00 ± 0.00 58.13 65.21
fixed-1k 26.14 12.05 ± 6.42 99.18 ± 0.43 1000.07 289.39
fixed-5k 42.32 51.92 ± 29.82 95.85 ± 1.86 4194.01 913.32
fixed-10k 49.79 66.68 ± 30.73 91.80 ± 2.92 8011.64 1334.67
fixed-25k 46.27 78.48 ± 26.96 79.59 ± 4.56 19574.94 2087.61
fixed-50k 43.82 86.79 ± 20.88 57.76 ± 5.92 39224.80 3188.69
full-context 48.30 100.00 ± 0.00 0.00 ± 0.00 73652.50 3680.13

SELF-ROUTE 41.86 65.79 ± 27.76 76.70 ± 38.60 17260.98 1139.29
adaptive-k 48.60 75.74 ± 30.48 74.07 ± 25.68 24625.02 1362.71

info10k

zeroshot 5.11 0.00 ± 0.00 100.00 ± 0.00 58.13 64.00
fixed-1k 21.83 6.53 ± 3.11 99.19 ± 0.40 1003.83 298.53
fixed-5k 32.45 31.77 ± 14.86 95.84 ± 1.90 4228.71 1001.83
fixed-10k 36.48 59.10 ± 27.14 91.74 ± 3.47 8235.02 2589.58
fixed-25k 39.65 78.18 ± 26.55 79.55 ± 5.42 19838.92 3527.68
fixed-50k 38.55 87.34 ± 20.51 57.88 ± 6.41 39437.42 4061.82
full-context 41.75 100.00 ± 0.00 0.00 ± 0.00 75768.00 4767.44

SELF-ROUTE 32.37 45.04 ± 25.18 79.96 ± 36.00 17208.18 1146.12
adaptive-k 37.06 68.54 ± 32.55 79.22 ± 21.59 20233.99 2252.20

info25k

zeroshot 3.54 0.00 ± 0.00 100.00 ± 0.00 58.13 65.69
fixed-1k 16.51 2.77 ± 1.15 99.21 ± 0.32 999.62 282.18
fixed-5k 27.52 14.06 ± 5.50 95.96 ± 1.56 4215.72 1350.80
fixed-10k 29.10 28.80 ± 9.87 91.86 ± 3.09 8269.06 2520.64
fixed-25k 40.25 68.13 ± 22.77 79.60 ± 7.10 20475.06 3406.40
fixed-50k 34.18 86.88 ± 20.14 58.46 ± 8.58 40152.73 4366.80
full-context 42.24 100.00 ± 0.00 0.00 ± 0.00 75787.37 4802.50

SELF-ROUTE 25.71 30.42 ± 32.70 77.87 ± 37.82 18525.29 1759.81
adaptive-k 33.46 66.16 ± 36.90 73.86 ± 23.04 25778.38 4017.11

info50k

zeroshot 5.19 0.00 ± 0.00 100.00 ± 0.00 58.13 62.30
fixed-1k 11.59 1.47 ± 0.55 99.22 ± 0.23 1006.91 274.89
fixed-5k 20.62 7.54 ± 2.52 96.02 ± 1.12 4235.36 735.80
fixed-10k 23.15 15.39 ± 4.25 92.01 ± 2.13 8288.68 1595.42
fixed-25k 28.11 39.55 ± 8.89 79.75 ± 5.38 20622.82 4269.89
fixed-50k 34.58 76.90 ± 16.82 58.85 ± 9.99 41264.63 4244.67
full-context 27.40 100.00 ± 0.00 0.00 ± 0.00 87936.41 3051.19

SELF-ROUTE 19.28 21.54 ± 31.97 80.09 ± 36.03 15426.00 917.82
adaptive-k 30.10 67.43 ± 38.13 60.73 ± 25.94 39654.20 4374.22

Average

zeroshot 5.26 0.00 0.00 58.13 64.30
fixed-1k 19.02 5.70 99.20 1002.61 286.25
fixed-5k 30.73 26.32 95.92 4218.45 1000.44
fixed-10k 34.63 42.49 91.85 8201.10 2010.08
fixed-25k 38.57 66.09 79.62 20127.94 3322.89
fixed-50k 37.78 84.48 58.24 40019.90 3965.49
full-context 39.92 100.00 0.00 78286.07 4075.32

SELF-ROUTE 29.80 40.70 78.65 17105.11 1240.76
adaptive-k 37.30 69.47 71.97 27572.90 3001.56

Table 11: Full GPT-4o’s results in the HoloBench tasks.
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Info amount Method Score Context recall Reduction (%) nin nout

info5k

zeroshot 10.19 0.00 ± 0.00 100.00 ± 0.00 52.64 644.08
fixed-1k 27.78 12.05 ± 6.42 99.18 ± 0.43 1091.11 478.93
fixed-5k 49.11 51.92 ± 29.82 95.85 ± 1.86 4610.40 1470.04
fixed-10k 54.52 66.68 ± 30.73 91.80 ± 2.92 8760.92 2743.83
fixed-25k 55.31 78.48 ± 26.96 79.59 ± 4.56 21300.94 3422.06
fixed-50k 56.37 86.79 ± 20.88 57.76 ± 5.92 42764.79 3995.68
full-context 63.27 100.00 ± 0.00 0.00 ± 0.00 94227.37 4584.58

SELF-ROUTE 47.56 57.27 ± 31.23 88.38 ± 25.87 11559.12 1894.97
adaptive-k 55.68 75.74 ± 30.48 74.07 ± 25.68 26762.53 2776.24

info10k

zeroshot 8.33 0.00 ± 0.00 100.00 ± 0.00 52.64 572.52
fixed-1k 21.09 6.53 ± 3.11 99.19 ± 0.40 1099.17 469.12
fixed-5k 34.94 31.77 ± 14.86 95.84 ± 1.90 4683.90 2107.79
fixed-10k 50.51 59.10 ± 27.14 91.74 ± 3.47 9105.06 2855.68
fixed-25k 55.24 78.18 ± 26.55 79.55 ± 5.42 21717.67 4696.43
fixed-50k 54.06 87.34 ± 20.51 57.88 ± 6.41 43101.23 6040.41
full-context 53.65 100.00 ± 0.00 0.00 ± 0.00 94626.73 6381.93

SELF-ROUTE 35.72 36.72 ± 22.19 89.40 ± 24.10 10196.77 2031.94
adaptive-k 56.26 68.54 ± 32.55 79.22 ± 21.59 22081.99 3637.80

info25k

zeroshot 6.28 0.00 ± 0.00 100.00 ± 0.00 52.64 657.34
fixed-1k 15.42 2.77 ± 1.15 99.21 ± 0.32 1098.33 455.64
fixed-5k 31.18 14.06 ± 5.50 95.96 ± 1.56 4699.37 1695.57
fixed-10k 37.86 28.80 ± 9.87 91.86 ± 3.09 9230.02 3053.66
fixed-25k 42.87 68.13 ± 22.77 79.60 ± 7.10 22790.66 6461.89
fixed-50k 44.54 86.88 ± 20.14 58.46 ± 8.58 44317.83 7982.89
full-context 42.19 100.00 ± 0.00 0.00 ± 0.00 95716.53 9289.30

SELF-ROUTE 28.12 20.06 ± 22.11 89.55 ± 24.11 11120.20 2086.64
adaptive-k 43.76 66.16 ± 36.90 73.86 ± 23.04 28207.51 5901.29

info50k

zeroshot 6.95 0.00 ± 0.00 100.00 ± 0.00 52.64 735.01
fixed-1k 9.77 1.47 ± 0.55 99.22 ± 0.23 1108.12 445.62
fixed-5k 22.66 7.54 ± 2.52 96.02 ± 1.12 4730.58 1836.44
fixed-10k 30.00 15.39 ± 4.25 92.01 ± 2.13 9277.87 2990.94
fixed-25k 33.71 39.55 ± 8.89 79.75 ± 5.38 23092.23 6596.67
fixed-50k 35.68 76.90 ± 16.82 58.85 ± 9.99 46101.70 8373.53
full-context 45.44 100.00 ± 0.00 0.00 ± 0.00 97597.56 8792.94

SELF-ROUTE 22.37 11.75 ± 19.29 91.76 ± 19.93 8923.41 1610.90
adaptive-k 31.72 67.43 ± 38.13 60.73 ± 25.94 43888.98 7643.86

Average

zeroshot 7.94 0.00 0.00 52.64 652.24
fixed-1k 18.51 5.70 99.20 1099.18 462.33
fixed-5k 34.47 26.32 95.92 4681.06 1777.46
fixed-10k 43.22 42.49 91.85 9093.47 2911.03
fixed-25k 46.78 66.09 79.62 22225.38 5294.26
fixed-50k 47.66 84.48 58.24 44071.39 6598.13
full-context 51.14 100.00 0.00 95542.05 7262.19

SELF-ROUTE 33.44 31.45 89.78 10449.88 1906.11
adaptive-k 46.85 69.47 71.97 30235.25 4989.80

Table 12: Full Gemini-2.5-Flash’s results in the HoloBench tasks.
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Info amount Method Score Context recall Reduction (%) nin nout

info5k

zeroshot 9.49 0.00 ± 0.00 100.00 ± 0.00 56.18 266.46
fixed-1k 29.52 12.05 ± 6.42 99.18 ± 0.43 994.79 450.14
fixed-5k 40.38 51.92 ± 29.82 95.85 ± 1.86 4195.84 650.72
fixed-10k 40.73 66.68 ± 30.73 91.80 ± 2.92 8024.09 687.39
fixed-25k 37.33 78.48 ± 26.96 79.59 ± 4.56 19625.13 711.01
fixed-50k 34.47 86.79 ± 20.88 57.76 ± 5.92 39342.62 707.11
full-context 36.32 100.00 ± 0.00 0.00 ± 0.00 86093.44 789.47

SELF-ROUTE 36.35 70.18 ± 29.18 69.25 ± 43.22 27700.34 785.69
adaptive-k 39.01 75.74 ± 30.48 74.07 ± 25.68 24711.58 1170.32

info10k

zeroshot 7.01 0.00 ± 0.00 100.00 ± 0.00 56.18 260.24
fixed-1k 19.25 6.53 ± 3.11 99.19 ± 0.40 999.90 473.22
fixed-5k 33.58 31.77 ± 14.86 95.84 ± 1.90 4233.97 708.81
fixed-10k 31.87 59.10 ± 27.14 91.74 ± 3.47 8254.73 796.22
fixed-25k 29.75 78.18 ± 26.55 79.55 ± 5.42 19898.58 840.93
fixed-50k 28.60 87.34 ± 20.51 57.88 ± 6.41 39561.99 1070.07
full-context 30.50 100.00 ± 0.00 0.00 ± 0.00 86347.34 1143.99

SELF-ROUTE 33.51 51.87 ± 29.27 72.57 ± 41.54 25307.50 1167.84
adaptive-k 34.69 68.54 ± 32.55 79.22 ± 21.59 20348.23 709.23

info25k

zeroshot 7.23 0.00 ± 0.00 100.00 ± 0.00 56.18 277.41
fixed-1k 17.62 2.77 ± 1.15 99.21 ± 0.32 997.53 473.57
fixed-5k 29.44 14.06 ± 5.50 95.96 ± 1.56 4226.03 682.94
fixed-10k 28.95 28.80 ± 9.87 91.86 ± 3.09 8298.52 759.61
fixed-25k 31.39 68.13 ± 22.77 79.60 ± 7.10 20562.19 795.73
fixed-50k 28.35 86.88 ± 20.14 58.46 ± 8.58 40309.13 1268.03
full-context 25.94 100.00 ± 0.00 0.00 ± 0.00 86997.00 961.38

SELF-ROUTE 29.08 32.25 ± 34.30 76.81 ± 38.65 21041.81 914.91
adaptive-k 26.90 66.16 ± 36.90 73.86 ± 23.04 25958.96 854.74

info50k

zeroshot 6.18 0.00 ± 0.00 100.00 ± 0.00 56.18 427.23
fixed-1k 11.93 1.47 ± 0.55 99.22 ± 0.23 1004.93 416.12
fixed-5k 22.89 7.54 ± 2.52 96.02 ± 1.12 4246.40 639.41
fixed-10k 23.75 15.39 ± 4.25 92.01 ± 2.13 8317.29 735.40
fixed-25k 23.94 39.55 ± 8.89 79.75 ± 5.38 20706.06 956.62
fixed-50k 25.46 76.90 ± 16.82 58.85 ± 9.99 41427.09 854.82
full-context 22.10 100.00 ± 0.00 0.00 ± 0.00 88197.90 1321.16

SELF-ROUTE 22.24 32.58 ± 40.92 70.50 ± 42.76 27508.79 980.10
adaptive-k 25.45 67.43 ± 38.13 60.73 ± 25.94 39897.64 1182.12

Average

zeroshot 7.48 0.00 0.00 56.18 307.84
fixed-1k 19.58 5.70 99.20 999.29 453.26
fixed-5k 31.57 26.32 95.92 4225.56 670.47
fixed-10k 31.33 42.49 91.85 8223.66 744.66
fixed-25k 30.60 66.09 79.62 20197.99 826.07
fixed-50k 29.22 84.48 58.24 40160.21 975.01
full-context 28.72 100.00 0.00 86908.92 1054.00

SELF-ROUTE 30.29 46.72 72.28 25389.61 962.14
adaptive-k 31.51 69.47 71.97 27729.10 979.11

Table 13: Full Llama4-Scout’s results in the HoloBench tasks.
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Info amount Method Score Context recall Reduction (%) nin nout

info5k

zeroshot 9.65 0.00 ± 0.00 100.00 ± 0.00 56.18 328.77
fixed-1k 28.05 12.05 ± 6.42 99.18 ± 0.43 994.79 591.14
fixed-5k 48.57 51.92 ± 29.82 95.85 ± 1.86 4195.84 799.80
fixed-10k 54.30 66.68 ± 30.73 91.80 ± 2.92 8024.09 834.79
fixed-25k 56.39 78.48 ± 26.96 79.59 ± 4.56 19625.13 874.41
fixed-50k 53.54 86.79 ± 20.88 57.76 ± 5.92 39342.62 919.02
full-context 55.13 100.00 ± 0.00 0.00 ± 0.00 86093.44 1101.66

SELF-ROUTE 48.47 65.03 ± 29.24 79.91 ± 35.98 18195.21 897.80
adaptive-k 51.77 75.74 ± 30.48 74.07 ± 25.68 24711.58 836.68

info10k

zeroshot 9.06 0.00 ± 0.00 100.00 ± 0.00 56.18 322.59
fixed-1k 23.16 6.53 ± 3.11 99.19 ± 0.40 999.90 609.29
fixed-5k 39.02 31.77 ± 14.86 95.84 ± 1.90 4233.97 892.93
fixed-10k 42.91 59.10 ± 27.14 91.74 ± 3.47 8254.73 927.12
fixed-25k 44.54 78.18 ± 26.55 79.55 ± 5.42 19898.58 883.56
fixed-50k 50.37 87.34 ± 20.51 57.88 ± 6.41 39561.99 1020.78
full-context 48.02 100.00 ± 0.00 0.00 ± 0.00 86347.34 1357.50

SELF-ROUTE 37.68 44.92 ± 27.75 79.95 ± 36.00 18010.20 1053.86
adaptive-k 44.91 68.54 ± 32.55 79.22 ± 21.59 20348.23 934.27

info25k

zeroshot 7.26 0.00 ± 0.00 100.00 ± 0.00 56.18 322.77
fixed-1k 19.15 2.77 ± 1.15 99.21 ± 0.32 997.53 629.03
fixed-5k 30.36 14.06 ± 5.50 95.96 ± 1.56 4226.03 896.96
fixed-10k 30.28 28.80 ± 9.87 91.86 ± 3.09 8298.52 867.99
fixed-25k 40.47 68.13 ± 22.77 79.60 ± 7.10 20562.19 1053.26
fixed-50k 44.69 86.88 ± 20.14 58.46 ± 8.58 40309.13 1291.90
full-context 43.38 100.00 ± 0.00 0.00 ± 0.00 86997.00 1455.21

SELF-ROUTE 28.57 29.97 ± 33.04 79.00 ± 36.97 19123.37 1038.17
adaptive-k 39.40 66.16 ± 36.90 73.86 ± 23.04 25958.96 1122.81

info50k

zeroshot 8.51 0.00 ± 0.00 100.00 ± 0.00 56.18 342.58
fixed-1k 11.24 1.47 ± 0.55 99.22 ± 0.23 1004.93 574.83
fixed-5k 22.39 7.54 ± 2.52 96.02 ± 1.12 4246.40 783.99
fixed-10k 24.53 15.39 ± 4.25 92.01 ± 2.13 8317.29 825.16
fixed-25k 27.94 39.55 ± 8.89 79.75 ± 5.38 20706.06 1127.69
fixed-50k 34.89 76.90 ± 16.82 58.85 ± 9.99 41427.09 1317.22
full-context 36.54 100.00 ± 0.00 0.00 ± 0.00 88197.90 1706.96

SELF-ROUTE 21.90 24.17 ± 35.52 78.99 ± 36.95 19460.93 1183.29
adaptive-k 34.63 67.43 ± 38.13 60.73 ± 25.94 39897.64 1687.78

Average

zeroshot 8.62 0.00 0.00 56.18 329.18
fixed-1k 20.40 5.70 99.20 999.29 601.07
fixed-5k 35.09 26.32 95.92 4225.56 843.42
fixed-10k 38.00 42.49 91.85 8223.66 863.76
fixed-25k 42.33 66.09 79.62 20197.99 984.73
fixed-50k 45.87 84.48 58.24 40160.21 1137.23
full-context 45.77 100.00 0.00 86908.92 1405.33

SELF-ROUTE 34.16 41.02 79.46 18697.43 1043.28
adaptive-k 42.68 69.47 71.97 27729.10 1145.38

Table 14: Full Llama4-Maverick’s results in the HoloBench tasks.
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A.3.3 Factoid QA tasks (GTE embeddings) 770

Task Method Score Context recall Reduction (%) nin nout

HotpotQA

zeroshot 50 0.00 ± 0.00 100.00 ± 0.00 63.03 ± 6.98 19.31 ± 16.53
fixed-1k 50 6.00 ± 16.33 99.16 ± 0.20 881.29 ± 76.42 31.19 ± 16.09
fixed-5k 51 9.33 ± 19.44 95.84 ± 0.67 4106.52 ± 327.20 30.61 ± 16.31
fixed-10k 54 13.67 ± 23.73 91.81 ± 1.19 8145.75 ± 576.29 29.29 ± 15.20
fixed-25k 58 27.50 ± 32.17 80.21 ± 2.40 20337.90 ± 1369.28 29.06 ± 17.08
fixed-50k 60 43.50 ± 33.16 61.79 ± 3.81 40520.53 ± 2661.25 28.96 ± 18.42
full-context 48 100.00 ± 0.00 0.00 ± 0.00 109666.92 ± 5537.59 18.91 ± 20.30

SELF-ROUTE 46 25.83 ± 39.17 78.64 ± 37.04 76201.89 ± 52199.49 22.69 ± 20.51
adaptive-k 49 5.50 ± 15.72 99.20 ± 0.36 877.06 ± 409.16 32.87 ± 23.82

NQ

zeroshot 57 0.00 ± 0.00 100.00 ± 0.00 53.37 ± 2.29 27.38 ± 24.23
fixed-1k 53 2.65 ± 9.56 99.29 ± 0.19 813.57 ± 84.46 31.61 ± 25.74
fixed-5k 53 9.07 ± 18.72 96.44 ± 0.49 3871.35 ± 353.77 33.67 ± 28.72
fixed-10k 58 14.22 ± 22.67 92.96 ± 0.77 7702.16 ± 668.50 34.24 ± 26.91
fixed-25k 62 31.38 ± 31.59 82.54 ± 1.61 19183.81 ± 1661.81 35.55 ± 29.97
fixed-50k 64 45.18 ± 33.28 65.32 ± 2.88 38288.26 ± 3141.73 36.84 ± 34.84
full-context 41 100.00 ± 0.00 0.00 ± 0.00 110607.54 ± 4711.16 24.74 ± 33.79

SELF-ROUTE 49 20.67 ± 31.77 78.12 ± 38.03 54951.43 ± 55725.18 27.13 ± 25.83
adaptive-k 51 2.85 ± 9.72 99.22 ± 0.24 907.79 ± 263.30 32.75 ± 25.98

TriviaQA

zeroshot 91 0.00 ± 0.00 100.00 ± 0.00 60.09 ± 7.79 8.33 ± 7.16
fixed-1k 96 3.00 ± 13.48 99.15 ± 0.49 857.89 ± 96.49 16.98 ± 10.66
fixed-5k 94 4.79 ± 15.73 95.94 ± 0.83 4040.80 ± 358.14 17.35 ± 10.37
fixed-10k 93 6.43 ± 17.79 92.04 ± 1.25 8038.26 ± 670.72 17.64 ± 10.47
fixed-25k 96 16.65 ± 30.03 80.93 ± 1.99 19985.92 ± 1507.53 16.64 ± 10.50
fixed-50k 95 39.57 ± 41.22 63.01 ± 3.13 39806.06 ± 2867.46 17.17 ± 10.11
full-context 62 100.00 ± 0.00 0.00 ± 0.00 110733.69 ± 3419.97 12.94 ± 12.48

SELF-ROUTE 88 10.20 ± 24.97 87.30 ± 27.60 32620.05 ± 48431.50 13.76 ± 10.53
adaptive-k 93 3.00 ± 13.48 99.16 ± 0.56 929.99 ± 604.34 17.33 ± 10.55

Average

zeroshot 66.00 0.00 0.00 58.83 18.34
fixed-1k 66.33 3.88 99.20 850.92 26.59
fixed-5k 66.00 7.73 96.07 4006.22 27.21
fixed-10k 68.33 11.44 92.27 7962.06 27.06
fixed-25k 72.00 25.18 81.23 19835.88 27.08
fixed-50k 73.00 42.75 63.38 39538.28 27.66
full-context 50.33 100.00 0.00 110336.05 18.86

SELF-ROUTE 61.00 18.90 81.35 54591.12 21.19
adaptive-k 64.33 3.78 99.19 904.95 27.65

Table 15: Full GPT-4o’s results in the factoid QA tasks with the embeddings by gte-Qwen2-1.5B-instruct.
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A.3.4 HoloBench (GTE embeddings)771

Info amount Method Score Context recall Reduction (%) nin nout

info5k

zeroshot 7.22 0.00 ± 0.00 100.00 ± 0.00 58.13 65.21
fixed-1k 26.14 12.05 ± 6.42 99.18 ± 0.43 1000.07 289.39
fixed-5k 42.32 51.92 ± 29.82 95.85 ± 1.86 4194.01 913.32
fixed-10k 49.79 66.68 ± 30.73 91.80 ± 2.92 8011.64 1334.67
fixed-25k 46.27 78.48 ± 26.96 79.59 ± 4.56 19574.94 2087.61
fixed-50k 43.82 86.79 ± 20.88 57.76 ± 5.92 39224.80 3188.69
full-context 48.30 100.00 ± 0.00 0.00 ± 0.00 73652.50 3680.13

SELF-ROUTE 40.69 65.18 ± 28.08 76.14 ± 38.33 12113.12 1288.40
adaptive-k 45.23 82.20 ± 25.15 64.79 ± 32.49 29079.80 1879.49

info10k

zeroshot 5.11 0.00 ± 0.00 100.00 ± 0.00 58.13 64.00
fixed-1k 21.83 6.53 ± 3.11 99.19 ± 0.40 1003.83 298.53
fixed-5k 32.45 31.77 ± 14.86 95.84 ± 1.90 4228.71 1001.83
fixed-10k 36.48 59.10 ± 27.14 91.74 ± 3.47 8235.02 2589.58
fixed-25k 39.65 78.18 ± 26.55 79.55 ± 5.42 19838.92 3527.68
fixed-50k 38.55 87.34 ± 20.51 57.88 ± 6.41 39437.42 4061.82
full-context 41.75 100.00 ± 0.00 0.00 ± 0.00 75768.00 4767.44

SELF-ROUTE 32.28 45.87 ± 24.77 79.47 ± 35.80 18646.59 1307.47
adaptive-k 39.66 78.99 ± 28.37 65.70 ± 30.96 28475.07 2238.23

info25k

zeroshot 3.54 0.00 ± 0.00 100.00 ± 0.00 58.13 65.69
fixed-1k 16.51 2.77 ± 1.15 99.21 ± 0.32 999.62 282.18
fixed-5k 27.52 14.06 ± 5.50 95.96 ± 1.56 4215.72 1350.80
fixed-10k 29.10 28.80 ± 9.87 91.86 ± 3.09 8269.06 2520.64
fixed-25k 40.25 68.13 ± 22.77 79.60 ± 7.10 20475.06 3406.40
fixed-50k 34.18 86.88 ± 20.14 58.46 ± 8.58 40152.73 4366.80
full-context 42.24 100.00 ± 0.00 0.00 ± 0.00 75787.37 4802.50

SELF-ROUTE 23.60 31.02 ± 32.35 77.63 ± 37.70 18905.02 1334.77
adaptive-k 36.33 76.47 ± 31.62 58.43 ± 29.94 36711.21 3509.82

info50k

zeroshot 5.19 0.00 ± 0.00 100.00 ± 0.00 58.13 62.30
fixed-1k 11.59 1.47 ± 0.55 99.22 ± 0.23 1006.91 274.89
fixed-5k 20.62 7.54 ± 2.52 96.02 ± 1.12 4235.36 735.80
fixed-10k 23.15 15.39 ± 4.25 92.01 ± 2.13 8288.68 1595.42
fixed-25k 28.11 39.55 ± 8.89 79.75 ± 5.38 20622.82 4269.89
fixed-50k 34.58 76.90 ± 16.82 58.85 ± 9.99 41264.63 4244.67
full-context 27.40 100.00 ± 0.00 0.00 ± 0.00 87936.41 3051.19

SELF-ROUTE 22.08 21.90 ± 31.81 79.88 ± 35.94 17563.86 1843.27
adaptive-k 30.80 72.54 ± 36.80 49.06 ± 29.83 46590.91 3806.21

Average

zeroshot 5.26 0.00 0.00 58.13 64.30
fixed-1k 19.02 5.70 99.20 1002.61 286.25
fixed-5k 30.73 26.32 95.92 4218.45 1000.44
fixed-10k 34.63 42.49 91.85 8201.10 2010.08
fixed-25k 38.57 66.09 79.62 20127.94 3322.89
fixed-50k 37.78 84.48 58.24 40019.90 3965.49
full-context 39.92 100.00 0.00 78286.07 4075.32

SELF-ROUTE 29.66 40.99 78.28 16807.15 1443.48
adaptive-k 38.00 77.55 59.49 35214.25 2858.44

Table 16: Full GPT-4o’s results in the HoloBench tasks with the embeddings by gte-Qwen2-1.5B-Instruct.
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