
Under review at the GEM workshop, ICLR 2024

GENERATIVE FLOWS ON DISCRETE STATE-SPACES:
ENABLING MULTIMODAL FLOWS WITH APPLICA-
TIONS TO PROTEIN CO-DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Combining discrete and continuous data is an important capability for genera-
tive models. We present Discrete Flow Models (DFMs), a new flow-based model
of discrete data that provides the missing link in enabling flow-based generative
models to be applied to multimodal continuous and discrete data problems. Our
key insight is that the discrete equivalent of continuous space flow matching can
be realized using Continuous Time Markov Chains. DFMs benefit from a sim-
ple derivation that includes discrete diffusion models as a specific instance while
allowing improved performance over existing diffusion-based approaches. We uti-
lize our DFMs method to build a multimodal flow-based modeling framework. We
apply this capability to the task of protein co-design, wherein we learn a model for
jointly generating protein structure and sequence. Our approach achieves state-of-
the-art co-design performance while allowing the same multimodal model to be
used for flexible generation of the sequence or structure.

1 INTRODUCTION

Scientific domains often involve continuous atomic interactions with discrete chemical descriptions.
Expanding the capabilities of generative models to handle discrete and continuous data, which we
refer to as multimodal, can enable wider adoption in scientific applications (Wang et al., 2023).
One such application requiring a multimodal generative model is protein co-design where the aim
is to jointly generate continuous protein structures alongside corresponding discrete amino acid
sequences (Shi et al., 2022). Proteins have been well-studied: the function of the protein is endowed
through its structure while the sequence is the blueprint of how the structure is made. This interplay
motivates jointly generating the structure and sequence rather than in isolation. To this end, the
focus of our work is to develop a multimodal generative framework capable of co-design.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) have achieved state-
of-the-art performance across multiple applications. They have potential as a multimodal framework
because they can be defined on both continuous and discrete spaces (Hoogeboom et al., 2021; Austin
et al., 2021). However, their sample time inflexibility makes them unsuitable for multimodal prob-
lems. On even just a single modality, finding optimal sampling parameters requires extensive re-
training and evaluations (Karras et al., 2022). This problem is exacerbated for multiple modalities.
On the other hand, flow-based models (Liu et al., 2023; Albergo & Vanden-Eijnden, 2023; Lipman
et al., 2023) improve over diffusion models with a simpler framework that allows for superior perfor-
mance through sampling flexibility (Ma et al., 2024). Unfortunately, our current inability to define
a flow-based model on discrete spaces holds us back from a multimodal flow model.

We address this by introducing a novel flow-based model for discrete data named Discrete Flow
Models (DFMs) and thereby unlock a complete framework for flow-based multimodal generative
modeling. Our key insight comes from seeing that a discrete flow-based model can be realized
using Continuous Time Markov Chains (CTMCs). DFMs are a new discrete generative modeling
paradigm: less restrictive than diffusion, allows for sampling flexibility without re-training and en-
ables simple combination with continuous space flows to form multimodal flow models.

Fig. 1A provides an overview of DFMs. We first define a probability flow pt that linearly interpolates
from noise to data. We then generate new data by simulating a sequence trajectory xt that follows

1

Under review at the GEM workshop, ICLR 2024

Figure 1: Overview. (A.) A DFM trajectory with masking over a 3-dim. sequence with 4 possible
states. (B.) CTMC stochasticity controls the number of transitions in a sequence trajectory while
respecting the flow pt. Shown is a 1-dim. sequence with 5 states. (C.) Sampling with Multiflow can
start from pure noise (bottom left) or with either the structure or sequence given (top left and bottom
right). Any sampling tasks (structure/sequence generation, forward/inverse folding, co-generation)
can be achieved with a single Multiflow model.

pt across time which requires training a denoising neural network with cross-entropy. The sequence
trajectory could have many transitions or few, a property we term CTMC Stochasticity (Fig. 1B).
Prior discrete diffusion models are equivalent to picking a specific stochasticity at training time,
whereas we can adjust it at inference: enhancing sample quality and exerting control over sample
distributional properties.

Using DFMs, we are then able to create a multimodal flow model by defining factorized flows
for each data modality. We apply this capability to the task of protein co-design by developing a
novel continuous structure and discrete sequence generative model named Multiflow. We combine a
DFM for sequence generation and a flow-based structure generation method developed in Yim et al.
(2023a). Previous multimodal approaches either generated only the sequence or only the structure
and then used a prediction model to infer the remaining modality (see Sec. 3). Our single model can
jointly generate sequence and structure while being able to condition on either modality.

In our experiments, we first verify in App. K that on small scale text data, DFMs provide superior
performance over the discrete diffusion alternative, D3PM (Austin et al., 2021) through their ex-
panded sample time flexibility. We then move to our main focus in Sec. 4, assessing Multiflow’s
performance on the co-design task of jointly generating protein structure and sequence. Multiflow
achieves state-of-the-art co-design performance while data distillation allows for obtaining state-of-
the-art structure generation. We find CTMC stochasticity enables controlling sample properties such
as secondary structure composition and diversity. Preliminary results on inverse and forward folding
show Multiflow is a promising path towards a general-purpose protein generative model.

Our contributions are summarized as follows:
• We present Discrete Flow Models (DFMs), a novel discrete generative modeling method built

through a CTMC simulating a probability flow.
• We combine DFMs with continuous flow-based methods to create a multimodal generative mod-

eling framework.
• We use our multimodal framework to develop Multiflow, a state-of-the-art generative protein

co-design model with the flexibility of multimodal protein generation.

2 MULTIMODAL PROTEIN GENERATIVE MODEL

We present the Discrete Flow Models (DFMs) framework in App. C and in this section we focus on
the application of DFMs to create a multimodal protein generative model. A protein can be modeled
as a linear chain of residues, each with an assigned amino acid and 3D atomic coordinates. Protein
co-design aims to jointly generate the amino acids (sequence) and coordinates (structure). Prior
works have used a generative model on one modality (sequence or structure) with a separate model
to predict the other (see Sec. 3). Instead, our approach uses a single generative model to jointly
sample both modalities. This requires us to define a flow both on the continuous structure modality
and the discrete sequence modality. We use a DFM to model the discrete sequence and a a recently
developed continuous flow model, FrameFlow (Yim et al., 2023a) to model the structure. To define

2

Under review at the GEM workshop, ICLR 2024

a multi-modal flow, we factorize the flow over the different modalities resulting in a model able to
co-generate both sequence and structure. We name this method Multiflow.

Multimodal Flow. Following FrameFlow, we refer to the protein structure as the backbone atomic
coordinates of each residue. We leave modeling side-chain atoms as a follow-up work. The structure
is represented as elements of SE(3) to capture the rigidity of the local frames along the backbone
(Yim et al., 2023b). A protein of length D residues can then be represented as {(xd, rd, ad)}Dd=1
where x ∈ R3 is the translation of the residue’s Carbon-α atom, r ∈ SO(3) is a rotation matrix of
the residue’s local frame with respect to global reference frame, and a ∈ {1, . . . , 20} ∪ {M} is one
of 20 amino acids or the mask state M .

To define a flow-based model, we must first define a conditional interpolation that takes us from a
given datapoint and interpolates towards noise. For the continuous modalities, we can follow Yim
et al. (2023a) where these interpolations take the form of picking a point along the ‘line’ connecting
the given datapoint to a sampled noise point

Translation: xt = tx1 + (1− t)x0, x0 ∼ N (0, I) (1)

Rotation: rt = expr0
(
tlogr0(r1)

)
, r0 ∼ USO(3)

where exp and log are the exponential and logarithmic maps. USO(3) is the uniform distribution on
SO(3). For the discrete amino acid types, our interpolation instead takes the form of a Categorical
distribution that linearly interpolates from a one-hot on the given datapoint a1 towards the noise
sample which is simply a mask state M .

Amino acid: at̃ ∼ Cat(t̃δ {a1, at̃}+ (1− t̃)δ {M,at̃}), (2)

The noise level for the structure, t, is independent of the noise level for the sequence, t̃, which
enables flexible sampling options that we explore in our experiments (Albergo et al., 2023). For
brevity, we let T d

t,t̃
= (xd

t , r
d
t , a

d
t̃
) while Tt,t̃ = {T d

t,t̃
}Dd=1 is the protein’s sequence and structure at

times t, t̃.

Training. During training, our network will take as input the noised protein Tt,t̃ and predict
the denoised translations x̂1(Tt,t̃), rotations r̂1(Tt,t̃), and amino acid distribution pθ(a1|Tt,t̃). We
minimize the following loss,

E
[∑D

d=1
||x̂d

1(Tt,t̃)−xd
1||2

1−t +

∣∣∣∣∣∣logrdt
(r̂d1 (Tt))−log

rdt
(rd1)

∣∣∣∣∣∣2
1−t − log pθ(a

d
1|Tt,t̃)

]
. (3)

where the expectation is over t, t̃ ∼ U(0, 1) and T1,1 ∼ pdata while Tt,t̃ is sampled by interpolating
to times t, t̃ via Eq. (1) and Eq. (2). Our independent t, t̃ objective enables the model to learn over
different relative levels of corruption between the sequence and structure. Eq. (3) corresponds to the
flow matching loss for the continuous structure and a cross-entropy loss for the discrete amino acids.
The neural network architecture is modified from FrameFlow with a larger transformer, smaller
Invariant Point Attention, and extra multi-layer perception head to predict the amino acid logits.

Sampling. To sample our generative flow, we use Euler integration steps. We will first state the
form for our update step and then describe it in detail.

xd
t+∆t = xd

t +∆t
x̂d
1(Tt,t̃)−xd

t

1−t , rdt+∆t = exprdt

(
∆t · c · logrdt (r̂

d
1(Tt,t̃))

)
,

ad
t̃+∆t̃

∼ Cat
(
δ{ad

t̃
, ad

t̃+∆t̃
}+∆t

pθ(a
d
1=ad

t̃+∆t̃
|Tt,t̃)

1−t̃
δ
{
ad
t̃
,M
})

.

For the translations, xd
t we use the familiar form of the flow matching Euler integration step with

vector field x̂d
1(Tt,t̃)−xd

t

1−t which can be intuitively understood as moving gradually in the direction
towards the predicted clean datapoint x̂d

1 and scaled by 1
1−t . For rotations, rdt , we use the equivalent

integration step defined on the space of rotations Chen & Lipman (2023), including the exponential
rate scheduler c which has been found to improve sample quality (Bose et al., 2023). We use c = 10
as in FrameFlow. Finally, for the amino acids ad

t̃
we perform an Euler update in discrete space.

3

Under review at the GEM workshop, ICLR 2024

In practice, this means we sample ad
t̃+∆t̃

from a categorical distribution that is a perturbed version
of a one-hot distribution on the previous value, ad

t̃
. The perturbation is given by our clean data

prediction network pθ(a
d
1 = ad

t̃+∆t̃
|Tt,t̃) thus gradually moving adt towards the model’s prediction

of clean data. Full details on the construction of flows on discrete state spaces can be found in
App. C and derivations for our specific form used here can be found in App. H.1. We note that DFM
allows for varying the stochasticity of simulation using parameter η. We assumed η = 0 for ease of
explanation in this section.

3 RELATED WORK

Diffusion and flow models have risen in popularity for generating novel and diverse protein back-
bones (Yim et al., 2023b;a; Bose et al., 2023; Lin & AlQuraishi, 2023; Ingraham et al., 2023). RFD-
iffusion achieved notable success by generating proteins validated in wet-lab experiments (Watson
et al., 2023). However, these methods required a separate model for sequence generation. Some
works have focused only on sequence generation with diffusion models (Alamdari et al., 2023; Gru-
ver et al., 2023; Yang et al., 2023; Yi et al., 2023). We focus on co-design which aims to jointly
generate the structure and sequence.

Prior works have attempted co-design. ProteinGenerator (Lisanza et al., 2023) performs Euclidean
diffusion over one-hot amino acids while predicting the structure at each step with RosettaFold
(Baek et al., 2021). Conversely, Protpardelle (Chu et al., 2023) performs Euclidean diffusion over
structure while iteratively predicting the sequence. Multiflow instead uses a generative model over
both the structure and sequence which allows for flexibility at inference time (see App. L). Luo
et al. (2022); Shi et al. (2022) are co-design methods, but are limited to generating CDR loops on
antibodies. Lastly, Anand & Achim (2022) diffuse on structure and sequence, but did not report
standard evaluation metrics nor is code available. We discuss further related work in App. F.

4 EXPERIMENTS

In this section we evaluate Multiflow, the first flow model on discrete and continuous state spaces.
We show Multiflow provides state-of-the-art-performance on protein generative modeling compared
to prior approaches that do not generate using a true multimodal generative model.

Metrics. Evaluating the quality of structure-sequence samples is performed with self-consistency
which measures how consistent a generated sequence is with a generated structure by testing how
accurately a protein folding network can predict the structure from the sequence. Specifically, either
AlphaFold2 (Jumper et al., 2021) or ESMFold (Lin et al., 2023), is first used to predict a structure
given only the generated sequence. Here we use ESMFold and show AlphaFold2 results in App. L.
Then, we calculate scRMSD: the Root Mean Squared Deviation between the generated and predicted
structure’s backbone atoms. The generated structure is designable if scRMSD < 2Å.

Structure-only generative models such as RFdiffusion first use ProteinMPNN (PMPNN) (Dauparas
et al., 2022) to predict a sequence given the generated structure in order to then be able to use the
self-consistency metric. We present three variants of self-consistency:
• Co-design 1: use the sampled (structure, sequence) pair.
• PMPNN 8: take only the sampled structure and predict 8 sequences with PMPNN. Then use

ESMFold to predict a new structure for each sequence. The final structure-sequence pair is the
original sampled structure along with the PMPNN sequence with minimum scRMSD.

• PMPNN 1: same as PMPNN 8 except PMPNN only generates one sequence.
PMPNN 8 and PMPNN 1 evaluate only the quality of a model’s generated structures whereas, for
co-design models, Co-design 1 evaluates the quality of a model’s generated (structure, sequence)
pairs. The comparison between PMPNN 1 and Co-design 1 allows for evaluating the quality of
co-designed sequences. PMPNN 8 is the procedure used in prior structure-only works. As our
main metric of sample quality, we report designability as the percentage of designable samples.
As a further sanity check, designable samples are then evaluated on diversity and novelty. We
use FoldSeek (van Kempen et al., 2022) to report diversity as the number of unique clusters while
novelty is the average TM-score (Zhang & Skolnick, 2005) of each sample to its most similar protein
in PDB.

4

Under review at the GEM workshop, ICLR 2024

Table 1: Co-design results. Abbreviations: Designability (DES.), Diversity (DIV.), Novelty (NOV.).

METHOD CO-DESIGN 1 PMPNN 8 PMPNN 1
DES. (↑) DIV. (↑) NOV. (↓) DES. DIV. NOV. DES. DIV. NOV.

PROTPARDELLE 0.05 6 0.75 0.92 46 0.67 0.63 33 0.68
PROTEINGENERATOR 0.34 31 0.74 0.88 73 0.71 0.75 56 0.72
RFDIFFUSION N/A 0.90 161 0.69 0.69 120 0.70
MULTIFLOW 0.88 143 0.68 0.99 156 0.68 0.87 142 0.69
MULTIFLOW W/O DISTILLATION 0.41 73 0.68 0.89 126 0.68 0.75 110 0.69
MULTIFLOW W/O SEQUENCE N/A 0.99 118 0.69 0.86 95 0.69

Training. Our training data consisted of length 60-384 proteins from the Protein Data Bank (PDB)
(Berman et al., 2000) that were curated in Yim et al. (2023b) for a total of 18684 proteins. Training
took 200 epochs over 3 days on 4 A6000 Nvidia GPUs using the AdamW optimizer (Loshchilov &
Hutter, 2017) with learning rate 0.0001.

Distillation. Multiflow with PDB training generated highly designable structures. However, the co-
designed sequences had lower designability than PMPNN. Our analysis revealed the original PDB
sequences had worse designability than PMPNN. We sought to improve performance by distilling
knowledge from other models. To this end, we first replaced the sequence of each structure in the
training dataset with the lowest scRMSD sequence out of 8 generated by PMPNN conditioned on
the structure. Second, we generated synthetic structures of random lengths between 60-384 using an
initial Multiflow model and added those that passed PMPNN 8 designability into the training dataset
with the lowest scRMSD PMPNN sequence. We found that we needed to add only an extra 4179
examples to the original set of 18684 proteins to see a dramatic improvement. This procedure can
be seen as a single step of reinforced self training (ReST) Gulcehre et al. (2023).

Results. Following RFdiffusion’s benchmark, we sample 100 structures and sequences for each
length 70, 100, 200, and 300. We sample Multiflow with 500 timesteps using a temperature of 0.1
(PMPNN also uses 0.1) and stochasticity level η = 20. We compare our structure quality to state-
of-the-art structure generation method RFdiffusion. For co-design, we compare to Protpardelle and
ProteinGenerator. All methods were ran using their publicly released code and evaluated identically.

Our results are presented in Table. 1. We find that Multiflow’s co-design capabilities surpass previ-
ous co-design methods, none of which use a joint multimodal generation process. Multiflow gen-
erates sequences that are consistent with the generated structure at a comparable level to PMPNN
which we see through comparing the Co-design 1 and PMPNN 1 designability. On structure gen-
eration, we find that Multiflow outperforms all baselines in terms of structure quality measured
by PMPNN 8 designability. Multiflow also attains comparable diversity and novelty to previous
approaches. We ablate our use of distillation and find that it results in overall designability improve-
ments while also improving diversity. Finally, we train the same architecture except only modeling
the structure on the distilled dataset using the loss from Yim et al. (2023a). We find our joint model
achieves the same structural quality as the structure-only version, however, additionally including
the sequence in our generative process induces extra structural diversity.

In App. L we investigate Multiflow’s inverse and forward folding capabilities by utilizing our inde-
pendent t, t̃ training objective. We find Multiflow can perform competitively with a purpose built
inverse folding method whilst for forward folding, Multiflow often generates suitable secondary
structure elements, but accurately reproducing the true fold remains challenging.

5 DISCUSSION

We presented Discrete Flow Models (DFMs), a flow based generative model framework by making
analogy to continuous state space flow models. Our formulation is simple to implement, removes
limitations in defining corruption processes, and provides more sampling flexibility for improved
performance compared to previous discrete diffusion models. Our framework enables easy appli-
cation to multimodal generative problems which we apply to protein co-design. The combination
of a DFM and FrameFlow enables state-of-the-art co-design with Multiflow. Future work includes
to develop more domain specific models with DFMs and improve Multiflow’s performance on all
protein generation tasks including sidechain modeling.

5

Under review at the GEM workshop, ICLR 2024

REFERENCES

Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Alex Xijie Lu, Nicolo Fusi, Ava Pardis
Amini, and Kevin K Yang. Protein generation with evolutionary diffusion: sequence is all you
need. bioRxiv, pp. 2023–09, 2023.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. International Conference on Learning Representations, 2023.

Michael S Albergo, Nicholas M Boffi, Michael Lindsey, and Eric Vanden-Eijnden. Multimarginal
generative modeling with stochastic interpolants. arXiv preprint arXiv:2310.03695, 2023.

Namrata Anand and Tudor Achim. Protein structure and sequence generation with equivariant de-
noising diffusion probabilistic models. arXiv preprint arXiv:2205.15019, 2022.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 2021.

Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate prediction of
protein structures and interactions using a three-track neural network. Science, 373(6557):871–
876, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. Journal of Machine Learning Research, 2023.

Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig,
Ilya N Shindyalov, and Philip E Bourne. The protein data bank. Nucleic acids research, 28(1):
235–242, 2000.

Avishek Joey Bose, Tara Akhound-Sadegh, Kilian Fatras, Guillaume Huguet, Jarrid Rector-Brooks,
Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael Bronstein, and Alexan-
der Tong. Se (3)-stochastic flow matching for protein backbone generation. arXiv preprint
arXiv:2310.02391, 2023.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 2022.

Yu Cao, Jingrun Chen, Yixin Luo, and Xiang Zhou. Exploring the optimal choice for genera-
tive processes in diffusion models: Ordinary vs stochastic differential equations. arXiv preprint
arXiv:2306.02063, 2023.

Ricky TQ Chen and Yaron Lipman. Riemannian flow matching on general geometries. arXiv
preprint arXiv:2302.03660, 2023.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using
diffusion models with self-conditioning. International Conference on Learning Representations,
2023.

Shui-Nee Chow, Wen Huang, Yao Li, and Haomin Zhou. Fokker–planck equations for a free energy
functional or markov process on a graph. Archive for Rational Mechanics and Analysis, 2012.

Alexander E Chu, Lucy Cheng, Gina El Nesr, Minkai Xu, and Po-Ssu Huang. An all-atom protein
generative model. bioRxiv, pp. 2023–05, 2023.

Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning–
based protein sequence design using proteinmpnn. Science, 378(6615):49–56, 2022.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. International Conference on Machine Learning,
2023.

6

Under review at the GEM workshop, ICLR 2024

Pierre Del Moral and Spiridon Penev. Stochastic processes: From applications to theory. CRC Press,
2017.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Continuous diffu-
sion for categorical data. arXiv preprint arXiv:2211.15089, 2022.

Griffin Floto, Thorsteinn Jonsson, Mihai Nica, Scott Sanner, and Eric Zhengyu Zhu. Diffusion on
the probability simplex. arXiv preprint arXiv:2309.02530, 2023.

Wenhao Gao, Sai Pooja Mahajan, Jeremias Sulam, and Jeffrey J Gray. Deep learning in protein
structural modeling and design. Patterns, 1(9), 2020.

Daniel T Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems.
The Journal of Chemical Physics, 2001.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
sequence text generation with diffusion models. International Conference on Learning Represen-
tations, 2023.

Nate Gruver, Samuel Stanton, Nathan C Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-
Vanasse, Arvind Rajpal, Kyunghyun Cho, and Andrew Gordon Wilson. Protein design with
guided discrete diffusion. arXiv preprint arXiv:2305.20009, 2023.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models. Ad-
vances in Neural Information Processing Systems, 2023.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive simplex-
based diffusion language model for text generation and modular control. arXiv preprint
arXiv:2210.17432, 2022.

W Keith Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 1970.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 2020.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. Advances in Neural Information
Processing Systems, 2021.

Chenqing Hua, Sitao Luan, Minkai Xu, Rex Ying, Jie Fu, Stefano Ermon, and Doina Precup. Mudiff:
Unified diffusion for complete molecule generation. arXiv preprint arXiv:2304.14621, 2023.

Chin-Wei Huang, Jae Hyun Lim, and Aaron C Courville. A variational perspective on diffusion-
based generative models and score matching. Advances in Neural Information Processing Sys-
tems, 2021.

John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail, Vincent
Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illuminating protein
space with a programmable generative model. Nature, 2023.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 2021.

Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary structure: pattern recog-
nition of hydrogen-bonded and geometrical features. Biopolymers: Original Research on
Biomolecules, 22(12):2577–2637, 1983.

7

Under review at the GEM workshop, ICLR 2024

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. International Conference on Machine Learning, 2023.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
lm improves controllable text generation. Advances in Neural Information Processing Systems,
2022.

Yeqing Lin and Mohammed AlQuraishi. Generating novel, designable, and diverse protein struc-
tures by equivariantly diffusing oriented residue clouds. arXiv preprint arXiv:2301.12485, 2023.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. International Conference on Learning Representations, 2023.

Sidney Lyayuga Lisanza, Jacob Merle Gershon, Sam Wayne Kenmore Tipps, Lucas Arnoldt, Samuel
Hendel, Jeremiah Nelson Sims, Xinting Li, and David Baker. Joint generation of protein sequence
and structure with rosettafold sequence space diffusion. bioRxiv, pp. 2023–05, 2023.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. International Conference on Learning Representations, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. Advances in Neural Information Processing Systems, 2023.

Shitong Luo, Yufeng Su, Xingang Peng, Sheng Wang, Jian Peng, and Jianzhu Ma. Antigen-specific
antibody design and optimization with diffusion-based generative models for protein structures.
Advances in Neural Information Processing Systems, 35:9754–9767, 2022.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv preprint arXiv:2401.08740, 2024.

Matt Mahoney. Large text compression benchmark. 2006. URL https://www.mattmahoney.
net/dc/text.html.

Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching: Gen-
eralized score matching for discrete data. Advances in Neural Information Processing Systems,
2022.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward
Teller. Equation of state calculations by fast computing machines. The journal of chemical
physics, 1953.

James R Norris. Markov chains. Cambridge university press, 1998.

Xingang Peng, Jiaqi Guan, Qiang Liu, and Jianzhu Ma. Moldiff: Addressing the atom-bond in-
consistency problem in 3d molecule diffusion generation. International Conference on Machine
Learning, 2023.

Joana Pereira, Adam J Simpkin, Marcus D Hartmann, Daniel J Rigden, Ronan M Keegan, and
Andrei N Lupas. High-accuracy protein structure prediction in casp14. Proteins: Structure,
Function, and Bioinformatics, 89(12):1687–1699, 2021.

8

https://www.mattmahoney.net/dc/text.html
https://www.mattmahoney.net/dc/text.html

Under review at the GEM workshop, ICLR 2024

Yiming Qin, Clement Vignac, and Pascal Frossard. Sparse training of discrete diffusion models for
graph generation. arXiv preprint arXiv:2311.02142, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. International conference on machine learning,
2014.

Pierre H Richemond, Sander Dieleman, and Arnaud Doucet. Categorical sdes with simplex diffu-
sion. arXiv preprint arXiv:2210.14784, 2022.

Neta Shaul, Ricky TQ Chen, Maximilian Nickel, Matthew Le, and Yaron Lipman. On kinetic
optimal probability paths for generative models. International Conference on Machine Learning,
2023.

Chence Shi, Chuanrui Wang, Jiarui Lu, Bozitao Zhong, and Jian Tang. Protein sequence and struc-
ture co-design with equivariant translation. arXiv preprint arXiv:2210.08761, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. International Conference on Machine Learning,
2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. International
Conference on Learning Representations, 2020.

Robin Strudel, Corentin Tallec, Florent Altché, Yilun Du, Yaroslav Ganin, Arthur Mensch, Will
Grathwohl, Nikolay Savinov, Sander Dieleman, Laurent Sifre, et al. Self-conditioned embedding
diffusion for text generation. arXiv preprint arXiv:2211.04236, 2022.

Haoran Sun, Hanjun Dai, Bo Dai, Haomin Zhou, and Dale Schuurmans. Discrete langevin samplers
via wasserstein gradient flow. International Conference on Artificial Intelligence and Statistics,
2023a.

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
discrete diffusion models. International Conference on Learning Representations, 2023b.

Zhicong Tang, Shuyang Gu, Jianmin Bao, Dong Chen, and Fang Wen. Improved vector quantized
diffusion models. arXiv preprint arXiv:2205.16007, 2022.

Brian L Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and
Tommi Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-
scaffolding problem. arXiv preprint arXiv:2206.04119, 2022.

Michel van Kempen, Stephanie Kim, Charlotte Tumescheit, Milot Mirdita, Johannes Söding, and
Martin Steinegger. Foldseek: fast and accurate protein structure search. bioRxiv, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 2017.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation. International Conference
on Learning Representations, 2023a.

Clement Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d
denoising diffusion for molecule generation. arXiv preprint arXiv:2302.09048, 2023b.

Kutti R Vinothkumar and Richard Henderson. Structures of membrane proteins. Quarterly reviews
of biophysics, 43(1):65–158, 2010.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/mesh-transformer-jax, 2021.

9

https://github.com/kingoflolz/mesh-transformer-jax

Under review at the GEM workshop, ICLR 2024

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
intelligence. Nature, 620(7972):47–60, 2023.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eise-
nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of
protein structure and function with rfdiffusion. Nature, 2023.

Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, and Tommi Jaakkola. Restart
sampling for improving generative processes. Advance in Neural Information Processing Systems,
2023.

John J Yang, Jason Yim, Regina Barzilay, and Tommi Jaakkola. Fast non-autoregressive inverse
folding with discrete diffusion. arXiv preprint arXiv:2312.02447, 2023.

Kai Yi, Bingxin Zhou, Yiqing Shen, Pietro Liò, and Yu Guang Wang. Graph denoising diffusion for
inverse protein folding. arXiv preprint arXiv:2306.16819, 2023.

Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297, 2023a.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation.
arXiv preprint arXiv:2302.02277, 2023b.

Pengze Zhang, Hubery Yin, Chen Li, and Xiaohua Xie. Formulating discrete probability flow
through optimal transport. arXiv preprint arXiv:2311.03886, 2023.

Yang Zhang and Jeffrey Skolnick. Tm-align: a protein structure alignment algorithm based on the
tm-score. Nucleic acids research, 33(7):2302–2309, 2005.

10

Under review at the GEM workshop, ICLR 2024

Appendix to:
Generative Flows on Discrete State-Spaces: Enabling

Multimodal Flows with Applications to Protein Co-Design

A ORGANIZATION OF APPENDIX

The Appendix is organized as follows. App. B provides background on Continuous Time Markov
Chains (CTMCs) that will be required when deriving our discrete flow model. App. C explains
in detail how flow based models can be derived for discrete state spaces. App. D provides proofs
for all propositions in App. C. App. E analyses the cross entropy objective used to train DFM and
links controlling the cross entropy to controlling the model log-likelihood. App. F discusses further
related work. App. G shows how DFM can be applied to multidimensional data through applying
factorization assumptions to pt|1. App. H gives concrete realizations with PyTorch code for DFM
using the masking or uniform forms for pt|1. App. I discusses methods for sampling from CTMCs
and discusses their relation to our sampling method. App. J compares DFM to classical discrete
diffusion models in discrete and continuous time finding that they can be fit within the DFM frame-
work. App. K gives further details and results for our text experiment. App. L gives further details
and results for our protein co-design experiments. App. M discusses the further impacts of our work.

B CTMC BACKGROUND

We aim to model discrete data where a sequence x ∈ {1, . . . , S}D has D dimensions, each taking
on one of S states. For ease of exposition, we will assume D = 1; all results hold for D > 1 as
discussed in App. G. We first explain a class of continuous time discrete stochastic processes called
Continuous Time Markov Chains (CTMCs) Norris (1998) and then describe the link to probability
flows.

B.1 CONTINUOUS TIME MARKOV CHAINS.

A sequence trajectory xt over time t ∈ [0, 1] that follows a CTMC alternates between resting in
its current state and periodically jumping to another randomly chosen state. We show example
trajectories in Fig. 1B. The frequency and destination of the jumps are determined by the rate matrix
Rt ∈ RS×S with the constraint its off-diagonal elements are non-negative. The probability xt will
jump to a different state j is Rt(xt, j)dt for the next infinitesimal time step dt . We can write the
transition probability as

pt+dt|t(j|xt) =

{
Rt(xt, j)dt for j ̸= xt

1 +Rt(xt, xt)dt for j = xt
(4)

= δ {xt, j}+Rt(xt, j)dt (5)

where δ {i, j} is the Kronecker delta which is 1 when i = j and is otherwise 0 and Rt(xt, xt) :=
−
∑

k ̸=x Rt(xt, k) in order for pt+dt|t(·|i) to sum to 1. We use compact notation Eq. (5) in place of
Eq. (4). Therefore, pt+dt|t is a Categorical distribution with probabilities δ {xt, ·}+Rt(xt, ·)dt that
we denote as Cat(δ {xt, j}+Rt(xt, j)dt):

j ∼ pt+dt|t(j|xt) ⇐⇒ j ∼ Cat(δ {xt, j}+Rt(xt, j)dt).

In practice, we need to simulate the sequence trajectory with finite time intervals ∆t. A sequence
trajectory can be simulated with Euler steps (Sun et al., 2023b)

xt+∆t ∼ Cat(δ {xt, xt+∆t}+Rt(xt, xt+∆t)∆t), (6)

where the sequence starts from an initial sample x0 ∼ p0 at time t = 0. The rate matrix Rt along
with an initial distribution p0 together define the CTMC.

11

Under review at the GEM workshop, ICLR 2024

B.2 KOLMOGOROV EQUATION

For a sequence trajectory following the dynamics of a CTMC, we write its marginal distribution at
time t as pt(xt). The Kolmogorov equation allows us to relate the rate matrix Rt to the change in
pt(xt). It has the form:

∂tpt(xt) =
∑
j ̸=xt

Rt(j, xt)pt(j)︸ ︷︷ ︸
incoming

−
∑
j ̸=xt

Rt(xt, j)pt(xt)︸ ︷︷ ︸
outgoing

(7)

The difference between the incoming and outgoing probability mass is the time derivative of
the marginal ∂tpt(xt). Using our definition of Rt(xt, xt), Eq. (7) can be succinctly written as
∂tpt = R⊤

t pt where the marginals are treated as probability mass vectors: pt ∈ [0, 1]S . This defines
an Ordinary Differential Equation (ODE) in a vector space. We refer to the series of distributions
pt ∀t ∈ [0, 1] satisfying the ODE as a probability flow.

Key terms: A CTMC is defined by an initial distribution p0 and rate matrix Rt. Samples along
CTMC dynamics are called a sequence trajectory xt. The probability flow pt is the marginal
distribution of xt at every time t. We say Rt generates pt if ∂tpt = R⊤

t pt ∀t ∈ [0, 1].

C DISCRETE FLOW MODELS

A Discrete Flow Model (DFM) is a Discrete data generative model built around a probability Flow
that interpolates from noise to data. To sample new datapoints, we simulate a sequence trajectory that
matches the noise to data probability flow. The flow construction allows us to combine DFM with
continuous data flow models to define a multimodal generative model. Proofs for all propositions
are in App. D.

C.1 A FLOW MODEL FOR SAMPLING DISCRETE DATA

We start by constructing the data generating probability flow referred to as the generative flow, pt,
that we will later sample from using a CTMC. The generative flow interpolates from noise to data
where p0(x0) = pnoise(x0) and p1(x1) = pdata(x1). Since pt is complex to consider directly, the
insight of flow matching is to define pt using a simpler datapoint conditional flow, pt|1(·|x1) that we
will be able to write down explicitly. We can then define pt as

pt(xt) := Epdata(x1)

[
pt|1(xt|x1)

]
. (8)

The conditional flow, pt|1(·|x1) interpolates from noise to the datapoint x1. The conditioning allows
us to write the flow down in closed form. We are free to define pt|1(·|x1) as needed for the spe-
cific application. The conditional flows we use in this paper linearly interpolate towards x1 from a
uniform prior or an artificially introduced mask state, M :

punift|1 (xt|x1) = Cat(tδ {x1, xt}+ (1− t) 1
S), (9)

pmask
t|1 (xt|x1) = Cat(tδ {x1, xt}+ (1− t)δ {M,xt}).

We require our conditional flow to converge on the datapoint x1 at t = 1, i.e. pt|1(xt|x1) =
δ {x1, xt}. We also require that the conditional flow starts from noise at t = 0, i.e. pt|1(xt|x1) =

pnoise(xt). In our examples, punifnoise(xt) =
1
S and pmask

noise(xt) = δ {M,xt}. These two requirements
ensure our generative flow, pt, defined in Eq. (8) interpolates from pnoise at t = 0 towards pdata at
t = 1 as desired. Next, we will show how to sample from the generative flow by exploiting pt’s
decomposition into conditional flows.

C.1.1 SAMPLING

To sample from pdata using the generative flow, pt, we need access to a rate matrix Rt(xt, j) that
generates pt. Given a Rt(xt, j), we could use Eq. (6) to simulate a sequence trajectory that begins
with marginal distribution pnoise at t = 0 and ends with marginal distribution pdata at t = 1. The
definition of pt in Eq. (8) suggests Rt(xt, j) can also be derived as an expectation over a simpler
conditional rate matrix. Define Rt(xt, j|x1) as a datapoint conditional rate matrix that generates
pt|1(xt|x1). We now show Rt(xt, j) can indeed be defined as an expectation over Rt(xt, j|x1).

12

Under review at the GEM workshop, ICLR 2024

Table 2: Comparison between continuous space linear interpolant flow models and DFMs with
masking. Both start with a conditional flow pt|1(xt|x1) interpolating between data and noise. For
continuous, pt|1(xt|x1) = N (tx1, (1 − t)2I) and for discrete we use pmask

t|1 . Solving the Fokker-
Planck or Kolmogorov equations with pt|1(xt|x1) gives a data conditioned process, specified either
by the velocity field (νt) or the rate matrix (Rt). We train a model to learn the unconditional process
– written analytically as the expected value of the conditional quantity – which is then used for
sampling. The side-by-side comparison reveals the similar forms of each quantity.

QUANTITY CONTINUOUS DISCRETE

FOKKER-PLANCK-KOLMOGOROV ∂tpt = −∇ · (vtpt) ∂tpt = Rt
⊤pt

CONDITIONAL PROCESS νt(xt|x1) =
xt−x1

1−t Rt(xt, j|x1) =
δ{j,x1}
1−t δ {xt,M}

GENERATIVE PROCESS νt(xt) = Ep1|t(x1|xt) [νt(xt|x1)] Rt(xt, j) = Ep1|t(x1|xt) [R(xt, j|x1)]

GENERATIVE SAMPLING xt+∆t = xt + vt(xt)∆t xt+∆t ∼ Cat(δ {xt, xt+∆t}+Rt(xt, xt+∆t)∆t)

Proposition C.1. If Rt(xt, j|x1) is a rate matrix that generates the conditional flow pt|1(xt|x1),
then

Rt(xt, j) := Ep1|t(x1|xt) [Rt(xt, j|x1)] (10)

is a rate matrix that generates pt defined in Eq. (8). The expectation is taken over p1|t(x1|xt) =
pt|1(xt|x1)pdata(x1)

pt(xt)
.

Our aim now is to calculate Rt(xt, j|x1) and p1|t(x1|xt) to plug into Eq. (10). p1|t(x1|xt) is the
distribution predicting clean data x1 from noisy data xt and in App. C.1.2, we will train a neural
network pθ1|t(x1|xt) to approximate it. In App. C.2, we will show how to derive Rt(xt, j|x1) in
closed form. Sampling pseudo-code is provided in Alg. 1.

Algorithm 1 DFM Sampling
1: init t = 0, x0 ∼ p0, choice of Rt(xt, ·|x1) (App. C.2)
2: while t < 1 do
3: Rθ

t (xt, ·)← Epθ
1|t(x1|xt) [Rt(xt, ·|x1)]

4: xt+∆t ∼ Cat
(
δ {xt, xt+∆t}+Rθ

t (xt, xt+∆t)∆t
)

5: t← t+∆t
6: end while
7: return x1

We discuss further CTMC sampling methods in App. I. Our construction of the generative flow from
conditional flows is analogous to the construction of generative probability paths from conditional
probability paths in Lipman et al. (2023), where instead of a continuous vector field generating the
probability path, we have a rate matrix generating the probability flow. We expand on these links in
Table. 2.

C.1.2 TRAINING

We train a neural network with parameters θ, pθ1|t(xt|x1), to approximate the true denoising distri-
bution using the standard cross-entropy i.e. learning to predict the clean datapoint x1 when given
noisy data xt ∼ pt|1(xt|x1).

Lce = Epdata(x1)U(t;0,1)pt|1(xt|x1)

[
log pθ1|t(x1|xt)

]
where U(t; 0, 1) is a uniform distribution on [0, 1]. xt can be sampled from pt|1(xt|x1) in a
simulation-free manner by using the explicit form we wrote down for pt|1 e.g. Eq. (9). In App. E, we
analyse how Lce relates to the model log-likelihood and its relation to the Evidence Lower Bound
(ELBO) used to train diffusion models. We stress that Lce does not depend on Rt(xt, j|x1) and
so we can postpone the choice of Rt(xt, j|x1) until after training. This enables inference time
flexibility in how our discrete data is sampled.

13

Under review at the GEM workshop, ICLR 2024

C.2 CHOICE OF RATE MATRIX

The missing piece in Eq. (10) is a conditional rate matrix Rt(xt, j|x1) that generates the conditional
flow pt|1(xt|x1). There are many choices for Rt(xt, j|x1) that all generate the same pt|1(xt|x1) as
we later show in Prop. C.3. In order to proceed, we start by giving one valid choice of rate matrix
and from this, build a set of rate matrices that all generate pt|1. At inference time, we can then
pick the rate matrix from this set that performs the best. Our starting choice for a rate matrix that
generates pt|1 is defined for xt ̸= j as,

R∗
t (xt, j|x1) :=

ReLU
(
∂tpt|1(j|x1)− ∂tpt|1(xt|x1)

)
S · pt|1(xt|x1)

where ReLU(a) = max(a, 0) and ∂tpt|1 can be found by differentiating our explicit form for pt|1.
This assumes pt|1(xt|x1) > 0, see App. D.2 for the full form. We first heuristically justify R∗

t and
then prove it generates pt|1(xt|x1) in Prop. C.2. R∗

t can be understood as distributing probability
mass to states that require it. If ∂tpt|1(j|x1) > ∂tpt|1(xt|x1) then state j needs to gain more
probability mass than the current state xt resulting in a positive rate. If ∂tpt|1(j|x1) ≤ ∂tpt|1(i|x1)
then state xt should give no mass to state j hence the ReLU. This rate should then be normalized
by the probability mass in the current state. The ReLU ensures off-diagonal elements of R∗

t are
positive and is inspired by Zhang et al. (2023).
Proposition C.2. Assuming zero mass states, pt|1(j|x1) = 0, have ∂tpt|1(j|x1) = 0, then R∗

t

generates pt|1(xt|x1).

The proof is easy to derive by substituting R∗
t along with pt|1(xt|x1) into the Kolmogorov equation

Eq. (7). The forms for R∗
t (xt, j|x1) under punift|1 or pmask

t|1 are simple

R∗unif
t = δ{x1,j}(1−δ{x1,xt})

1−t , R∗mask
t = δ{x1,j}δ{xt,M}

1−t

as we derive in App. H. Using R∗
t as a starting point, we now build out a set of rate matrices that all

generate pt|1. We can accomplish this by adding on a second rate matrix that is in detailed balance
with pt|1.

Proposition C.3. Let RDB
t be a rate matrix that satisfies the detailed balance condition for pt|1,
pt|1(i|x1)R

DB
t (i, j|x1) = pt|1(j|x1)R

DB
t (j, i|x1), . (11)

Let Rη
t be defined by R∗

t , RDB
t and parameter η ∈ R≥0,

Rη
t := R∗

t + ηRDB
t .

Then we have Rη
t generates pt|1(xt|x1), ∀η ∈ R≥0.

The detailed balance condition intuitively enforces the incoming probability mass,
pt|1(j|x1)R

DB
t (j, i|x1) to equal the outgoing probability mass, pt|1(i|x1)R

DB
t (i, j|x1). Therefore,

RDB
t has no overall effect on the probability flow and can be added on to R∗

t with the combined rate
still generating pt|1. In many cases, Eq. (11) is easy to solve for RDB

t due to the explicit relation
between elements of RDB

t as we exemplify in App. H. Detailed balance has been used previously
in CTMC generative models (Campbell et al., 2022) to make post-hoc inference adjustments.

CTMC stochasticity. We now have a set of rate matrices, {Rη
t : η ≥ 0}, that all generate pt|1. We

can plug any one of these into our definition for Rt(xt, j) (Eq. (10)) and sample novel datapoints
using Alg. 1. The chosen value for η will influence the dynamics of the CTMC we are simulating.
For large values of η, the increased influence of RDB

t will cause large exchanges of probability mass
between states. This manifests as increasing the frequency of jumps occurring in the sequence trajec-
tory. This leads to a short auto-correlation time for the CTMC and a high level of unpredictability of
future states given the current state. We refer to the behaviour that η controls as CTMC stochasticity.
Fig. 1B shows examples of high and low η.

On a given task, we expect there to be an optimal stochasticity level. Additional stochasticity im-
proves performance in continuous diffusion models Cao et al. (2023); Xu et al. (2023), but too much
stochasticity can result in a poorly performing degenerate CTMC. In some cases, setting η = 0, i.e.
using R∗

t , results in the minimum possible number of jumps because the ReLU within R∗
t removes

state pairs that needlessly exchange mass (Zhang et al., 2023).

14

Under review at the GEM workshop, ICLR 2024

Proposition C.4. For punift|1 and pmask
t|1 , R∗

t generates pt|1 whilst minimizing the expected number of
jumps during the sequence trajectory. This assumes multi-dimensional data under the factorization
assumptions listed in App. G.

C.3 DFMS RECIPE

We now summarize the key steps of a DFM. PyTorch code for a minimal DFM implementaton is
provided in App. H.
1. Define the desired noise schedule pt|1(xt|x1) (App. C.1).
2. Train denoising model pθ1|t(x1|xt) (App. C.1.2).
3. Choose rate matrix Rη

t (App. C.2).
4. Run sampling (Alg. 1).

D PROOFS

Notation When writing rate matrices, Rt(i, j), we will assume i ̸= j unless otherwise explicitly
stated.

We write Rt(i) :=
∑

j ̸=i Rt(i, j).

D.1 PROOF OF PROPOSITION C.1

We simply take the expectation with respect to pdata of both sides of the Kolmogorov equation for
pt|1(xt|x1) and Rt(xt, j|x1). Note we use the fact that Rt(i, i) = −

∑
j ̸=i Rt(i, j) for compactness.

∂tpt|1(xt|x1) =
∑
j

Rt(j, xt|x1)pt|1(j|x1)

Epdata(x1)

[
∂tpt|1(xt|x1)

]
= Epdata(x1)

∑
j

Rt(j, xt|x1)pt|1(j|x1)

∂tEpdata(x1)

[
pt|1(xt|x1)

]
=
∑
j

∑
x1

pdata(x1)pt|1(j|x1)Rt(j, xt|x1)

∂tpt(xt) =
∑
j

∑
x1

pt(j)p1|t(x1|j)Rt(j, xt|x1)

∂tpt(xt) =
∑
j

Ep1|t(x1|j) [Rt(j, xt|x1)] pt(j)

Where we notice that the final line is the Kolmogorov equation for a CTMC with marginals pt(xt)
and rate Ep1|t(x1|xt) [Rt(xt, j|xt)]. Therefore we have shown that Ep1|t(x1|xt) [Rt(xt, j|xt)] gener-
ate pt(xt).

D.2 PROOF OF PROPOSITION C.2

In the main text we provided the form for R∗
t under the assumption that pt|1(j|x1) > 0 for all j. Be-

fore proving Prop. C.2, we first give the full form for R∗
t . First, assuming xt ̸= j and pt|1(xt|x1) > 0

we have,

R∗
t (xt, j|x1) :=

ReLU
(
∂tpt|1(j|x1)− ∂tpt|1(xt|x1)

)
Ztpt|1(xt|x1)

where ReLU(a) = max(a, 0) and Zt is the number of states that have non-zero mass, Zt = |{xt :
pt|1(xt|x1) > 0}|. R∗

t (xt, j|x1) = 0 when pt|1(xt|x1) = 0 or pt|1(j|x1) = 0. When xt = j,
R∗

t (xt, xt|x1) = −
∑

j ̸=xt
R∗

t (xt, j|x1) as we have defined before.

For our proof, we assume that pt|1(j|x1) = 0 =⇒ ∂tpt|1(j|x1) = 0. This assumption means that
when we have dead states with zero probability mass, they cannot be resurrected and gain probability

15

Under review at the GEM workshop, ICLR 2024

mass in the future. We begin the proof with the Kolmogorov equation for processes conditioned on
x1,

∂tpt|1(xt|x1) =
∑
j ̸=xt

Rt(j, xt|x1)pt|1(j|x1)−
∑
j ̸=xt

Rt(xt, j|x1)pt|1(xt|x1) (12)

We will now verify that R∗
t satisfies this Kolmogorov equation and thus generates the desired

pt|1(xt|x1) conditional flow. We will first check that the Kolmogorov equation is satisfied when
pt|1(xt|x1) > 0. With this form of rate matrix, the RHS of equation equation 12 becomes

RHS =
∑

j ̸=xt,pt|1(j|x1)>0

ReLU
(
∂tpt|1(xt|x1)− ∂tpt|1(j|x1)

)
Ztpt|1(j|x1)

pt|1(j|x1)

−
∑

j ̸=xt,pt|1(j|x1)>0

ReLU
(
∂tpt|1(j|x1)− ∂tpt|1(xt|x1)

)
Ztpt|1(xt|x1)

pt|1(xt|x1)

=
1

Zt

∑
j ̸=xt,pt|1(j|x1)>0

ReLU
(
∂tpt|1(xt|x1)− ∂tpt|1(j|x1)

)
−

1

Zt

∑
j ̸=xt,pt|1(j|x1)>0

ReLU
(
∂tpt|1(j|x1)− ∂tpt|1(xt|x1)

)
=

1

Zt

∑
j ̸=xt,pt|1(j|x1)>0

(
∂tpt|1(xt|x1)− ∂tpt|1(j|x1)

)
=
Zt − 1

Zt
∂tpt|1(xt|x1)−

1

Zt

∑
j ̸=xt,pt|1(j|x1)>0

∂tpt|1(j|x1)

=
Zt − 1

Zt
∂tpt|1(xt|x1)−

1

Zt
∂t(1− pt|1(xt|x1))

=
Zt − 1

Zt
∂tpt|1(xt|x1) +

1

Zt
∂tpt|1(xt|x1)

= ∂tpt|1(xt|x1)

= LHS

In the case that pt|1(xt|x1) = 0 by assumption we have that ∂tpt|1(xt|x1) = 0. We have both
R∗

t (xt, j|x1) = 0 and R∗
t (j, xt|x1) = 0 because pt|1(xt|x1) = 0. Therefore we have LHS =

RHS = 0 and thus the Kolmogorov equation is satisfied.

Intuitively, we require the assumption that dead states cannot be resurrected because R∗
t is de-

signed such that all states can equally distribute the mass flux requirements of making sure the
marginal derivatives ∂tpt|1(xt|x1) are satisfied. If there is a state for which pt|1(xt|x1) = 0 but
∂tpt|1(xt|x1) > 0 then this state would require mass from other states but could not provide any
mass of its own since pt|1(xt|x1) = 0. This would then violate the sharing symmetry required for
our form of R∗

t . We note that this assumption is not strictly satisfied for the masking interpolant at
t = 0 or t = 1 and not satisfied for the uniform interpolant at t = 1. However, it is satisfied for any
t ∈ (0, 1) and so we can conceptualize starting our process at t = ϵ, ϵ≪ 1, ϵ > 0, approximating a
sample from pϵ(xϵ) with a sample from p0(x0) and running the process until t = 1− ϵ and stopping
here. The approximation can be made arbitrarily accurate by taking ϵ→ 0.

D.3 PROOF OF PROPOSITION C.3

A rate matrix that satisfies the detailed balance condition equation 11 will result in ∂tpt|1(i|x1) = 0
when simulating with this rate. This can be seen by substituting into the conditional Kolmogorov

16

Under review at the GEM workshop, ICLR 2024

equation equation 12

∂tpt|1(xt|x1) =
∑
j ̸=xt

RDB
t (j, xt|x1)pt|1(j|x1)

−
∑
j ̸=xt

RDB
t (xt, j|x1)pt|1(xt|x1)

∂tpt|1(xt|x1) =
∑
j ̸=xt

RDB
t (xt, j|x1)pt|1(xt|x1)

−
∑
j ̸=xt

RDB
t (xt, j|x1)pt|1(xt|x1)

∂tpt|1(xt|x1) =0

Given a rate matrix Rt(xt, j|x1) that generates pt|1(xt|x1), we first prove that Rt(xt, j|x1) +

ηRDB
t (xt, j|x1) also generates pt|1(xt|x1) for any η ∈ R≥0. We show this by verifying that the

combined rate matrix satisfies the Kolmogorov equation for conditional flow pt|1(xt|x1). The right
hand side of the Kolmogorov equation is

RHS =
∑
j

(
Rt(xt, j|x1) + ηRDB

t (xt, j|x1)
)
pt|1(j|x1)

=
∑
j

Rt(xt, j|x1)pt|1(j|x1) + η
∑
j

RDB
t (xt, j|x1)pt|1(j|x1)︸ ︷︷ ︸

=0

=
∑
j

Rt(xt, j x1)pt|1(j|x1)

= ∂tpt|1(xt|x1)

= LHS

where we have used the fact that RDB is in detailed balance with pt|1(j|x1) and that Rt(xt, j|x1)
generates pt|1. Since R∗

t is a matrix that generates pt|1, we also have the stated result as a specific
case: R∗

t + ηRDB
t generates pt|1.

D.4 PROOF OF PROPOSITION C.4

We will assume we have D dimensional data x1:D
1 with each xd

1 ∈ {1, . . . , S}. We give an overview
of how our method operates in the multi-dimensional case in Appendix G. Namely, we assume that
our conditional flow factorizes as pt|1(x

1:D
t |x1:D

1) =
∏D

d=1 pt|1(x
d
t |xd

1). We also assume that our
rate matrix is 0 for jumps that vary more than 1 dimension at a time. Our optimality results are
derived under these assumptions.

D.4.1 MASKING INTERPOLANT

We first prove that R∗
t achieves the minimum number of transitions for the masking interpolant case.

We have

pt|1(x
1:D
t |x1:D

1) =

D∏
d=1

pt|1(x
d
t |xd

1)

with
pt|1(x

d
t |xd

1) = tδ
{
xd
t , x

d
1

}
+ (1− t)δ

{
xd
t ,M

}
Our rate in dimension d is

R∗
t
d(xd

t , j
d|xd

1) =

{
ReLU(∂tpt|1(j

d|xd
1)−∂tpt|1(x

d
t |x

d
1))

Zd
t pt|1(x

d
t |xd

1)
for pt|1(xd

t |xd
1) > 0, pt|1(j

d|xd
1) > 0

= 0 otherwise

with Zd
t = |{jd : pt|1(j

d|xd
1) > 0}|. Substituting in ∂tpt|1 and pt|1 in the masking case gives

R∗
t
d(xd

t , j
d|xd

1) =
1

1− t
δ
{
xd
t ,M

}
δ
{
jd, xd

1

}
17

Under review at the GEM workshop, ICLR 2024

We refer to Appendix H.1 for the details of this derivation. Since R∗
t
d depends only on xd

t , jd and
xd
1 and not values in any other dimensions, each dimension propagates independently and we can

consider each dimension in isolation. Consider the process for dimension d. The CTMC begins
in state xd

0 = M . We have R∗
t
d(xd

t = M, jd|xd
1) = 1

1−tδ
{
jd, xd

1

}
. Therefore, the only possible

next state that the process can jump to is xd
1. Once the process has jumped to xd

1, the rate then
becomes R∗

t
d(xd

t = xd
1, j

d|xd
1) = 0. We also know that the process must jump because p1(xd

t |xd
1) =

δ
{
xd
t , x

d
1

}
, xd

1 ̸= M and we know our rate matrix traverses our desired marginals by Proposition
C.2. Therefore, exactly one jump is made in dimension d. In total, our D dimensional process will
make D jumps. Under our factorization assumption, during a jump no more than one dimension can
change value. Therefore, the absolute minimum number of jumps for any process that starts at x1:D

0
with xd

0 = M,∀d and ends at x1:D
1 , xd

1 ̸= M,∀d is D. Our prior distribution is p0(xd
0) = δ

{
xd
0,M

}
and so for any x0 sample, we will always need to make D jumps. Therefore, the minimum expected
number of jumps is D and R∗

t achieves this minimum.

D.4.2 UNIFORM INTERPOLANT

We now prove that R∗
t achieves the minimum number of transitions for the uniform interpolant case.

The conditional flow is
pt|1(x

d
t |xd

1) = tδ
{
xd
t , x

d
1

}
+ (1− t)

1

S
With this interpolant, our rate matrix becomes

R∗
t
d(xd

t , j
d|xd

1) =
1

1− t
δ
{
jd, xd

1

} (
1− δ

{
xd
t , x

d
1

})
We refer to Appendix H.2 for the derivation. As before, R∗

t
d depends only on the values in dimension

d, xd
t , j

d, xd
1 and therefore each process propagates independently in each dimension and we can

consider each dimension in isolation. Considering dimension d, the process begins in state xd
0. Both

xd
0 = xd

1 and xd
0 ̸= xd

1 are possible in the uniform interpolant case. In the case that xd
0 = xd

1, then
R∗

t
d = 0 for all t and therefore no jumps are made in this dimension. In the case that xd

0 ̸= xd
1

then before any jump is made we have R∗
t
d(xd

t , j
d|xd

1) = 1
1−tδ

{
jd, xd

1

}
and so the only possible

next state the process can jump to is xd
1. Once the process has jumped to xd

1, the rate then becomes
R∗

t (x
d
t = xd

1, j
d|xd

1) = 0 and so no more jumps are made. We also know that the process must
jump at some point because p1(x

d
t |xd

1) = δ
{
xd
t , x

d
1

}
and we know our rate matrix traverses our

desired marginals by Proposition C.2. Therefore, in the case that xd
0 ̸= xd

1, exactly one jump is
made for the process in dimension d. In total, the number of jumps made in all D dimensions is
dH(x0, x1) = |{d : xd

0 ̸= xd
1}| which is the Hamming distance between x0 and x1. The expected

number of jumps for our process with R∗
t is thus Ep0(x0)pdata(x1) [dH(x0, x1)].

Now consider an optimal process that makes the minimum number of jumps when starting from x0

and meets our factorization assumptions. By this assumption, during a jump only one dimension
can change in value. Clearly we have that the minimum number of jumps required to get from x0

to x1 is dH(x0, x1). Therefore, for this optimal process we also have that the minimum number
of expected jumps is Ep0(x0)pdata(x1) [dH(x0, x1)]. Therefore, R∗

t achieves the minimum expected
number of jumps.

D.4.3 DISCUSSION

We have proven x1 conditioned optimality only for the two simple conditional flows featured in
the main text and we note that this result in not generally true for any conditional flow. Intuitively
this is because R∗

t treats the distribution of mass symmetrically between states, considering only the
local differences in ∂tpt|1 between pairs of states. In general, the optimal rate would need to solve a
global programming problem.

We also note that although we have masking and uniform optimality for R∗
t (xt, j|x1) when con-

ditioned on x1, this is not necessarily the case when we consider the unconditional version
Ep1|t(x1|xt) [R

∗
t (xt, j|x1)]. There may exist rate matrices that achieve a lower number of average

jumps and successfully pass through the unconditional marginals pt(xt) = Epdata(x1)

[
pt|1(xt|x1)

]
.

This is analogous to continuous flow-based methods which can create optimal straight-line paths

18

Under review at the GEM workshop, ICLR 2024

when conditioned on the end point x1, but don’t necessarily achieve the optimal transport when
considering the unconditional vector field Shaul et al. (2023).

E ANALYSIS OF TRAINING OBJECTIVE

In this section we analyse how our cross entropy objective Lce relates to the log-likelihood of the
data under the generative model and to the ELBO used to train classical discrete diffusion models.

Our proof is structured as follows. We first introduce path space measures for CTMCs in Section
E.1 that we will require for the rest of the derivation. In Section E.1.1 we then derive the standard
evidence lower bound, LELBO on the model log likelihood, Epdata(x1) [log pθ(x1)]. We then decom-
pose LELBO into the cross entropy, a rate regularizer and a KL term in Section E.2. Finally in Section
E.2.1 we show that LELBO corresponds exactly to the weighted cross entropy loss for the masking
interpolant case.

E.1 INTRODUCTION TO CTMC PATH MEASURES

Before beginning the proof, we introduce path space measures for CTMC processes, following the
exposition in Del Moral & Penev (2017), Chapter 18. A path of a CTMC is a single trajectory from
time 0 to time t. The trajectory is a function ω : s ∈ [0, t] 7→ ωs ∈ {1, . . . , S} that is everywhere
right continuous and has left limits everywhere (also known as càdlàg paths). Intuitively, it is a
function that takes in a time variable and outputs the position of the particle following the trajectory
at that time. The càdlàg condition in our case states that at jump time τ we have ωτ taking the new
jumped to value and ω−

τ := lims↑τ ωs being the previous value before the jump, see Fig. 1B.

A trajectory drawn from the CTMC, W , can be fully described through its jump times, T1, . . . Tn

and its state values between jumps, W0,W1, . . . ,WTn
where at jump time Tk the CTMC jumps

from state value Wk−1 to value Wk. A path space measure P is able to assign probabilities to a
drawn trajectory W from time 0 to t in the sense of

P(W ∈ dω) := P (W0 ∈ dω0, (T1,WT1) ∈ d(t1, ωt1), . . . (Tn,WTn) ∈ d(tn, ωtn), Tn+1 ≥ t)

where dωtn and dtn denote infinitesimal neighborhoods around the points ωtn ∈ {1, . . . , S} and
tn ∈ [0, t]. This is the same sense in which a probability density function assigns probabilities to
the infinitesimal neighborhood around a continuous valued variable.

To understand the form of P(W ∈ dω) we remind ourselves of the definition of a CTMC with rate
matrix Rt. The CTMC waits in the current state for an amount of time determined by an exponential
random variable with time-inhomogeneous rate Rt(Wt) :=

∑
k ̸=Wt

Rt(Wt, k), see Norris (1998)
and Campbell et al. (2022) Appendix A for more details. After the wait time is finished, the CTMC
jumps to a next chosen state where the jump distribution is

P(Wtk |W
−
tk
) =

Rt(W
−
tk
,Wtk)

(
1− δ

{
W−

tk
,Wtk

})
Rt(W

−
tk
)

For an exponential random variable with time-inhomogeneous rate, the cumulative distribution func-
tion is given by

P(T < t) = 1− exp

(
−
∫ s=t

s=0

Rs(W
−
s)ds

)
Therefore, the probability density function, p(t) = ∂

∂tP(T < t), is

p(t) = exp

(
−
∫ s=t

s=0

Rs(W
−
s)ds

)
Rt(W

−
t)

We finally note that if we wish to know P(Tk < t|Tk−1) i.e. the probability that the k-th jump time
is less than t given we know the k− 1-th jump time, then this is just an exponential random variable
started at time Tk−1 when the previous jump occurred,

P(Tk < t|Tk−1) = 1− exp

(
−
∫ s=t

s=Tk−1

Rs(W
−
s)ds

)

19

Under review at the GEM workshop, ICLR 2024

In other words, we simply start a new exponential timer once the previous jump occurs and the same
equation carries through.

We can now write the form of P(W ∈ dω). We split it into a series of conditional distributions

P(W ∈ dω) =P(W0 ∈ dω0)P((T1,WT1
∈ d(t1, ωt1)|W0)× . . .

× P((Tn,WTn
) ∈ d(tn, ωtn)|W0, (T1,WT1

), . . . ,

(Tn−1,WTn−1))P(Tn+1 ≥ t|W0, (T1,WT1), . . . , (Tn,WTn))

P(W ∈ dω) = p0(W0) exp

(
−
∫ s=T1

s=0

Rs(W
−
s)ds

)
RT1

(W−
T1
)P(WT1

|W−
T1
)× . . .

× exp

(
−
∫ s=Tn

s=Tn−1

Rs(W
−
s)ds

)
RTn

(W−
Tn

)P(WTn
|W−

Tn
) exp

(
−
∫ s=t

s=Tn

Rs(W
−
s)ds

)
P(W ∈ dω) = p0(W0) exp

(
−
∫ s=t

s=0

Rs(W
−
s)ds

) ∏
s:Ws ̸=W−

s

Rs(W
−
s ,Ws)

where p0 is the initial state distribution.

We will also need to understand Girsanov’s transformation for CTMCs. Girsanov’s transformation
can be thought of as ‘importance sampling’ for path space measures. Specifically, if we take an
expectation with respect to path measure P, EP [f(W)], then this is equal to EQ

[
f(W) dP

dQ (W)
]

where Q is a different path measure and dP
dQ is known as the Radon-Nikodym derivative. The path

measure Q will result from considering a CTMC with a different rate matrix to our original measure
P. Girsanov’s transformation allows us to calculate the expectation which should have been taken
with respect to the CTMC with P rate matrix instead with a CTMC with rate matrix corresponding
to Q.

The Radon-Nikodym derivative in our case has a form that is simply the ratio of P(W ∈ dω) and
Q(W ∈ dω). Let Rt, p0 be the rate matrix and initial distribution defining P and let R′

t, p
′
0 be the

rate matrix and initial distribution defining Q.

dP
dQ

(W) =
p0(W0) exp

(
−
∫ s=t

s=0
Rs(W

−
s)ds

)∏
s:Ws ̸=W−

s
Rs(W

−
s ,Ws)

p′0(W0) exp
(
−
∫ s=t

s=0
R′

s(W
−
s)ds

)∏
s:Ws ̸=W−

s
R′

s(W
−
s ,Ws)

E.1.1 DERIVATION OF LELBO

In this section we will derive the standard evidence lower bound for the model log-likelihood as-
signed to the data, Epdata(x1) [log pθ(x1)] when using our learned generative process to generate
data. The entire structure of this section can be understood intuitively by making analogy to the
derivation of the evidence lower bound for VAEs, Kingma & Welling (2013); Rezende et al. (2014);
Huang et al. (2021). In a VAE, we have a latent variable model pθ(z, x) for observed data x. To
derive the ELBO, we introduce a second distribution over the latent variables q(z|x) with which we
will use to take the expectation. The ELBO derivation proceeds as

log pθ(x) = log
∑
z

pθ(z, x)

log pθ(x) = log
∑
z

q(z|x)pθ(z, x)
q(z|x)

Girsanov’s transformation / Importance sampling

log pθ(x) ≥
∑
z

q(z|x) log
(
pθ(z, x)

q(z|x)

)
Jensen’s inequality

Epdata(x) [pθ(x)] ≥ Epdata(x)q(z|x) [log pθ(z, x)] + C

In our case, x corresponds to the final state of the generative process at time t = 1, x1. The latent
variable z corresponds to all other states of the CTMC Wt, t ∈ [0, 1). Our model pθ(z, x) corre-
sponds to our generative CTMC with rate matrix Rθ

t (xt, j) = Epθ(x1|xt) [Rt(xt, j|x1)] and initial

20

Under review at the GEM workshop, ICLR 2024

distribution p0(x0). Our latent variable distribution q(z|x) corresponds to the x1 conditioned CTMC
that begins at distribution p0|1(x0|x1) and simulates with x1 conditioned rate matrix Rt(xt, j|x1).
We note here that Rt(xt, j|x1) can be any rate matrix that generates the desired x1 conditional flow,
pt|1(xt|x1) as we described in the main text.

We now derive LELBO using our path space measures for CTMCs. We will use Pθ to denote the
path measure corresponding to the CTMC simulating from p0(x0) using the generative rate matrix
Rθ

t (xt, j) = Epθ(x1|xt) [Rt(xt, j|x1)]. We will use Q|x1 to denote the path measure corresponding
to the CTMC simulating from p0|1(x0|x1) using the x1 conditioned rate matrix Rt(xt, j|x1).

We begin by marginalizing out the latent variables, Wt, t ∈ [0, 1) for our generative CTMC

log pθ(x1) = log

∫
W1=x1

Pθ(dω)

We now apply Girsnov’s transformation using our x1 conditioned CTMC

log pθ(x1) = log

∫
W1=x1

Q|x1(dω)
dPθ

dQ|x1
(ω)

where

dPθ

dQ|x1
(ω) =

p0(W0) exp
(
−
∫ t=1

t=0
Rθ

t (W
−
t)dt

)∏
t:Wt ̸=W−

t
Rθ

t (W
−
t ,Wt)

p0|1(W0|x1) exp
(
−
∫ t=1

t=0
Rt(W

−
t |x1)dt

)∏
t:Wt ̸=W−

t
Rt(W

−
t ,Wt|x1)

we note at this point that p0|1(W0|x1) = p0(W0) and the two intial distribution terms cancel out.
Now, apply Jensen’s inequality

log pθ(x1) ≥
∫
W1=x1

Q|x1(dω) log
dPθ

dQ|x1
(ω)

and take the expectation with respect to the data distribution

Epdata(x1) [log pθ(x1)] ≥
∫

pdata(dx1)Q|x1(dω) log
dPθ

dQ|x1
(ω)

Finally, substitute in the form for dPθ

Q|x1
and take terms that don’t depend on θ out into a constant

Epdata(x1) [log pθ(x1)] ≥
∫

pdata(dx1)Q|x1(dω)

−
∫ t=1

t=0

Rθ
t (W

−
t)dt+

∑
t:Wt ̸=W−

t

logRθ
t (W

−
t ,Wt)

+ C

=

∫
pdata(dx1)Q|x1(dω)

{
−
∫ t=1

t=0

Rθ
t (W

−
t)dt+

∑
t:Wt ̸=W−

t

logEpθ(x̃1|W−
t)

[
Rt(W

−
t ,Wt|x̃1)

]}
+ C

= LELBO + C

where

LELBO =

∫
pdata(dx1)Q|x1(dω)

−
∫ t=1

t=0

Rθ
t (W

−
t)dt+

∑
t:Wt ̸=W−

t

logEpθ(x̃1|W−
t)

[
Rt(W

−
t ,Wt|x̃1)

]
(13)

21

Under review at the GEM workshop, ICLR 2024

E.2 DECOMPOSITION OF LELBO

Consider the term log
(
Epθ(x̃1|W−

t)

[
Rt(W

−
t ,Wt|x̃1)

])
,

log
(
Epθ(x̃1|W−

t)

[
Rt(W

−
t ,Wt|x̃1)

])
= log

(
Ep(x̃1|W−

t)

[
pθ(x̃1|W−

t)

p(x̃1|W−
t)

Rt(W
−
t ,Wt|x̃1)

])
= log

(
Ep(x̃1|W−

t)

[
pθ(x̃1|W−

t)

p(x̃1|W−
t)

Rt(W
−
t ,Wt|x̃1)

])
+ Ep(x̃1|W−

t)

[
log

(
pθ(x̃1|W−

t)

p(x̃1|W−
t)

Rt(W
−
t ,Wt|x̃1)

)]
− Ep(x̃1|W−

t)

[
log

(
pθ(x̃1|W−

t)

p(x̃1|W−
t)

Rt(W
−
t ,Wt|x̃1)

)]
= Ep(x̃1|W−

t)

[
log pθ(x̃1|W−

t)
]
+ C

+ log

(
Ep(x̃|W−

t)

[
pθ(x̃1|W−

t)

p(x̃1|W−
t)

Rt(W
−
t ,Wt|x̃1)

])
− Ep(x̃1|W−

t)

[
log

(
pθ(x̃1|W−

t)

p(x̃1|W−
t)

Rt(W
−
t ,Wt|x̃1)

)]
= Ep(x̃1|W−

t)

[
log pθ(x̃1|W−

t)
]
+ C

+ log

(
Ep(x̃|W−

t)

[
pθ(x̃1|W−

t)

p(x̃1|W−
t)

P(Wt|W−
t , x̃1)Rt(W

−
t |x̃1)

])
− Ep(x̃1|W−

t)

[
log

(
pθ(x̃1|W−

t)

p(x̃1|W−
t)

P(Wt|W−
t , x̃1)Rt(W

−
t |x̃1)

)]

where we have used our definition of the jump distribution of

P(Wt|W−
t , x̃1) =

Rt(W
−
t ,Wt|x̃1)

Rt(W
−
t |x̃1)

Now we define two new distributions,

pθ(x̃1|W−
t)P(Wt|W−

t , x̃1) = pθ(Wt|W−
t)pθ(x̃1|W−

t ,Wt)

where

pθ(Wt|W−
t) :=

∑
x̃1

pθ(x̃1|W−
t)P(Wt|W−

t , x̃1)

and

pθ(x̃1|W−
t ,Wt) :=

pθ(x̃1|W−
t)P(Wt|W−

t , x̃1)∑
x′
1
pθ(x′

1|W
−
t)P(Wt|W−

t , x′
1)

(14)

22

Under review at the GEM workshop, ICLR 2024

Substitute in these newly defined distributions into our equation for
log
(
Epθ(x̃|W−

t)

[
Rt(W

−
t ,Wt|x̃1)

])
to get

log
(
Epθ(x̃|W−

t)

[
Rt(W

−
t ,Wt|x̃1)

])
= Ep(x̃1|W−

t)

[
log pθ(x̃1|W−

t)
]
+ C

+ log

(
Ep(x̃|W−

t)

[
pθ(Wt|W−

t)pθ(x̃1|W−
t ,Wt)

p(x̃1|W−
t)

Rt(W
−
t |x̃1)

])
− Ep(x̃1|W−

t)

[
log

(
pθ(Wt|W−

t)pθ(x̃1|W−
t ,Wt)

p(x̃1|W−
t)

Rt(W
−
t |x̃1)

)]
= Ep(x̃1|W−

t)

[
log pθ(x̃1|W−

t)
]
+ C

+(((((((
log pθ(Wt|W−

t) + log

(
Ep(x̃|W−

t)

[
pθ(x̃1|W−

t ,Wt)

p(x̃1|W−
t)

Rt(W
−
t |x̃1)

])
−(((((((
log pθ(Wt|W−

t)− Ep(x̃1|W−
t)

[
log

(
pθ(x̃1|W−

t ,Wt)

p(x̃1|W−
t)

Rt(W
−
t |x̃1)

)]
= Ep(x̃1|W−

t)

[
log pθ(x̃1|W−

t)
]

+ log
(
Epθ(x̃1|W−

t ,Wt)

[
Rt(W

−
t |x̃1)

])
+ KL

(
p(x̃1|W−

t) || pθ(x̃1|W−
t ,Wt)

)
+ C

Substituting this into our form for LELBO given in equation equation 13 gives

LELBO =

∫
pdata(dx1)Q|x1(dω)

{
−
∫ t=1

t=0

Rθ
t (W

−
t)dt+

∑
t:Wt ̸=W−

t

(
Ep(x̃1|W−

t)

[
log pθ(x̃1|W−

t)
]
+

log
(
Epθ(x̃1|W−

t ,Wt)

[
Rt(W

−
t |x̃1)

])
+

KL
(
p(x̃1|W−

t) || pθ(x̃1|W−
t ,Wt)

))}
Substituting this into our original bound on the model log-likelihood gives

Epdata(x1) [log pθ(x1)] ≥ LELBO + C = Lce + LR + LKL + C

where

Lce =

∫
pdata(dx1)Q|x1(dω)

∑
t:W−

t ̸=Wt

Ep(x̃1|W−
t)

[
log pθ(x̃1|W−

t)
]

LR =

∫
pdata(dx1)Q|x1(dω)

{
−
∫ t=1

t=0

Rθ
t (Wt)dt+

∑
t:W−

t ̸=Wt

log
(
Epθ(x̃1|W−

t ,Wt)

[
Rt(W

−
t |x̃1)

])}

LKL =

∫
pdata(dx1)Q|x1(dω)

∑
t:W−

t ̸=Wt

KL
(
p(x̃1|W−

t) || pθ(x̃1|W−
t ,Wt)

)
and C is a constant term independent of θ. In the next stages of the proof, we going to show that
Lce is the weighted cross-entropy, LR is a regularizer towards the arbitrarily chosen x1 conditioned
rate matrix that we argue we can ignore and LKL is a KL term that we will absorb into the bound on
the model log-likelihood.

In order to proceed, we will need to make use of Dynkin’s formula∫
pdata(dx1)Q|x1(dω)

∑
t:W−

t ̸=Wt

f(W−
t ,Wt) =

∫
pdata(dx1)Q|x1(dω)

∫ t=1

t=0

∑
y ̸=Wt

Rt(Wt, y|x1)f(Wt, y)dt

where f(·, ·) is a two-argument function. This formula can be understood intuitively as allowing
us to switch from a sum over the jump times to a full integral over the time interval appropriately
weighted by the probability that a jump occurs and the destination to which a jump goes to.

23

Under review at the GEM workshop, ICLR 2024

Weighted Cross Entropy We first show that Lce is the weighted cross entropy.

Lce =

∫
pdata(dx1)Q|x1(dω)

∑
t:W−

t ̸=Wt

Ep(x̃1|W−
t)

[
log pθ(x̃1|W−

t)
]

=

∫
pdata(dx1)Q|x1(dω)

∫ t=1

t=0

∑
y ̸=Wt

Rt(Wt, y|x1)Ep(x̃1|Wt) [log pθ(x̃1|Wt)] dt Dynkin

=

∫ ∫ t=1

t=0

pdata(dx1)Q|x1(dω)Ep(x̃1|Wt) [log pθ(x̃1|Wt)]Rt(Wt|x1)dt

= Epdata(x1)U(t;0,1)p(xt|x1)

[
Rt(xt|x1)Ep(x̃1|xt) [log pθ(x̃1|xt)]

]
= Epdata(x1)U(t;0,1)p(xt|x1)p(x̃1|xt) [Rt(xt|x1) log pθ(x̃1|xt)]

= EU(t;0,1)p(x1,xt)p(x̃1|xt) [Rt(xt|x1) log pθ(x̃1|xt)]

= EU(t;0,1)p(xt)p(x1|xt)p(x̃1|xt) [Rt(xt|x1) log pθ(x̃1|xt)]

= EU(t;0,1)p(xt)p(x̃1|xt)p(x1|xt) [Rt(xt|x̃1) log pθ(x1|xt)] Relabel x1 ↔ x̃1

= EU(t;0,1)p(xt)p(x1|xt)

[
Ep(x̃1|xt) [Rt(xt|x̃1)] log pθ(x1|xt)

]
= EU(t;0,1)p(xt)p(x1|xt) [ωt(xt) log pθ(x1|xt)]

where on the second line we apply Dynkin’s formula with f(W−
t ,Wt) =

Ep(x̃1|W−
t)

[
log pθ(x̃1|W−

t)
]

which we note is independent of Wt. ωt(xt) is a weighting
function. In diffusion model training it is common for the likelihood based objective to be a
weighted form of a recognisable loss e.g. the L2 loss for diffusion models. Here we have a
‘likelihood weighted’ cross entropy. We can then make the same approximation as in diffusion
models and set ω(xt) = 1 to equally weight all loss levels. This also has the benefit of making
our loss independent of the arbitrarily chosen rate matrix Rt that could have been any rate that
generates the desired conditional flow.

Rate Forcing Term We now analyse the term LR. We will show that it is approximately equal to
an objective which at its optimum sets the learned generative rate matrix to have the same overall
jump probability as the arbitrarily chosen rate matrix that generates our pt|1(xt|x1) conditional flow.

LR =

∫
pdata(dx1)Q|x1(dω)

{
−
∫ t=1

t=0

Rθ
t (Wt)dt+

∑
t:W−

t ̸=Wt

log
(
Epθ(x̃1|W−

t ,Wt)

[
Rt(W

−
t |x̃1)

])}

=

∫
pdata(dx1)Q|x1(dω)

{
−
∫ t=1

t=0

Rθ
t (Wt)dt+

∫ t=1

t=0

∑
y ̸=Wt

Rt(Wt, y|x1) log
(
Epθ(x̃1|Wt,y) [Rt(Wt|x̃1)]

)
dt

}

where on the second line we have applied Dynkin’s formula with f(W−
t ,Wt) =

Epθ(x̃1|W−
t ,Wt)

[
Rt(W

−
t |x̃1)

]
. To further understand this term, we make the following approxi-

mation

Epθ(x̃1|Wt,y) [Rt(Wt|x̃1)] ≈ Epθ(x̃1|Wt) [Rt(Wt|x̃1)]

pθ(x̃1|Wt, y) is the Bayesian posterior update given by equation equation 14 starting with prior
pθ(x̃1|Wt) and with likelihood P(y|Wt, x̃1). It is therefore the models prediction of x̃1 updated with
the information that the process has jumped to new value y. When our CTMC is multi-dimensional
then a single jump will change only a single dimension, see Appendix G, and so when we operate
in high-dimensional settings, the Bayesian posterior will be close to the prior.

24

Under review at the GEM workshop, ICLR 2024

We will denote the approximate form of LR as L̂R.

L̂R =

∫
pdata(dx1)Q|x1(dω)

{
−
∫ t=1

t=0

Rθ
t (Wt)dt+

∫ t=1

t=0

∑
y ̸=Wt

Rt(Wt, y|x1) log
(
Epθ(x̃1|Wt) [Rt(Wt|x̃1)]

)
dt

}

=

∫
pdata(dx1)Q|x1(dω)

{
−
∫ t=1

t=0

Rθ
t (Wt)dt+

∫ t=1

t=0

log
(
Epθ(x̃1|Wt) [Rt(Wt|x̃1)]

)
Rt(Wt|x1)dt

}

=

∫ ∫ t=1

t=0

pdata(dx1)Q|x1(dω)

{
−Rθ

t (Wt) +Rt(Wt|x1) logR
θ
t (Wt)

}
dt

= EU(t;0,1)pdata(x1)pt(xt|x1)

[
−Rθ

t (xt) +Rt(xt|x1) logR
θ
t (xt)

]
= EU(t;0,1)pt(xt)

[
−Rθ

t (xt) + Ep(x1|xt) [Rt(xt|x1)] logR
θ
t (xt)

]
where on the third line we have used the definition of Rθ

t (Wt) = Epθ(x̃1|Wt) [Rt(Wt|x̃1)]. Now
consider maximizing L̂R with respect to the value of Rθ

τ (z) at test input z and test time τ . Differen-
tiating L̂R with respect to Rθ

τ (z) and setting to 0 gives

∂L̂R

∂Rτ (z)
= pτ (z)

(
−1 + Ep(x1|z) [Rτ (z|x1)]

1

Rθ
τ (z)

)
= 0

=⇒ Rθ
τ (z) = Ep(x1|z) [Rτ (z|x1)] at stationarity

Therefore, we have found that maximizing L̂R encourages Rθ
t (xt) to equal Ep(x1|xt) [Rt(xt|x1)].

However, Rt(xt|x1) is the overall rate of jumps for the arbitrarily chosen rate matrix that generates
the pt|1(xt|x1) conditional flow. This rate of jumps is completely dependent on the level of stochas-
ticity chosen for Rt(xt|x1) which does not have any a priori known correct level. Therefore, we do
not want to be encouraging our learned generative rate matrix Rθ

t to be matching this stochasticity
level and so the term L̂R is undesirable to have in the objective. The true evidence lower bound
includes the term LR which we expect to have a similar effect as L̂R as we argued previously.

KL Term When we maximize the LELBO objective, we would try to maximize the LKL term i.e.
we try and push p(x̃1|W−

t) and pθ(x̃1|W−
t ,Wt) as far apart as possible. This makes sense to do

as we try and push the posterior over x̃1 given the information contained in both the pre-jump state
W−

t and the post jump state Wt away from the distribution over x̃1 given just the information within
W−

t . Digging into this term deeper we see that
KL
(
p(x̃1|W−

t) || pθ(x̃1|W−
t ,Wt)

)
= Ep(x̃1|W−

t)

[
log

p(x̃1|W−
t)

pθ(x̃1|W−
t ,Wt)

]

= Ep(x̃1|W−
t)

− log
(
pθ(x̃1|W−

t)P(Wt|W−
t , x̃1)

)
+ log

∑
x′
1

pθ(x
′
1|W−

t)P(Wt|W−
t , x′

1)

+ C

= Ep(x̃1|W−
t)

− log pθ(x̃1|W−
t) + log

∑
x′
1

pθ(x
′
1|W−

t)P(Wt|W−
t , x′

1)

+ C

where we have substituted in our definition of pθ(x̃1|W−
t ,Wt) given by equation equation 14. We

see that the first term − log pθ(x̃1|W−
t) cancels with our cross entropy term. This then makes clear

how we have arrived at our cross entropy decomposition of LELBO. LELBO will usually remove the
cross entropy training signal and replace it with the term log

(∑
x′
1
pθ(x

′
1|W−

t)P(Wt|W−
t , x′

1)
)

which will be used as the training signal for the denoising model pθ(x1|W−
t). The denoising model

is encouraged to be such that the expected jump probability assigns high likelihood to the jump
observed under the x1 conditioned process Q|x1 . This is an indirect training signal for pθ(x1|W−

t)
and one that relies on the arbitrary specification of our Q|x1 process. We instead show how we
can replace this pθ(x1|W−

t) training signal with the cross entropy loss and be left with a KL term
showing that the cross entropy is a lower bound on LELBO minus the rate regularizing term. We
summarize this argument in the next section.

25

Under review at the GEM workshop, ICLR 2024

Summary To summarize, we have first derived the standard evidence lower bound on the model
log-likelihood when using our specific generative rate matrix, Rθ

t (xt, j) = Epθ(x1|xt) [Rt(xt, j|x1)]
for some arbitrarily chosen Rt(xt, j|x1) that generates the pt|1(xt|x1) conditional flow.

Epdata(x1) [log pθ(x1)] ≥ LELBO + C

We then split LELBO into three terms Lce +LR +LKL. We have seen how the term LKL allows us to
remove the standard LELBO training signal for the denoising model pθ(x1|xt) and replace it with the
cross entropy, creating the Lce term. This creates a looser bound if we are to train without the LKL
term,

Epdata(x1) [log pθ(x1)] ≥ Lce + LR + C

We then argue that LR is close to L̂R which is an unnecessary forcing term encouraging our gen-
erative rate to achieve a similar jump rate to our chosen Rt(xt, j|x1) even though this Rt matrix
is an arbitrary decision and will have a different jump rate depending on which Rt is chosen. We
are then left with the standard cross entropy term as our final objective for pθ(x1|xt) with a final
modification to its unweighted form for implementation ease.

E.2.1 OBJECTIVE FOR THE MASKING INTERPOLANT

In this section we will show that LELBO is exactly the weighted cross entropy for the case when we
use the masking form for pt|1(xt|x1). We note that a similar result has been proven by Austin et al.
(2021) for the discrete time diffusion model, and here we verify that this result also holds for our
DFM model. We will assume multi-dimensional data, x1 ∈ {1, . . . , S}D. We refer to Appendix
G for the details of the multi-dimensional setting. We will also assume that we use R∗

t as our rate
matrix that generates the pt|1(xt|x1) conditional flow.

Before we manipulate LELBO, we will first find the forms of R∗
t (x

1:D
t , j1:D|x1:D

1), Rθ
t (x

1:D
t , j1:D)

and Rθ
t (x

1:D
t) for the masking case. From Appendix H.1, equation equation 21 we have,

R∗
t
d(xd

t , j
d|xd

1) =
1

1− t
δ
{
jd, xd

1

}
δ
{
xd
t ,M

}
and so

R∗
t (x

1:D
t , j1:D|x1:D

1) =

D∑
d=1

δ
{
x
1:D\d
t , j1:D\d

}
R∗

t (x
d
t , j

d|xd
1)

=

D∑
d=1

δ
{
x
1:D\d
t , j1:D\d

}
δ
{
jd, xd

1

}
δ
{
xd
t ,M

} 1

1− t

From Appendix H.1, equation equation 22 we have that,

Rθd
t (x1:D

t , jd) =
pθ(x

d
1 = jd|x1:D

t)

1− t
δ
{
xd
t ,M

}
and therefore,

Rθ
t (x

1:D
t , j1:D) =

D∑
d=1

δ
{
x
1:D\d
t , j1:D\d

}
Rθd

t (x1:D
t , jd)

=

D∑
d=1

δ
{
x
1:D\d
t , j1:D\d

} pθ(x
d
1 = jd|x1:D

t)

1− t
δ
{
xd
t ,M

}

26

Under review at the GEM workshop, ICLR 2024

We now find Rθ
t (x

1:D
t)

Rθ
t (x

1:D
t) =

∑
j1:D ̸=x1:D

t

Rθ
t (x

1:D
t , j1:D)

=
∑
j1:D

(
1− δ

{
j1:D, x1:D

t

}) D∑
d=1

δ
{
j1:D\d, x

1:D\d
t

} pθ(x
d
1 = jd|x1:D

t)

1− t
δ
{
xd
t ,M

}
=

D∑
d=1

∑
j1:D\d

δ
{
j1:D\d, x

1:D\d
t

}
δ
{
xd
t ,M

} 1

1− t

∑
jd

(
1− δ

{
j1:D, x1:D

t

})
pθ(x

d
1 = jd|x1:D

t)

=

D∑
d=1

δ
{
xd
t ,M

} 1

1− t

∑
jd

(
1− δ

{
jd, xd

t

})
pθ(x

d
1 = jd|x1:D

t)

=

D∑
d=1

δ
{
xd
t ,M

} 1

1− t

∑
jd ̸=xd

t

pθ(x
d
1 = jd|x1:D

t)

=

D∑
d=1

δ
{
xd
t ,M

} 1

1− t

where on the final line we have used the fact that pθ(xd
1 = M |x1:D

t) = 0.

We are now ready to manipulate the form of LELBO. We start with

LELBO =

∫
pdata(dx1)Q|x1(dω)

−∫ t=1

t=0

Rθ
t (Wt)dt+

∑
t:W−

t ̸=Wt

log
(
Rθ

t (W
−
t ,Wt)

)+ C

We then apply Dynkin’s formula

LELBO =

∫
pdata(dx1)Q|x1(dω)

∫ t=1

t=0

−Rθ
t (Wt) +

∑
y ̸=Wt

R∗
t (Wt, y|x1) log

(
Rθ

t (Wt, y)
)
dt

+C

We now substitute in the masking forms for Rθ
t (Wt), R∗

t (Wt, y|x1) and Rθ
t (Wt, y)

LELBO =

∫
pdata(dx1)Q|x1(dω)

(∫ t=1

t=0

(
−

D∑
d=1

δ
{
W d

t ,M
} 1

1− t

)
+

∑
y1:D ̸=W 1:D

t

{(
D∑

d=1

δ
{
W

1:D\d
t , y1:D\d

}
δ
{
yd, xd

1

}
δ
{
W d

t ,M
} 1

1− t

)
×

log

(∑
d=1

δ
{
W

1:D\d
t , y1:D\d

}
δ
{
W d

t ,M
}
pθ(y

d|W 1:D
t)

1

1− t

)}
dt

)
+ C

LELBO =

∫
pdata(dx1)Q|x1(dω)

(∫ t=1

t=0

D∑
d=1

∑
yd ̸=Wd

t

δ
{
W d

t ,M
}
δ
{
yd, xd

1

} 1

1− t
log
(
pθ(y

d|W 1:D
t)

)
dt

)
+ C

where we have moved terms that don’t depend on θ into the constant.

LELBO =

∫
pdata(dx1)Q|x1(dω)

(∫ t=1

t=0

D∑
d=1

δ
{
W d

t ,M
} 1

1− t
log
(
pθ(x

d
1|W 1:D

t)
)
dt

)

= EU(t;0,1)pdata(x1)pt(xt|x1)

[
D∑

d=1

δ
{
xd
t ,M

} 1

1− t
log pθ(x

d
1|x1:D

t)

]
where we have arrived at the weighted cross entropy, weighted by 1

1−t and only calculated for
dimensions that are masked in our corrupted sample xt.

27

Under review at the GEM workshop, ICLR 2024

F DISCUSSION OF RELATED WORK

Flow based methods for generative modelling were introduced by Liu et al. (2023); Albergo &
Vanden-Eijnden (2023); Lipman et al. (2023). These methods simplify the generative modelling
framework over diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al. (2020)
by considering noise-data interpolants rather than considering forward/backward diffusions. This
work brings these benefits to discrete data denoising models which previously have used the dif-
fusion methodology Sohl-Dickstein et al. (2015); Hoogeboom et al. (2021); Austin et al. (2021)
relying on forward/backward processes defined by Markov transition kernels. Specifically, prior
discrete diffusion works first define a forward noising process with a rate matrix R̃t. This defines
infinitesimal noise additions. To train the model, we need access to the equivalent of pt|1, i.e. the
total amount of noise added simulating from 1 to t. To find this value, the matrix exponential needs
to be applied to the forward rate matrix, pt|1 = exp

(∫ 1

t
R̃sds

)
. This means that discrete diffusion

models are limited in the choice of forward noising process. The choice of R̃t must be such that the
matrix exponential is tractable. For DFM, we simply write down pt|1 rather than implicitly defining
it through the matrix exponential and then can find a rate matrix to simulate with by differentiating
pt|1 and using R∗

t . Furthermore, the standard ELBO objective used to train discrete diffusion models
depends on the initial choice of R̃t. At sample time, it is then standard to simulate with the time
reversal of R̃t. This needlessly limits the choice of simulation process as we have shown in this
work that there are infinitely many valid choices of rate matrices that could be used for sampling.

There have been post-hoc changes to the sampling process made in prior work e.g. corrector steps
used by Campbell et al. (2022), however due to the ELBO maximizing the model log-likelihood
under the assumption of sampling using the time-reversal, the diffusion framework still revolves
around one ‘canonical’ sample time process (the time-reversal) whereas DFM makes it clear this
choice is arbitrary and the sample process can be chosen at inference time for best performance.

Previous discrete diffusion works have also suggested alternatives to the ELBO. Sun et al. (2023b)
introduce a categorical score matching loss that resembles the cross entropy, however, the denoising
network is required to make a prediction xd

0 based only on the other D − 1 dimensions of the input
noisy state, x1:D\d

t . This requires specialized architectures and methods to remain computationally
efficient. Vignac et al. (2023a) propose to learn a diffusion based model solely using the cross-
entropy but do not analyse the link between the cross-entropy and the log-likelihood of the model
as we do in App. E. Meng et al. (2022) propose to learn a discrete score model based on data ratios
using an L2 based loss which has some undesirable properties such as not penalizing mode dropping
as described by Lou et al. (2023). Lou et al. (2023) refine this approach and propose to learn data
ratios using the score entropy loss which, like the standard cross entropy, does not depend on the
choice of forward rate matrix. However, in order for the score entropy to be a true ELBO, the
forward rate matrix needs to be used as a weighting factor.

Multimodal diffusion models have been applied to tabular data Kotelnikov et al. (2023) where con-
tinuous diffusion is used for continuous features and a uniform style of corruption under a discrete
diffusion framework is applied to discrete features. This idea was then expanded to molecule gen-
eration where the task is to generate a molecules atom types, their positions and their connectivity.
Peng et al. (2023) use a masking process for the discrete atom types and bond types with a contin-
uous space process for the atom positions. Vignac et al. (2023b) use a discrete process converging
towards the independent marginal distribution in each dimension (Vignac et al., 2023a) for atom
types, bond types and formal charges of the molecules along with a continuous process for atom
positions. Hua et al. (2023) use a uniform discrete process for bond types with a continuous space
process applied to atom positions as well as atom features embedded in continuous space. These
works also investigate the importance of the multimodal noise schedule. Peng et al. (2023) find that
corrupting the bonds first and then the atom positions improves performance by avoiding unphysical
bonds appearing in the corruption process. Vignac et al. (2023b) have a similar finding that during
corruption, the atom types should be corrupted first, then the bond types and finally the atom po-
sitions. We generalize these ideas by using the approach of Albergo et al. (2023) and learning our
model over all relative levels of noise between our modalities. This allows picking the desired path
through the multimodal noise landscape at inference time either performing co-generation, inverse
folding or forward folding.

28

Under review at the GEM workshop, ICLR 2024

Other approaches for discrete data modelling opt to embed the data into a continuous space in order
to still use the continuous diffusion framework Li et al. (2022); Chen et al. (2023); Richemond et al.
(2022); Gong et al. (2023); Dieleman et al. (2022); Han et al. (2022); Strudel et al. (2022); Gulrajani
& Hashimoto (2023); Floto et al. (2023), however, this loses the discrete structure of the data during
generation. This can be important when the quantity that is represented by the discrete variable as
algorithmic importance. For example, Qin et al. (2023) perform sparse graph generation where the
discrete token represents the existence of an edge. It is then important for the edge to be known to
physically exist or not so that sparse graph networks can be applied to the problem.

General Fokker-Planck equations on discrete state spaces Chow et al. (2012) have been used to con-
struct sampling methods for energy functions Sun et al. (2023a). Further, in a generative modelling
context, the Kolmogorov equation has been used to construct equivalent diffusion processes with
fewer transitions Zhang et al. (2023) making links to optimal transport. We take this idea further to
build a generative modelling paradigm around the flexibility of the Kolmogorov equation.

The consideration of flows on discrete state spaces has also been used to construct GFlowNet al-
gorithms Bengio et al. (2023) which aim to sample from a given energy function. Here we instead
focus on the the generative modeling context where we aim to sample novel datapoints when only
given access to some dataset of training examples. GFlowNets also can use the detailed balance
equation Eq. (11) as a training training objective. Detailed balance is also used in Markov Chain
Monte Carlo methods (Metropolis et al., 1953; Hastings, 1970) to construct a transition probability
with the desired energy function that we wish to sample from as its stationary distribution. In our
work, we use the detailed balance condition as a way to increase the inference time flexibility in our
framework

G MULTIDIMENSIONAL DATA

In this section we derive how we can efficiently model D dimensional data, x1 ∈ {1, . . . , S}D
by using factorization assumptions. When we wish to emphasize the multidimensional aspect we
can write x1:D

1 and use xd
1 ∈ {1, . . . , S} to refer to the value in dimension d. We use 1 : D\d to

denote all dimensions except d. To operate in multidimensional spaces, we will make the following
assumptions

• Assumption 1 pt|1(x
1:D
t |x1:D

1) =
∏D

d=1 pt|1(x
d
t |xd

1)

• Assumption 2 pt|1(x
d
t |xd

1) = 0 =⇒ ∂tpt|1(x
d
t |xd

1) = 0,∀d

• Assumption 3 Rt(x
1:D
t , j1:D|x1:D

1) =
∑D

d=1 δ{x
1:D\d
t = j1:D\d}Rd

t (x
d
t , j

d|xd
1)

The first assumption creates independent corruption processes in each dimension, similar to the
factorization assumptions made in diffusion models where the forward noising processes proceed
independently in each dimension. Assumption 2 is the same assumption we made in order to derive
R∗

t in 1-dimension but now we assume it individually for every dimension. Finally, assumption 3
states that for our data conditional rate matrix, it decomposes into a sum of rate matrices for each
dimension and so the rate for transitions that change more than 1 dimension at a time are 0. This
is the same assumption made by Campbell et al. (2022) in order to make calculations tractable. We
will enable our process to make multiple dimensional changes simultaneously later when we come
to derive our sampling algorithm.

Under these assumptions, we will now derive DFM for the multidimensional case. We start with the
data conditional Kolmogorov equation

∂tpt|1(x
1:D
t |x1:D

1) =
∑
j1:D

Rt(j
1:D, x1:D

t |x1:D
1)pt|1(j

1:D|x1:D
t) (15)

29

Under review at the GEM workshop, ICLR 2024

We now substitute the form for the rate matrix under Assumption 3 into the RHS of equation 15 to
get

RHS =
∑
j1:D

D∑
d=1

δ{x1:D\d
t = j1:D\d}Rd

t (j
d, xd

t |xd
1)pt|1(j

1:D|x1:D
1)

=

D∑
d=1

∑
jd

Rd
t (j

d, xd
t |xd

1)pt|1(x
1:D\d
t ⊙ jd|x1:D

1) (16)

where we use x1:D\d
t ⊙ jd to denote a vector of dimension D where in the d-th dimension it has the

value of jd and in the other dimensions it has values x1:D\d
t . We now verify that the following form

for Rd
t satisfies the Kolmogorov equation,

R∗
t
d(xd

t , j
d|xd

1) =

{
ReLU(∂tpt|1(j

d|xd
1)−∂tpt|1(x

d
t |x

d
1))

Zd
t pt|1(x

d
t |xd

1)
for pt|1(xd

t |xd
1) > 0, pt|1(j

d|xd
1) > 0

= 0 otherwise
(17)

where Zd
t = |{jd : pt|1(j

d|xd
1) > 0}| and we only define R∗

t
d for off-diagonal entries, xd

t ̸= jd

remembering that R∗
t
d(xd

t , x
d
t |xd

1) = −
∑

jd ̸=xd
t
R∗

t
d(xd

t , j
d|xd

1).

We first assume pt|1(x
d
t |xd

1) > 0 ∀d and substitute in R∗
t
d into equation equation 16.

RHS =

D∑
d=1

∑
jd ̸=xd

t ,pt|1(jd|xd
1)>0

(
ReLU

(
∂tpt|1(x

d
t |xd

1)− ∂tpt|1(j
d|xd

1)
)

Zd
t pt|1(j

d|xd
1)

pt|1(x
1:D\d
t ⊙ jd|x1:D

1)

−
ReLU

(
∂tpt|1(j

d|xd
1)− ∂tpt|1(x

d
t |xd

1)
)

Zd
t pt|1(x

d
t |xd

1)
pt|1(x

1:D
t |x1:D

1)

)

RHS =

D∑
d=1

1

Zd
t

pt|1(x
1:D\d
t |x1:D

1)
∑

jd ̸=id,pt|1(jd|xd
1)>0

(
ReLU

(
∂tpt|1(x

d
t |xd

1)− ∂tpt|1(j
d|xd

1)
)

− ReLU
(
∂tpt|1(j

d|xd
1)− ∂tpt|1(x

d
t |xd

1)
))

RHS =

D∑
d=1

1

Zd
t

pt|1(x
1:D\d
t |x1:D

1)
∑

jd ̸=id,pt|1(jd|xd
1)>0

(
∂tpt|1(x

d
t |xd

1)− ∂tpt|1(j
d|xd

1)

)

=

D∑
d=1

pt|1(x
1:D\d
t |x1:D

1)∂tpt|1(x
d
t |xd

1)

= ∂t

(
D∏

d=1

pt|1(x
d
t |xd

1)

)
= LHS

where we have used the fact that pt|1(x1:D
t |x1:D

1) =
∏D

d=1 pt|1(x
d
t |xd

1).

30

Under review at the GEM workshop, ICLR 2024

For the case that there exists a d′ for which pt|1(x
d′

t |xd′

1) = 0 we have ∂tpt|1(x
d′

t |xd′

1) = 0 by
assumption. We first examine the LHS of equation equation 15 in this case.

LHS = ∂tpt|1(x
1:D
t |x1:D

1)

= ∂t

(
D∏

d=1

pt|1(x
d
t |xd

1)

)

=

D∑
d=1

pt|1(x
1:D\d
t |x1:D\d

1)∂tpt|1(x
d
t |xd

1)

= pt|1(x
1:D\d′

t |x1:D\d′

1)∂tpt|1(x
d′

t |xd′

1) +

D∑
d=1\d′

pt|1(x
1:D\d
t |x1:D\d

1)∂tpt|1(x
d
t |xd

1)

= pt|1(x
1:D\d′

t |x1:D\d′

1) ∂tpt|1(x
d′

t |xd′

1)︸ ︷︷ ︸
0

+

D∑
d=1\d′

pt|1(x
d′

t |xd′

1)︸ ︷︷ ︸
0

pt|1(x
1:D\d,d′

t |x1:D\d,d′

1)∂tpt|1(x
d
t |xd

1)

= 0

where we use 1 : D\d, d′ to mean all dimensions except d and d′. We now examine the RHS of
equation equation 15.

RHS =

D∑
d=1

∑
jd

R∗
t
d(jd, xd

t |xd
1)pt|1(x

1:D\d
t ⊙ jd|x1:D

1)

=
∑
jd′

R∗
t
d′
(jd

′
, xd′

t |xd′

1)pt|1(x
1:D\d′

t ⊙ jd
′
|x1:D

1) +

D∑
d=1\d′

∑
jd

R∗
t
d(jd, xd

t |xd
1)pt|1(x

1:D\d
t ⊙ jd|x1:D

1)

=
∑
jd′

R∗
t
d′
(jd

′
, xd′

t |xd′

1)︸ ︷︷ ︸
0

pt|1(x
1:D\d′

t ⊙ jd
′
|x1:D

1)+

D∑
d=1\d′

∑
jd

R∗
t
d(jd, xd

t |xd
1) pt|1(x

d′

t |xd′

1)︸ ︷︷ ︸
0

pt|1(x
1:D\d,d′

t ⊙ jd|x1:D\d′

1)

= 0

= LHS

where we have used the fact that R∗
t
d′
(jd

′
, xd′

t |xd′

1) = 0 because pt|1(j
d′ |xd′

1) = 0 Therefore, for
both cases we have R∗

t satisfies the conditional Kolmogorov equation equation 15 and thus we have
found a rate matrix that generates our desired conditional flow. The final step is to convert this
rate matrix conditioned on x1:D

1 into an unconditional rate matrix that can be used for generative
modeling. We first write down the unconditional multi-dimensional Kolmogorov equation

∂tpt(x
1:D
t) =

∑
j1:D

Rt(j
1:D, x1:D

t)pt(j
1:D) (18)

We now make the following assumption for the form of the unconditional rate matrix and verify that
it indeed satisfies the unconditional multi-dimensional Kolmogorov equation, equation 18.

Rt(x
1:D
t , j1:D) =

D∑
d=1

δ{x1:D\d
t = j1:D\d}Rd

t (x
1:D
t , jd) (19)

with

Rd
t (x

1:D
t , jd) = Ep(xd

1 |x1:D
t)

[
R∗

t
d(xd

t , j
d|xd

1)
]

31

Under review at the GEM workshop, ICLR 2024

with R∗
t
d(xd

t , j
d|xd

1) being given by equation 17. Substitute this form into equation 18

RHS =
∑
j1:D

D∑
d=1

δ{j1:D\d = x
1:D\d
t }Ep(xd

1 |j1:D)

[
R∗

t
d(jd, xd

t |xd
1)
]
pt(j

1:D)

=

D∑
d=1

∑
jd

E
p(xd

1 |x
1:D\d
t ⊙jd)

[
R∗

t
d(jd, xd

t |xd
1)
]
pt(x

1:D\d
t ⊙ jd)

=

D∑
d=1

∑
jd

∑
xd
1

p(xd
1|x

1:D\d
t ⊙ jd)R∗

t
d(jd, xd

t |xd
1)pt(x

1:D\d
t ⊙ jd)

=

D∑
d=1

∑
jd

∑
xd
1

p(xd
1|x

1:D\d
t ⊙ jd)R∗

t
d(jd, xd

t |xd
1)pt(x

1:D\d
t ⊙ jd)

∑
x
1:D\d
1

p(x
1:D\d
1 |xd

1, x
1:D\d
t ⊙ jd)

︸ ︷︷ ︸
=1

=

D∑
d=1

∑
jd

∑
x1:D
1

p(x1:D
1 |x1:D\d

t ⊙ jd)R∗
t
d(jd, xd

t |xd
1)pt(x

1:D\d
t ⊙ jd)

=

D∑
d=1

∑
jd

∑
x1:D
1

pdata(x
1:D
1)pt|1(x

1:D\d
t ⊙ jd|x1:D

1)R∗
t
d(jd, xd

t |xd
1)

= Epdata(x1:D
1)

 D∑
d=1

∑
jd

pt|1(x
1:D\d
t ⊙ jd|x1:D

1)R∗
t
d(jd, xd

t |xd
1)

= Epdata(x1:D

1)

[
∂tpt|1(x

1:D
t |x1:D

1)
]

by equation 16

= ∂tpt(x
1:D
t)

= LHS

where we have used Eq. (16) with the fact that we know R∗
t given by Eq. (17) satisfies the conditional

Kolmogorov equation Eq. (15). We have now verified that the rate given by Eq. (19) gives us our
desired unconditional flow and we can use it for generative modeling.

G.1 TRAINING

In order to approximate the true generative rate matrix given by equation equation 19, we need
approximations to the denoising distributions in each dimension, p(xd

1|x1:D
t), for d = 1, . . . , D.

We can parameterize these conditionally independent xd
1 distributions through a neural network that

outputs logits of shape D × S when given input x1:D
t of shape D. We then apply a softmax to the

logits to obtain approximate denoising probabilities pθ(x
d
1|x1:D

t), d = 1, . . . , D of shape D × S.
We learn the parameters of the neural network with the cross entropy loss for each dimension

Lce = Epdata(x1:D
1)U(t;0,1)pt|1(x

1:D
t |x1:D

1)

[
D∑

d=1

log pθ1|t(x
d
1|x1:D

t)

]

G.2 SAMPLING

The standard Euler step transition probability for our CTMC defined through our learned denoising
model with time step ∆t is

pt+∆t|t(j
1:D|x1:D

t) = δ{x1:D
t = j1:D}+Rθ

t (x
1:D
t , j1:D)∆t

= δ{x1:D
t = j1:D}+

D∑
d=1

δ{x1:D\d
t = j1:D\d}Epθ(xd

1 |x1:D
t)

[
Rd

t (x
d
t , j

d|xd
1)
]
∆t

(20)

32

Under review at the GEM workshop, ICLR 2024

In this form, we would be unable to make transition steps that involve more than 1 dimension
changing at a time due to our factorized form for Rθ

t (x
1:D
t , j1:D). To enable multiple dimensions to

transition simultaneously in a single update step we can approximate the standard Euler transition
step equation 20 with a factorized version p̃t+∆t|t(j

1:D|x1:D
t) with the following form

p̃t+∆t|t(j
1:D|x1:D

t) =

D∏
d=1

p̃dt+∆t|t(j
d|x1:D

t)

=

D∏
d=1

{
δ{xd

t = jd}+ Epθ(xd
1 |x1:D

t)

[
Rd

t (x
d
t , j

d|xd
1)
]
∆t
}

= δ{x1:D
t = j1:D}+
D∑

d=1

δ{x1:D\d
t = j1:D\d}Epθ(xd

1 |x1:D
t)

[
Rd

t (x
d
t , j

d|xd
1)
]
∆t+O(∆t2)

where we can see on the final line that p̃t+∆t|t approximates pt+∆t|t to first order. Sampling from
p̃t+∆t|t can be seen as taking an Euler step in each dimension independently for each simulation
step.

We note this sampling method is similar to the tau-leaping method used in prior CTMC based
approaches Gillespie (2001); Campbell et al. (2022) however tau-leaping allows multiple jumps to
be made in the same dimensions which is unsuitable for categorical data.

G.3 DETAILED BALANCE

In this section we verify that if we achieve detailed balance individually and independently in each
dimension, then our full dimensional process will also be in detailed balance.

Consider the multidimensional detailed balance equation

pt|1(x
1:D
t |x1:D

1)Rt(x
1:D
t , j1:D|x1:D

1) = pt|1(j
1:D|x1:D

1)Rt(j
1:D, x1:D

t |x1:D
1)

Now, substitute in our factorized forms for Rt(x
1:D
t , j1:D|x1:D

1) and pt|1(x
1:D
t |x1:D

1)(
D∏

d=1

pt|1(x
d
t |xd

1)

)(
D∑

d=1

δ{x1:D\d
t = j1:D\d}Rd

t (x
d
t , j

d|xd)
1)

)
=(

D∏
d=1

pt|1(j
d|xd

1)

)(
D∑

d=1

δ{j1:D\d = x
1:D\d
t }Rd

t (j
d, xd

t |xd
1)

)

Now, both sides are 0 for when xt and j differ in more than one dimension. Consider the case when
they differ in exactly one dimension, call it d. The detailed balance equation simplifies to

pt|1(x
d
t |xd

1)R
d
t (x

d
t , j

d|xd
1) = pt|1(j

d|xd
1)R

d
t (j

d, xd
t |xd

1)

which we note is the standard single dimensional detailed balance equation for dimension d. There-
fore, if our Rd

t matrices are all in detailed balance with their respective pt|1(x
d
t |xd

1) conditional
marginals, then the full dimensional rate matrix Rt(x

1:D
t , j1:D|x1:D

1) will also be in detailed bal-
ance with the full dimensional conditional marginals pt|1(x1:D

t |x1:D
1).

H IMPLEMENTATION DETAILS

In this section we provide concrete derivations of our DFM method. We use a masking process in
App. H.1, a uniform process in App. H.2 and explore the general case for any given pt|1 in App. H.3.
We also provide minimal PyTorch implementations for our training and sampling loops in each case.
We will assume multi-dimensional data under the factorization assumptions listed in App. G.

33

Under review at the GEM workshop, ICLR 2024

H.1 MASKING EXAMPLE

Here, we assume the masking form for pt|1. We begin by writing this data conditional flow

pt|1(x
1:D
t |x1:D

1) =

D∏
d=1

pt|1(x
d
t |xd

1)

=

D∏
d=1

(
tδ
{
xd
t , x

d
1

}
+ (1− t)δ

{
xd
t ,M

})
This is the distribution we will use to train our denoising model pθ1|t(x

1:D
1 |x1:D

t). PyTorch code for
the training loop is given in Listing 1

Listing 1: Masking Training loop
1 import torch
2 import torch.nn.functional as F
3

4

5 # Variables, B, D, S for batch size, number of dimensions and state
space size respectively

6 # Assume we have a model that takes as input xt of shape (B, D) and time
of shape (B,) and outputs x1 prediction logits of shape (B, D, S-1).
We know the clean data contains no masks and hence we only need to
output logits over the valid values.

7

8 mask_index = S - 1 # Assume the final state is the mask state
9

10 for x1 in dataset:
11 # x1 has shape (B, D)
12 optimizer.zero_grad()
13 t = torch.rand((B,))
14 xt = x1.clone()
15 xt[torch.rand((B,D)) < (1 - t[:, None])] = mask_index
16 logits = model(xt, t) # (B, D, S-1)
17 x1[xt != mask_index] = -1 # Don’t compute the loss on unmasked

dimensions
18 loss = F.cross_entropy(logits.transpose(1, 2), x1, reduction=’mean’,

ignore_index=-1)
19 loss.backward()
20 optimizer.step()

We will also derive the form for R∗
t
d(id, jd|xd

1). For this we need to find ∂tpt|1(x
d
t |xd

1).

∂tpt|1(x
d
t |xd

1) = ∂t
(
tδ
{
xd
t , x

d
1

}
+ (1− t)δ

{
xd
t ,M

})
= δ

{
xd
t , x

d
1

}
− δ

{
xd
t ,M

}
We can now find R∗

t
d(xd

t , j
d|xd

1). When working with rate matrices in this section, we will always
assume xd

t ̸= jd and calculate the diagonal entries as Rt(i, i) = −
∑

j ̸=i Rt(i, j) later. We note
that R∗

t
d(xd

t , j
d|xd

1) = 0 for pt|1(xd
t |xd

1) = 0 or pt|1(jd|xd
1) = 0. Further, our initial distribution

p0(x
1:D
0) =

∏D
d=1 δ

{
xd
0,M

}
. Therefore, at all points in our CTMC, xd

t is only ever M or xd
1.

Furthermore, we only ever have to consider transitions to a jd that is either jd = M or jd = xd
1.

Now, for pt|1(xd
t |x1:D

1) > 0 and pt|1(j
d|x1:D

1) > 0 we have

R∗
t
d(xd

t , j
d|xd

1) =
ReLU

(
∂tpt|1(j

d|xd
1)− ∂tpt|1(x

d
t |xd

1)
)

Zd
t pt|1(x

d
t |xd

1)

=
ReLU

(
δ
{
jd, xd

1

}
− δ

{
jd,M

}
− δ

{
xd
t , x

d
1

}
+ δ

{
xd
t ,M

})
2
(
tδ
{
xd
t , x

d
1

}
+ (1− t)δ

{
xd
t ,M

})
=

1

1− t
for jd = xd

1, x
d
t = M and 0 otherwise (21)

34

Under review at the GEM workshop, ICLR 2024

We note here that our calculation may not strictly be valid for exactly t = 0 or t = 1 but are valid
for any t ∈ (0, 1) and so we can simply ignore these edge cases, see App. D.2 for further discussion.
Now we find our unconditional rate matrix

Rθd
t (x1:D

t , jd) = Epθ
1|t(x

d
1 |x1:D

t)

[
R∗

t
d(xd

t , j
d|xd

1)
]

= Epθ
1|t(x

d
1 |x1:D

t)

[
1

1− t
δ
{
jd, xd

1

}
δ
{
xd
t ,M

}]
=

pθ1|t(x
d
1 = jd|x1:D

t)

1− t
δ
{
xd
t ,M

}
(22)

Our transition step is then

pt+∆t|t(j
d|x1:D

t) = δ
{
jd, xd

t

}
+Rθd

t (x1:D
t , jd)∆t

For jd ̸= xd
t this is

pt+∆t|t(j
d|x1:D

t) = ∆t
pθ1|t(x

d
1 = jd|x1:D

t)

1− t
δ
{
xd
t ,M

}
(23)

For jd = xd
t this is

pt+∆t|t(j
d = xd

t |x1:D
t) = 1−

∑
k ̸=xd

t

pt+∆t|t(k|x1:D
t)

= 1−
∑
k ̸=xd

t

∆t
pθ1|t(x

d
1 = k|x1:D

t)

1− t
δ
{
xd
t ,M

}
= 1− ∆t

1− t
δ
{
xd
t ,M

}
where on the final line we have used the fact that when pθ1|t(x

d
1 = M |x1:D

t) = 0. Therefore, if
xd
t = M then we have a dt

1−t chance of flipping to some unmasked state with the probabilities for
the token to unmask to given by pθ1|t(x

d
1|x1:D

t). If xd
t ̸= M (i.e. it has already been unmasked) then

we simply stay in the current unmasked state.

Listing 2 shows PyTorch code that implements this sampling loop.

Listing 2: Masking Sampling loop
1 import torch
2 import torch.nn.functional as F
3 from torch.distributions.categorical import Categorical
4

5

6 # Variables, B, D, S for batch size, number of dimensions and state
space size respectively

7 # Assume we have a model that takes as input xt of shape (B, D) and time
of shape (B,) and outputs x1 prediction logits of shape (B, D, S-1).
We know the clean data contains no masks and hence we only need to
output logits over the valid values.

8 t = 0.0
9 dt = 0.001

10 mask_index = S-1
11

12 xt = mask_index * torch.ones((B, D), dtype=torch.long)
13

14 while t < 1.0:
15 logits = model(xt, t * torch.ones((B,))) # (B, D, S-1)
16 x1_probs = F.softmax(logits, dim=-1) # (B, D, S-1)
17 x1 = Categorical(x1_probs).sample() # (B, D)
18 will_unmask = torch.rand((B, D)) < (dt / (1-t)) # (B, D)
19 will_unmask = will_unmask * (xt == mask_index) # (B,D) only unmask

currently masked positions

35

Under review at the GEM workshop, ICLR 2024

20 xt[will_unmask] = x1[will_unmask]
21

22 t += dt

H.1.1 DETAILED BALANCE

In order to expand our family of rate matrices that we can use at sampling time, we want to find a
detailed balance rate matrix RDB

t that satisfies the detailed balance equation

pt|1(i|x1)R
DB
t (i, j|x1) = pt|1(j|x1)R

DB
t (j, i|x1)

We now have to make some assumptions on the form for RDB
t . With this masking noise a process

that is in detailed balance will have some rate for transitions going from a mask state towards x1

and some rate for transitions going from x1 back towards the mask state. Such a rate would have the
following form

RDB
t (i, j|x1) = atδ {i, x1} δ {j,M}+ btδ {i,M} δ {j, x1}

for some constants at and bt that we must find. Substituting this into the detailed balance equation
along with the masking interpolation form for pt|1(xt|x1) gives

(tδ {i, x1}+ (1− t)δ {i,M}) (atδ {i, x1} δ {j,M}+ btδ {i,M} δ {j, x1}) =
(tδ {j, x1}+ (1− t)δ {j,M}) (atδ {j, x1} δ {i,M}+ btδ {j,M} δ {i, x1})

tatδ {i, x1} δ {j,M}+ (1− t)btδ {i,M} δ {j, x1} = tδ {j, x1} δ {i,M}+ (1− t)btδ {j,M} δ {i, x1}
This equation must be true for all i, j. Pick i = x1 and j = M to get

tat = (1− t)bt

If we pick i = M and j = x1 then we would obtain the same equation and if we pick any other
values for i, j with i ̸= j then we would get 0 = 0. Note that we will find RDB

t for i ̸= j and then
the value for RDB

t (i, i) is simply calculated using RDB
t (i, i) = −

∑
j ̸=i R

DB
t (i, j). Since we will

obtain no more constraints on the values of at and bt, we will need to pick a value for one of them.
We can simply set at = η where η is our stochasticity parameter since this value sets the rate at
which points that are already at x1 will come off x1 and travel back to the mask state. This gives
bt =

ηt
1−t and so for i ̸= j,

RDB
t (i, j|x1) = ηδ {i, x1} δ {j,M}+

ηt

1− t
δ {i,M} δ {j, x1} .

We now combine this rate with R∗
t
d that we calculated previously to find a new unconditional rate

matrix with a variable amount of stochasticity.

Rθd
t (x1:D

t , jd) = Epθ
1|t(x

d
1 |x1:D

t)

[
R∗

t
d(xd

t , j
d|xd

1) +RDBd

t (x
d
t , j

d|xd
1)
]

= Epθ
1|t(x

d
1 |x1:D

t)

[
1

1− t
δ
{
jd, xd

1

}
δ
{
xd
t ,M

}
+ ηδ

{
xd
t , x

d
1

}
δ
{
jd,M

}
+

ηt

1− t
δ
{
xd
t ,M

}
δ
{
jd, xd

1

}]

=
pθ1|t(x

d
1 = jd|x1:D

t)

1− t
δ
{
xd
t ,M

}
+ ηpθ1|t(x

d
1 = xd

t |x1:D
t)δ

{
jd,M

}
+

ηt

1− t
δ
{
xd
t ,M

}
pθ1|t(x

d
1 = jd|x1:D

t)

=
1 + ηt

1− t
pθ1|t(x

d
1 = jd|x1:D

t)δ
{
xd
t ,M

}
+ η(1− δ

{
xd
t ,M

}
)δ
{
jd,M

}
where on the final line we have used the fact that pθ1|t(x

d
1 = xd

t |x1:D
t) = 0 for xd

t = M and
pθ1|t(x

d
1 = xd

t |x1:D
t) = 1 when xd

t ̸= M because if a dimension is unmasked then it must be the true
x1 value under our definition of pt|1(xt|x1). We now find our transition probabilities

pt+∆t|t(j
d|x1:D

t) = δ
{
jd, xd

t

}
+Rθd

t (x1:D
t , jd)∆t

36

Under review at the GEM workshop, ICLR 2024

For jd ̸= xd
t ,

pt+∆t|t(j
d|x1:D

t) = ∆t
1 + ηt

1− t
pθ1|t(x

d
1 = jd|x1:D

t)δ
{
xd
t ,M

}
+∆tη(1− δ

{
xd
t ,M

}
)δ
{
jd,M

}
and for jd = xd

t

pt+∆t|t(j
d = xd

t |x1:D
t) = 1−

∑
k ̸=xd

t

pt+∆t|t(k|x1:D
t)

= 1−
∑
k ̸=xd

t

(
∆t

1 + ηt

1− t
pθ1|t(x

d
1 = k|x1:D

t)δ
{
xd
t ,M

}
+∆tη(1− δ

{
xd
t ,M

}
)δ {k,M}

)

= 1−∆t
1 + ηt

1− t
δ
{
xd
t ,M

}
−∆tη(1− δ

{
xd
t ,M

}
)

where again we have used the fact that pθ1|t(x
d
1 = M |x1:D

t) = 0. Inspecting pt+∆t|t(j
d|x1:D

t) for
jd ̸= xd

t , we see that if xd
t = M then we have an overall probability of unmasking of 1+ηt

1−t ∆t and
once we do unmask, the new value is drawn from pθ1|t(x

d
1|x1:D

t). This is like before but now there
is a bonus probability of unmasking of ηt

1−t . When xd
t ̸= M then we have a probability of η∆t

of jumping back to the mask state. This creates a flux of states switching back and forth between
masked and unmasked for η > 0 hence why these processes are more ‘stochastic’. However, be-
cause when η is increased we also increase the rate at which we unmask, the desired conditional
flow pt|1(xt|x1) is maintained for any value of η. Listing 3 shows PyTorch code that implements
sampling with this extra stochasticity.

Listing 3: Masking sampling loop with noise
1 import torch
2 import torch.nn.functional as F
3 from torch.distributions.categorical import Categorical
4

5

6 # Variables, B, D, S for batch size, number of dimensions and state
space size respectively

7 # Assume we have a model that takes as input xt of shape (B, D) and time
of shape (B,) and outputs x1 prediction logits of shape (B, D, S-1).
We know the clean data contains no masks and hence we only need to
output logits over the valid values.

8 t = 0.0
9 dt = 0.001

10 mask_index = S-1
11 N = 10 # Level of stochasticity
12

13 xt = mask_index * torch.ones((B, D), dtype=torch.long)
14

15 while t < 1.0:
16 logits = model(xt, t * torch.ones((B,))) # (B, D, S-1)
17 x1_probs = F.softmax(logits, dim=-1) # (B, D, S-1)
18 x1 = Categorical(x1_probs).sample() # (B, D)
19 will_unmask = torch.rand((B, D)) < (dt * (1 + N * t) / (1-t)) # (B,

D)
20 will_unmask = will_unmask * (xt == mask_index) # (B,D) only unmask

currently masked positions
21 will_mask = torch.rand((B, D)) < dt * N # (B, D)
22 will_mask = will_mask * (xt != mask_index) # (B, D) only re-mask

currently unmasked positions
23 xt[will_unmask] = x1[will_unmask]
24 t += dt
25 if t < 1.0: # Don’t re-mask on the final step
26 xt[will_mask] = mask_index

Our method has similarities to other discrete diffusion models when using this form for pt|1 and we
clarify these links in App. J.2.

37

Under review at the GEM workshop, ICLR 2024

H.1.2 PURITY SAMPLING

When using the masking form for pt|1 we can also easily implement a purity sampling scheme Tang
et al. (2022). This sampling method decides which dimensions to unmask based on an estimate of the
model confidence in that dimension’s final value. Currently, our sampling method will uniformly
at random choose which dimension to unmask. To improve upon this approach, purity sampling
will instead rank dimensions based on which dimension has the highest model probability. More
specifically, for each dimension we calculate a purity score for dimension d defined as

purityd = max
xd
1

pθ1|t(x
d
1|x1:D

t)

For the next simulation step, we then decide how many dimensions should be unmasked. The
number of dimensions to unmask is binomially distributed with probability of success ∆t

1−t and
number of trials equal to the number of dimensions that are currently masked. Once we have sampled
a number of dimensions to unmask from this binomial distribution, we then unmask that number of
dimensions starting from the dimension with highest purity score, then the dimension with second
highest purity score and so on. We only consider dimensions that are currently masked to be eligible
for unmasking. When using η > 0, the probability of success in our binomial distribution increases
to ∆t 1+ηt

1−t and so on average more dimensions get unmasked during each simulation step. At the
end of each simulation step, we then remask a sample of randomly chosen dimensions which are
uniformly chosen at random each with a probability ∆tη of being chosen.

H.2 UNIFORM EXAMPLE

In this section we walk through the derivation and implementation of DFM when using the uniform
based interpolation distribution. We start with the data conditional marginal distribution

pt|1(x
1:D
t |x1:D

1) =

D∏
d=1

pt|1(x
d
t |xd

1)

=

D∏
d=1

(
tδ
{
xd
t , x

d
1

}
+ (1− t)

1

S

)
This distribution is all that is needed to train the denoising model pθ1|t(x

1:D
1 |x1:D

t). We give PyTorch
code for the training loop with the uniform interpolant in Listing 4.

Listing 4: Uniform training loop

1 import torch
2 import torch.nn.functional as F
3

4 # Variables, B, D, S for batch size, number of dimensions and state
space size respectively

5 # Assume we have a model that takes as input xt of shape (B, D) and time
of shape (B,) and outputs x1 prediction logits of shape (B, D, S).

6

7 for x1 in dataset:
8 # x1 has shape (B, D)
9 optimizer.zero_grad()

10 t = torch.rand((B,))
11 xt = x1.clone()
12 uniform_noise = torch.randint(0, S, (B, D))
13 corrupt_mask = torch.rand((B, D)) < (1 - t[:, None])
14 xt[corrupt_mask] = uniform_noise[corrupt_mask]
15 logits = model(xt, t) # (B, D, S)
16 loss = F.cross_entropy(logits.transpose(1,2), x1, reduction=’mean’)
17 loss.backward()
18 optimizer.step()

38

Under review at the GEM workshop, ICLR 2024

In order to sample our trained model, we will need to derive R∗
t
d(id, jd|xd

1). The first step is to find
∂tpt|1(x

d
t |xd

1),

∂tpt|1(x
d
t |xd

1) = ∂t

(
tδ
{
xd
t , x

d
1

}
+ (1− t)

1

S

)
= δ

{
xd
t , x

d
1

}
− 1

S

We will now find R∗
t
d(xd

t , j
d|xd

1). As before we will always assume xd
t ̸= jd and calculate diagonal

entries as needed using the relation Rt(i, i) = −
∑

j ̸=i Rt(i, j).

R∗
t
d(xd

t , j
d|xd

1) =
ReLU

(
∂tpt|1(j

d|xd
1)− ∂tpt|1(x

d
t |xd

1)
)

Zd
t pt|1(x

d
t |xd

1)

=
ReLU

(
δ
{
jd, xd

1

}
− 1

S − δ
{
xd
t , x

d
1

}
+ 1

S

)
S
(
tδ
{
xd
t , x

d
1

}
+ (1− t) 1

S

)
=

ReLU
(
δ
{
jd, xd

1

}
− δ

{
xd
t , x

d
1

})
S(tδ

{
xd
t , x

d
1

}
+ (1− t) 1

S

The only non-zero value is when jd = xd
1 and xd

t ̸= xd
1 and so R∗

t
d(xd

t , j
d|xd

1) is

R∗
t
d(xd

t , j
d|xd

1) =
1

1− t
δ
{
jd, xd

1

}
(1− δ

{
xd
t , x

d
1

}
)

We can now find the unconditional rate matrix, still assuming xd
t ̸= jd

Rθd
t (x1:D

t , jd) = Epθ
1|t(x

d
1 |x1:D

t)

[
R∗

t
d(xd

t , j
d|xd

1)
]

= Epθ
1|t(x

d
1 |x1:D

t)

[
1

1− t
δ
{
jd, xd

1

}
(1− δ

{
xd
t , x

d
1

}
)

]
=

1

1− t
pθ1|t(x

d
1 = jd|x1:D

t)

Our transition step is

pt+∆t|t(j
d|x1:D

t) = δ
{
jd, xd

t

}
+Rθd

t (x1:D
t , jd)∆t

For jd ̸= xd
t this is

pt+∆t|t(j
d|x1:D

t) =
∆t

1− t
pθ1|t(x

d
1 = jd|x1:D

t)

and for jd = xd
t this is

pt+∆t|t(j
d = xd

t |x1:D
t) = 1−

∑
k ̸=xd

t

pt+∆t|t(k|x1:D
t)

= 1−
∑
k ̸=xd

t

∆t

1− t
pθ1|t(x

d
1 = k|x1:D

t)

= 1− ∆t

1− t

(
1− pθ1|t(x

d
1 = xd

t |x1:D
t)

)
Listing 5 shows PyTorch code that implements this sampling loop.

Listing 5: Uniform sampling loop
1 import torch
2 import torch.nn.functional as F
3 from torch.distributions.categorical import Categorical
4

5

6 # Variables, B, D, S for batch size, number of dimensions and state
space size respectively

39

Under review at the GEM workshop, ICLR 2024

7 # Assume we have a model that takes as input xt of shape (B, D) and time
of shape (B,) and outputs x1 prediction logits of shape (B, D, S).

8 t = 0.0
9 dt = 0.001

10

11 xt = torch.randint(0, S, (B, D))
12 while t < 1.0:
13 logits = model(xt, t * torch.ones((B,))) # (B, D, S)
14 x1_probs = F.softmax(logits, dim=-1) # (B, D, S)
15

16 # Calculate the off-diagonal step probabilities
17 step_probs = ((dt / (1-t)) * x1_probs).clamp(max=1.0) # (B, D, S)
18

19 # Calculate the on-diagnoal step probabilities
20 # 1) Zero out the diagonal entries
21 step_probs.scatter_(-1, xt[:, :, None], 0.0)
22 # 2) Calculate the diagonal entries such that the probability row

sums to 1
23 step_probs.scatter_(-1, xt[:, :, None], (1.0 -

step_probs.sum(dim=-1, keepdim=True)).clamp(min=0.0))
24

25 xt = Categorical(step_probs).sample() # (B, D)
26

27 t += dt

H.2.1 DETAILED BALANCE

Here we derive the form of RDB
t for the uniform interpolant case which we can use to vary the

stochasticity of sampling. RDB
t satisfies the detailed balance equation

pt|1(i|x1)R
DB
t (i, j|x1) = pt|1(j|x1)R

DB
t (j, i|x1)

We now make some assumptions for the form of RDB
t . We will assume there will be some rate of

transitions from x1 back towards a random other state and a rate towards x1 in order to cancel out
this effect and achieve detailed balance. We note there are other choices for detailed balance, some
of which we explore in App. J.1. We will again be assuming i ̸= j in the following calculations.

RDB
t (i, j|x1) = atδ {i, x1}+ btδ {j, x1}

We have parameterized RDB
t with some time-dependent constants at and bt. Substituting this into

the detailed balance equation gives(
tδ {i, x1}+ (1− t)

1

S

)
(atδ {i, x1}+ btδ {j, x1}) =(

tδ {j, x1}+ (1− t)
1

S

)
(atδ {j, x1}+ btδ {i, x1})

Now, this equation must be true for any i ̸= j. Pick i = x1 and j ̸= x1 to get(
t+ (1− t)

1

S

)
at = (1− t)

1

S
bt

bt = at
t+ (1− t) 1

S

(1− t) 1
S

= at
St+ 1− t

1− t
(24)

We would obtain the same equation if we were to instead pick i ̸= x1 and j = x1. Therefore we
have to fix one of at or bt. If we want a stochasticity level of η then we can set at = η which is
the rate at which points that are at the clean data come back off the clean datapoint. bt can then be
found from equation equation 24. This gives a form for RDB

t of

RDB
t (i, j|x1) = ηδ {i, x1}+ η

St+ 1− t

1− t
δ {j, x1}

40

Under review at the GEM workshop, ICLR 2024

This can now be combined with R∗
t
d to create a new unconditional rate matrix with a variable

amount of stochasticity.

Rθd
t (x1:D

t , jd) = Epθ
1|t(x

d
1 |x1:D

t)

[
R∗

t
d(xd

t , j
d|xd

1) +RDBd

t (x
d
t , j

d|xd
1)
]

= Epθ
1|t(x

d
1 |x1:D

t)

[
1

1− t
δ
{
jd, xd

1

}
(1− δ

{
xd
t , x

d
1

}
) + ηδ

{
xd
t , x

d
1

}
+

η
St+ 1− t

1− t
δ
{
jd, xd

1

}]

= Epθ
1|t(x

d
1 |x1:D

t)

[
1 + η + η(S − 1)t

1− t
δ
{
jd, xd

1

}
(1− δ

{
xd
t , x

d
1

}
) + ηδ

{
xd
t , x

d
1

}]
=

1 + η + η(S − 1)t

1− t
pθ1|t(x

d
1 = jd|x1:D

t) + ηpθ1|t(x
d
1 = xd

t |x1:D
t)

We can interpret this rate, with the first term being the rate at which we should transition to states
that are predicted to correspond to the clean data. The second term is a ‘noise term’ which creates
transitions away from the current state if it is predicted to correspond to the final clean data. The
first term then has additional weighting as η is increased to counter act this effect. The effect of the
stochasticity is then to create a flux going on and off the predicted final clean state during generation.
We now find our transition probabilities

pt+∆t|t(j
d|x1:D

t) = δ
{
jd, xd

t

}
+Rθd

t (x1:D
t , jd)∆t

For jd ̸= xd
t ,

pt+∆t|t(j
d|x1:D

t) = ∆t
1 + η + η(S − 1)t

1− t
pθ1|t(x

d
1 = jd|x1:D

t) + ∆tηpθ1|t(x
d
1 = xd

t |x1:D
t)

We can find pt+∆t|t(j
d|x1:D

t) for jd = xd
t programmatically as before by requiring that the proba-

bility vector sum to 1. Listing 6 shows the implementation for the uniform interpolant with noise.

Listing 6: Uniform sampling loop with noise
1 import torch
2 import torch.nn.functional as F
3 import torch.distributions.categorical import Categorical
4

5 # Variables, B, D, S for batch size, number of dimensions and state
space size respectively

6 # Assume we have a model that takes as input xt of shape (B, D) and time
of shape (B,) and outputs x1 prediction logits of shape (B, D, S).

7

8 t = 0.0
9 dt = 0.001

10 noise = 1
11

12 xt = torch.randint(0, S, (B, D))
13

14 while t < 1.0:
15 logits = model(xt, t * torch.ones((B,))) # (B, D, S)
16 x1_probs = F.softmax(logits, dim=-1) # (B, D, S)
17 x1_probs_at_xt = torch.gather(x1_probs, -1, xt[:, :, None]) # (B, D,

1)
18

19 # Don’t add noise on the final step
20 if t + dt < 1.0:
21 N = noise
22 else:
23 N = 0
24

25 # Calculate the off-diagonal step probabilities
26 step_probs = (

41

Under review at the GEM workshop, ICLR 2024

27 dt * ((1 + N + N * (S - 1) * t) / (1-t)) * x1_probs +
28 dt * N * x1_probs_at_xt
29).clamp(max=1.0) # (B, D, S)
30

31 # Calculate the on-diagnoal step probabilities
32 # 1) Zero out the diagonal entries
33 step_probs.scatter_(-1, xt[:, :, None], 0.0)
34 # 2) Calculate the diagonal entries such that the probability row

sums to 1
35 step_probs.scatter_(-1, xt[:, :, None], (1.0 -

step_probs.sum(dim=-1, keepdim=True)).clamp(min=0.0))
36

37 xt = Categorical(step_probs).sample() # (B, D)
38

39 t += dt

H.3 GENERAL CASE

We now describe the training and sampling loop for a general conditional flow pt|1(xt|x1). We
require this interpolant to be factorized, pt|1(x1:D

t |x1:D
1) =

∏D
d=1 pt|1(x

d
t |xd

1), be differentiable and
have pt|1(jd|xd

1) = 0 =⇒ ∂tpt|1(j
d|xd

1) = 0. We assume that we have access to functions that can
sample from pt|1(xt|x1), evaluate pt|1(xt|x1) and evaluate ∂tpt|1(xt|x1). Our training loop consists
of sampling data, sampling xt ∼ pt|1(xt|x1) and training with the cross entropy loss, see Listing 7.

Listing 7: General training loop
1 import torch
2 import torch.nn.functional as F
3

4 # Variables, B, D, S for batch size, number of dimensions and state
space size respectively

5 # Assume we have a model that takes as input xt of shape (B, D) and time
of shape (B,) and outputs x1 prediction logits of shape (B, D, S).

6

7 def sample_p_xt_g_x1(x1, t):
8 # x1 (B, D)
9 # t (B,)

10 # Returns xt (B, D)
11

12 for x1 in dataset:
13 # x1 has shape (B, D)
14 optimizer.zero_grad()
15 t = torch.rand((B,))
16 xt = sample_p_xt_g_x1(x1, t)
17 logits = model(xt, t) # (B, D, S)
18 loss = F.cross_entropy(logits.transpose(1,2), x1, reduction=’mean’)
19 loss.backward()
20 optimizer.step()

Now for sampling we can programmatically calculate R∗
t
d(xd

t , j
d|xd

1) using Eq. (17). It may not be
possible to analytically calculate the expectation with respect to pθ1|t(x

1:D
1 |x1:D

t) but we note that
our Euler step is still valid if we instead take a sample from pθ1|t(x

1:D
1 |x1:D

t) and substitute into
Rd

t (x
d
t , j

d|xd
1), see App. I. We assume access further to a function that can produce samples from

the prior distribution pnoise corresponding to the chosen pt|1. We provide the general case sampling
loop in Listing 8.

Listing 8: General sampling loop
1 def dt_p_xt_g_xt(x1, t):
2 # x1 (B, D)
3 # t float

42

Under review at the GEM workshop, ICLR 2024

4 # returns (B, D, S) for varying x_t value
5

6 def p_xt_g_x1(x1, t):
7 # x1 (B, D)
8 # t float
9 # returns (B, D, S) for varying x_t value

10

11 def sample_prior(num_samples, D):
12 # num_samples, D both integer
13 # returns prior sample of shape (num_samples, D)
14

15 t = 0.0
16 dt = 0.001
17 num_samples = 1000
18 xt = sample_prior(num_samples, D)
19

20 while t < 1.0:
21 logits = model(xt, t * torch.ones((num_samples,))) # (B, D, S)
22 x1_probs = F.softmax(logits, dim=-1) # (B, D, S)
23 x1 = Categorical(x1_probs).sample() # (B, D)
24

25 # Calculate R_tˆ*
26 # For p(x_t | x_1) > 0 and p(j | x_1) > 0
27 # R_tˆ*(x_t, j | x_1) = Relu(dtp(j | x_1) - dtp(x_t | x_1)) / (Z_t

* p(x_t | x_1))
28 # For p(x_t | x_1) = 0 or p(j | x_1) = 0 we have R_tˆ* = 0
29 # We will ignore issues with diagnoal entries as later on we will set
30 # diagnoal probabilities such that the row sums to one later on.
31

32 dt_p_vals = dt_p_xt_g_xt(x1, t) # (B, D, S)
33 dt_p_vals_at_xt = dt_p_vals.gather(-1, xt[:, :, None]).squeeze(-1) #

(B, D)
34

35 # Numerator of R_tˆ*
36 R_t_numer = F.relu(dt_p_vals - dt_p_vals_at_xt[:, :, None]) # (B, D,

S)
37

38 pt_vals = p_xt_g_x1(x1, t) # (B, D, S)
39 Z_t = torch.count_nonzero(pt_vals, dim=-1) # (B, D)
40 pt_vals_at_xt = pt_vals.gather(-1, xt[:, :, None]).squeeze(-1) # (B,

D)
41

42 # Denominator of R_tˆ*
43 R_t_denom = Z_t * pt_vals_at_xt # (B, D)
44

45 R_t = R_t_numer / R_t_denom[:, :, None] # (B, D, S)
46

47 # Set p(x_t | x_1) = 0 or p(j | x_1) = 0 cases to zero
48 R_t[(pt_vals_at_xt == 0.0)[:, :, None].repeat(1, 1, S)] = 0.0
49 R_t[pt_vals == 0.0] = 0.0
50

51 # Calculate the off-diagonal step probabilities
52 step_probs = (R_t * dt).clamp(max=1.0) # (B, D, S)
53

54 # Calculate the on-diagnoal step probabilities
55 # 1) Zero out the diagonal entries
56 step_probs.scatter_(-1, xt[:, :, None], 0.0)
57 # 2) Calculate the diagonal entries such that the probability row

sums to 1
58 step_probs.scatter_(-1, xt[:, :, None], (1.0 -

step_probs.sum(dim=-1, keepdim=True)).clamp(min=0.0))
59

60 xt = Categorical(step_probs).sample() # (B, D)
61 t += dt

43

Under review at the GEM workshop, ICLR 2024

H.3.1 DETAILED BALANCE

There are many ways one could solve the detailed balance equation for RDB
t as the choice will

depend on what kinds of noise are desirable to include in the generative process. A baseline example
of how you could solve the detailed balance equation for generate pt|1(xt|x1) is to note

RDB
t (i, j|x1)pt|1(i|x1) = RDB

t (j, i|x1)pt|1(j|x1)

RDB
t (i, j|x1)

RDB
t (j, i|x1)

=
pt|1(i|x1)

pt|1(j|x1)

which gives a relation between the diagonal elements of RDB
t . As a first choice we could simply set

the upper triangular section of RDB
t to 1 and set the lower triangular part to the ratio pt|1(i|x1)

pt|1(j|x1)
which

would satisfy detailed balance.

I CTMC SAMPLING METHODS

In the main text, our sampling algorithm Alg. 1 first constructs the unconditional rate matrix
Rθ

t (xt, j) = Epθ
1|t(x1|xt) [Rt(xt, j|x1)] and then samples the next state from the Euler step,

xt+∆t ∼ Cat
(
δ {xt, xt+∆t}+Rθ

t (xt, xt+∆t)∆t
)
.

The form of this update means that we don’t necessarily need to calculate the full expectation over
Rt(xt, j|x1). We can simply sample x1 from pθ1|t(x1|xt) and then plug this sample into Rt(xt, j|x1)

which we then use in the Euler update. To see that this strategy still samples from the same distri-
bution over xt+∆t, we can write the distribution over xt+∆t as pt+∆t|t,

pt+∆t|t(xt+∆t|xt) = δ {xt, xt+∆t}+ Epθ
1|t(x1|xt) [Rt(xt, xt+∆t|x1)]∆t

= Epθ
1|t(x1|xt) [δ {xt, xt+∆t}+Rt(xt, xt+∆t|x1)∆t]

=
∑
x1

pθ1|t(x1|xt)pt+∆t|t(xt+∆t|x1, xt)

where
pt+∆t|t(xt+∆t|x1, xt) := δ {xt, xt+∆t}+Rt(xt, j|x1)∆t

and so pt+∆t|t(xt+∆t|xt) can be seen as the marginal of joint distribution
pθ1|t(x1|xt)pt+∆t|t(xt+∆t|x1, xt). Therefore, to produce a sample xt+∆t from pt+∆t|t(xt+∆t|xt),
we can instead sample x1, xt+∆t from the joint distribution pθ1|t(x1|x1:D

t)pt+∆t|t(xt+∆t|x1, xt),
and take only the xt+∆t part of this joint sample.

Another method to simulate a CTMC is τ -leaping, Gillespie (2001); Campbell et al. (2022) which
allows multiple jumps to be made both across dimensions and within each dimension. Multiple
jumps within a single dimension does not make sense for categorical data where there is no ordering,
however, it can be useful for ordinal data such as a discretized image where the τ -leaping update
allows multiple jumps to be applied at once to cover a larger distance. To calculate a τ -leaping
update, a Poisson random variable needs to be drawn with the rate matrix giving the rate parameter.
Therefore, for this type of update, the full unconditional Rθ

t (xt, j) would need to be calculated.

We finally note that there is a body of work creating CTMC samplers for generative models (Sun
et al., 2023b; Lou et al., 2023) that may be faster to simulate than the standard Euler step. In this
work, we focus on framework simplicity, not optimizing for sampling speed and leave application
of these approaches as future work.

J COMPARISON WITH DISCRETE DIFFUSION MODELS

In this section we clarify the relationship between DFM and classical discrete diffusion models. In
App. J.1 we compare to continuous time models using the uniform corruption process as an example.
In App. J.2 we compare to discrete time models using the masking process as the example.

44

Under review at the GEM workshop, ICLR 2024

J.1 CONTINUOUS TIME DISCRETE DIFFUSION MODELS

Here we compare to continuous time discrete diffusion models (Campbell et al., 2022) using the
uniform corruption process as an example. In this section, we will assume t = 0 is pure noise and
t = 1 is clean data which we note is a flipped definition of time to classical diffusion models to aid
in our comparison with DFMs.

For discrete diffusion, we first specify a corruption process and then approximate its time reversal to
give us the generative process. Our corruption process will evolve from t = 1 back to time t = 0. It
will be specified using a rate matrix Rt. In order to make calculation of pt|1(xt|x1), Rt needs to be
of a special form, namely Rt = β(t)Rb where β(t) is a time dependent scalar function and Rb is a
base rate matrix that can be decomposed using the eigendecomposition Rb = QΛQ−1. For uniform
corruption, we can set Rb = 11⊤−SI where 1 is a vector of all 1’s. We will now assume S = 3 so
we can carry out all calculations explicitly.

We have Rb = QΛQ−1 with

Q =

[−1 −1 1
0 1 1
1 0 1

]
Λ =

[−3 0 0
0 −3 0
0 0 0

]
Q−1 =

− 1
3 − 1

3
2
3

− 1
3

2
3 − 1

3
1
3

1
3

1
3

To calculate pt|1(xt|x1) we can use the equation

Pt = Q exp

(
Λ

∫ t

1

β(s)ds

)
Q−1

where (Pt)ij = pt|1(xt = j|x1 = i) and exp is the element wise exponential. By the symmetry of
the problem, we can infer that pt|1(xt = j|x1 = i) will have only two possible values. Either j = i
and we are finding the probability of staying at i, or j ̸= i and we are finding the probability of
having left i, and since uniform corruption treats all states equally, these will be same quantities for
any starting state and any state j ̸= i. So to find our schedule we just need to consider one element
of the matrix Pt. Let us consider an off-diagonal element i ̸= j of Pt, which will have probability

(Pt)ij =
1

3

(
1− exp

(
−3
∫ t

1

β(s)ds

))
, i ̸= j

We will try and match this to the simple linear schedule that we have had as our running example in
the explanation of DFM.

1

3

(
1− exp

(
−3
∫ 1

t

β(s)ds

))
=

1

3
(1− t)

=⇒ β(t) =
1

3t

Therefore, we have found that a corruption rate matrix of Rt =
1
3t

(
11⊤ − 3I

)
gives a conditional

flow of pt|1(xt|x1) = tδ {xt, x1}+ (1− t) 13 .

The next step in a discrete diffusion model is to find the time reversed rate matrix R̂t which gives
a CTMC that runs in the opposite direction to Rt and generates novel data from noise. Here R̂t is
running from time t = 0 at noise towards clean data at t = 1. From Campbell et al. (2022), we have

R̂t(i, j) =
∑
x1

Rt(j, i)
pt|1(j|x1)

pt|1(i|x1)
p1|t(x1|i) i ̸= j

We notice a similarity to the DFM equations, where the generative rate is the expectation of a
quantity with respect to p1|t(x1|i). Indeed we now show that Rt(j, i)

pt|1(j|x1)

pt|1(i|x1)
is a x1 conditioned

rate matrix Rdiff
t (i, j|x1) that achieves the conditional flow pt|1(i|x1). Consider the Kolmogorov

equation
∂tpt|1(i|x1) =

∑
j ̸=i

Rdiff
t (j, i|x1)pt|1(j|x1)−

∑
j ̸=i

Rdiff
t (i, j|x1)pt|1(i|x1)

45

Under review at the GEM workshop, ICLR 2024

Substitute in our form for Rdiff
t

RHS =
∑
j ̸=i

Rt(i, j)
pt|1(i|x1)

pt|1(j|x1)
pt|1(j|x1)−

∑
j ̸=i

Rt(j, i)
pt|1(j|x1)

pt|1(i|x1)
pt|1(i|x1)

=
∑
j ̸=i

Rt(i, j)pt|1(i|x1)−
∑
j ̸=i

Rt(j, i)pt|1(j|x1)

= −

∑
j ̸=i

Rt(j, i)pt|1(j|x1)−
∑
j ̸=i

Rt(i, j)pt|1(i|x1)

= −

[
−∂tpt|1(i|x1)

]
= LHS

where on the second to last line we have used the fact that the corruption matrix Rt(i, j) when
started at pt=1(xt|x1) = δ {xt, x1} will evolve the marginals according to pt|1(xt|x1) because this
is how we derived pt|1(xt|x1) in the first place. Note Rt runs in the reverse direction hence the
negative sign.

Therefore, the diffusion framework has made an implicit choice for Rt(i, j|x1) = Rdiff
t (i, j|x1) and

this choice is made at training time. We now show on our uniform noise example that Rdiff
t is simply

R∗
t +RDB

t for a specific choice of RDB
t .

Firstly, we write out the explicit form for Rdiff
t using Rdiff

t (i, j|x1) = Rt(j, i)
pt|1(j|x1)

pt|1(i|x1)
, Rt =

1
3t

(
11⊤ − 3I

)
and pt|1(i|x1) = tδ {xt, x1}+ (1− t) 13 .

Rdiff
t =

1

3t

−1− 1+2t
1−t

1+2t
1−t 1

1−t
1+2t −2 1−t

1+2t
1−t
1+2t

1 1+2t
1−t −1− 1+2t

1−t

We will now find RDB

t such that Rdiff
t = R∗

t +RDB
t . We will need a slightly more general form for

RDB
t than was previously derived for the uniform noise case. We will have

RDB
t (i, j|x1) = atδ {i, x1}+ btδ {j, x1}+ ct(1− δ {i, x1})(1− δ {j, x1})

Using the detailed balance equation, pt|1(i|x1)R
DB
t (i, j|x1) = pt|1(j|x1)R

DB
t (j, i|x1), we find that

we need

at =
(1− t) 13bt

t+ (1− t) 13

with bt and ct being fully flexible (provided they are positive). Using the form for R∗
t (i, j|x1) =

1
1−tδ {j, x1} (1− δ {i, x1}) that we derived in Appendix H.2 we have

R∗
t +RDB

t =

−
1

1−t − bt − ct
1

1−t + bt ct
(1−t) 1

3 bt
t+(1−t) 1

3

−2 (1−t) 1
3 bt

t+(1−t) 1
3

(1−t) 1
3 bt

t+(1−t) 1
3

ct
1

1−t + bt −ct − 1
1−t − bt

which is equal to Rdiff

t if we have bt = ct =
1
3t .

In summary, we have found that classical discrete diffusion models make an implicit choice for
Rt(i, j|x1) which corresponds to a certain level of stochasticity in the CTMC and that the choice is
made at training time because the rate matrix is used in the ELBO objective. Further, we have seen
it is much harder to derive the noise schedule pt|1(xt|x1) in classical discrete diffusion models due
to the need to be able to apply the matrix exponential to Rt. In DFM, we can simply write down the
pt|1(xt|x1) noise schedule we want and we are not restricted in having to pick Rt that are amenable
to matrix exponentiation. We also get to choose any Rt(i, j|x1) at test time rather than being fixed
to the implicit choice of Rdiff

t .

46

Under review at the GEM workshop, ICLR 2024

J.2 DISCRETE TIME DISCRETE DIFFUSION MODELS

In this section we will clarify the link to the discrete time diffusion method D3PM (Austin et al.,
2021) when using the masking process for both methods. Here, we will use the convention from
Austin et al. (2021) of using t = 0 for clean data and t = T for noise.

We will first summarize the key results from Austin et al. (2021) when using the absorbing state
process which is a different name for a masking type process (the mask is the absorbing state). t can
take on any discrete value in t ∈ {0, 1, . . . , T}. The diffusion model is first defined using a noising
transition kernel

p(xt|xt−1) =

1 if xt = xt−1 = M

1− βt if xt = xt−1 ̸= M

βt if xt = M,xt−1 ̸= M

From this transition kernel, we can then calculate the noise marginals, p(xt|x0)

p(xt|x0) =

1−
∏
k≤t

(1− βk)

 δ {xt,M}+

∏
k≤t

(1− βk)

 δ {xt, x0}

We then define our generative reverse process as

pθ(xt−1|xt) =
∑
x0

p(xt−1|xt, x0)pθ(x0|xt)

where pθ(x0|xt) is the learned denoising model. Note how this is similar to our generative process,
Rθ

t (xt, j) = Epθ(x1|xt) [Rt(xt, j|x1)] where now p(xt−1|xt, x0) is the transition kernel for the clean
data conditioned process. We then create our generative model by taking the expectation of this
conditional kernel with respect to our denoising model.

Continuing with the D3PM example using the absorbing state process, we obtain the following form
for pθ(xt−1|xt)

pθ(xt−1|xt) =

1−

∏
k≤t−1(1−βk)

1−
∏

k≤t(1−βk)
if xt = xt−1 = M

βt
∏

k≤t−1(1−βk)

1−
∏

k≤t(1−βk)
pθ(x0 = xt−1|xt) if xt = M,xt−1 ̸= M

δ {xt−1, xt} if xt ̸= M

When we set βt =
1

T−t+1 , we obtain a linear noise schedule giving

pθ(xt−1|xt) =

(
1− 1

t

)
if xt = xt−1 = M

1
t pθ(x0 = xt−1|xt) if xt = M,xt−1 ̸= M

δ {xt−1, xt} if xt ̸= M

Now, let us define ξ := t
T to be the proportion that the process is through the total number of time

steps. ξ ∈ [0, 1] and if we consider it to be an analogue of our continuous time variable, we can
see that the original discretization steps of D3PM correspond to a discretization of the [0, 1] interval
with timesteps of ∆t = 1

T . Substituting these definitions into our update step gives,

pθ(xt−1|xt) =

(
1− ∆t

ξ

)
if xt = xt−1 = M

1
ξ∆tpθ(x0 = xt−1|xt) if xt = M,xt−1 ̸= M

δ {xt−1, xt} if xt ̸= M

Now we can see a clear comparison to Eq. (23) noting the flipped definition of time. With our
method we can pick any time discretization at test time because our method has been trained on all
possible t ∈ [0, 1]. We also derive RDB

t for the masking case which is not included in the prior
D3PM framework. For training we note that the ELBO also simplifies down to a weighted cross
entropy term for D3PM as noted by Austin et al. (2021) and is also the case in our framework, see
Appendix E.2.1.

47

Under review at the GEM workshop, ICLR 2024

5.0 5.5 6.0 6.5 7.0 7.5
Entropy

4

5

6

7

NL
L

D3PM

DFM

Autoreg D
at

a
En

tr
op

y

DFM
DFM = 0
D3PM
Autoregressive

Figure 2: Negative log-likelihood as measured by GPT-J-6B versus sample entropy for DFM, D3PM
and an autoregressive model with pθ1|t(x1|xt) logit temperature swept over {0.5, 0.6, , . . . , 1}. We
aim to minimize NLL whilst staying close to the dataset entropy.

K TEXT EXPERIMENT DETAILS

In this experiment, we analyse the a DFM as a standalone discrete data generative model. We
investigate using text data and find that using the extra flexibility afforded at sample time, we can
outperform an equivalent discrete diffusion model.

Set-up. We model the text dataset, text8 Mahoney (2006), which is 100MB of text from English
Wikipedia. We model at the character level, following Austin et al. (2021), with S = 28 categories
for 26 lowercase letters, a white-space and a mask token. We split the text into chunks of length
D = 256. We train a DFM using pmask

t|1 and parameterize the denoising network using a transformer
with 86M non-embedding parameters, full details are in App. K.

Results. Text samples are evaluated following Strudel et al. (2022). A much larger text model, we
use GPT-J-6B Wang & Komatsuzaki (2021), is used to evaluate the negative log-likelihood (NLL)
of the generated samples. The NLL metric alone can be gamed by repeating similar sequences,
so the token distribution entropy is also measured. Good samples should have both low NLL and
entropy close to the data distribution. For a given value of η, we create a Pareto-frontier in NLL
vs entropy space by varying the temperature applied to the pθ1|t(x1|xt) logits during the softmax
operation. Fig. 2 plots the results for varying levels of η and sampling temperature. For comparison,
we also include results for the discrete diffusion D3PM method with absorbing state corruption
Austin et al. (2021). We find the DFM performs better than D3PM due to our additional sample
time flexibility. We are able to choose the value of η that optimizes the Pareto-frontier at sample
time (here η = 15) whereas D3PM does not have this flexibility. We show the full η sweep in
App. K and show the frontier for η = 0 in Fig. 2. When η = 0, performance is similar due to
DFMs being a continuous time generalization of D3PM at this setting, see App. J.2. We also include
results for an autoregressive model in Fig. 2 for reference; however, we note this is not a complete
like-for-like comparison as autoregressive models require much less compute to train than diffusion
based models Gulrajani & Hashimoto (2023).

For our denoising network we use the transformer architecture Vaswani et al. (2017) as implemented
in the nanoGPT repository, https://github.com/karpathy/nanoGPT. We generally fol-
low the smallest GPT2 architecture Radford et al. (2019). At the input we have our input tokens xt

of shape B,D where B is the batch size and D is the number of dimensions i.e. the sequence length,
our time t of shape B, and, if we are self-conditioning, prior x1 prediction tokens of shape B,D.
We embed the xt and x1 tokens using the same learned embedding, and use a model embedding
size of 768 resulting in tensors of shape B,D, 768. We embed the position of each token using a
learned embedding for each possible position. We embed the time t, using Transformer sinusoidal
embeddings following Ho et al. (2020). We train all our diffusion models with self-conditioning
Chen et al. (2023). To input the prior x1 prediction, we stack the xt embedded tensor B,D, 768
with the x1 prior prediction token tensor B,D, 768 to obtain a tensor of shape B,D, 768 × 2. We
then apply a linear layer to project down to the model embedding dimension resulting in a tensor of
shape B,D, 768. Before applying transformer blocks, we add together the xt (and x1) embedding
tensor, the position embedding and the time embedding to obtain the final B,D, 768 input tensor.

48

https://github.com/karpathy/nanoGPT

Under review at the GEM workshop, ICLR 2024

The transformer stack consists of 12 transformer blocks, each block consisting of a LayerNorm,
SelfAttention, LayerNorm, MLP stack. Within our SelfAttention block, we use 12 heads and apply
Qk-layernorm Dehghani et al. (2023) to our query and key values as we observed this improved
convergence. Our MLP blocks consist of a 768 → 768 × 4 linear layer, followed by a GELU
activation, followed by a 768 × 4 → 768 linear layer. We do not apply dropout. Our output layer
consists of a linear head with output dimension 28. We use 28 token categories, 26 lower case letters,
a whitespace character and a mask token. The model outputs logits of shape B,D, 28 which we then
apply a softmax to, to obtain pθ(x1|xt) probabilities.

The dataset text8 is 100MB of text data from English Wikipedia. The text is all converted to lower
case letters, i.e. capital letters are converted to lower case and numbers are written as text, i.e. 8
becomes ‘eight’.

During training, we use a batch size of 256 with 8 gradient accumulation steps. We train on se-
quences of length 256. The model is therefore trained on 524, 288 tokens per gradient update. To
train self-conditioning, on 50% of training iterations, we input prior x1 prediction tokens as all
masks so that the model learns to be able to predict x1 without any prior information. On the other
50% of training iterations, we perform two model forward passes. We first predict x1 using masks
as the prior x1 tokens to obtain an initial set of pθ(x1|xt) logits. We then sample from the initial
pθ(x1|xt) distribution to obtain predicted x1 tokens. We then feed these tokens back into the model
through the self-conditioning input and predict the x1 logits once more. These logits are then used
in the loss. We only back propagate through the second forward pass of the model.

When training the D3PM model, we found that the default cross entropy weighting of 1/t (with a
flipped definition of time) resulted in poor convergence and so we applied an equal weighting of the
cross entropy across time to be consistent with the DFM loss.

We train our D3PM and DFM models for 750k iterations on 4 Nvidia A40 GPUs using a learning
rate of 10−4 and 1000 linear warm up steps. We use a cosine decay schedule after the initial warm
up towards a minimum learning rate of 10−5 which would be reached at 1M iterations. We use
the AdamW optimizer Loshchilov & Hutter (2017) with weight decay parameter 0.1. We monitor
the validation loss throughout training. Validation loss continues to drop throughout training and
we evaluate the final 750k model in our experiments. When training the autoregressive model, we
use the same architecture but find that it begins to overfit the data much faster than the diffusion
based models. After 3500 iterations the validation loss begins to increase and so we use the model
with minimum validation loss in our evaluations. This is consistent with findings that autoregressive
models require much less compute to converge than diffusion based models Gulrajani & Hashimoto
(2023).

We use the masking interpolant in our DFM with linear interpolant, as described in Appendix H.1.
For D3PM, we use the absorbing state corruption process, the links to the DFM process are described
in Appendix J.2.

For evaluation, we sample the DFM with ∆t = 0.001. We simulate up to t = 0.98 and then for
any remaining tokens that are still mask, we set them to the most likely token under the model’s
denoising distribution, pθ(x1|xt). We stop simulating at t = 0.98 to avoid any singularities similar
to how diffusion models stop near t = 0. For D3PM we train with 1000 timesteps to match DFM.

For each temperature setting applied to the pθ(x1|xt) logits, we sample 512 sequences all of length
256 tokens. We then calculate the negative log-likelihood assigned to each sequence using GPT-J-
6B Wang & Komatsuzaki (2021) and the BPE tokenizer Radford et al. (2019). We then average the
negative log-likelihoods over the 512 sequences. The sample entropy is calculated by first tokenizing
with the BPE tokenizer and then calculating the entropy as

∑
i−pi log pi where pi is the empirical

probability of token i estimated using the full set of 512 samples. Tokens for which pi = 0 are not
included in the sum. For reference, the dataset achieves a negative log-likelihood of 4.2 as measured
by GPT-J-6B.

K.1 STOCHASTICITY SWEEP

Here we examine the effect of the noise level η on the sample quality of generations from our
DFM method. We follow the follow the same procedure as before but vary η with values η =
0, 1, 2, 5, 10, 15, 20, 30, 50. We plot the results in Figure 3. We find that generally, as the noise

49

Under review at the GEM workshop, ICLR 2024

5.0 5.5 6.0 6.5 7.0 7.5
Entropy

4

5

6

NL
L

D
at

a
En

tr
op

y

0
1
2
5
10
15
20
30
50

St
oc

ha
st

ici
ty

Figure 3: Curves in Entropy-NLL space for varying noise levels used during sampling. For each
noise level, the temperature applied to the logits of the pθ(x1|xt) prediction is varied over values
0.5, 0.6, 0.7, 0.8, 0.9, 1.0.

5.0 5.5 6.0 6.5 7.0 7.5
Entropy

4

5

6

7

NL
L

D3PM

DFM

Autoreg D
at

a
En

tr
op

y

DFM
DFM = 0
D3PM
Autoregressive

Figure 4: The temperature settings for each model for which we will examine sample generations.
The selected temperature setting is highlighted with a black circle.

level increases, we lower our negative log-likelihood. However, we find that if the noise level is
increased too much, then degenerate behaviour can occur, for example when η = 50, at high logit
temperatures the negative log-likelihood increases and the sample entropy decreases away from the
dataset. Observing the samples, we find that the model generates incoherent text at this point. We
find that the intermediate noise level η = 15 provides good sample quality whilst avoiding this
behaviour.

K.2 EXAMPLE TEXT GENERATIONS

In this section we provide non cherry picked generations from the text models. For each model
we have swept over the temperature applied to the logits and it would be impractical to include
examples for all models for all temperature settings. Instead, we select one temperature setting for
each model such that the samples have similar entropy but vary in negative log-likelihood. We show
the selected temperature settings in Figure 4.

50

Under review at the GEM workshop, ICLR 2024

D3PM Temperature 0.8
Samples:

ved as a personal area to form the five counties of the area and a country
with their own which is usually called paris gietgothic can also lead an
area to work in divisions over a pileur as in the name of man the bears
have over the last two years from th
one five zero zero zero zero press money to present this to a meschasel
linear industrial base ulse sudan expanded its economy and accounts
for car prices and two eight five more than one zero zero of the largest
industrial inventions over the world were
eed alternatively as human being and the anti constitutionalay doctrines
a particular example of the concept is one reason for human rights or as
in certain regions there is a double constitution more recognized region
of europe in this region the glass an

DFM η = 0 Temperature 0.8
Samples:

ed era vol seven one nine one one december one nine six one junju that
s one of nine one one country page of love footnote pages charles s
feadman history of the red sea corea one nine nine one red sea vol one
january one nine nine seven flying profiles ch
allowes the vectores to be composed as systems of data for example no
machine is a computer one would do not know where there are undi-
rected storage of other data storage particularly the computer science
eve to substitute such a based data that is one of
me io the plate n and feminine along the trail to change the amount of
naturated information in the start tape selective figurative memory the
mind is determined by the second net on the string c with two buttons
the tag retes the header when queued the se

51

Under review at the GEM workshop, ICLR 2024

Autoregressive Temperature 0.9
Samples:

licklyn american football coach to holy roman emperor and roman sto-
ries radio and facilities in the u s civil rights movement the dc circuit
collection of the witches leading the transissario times and spinoffs to
american cartoonists cartoonist kyle marci
the british one one eight four minamoto minister or al di nortello min-
istries son of monte oise klepe which chose to give up its character on
the go he was known to publish a wade of white performances started in
one eight five one kleine married the gigan
mausoleum in one eight one six alabama was engaged by a large scale as
we know alabama migration the palace of westminsters and proceeded
to father she also learned to speak with the abramic mouth of the space
the replica was apparently built de provence g

DFM η = 15 Temperature 0.8
Samples:

e curous greek by alexander van hep ven see archaic origin of the word
cupola another meaning suggests that the word kupola is the latin word
cupei kupolum old german derived from the latin word for the river the
name comes from a latin word for tree with
es so balloonists refine this combination specifically to preserve your
own land in the runner both examples of clean steering creating agout
like rods that produced successful rods and for the end the first few
pistols compact stunt a musical setting mult
by reign over agassi is considered a greatest match by the day he will
never play and will continue to be imitated agassi can play determinedly
but agassi would always look to the victorious build he should not finish
years going up to then that he would b

L PROTEIN GENERATION EXPERIMENT DETAILS

We present additional experiment details and results for protein generation with Multiflow.

L.1 EXPERIMENTAL DETAILS

Model Architecture. We use an architecture modified from the FrameDiff architecture from Yim
et al. (2023b). This architecture consists of Invariant Point Attention (Jumper et al., 2021) combined
with transformer blocks, we refer to Yim et al. (2023b) for in-depth details. We modify this network
architecture by increasing the number of network blocks to 8, increasing the number of transformer
layers within each block to 4, decreasing the number of hidden channels used in the IPA calcula-
tion to 16, removing skip connections and removing psi-angle prediction. To enable our model to
output logits for the discrete pθ1|t(x1|xt) distribution, we add an output 3 layer MLP with the same
embedding size as the main trunk. This results in a network with 21.8M parameters.

In Yim et al. (2023b), psi-angle prediction is used to infer the location of oxygen atoms, however,
this position can be inferred to high accuracy using prior knowledge of the backbone structure of
proteins, following Yim et al. (2023a).

When training with our t, t̃ objective that enables the model to learn over different relative levels of
corruption between structure and sequence, 10% of the time we set t = 1 and draw t̃ ∼ U(0, 1) and
10% of the time we set t̃ = 1 and draw t ∼ U(0, 1). The remaining 80% of the time we draw both t
and t̃ independently from t, t̃ ∼ U(0, 1).

52

Under review at the GEM workshop, ICLR 2024

L.2 ADDITIONAL MULTIFLOW RESULTS

We show results of Multiflow across more lengths than done in Sec. 4 and show that using the
ESMFold oracle for data distillation still gives improved performance when we switch the evaluation
oracle to AlphaFold2.

Larger length range. Our results in Sec. 4 only evaluated 4 lengths (70, 100, 200, 300) to match
the benchmark in RFdiffusion. However, other works have evaluated designability across all the
lengths the method was trained on. We follow Protpardelle (Chu et al., 2023) to use Multiflow in
generating 8 samples per length in the range {50, 51, . . . , 400}. Fig. 5 shows the results in the
same format as Figure 2B in Protpardelle. We see Multiflow achieves near perfect designability up
to around length 350 at which point designability starts to drop. This is expected since Multiflow
was only trained on lengths up to 384, but also demonstrates the ability to generalize beyond the
lengths it was trained on. We see Multiflow also achieves a desirable spread of secondary structure.
We show samples above length 370 with the highest and lowest Co-design 1 RMSD in Fig. 6.

100 200 300 400
Length

0

5

10

15

20

sc
R

M
S
D

0.0

0.2

0.4

0.6

0.8

1.0
D

e
si

g
n
a
b
ili

ty

50

60

70

80

90

p
LD

D
T

0.0 0.2 0.4 0.6 0.8 1.0
% Helix

0.0

0.2

0.4

0.6

0.8

1.0

%
 S

h
e
e
t

100

200

300

400

Le
n
g
th

Figure 5: Multiflow results on Protpardelle benchmark. (Left) PMPNN 8 scRMSD and
designability versus length. Designability is computed as the proportion of samples that have
scRMSD < 2Å within a sliding window of size 11. Average pLDDT as computed by ESMFold
for each sample is plotted as the colour of the scatter point. (Right) Secondary structure distribu-
tion. For each sample the proportion of residues as part of an alpha helix or beta strand is measured
giving an xy scatter point coordinate.

Figure 6: Multiflow samples. (Left) 2 undesignable Multiflow samples with the highest scRMSD
from the benchmark. (Right) 2 designable Multiflow samples with the lowest scRMSD from the
benchmark.

AlphaFold2 evaluation oracle. In Sec. 4, we presented a distillation technique of filtering out
training examples that did not pass the designability criterion. This also involved adding more
proteins to the training set after sampling structures with Multiflow and filtering with designability
using ProteinMPNN and ESMFold. A potential risk of distillation is our model may overfit to
ESMFold since this model is used to filter training data and also for evaluation. We show this is not
the case in Table. 3 by presenting the Co-design 1 results using AlphaFold2 (AF2) as an alternative
oracle. Our main results do not use AF2 since it is very slow and cumbersome to run and evaluate
all our baselines. We evaluated Multiflow with and without distillation to test if distillation with
ESMFold provides an improvement regardless of the oracle used at evaluation. Overall designability

53

Under review at the GEM workshop, ICLR 2024

numbers are lower with AF2; however, in both columns we see there is a two fold improvement
regardless of the evaluation oracle. This demonstrates distillation is not overfitting to the oracle used
at evalution.

Table 3: Co-design 1 designability results based on oracle.
Designability with ESMFold Designability with AF2

Multiflow w/o distillation 0.41 0.38
Multiflow w/ distillation 0.88 0.83
Net improvement +0.47 +0.45

L.3 UNIFORM CONDITIONAL FLOW ABLATION

We ablate our use of the masking conditional flow and train a version of our Multiflow model using
the uniform conditional flow (see App. H.2). We assessed the model’s co-design performance by
measuring the Co-Design 1 designability and diversity versus stochasticity level used at inference
time. We also measure the secondary structure composition of the generated samples versus stochas-
ticity level. Our results are given in Fig. 7. We find that in general, the Co-Design 1 designability
increases with increasing stochasticity whilst the diversity as measured by the number of structural
clusters decreases. We can see the reason when examining the secondary structure statistics versus
stochasticity. We see that at high stochasticity levels, the model heavily favours generating alpha
helices at the expense of beta strands thus reducing the overall structural diversity. This will be due
to interactions between errors in the model and the ‘churn’ induced by extra stochasticity. It may
be counter-intuitive that extra stochasticity reduces model diversity however we hypothesize that
this is linked to the stochasticity inducing the model to converge on local optima in the likelihood
landscape. When the model is generating a sample that it is confidence about, extra stochasticity
will not shift it away from continuing down this simulation trajectory. However, when the model is
exploring lower likelihood regions, the stochasticity can shift the models trajectory until it becomes
stuck in a local optima again.

We find an overall worse trade-off between diversity and designability when using the uniform
interpolant and so opt to use the masking interpolant in our main models.

0 10 20 40 100 200
Stochasticity

0.6

0.7

0.8

De
sig

na
bi

lit
y

0 10 20 40 100 200
Stochasticity

0.6

0.7

0.8

%
 H

el
ix

80

100

120

140

Di
ve

rs
ity

0.05

0.10

0.15
%

 S
tra

nd

Figure 7: Sample metrics for Multiflow trained with the uniform interpolant on the discrete sequence
modality. (Left) Co-Design 1 designability and diversity versus stochasticity level used when sim-
ulating the discrete CTMC. Higher is better for both designability and diversity. (Right) Average
proportion of residues that are part of an alpha helix or beta strand versus the stochasticity level used
to simulate the CTMC. Each point corresponds to the mean over 400 samples, 100 samples each for
lengths 70, 100, 200, 300. Error bars show the standard error of the mean.

L.4 FORWARD AND INVERSE FOLDING EXPERIMENTS

The goal of our work is to develop the missing piece for a general-purpose framework for protein
generation – namely DFM to integrate discrete data generation with a flow model. We combined
DFM and FrameFlow to develop Multiflow where we have flexibility at inference time to choose
which modality to provide and which to generate. The task we focus on in this work is co-generation
where the structure and sequence are jointly sampled rather than one after the other as done in prior

54

Under review at the GEM workshop, ICLR 2024

works. The other useful tasks in protein modeling are forward and inverse folding. The two tasks
are briefly described as follows; more in-depth description can be found in Gao et al. (2020).

1. Forward folding: the task is to take the sequence as input and predicts the most thermody-
namically plausible structure of the sequence. During evaluation, the ground truth structure
is known, so we calculate the aligned structure erorr between the prediction and the ground
truth. Several metrics exist to compute structure error, such as the Global Distance Test
(GDT) commonly used in biophysical modeling (Pereira et al., 2021). We choose to use
the aligned backbone RMSD error to keep our analysis simple and intuitive. The most
well-used methods are AlphaFold2 (Jumper et al., 2021), RosettaFold (Baek et al., 2021),
and ESMFold (Lin et al., 2023). AlphaFold2 and RosettaFold rely on using evolutionary
information which our model does not have access to (though can be extended to use). We
compare against ESMFold, which does not use explicit evolutionary information, and due
to its speed.

2. Inverse folding: the task is to use the structure as input and predict the most likely sequence
that would forward fold into the structure. By this definition, the most sensible metric is
the designability metric also used for co-generation. Specifically, the inverse folding model
generates a sequence and we use ESMFold to predict the structure given this generated se-
quence. We call the self-consistency RMSD (scRMSD) as the RMSD between the structure
predicted by ESMFold and the original input structure (Trippe et al., 2022). The objective is
to minimize scRMSD. The de facto method for inverse folding is ProteinMPNN (Dauparas
et al., 2022). Hence we compare against ProteinMPNN.

It is important to emphasize that different deep learning models have been specifically developed
for forward and inverse folding, but no method can accomplish both tasks nor co-generate both
sequence and structure. Multiflow is unique in this regard to be able to perform co-generation,
forward folding, and inverse folding. We leave improving forward and inverse folding performance
as a future work. Our aim is to demonstrate baseline performance of using a co-generation
method to perform forward and inverse folding. We hope others can aid in advancing general
purpose protein generative models.

To perform inverse and forward folding with the same Multiflow model, we vary which time, t or t̃
we take from 0 to 1 and set the other fixed to 1. For example, setting t = 1 then using Euler steps
to update t̃ from 0 → 1 performs sequence generation conditioned on the structure. We summarize
the capabilities in Fig. 1C and in Table. 4.

Table 4: Flexible multimodal sampling.
Codesign Inverse folding Forward folding

xt, rt t : 0→ 1 t = 1 t : 0→ 1
at̃ t̃ : 0→ 1 t̃ : 0→ 1 t̃ = 1

Test set. ESMFold and ProteinMPNN have their own training and test sets which makes rigorous
comparison impossible. Re-training ESMFold and ProteinMPNN with the same training set of
Multiflow is beyond the scope of our work. Our results are a initial baseline of how Multiflow
generally fares to specialized models on forward and inverse folding.

Our test set is based on a time-based split of the PDB. We downloaded structures and sequences
from the PDB that were released between 1st September 2021 and 28th December 2023. This time-
based split ensures that none of the test set proteins are present in the training data for Multiflow,
ProteinMPNN or ESMFold. We then select all single chain monomeric proteins with length between
50 and 400 inclusive. We further filter out proteins that are more than 50% coil residues and proteins
that have a radius of gyration in the 96th percentile of the original dataset or above. We also filter
out structures that have missing residues. We cluster proteins using the 30% sequence identity
MMSeqs2 clustering provided by RCSB.org. We take a single protein from each cluster that matches
our filtering criteria. This gives us a test set of 449 proteins with minimum length 51 and maximum
length 398.

55

Under review at the GEM workshop, ICLR 2024

Summary Results. We summarize our results on the test set for both forward and inverse folding
in Table. 5. We use the RMSD metric to the groun truth structure for forward folding and the
scRMSD metric for inverse folding. We delve deeper into these results in the next two sections.

Table 5: Forward and inverse folding: mean ± std.
Inverse folding Forward folding

Method scRMSD (↓) RMSD (↓)
ProteinMPNN 1.9 ± 2.7 N/A
ESMFold N/A 2.7 ± 3.9
Multiflow 2.2 ± 2.6 15.3 ± 4.5

L.4.1 FORWARD FOLDING RESULTS

As described in Table. 4, forward folding with Multiflow is performed by fixing the sequence time
to t̃ = 1, providing the ground truth sequence as input, and running DFM from t = 0 to t = 1.

In Fig. 8 we examine the distribution of errors on our test set for both ESMFold and Multiflow. We
find that generally Multiflow can have some success with proteins of smaller length but struggles
with longer proteins. We investigate salient test examples from the plot to understand success and
failure modes of our model. Multiflow is generally able to predict realistic protein structures with
often similar secondary structure distributions as to the ground truth example seen by having sim-
ilar proportions of non-loop residues between the ground truth and predicted structure. However,
Multiflow often fails to predict the exact folded structure with high accuracy.

We quantify the secondary structure prediction accuracy in Fig. 9 by comparing the secondary struc-
ture present in the ground truth versus the structure predicted by Multiflow. We find good correlation
between the predicted secondary structure and ground truth highlighting that Multiflow is able to use
information present within the given sequence to generate structures.

Figure 8: Forward folding RMSD metrics (Left) RMSD error between ground truth and predicted
structures for Multiflow along the x-axis versus RMSD error for ESMFold on the y-axis. Each dot
represents a protein in the test set. The shading of each point represents the length of the protein.
(Right) Visualizations of ground truth structure (left) in grey and predicted structure (right) in color
for 4 salient examples highlighted on the RMSD error plot. For each, the Multiflow RMSD error is
given along with the proportion of non-loop residues for both the ground truth and prediction.

L.4.2 INVERSE FOLDING RESULTS

Similarly to forward folding, inverse folding with Multiflow is performed by fixing the structure
time to t = 1, providing the ground truth structure and running the sequence flow from t̃ = 0 to
t̃ = 1.

We plot our results in Fig. 10. We find that Multiflow performs competitively with PMPNN across
a wide range of protein lengths with PMPNN achieving slightly lower scRMSD values on average.

56

Under review at the GEM workshop, ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
Ground Truth Helix %

0.0

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
e

He
lix

 %
Correlation: 0.87

0.0 0.2 0.4 0.6 0.8 1.0
Ground Truth Strand %

0.0

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
e

St
ra

nd
 %

Correlation: 0.84

100

150

200

250

300

350

Le
ng

th

Figure 9: Proportion of residues that are part of secondary structure elements for both the Multiflow
predicted structure and the ground truther structure. We plot the ground truth proportion of residues
in a secondary structure element along the x-axis and the proportion of residues in the predicted
structure on the y-axis. The left plot examines alpha helices whilst the right plot examines strand
elements. Each scatter point represents a test set protein with the colour indicating the length. The
perfect result of exactly matching proportion with the ground truth is plotted as a dashed diagonal
line. We also report the correlation coefficient for each plot.

0.4 1 2 4 10 20
Multiflow scRMSD

0.4

1
2
4

10
20

PM
PN

N
sc

RM
SD

100

200

300
Le

ng
th

Figure 10: Multiflow scRMSD versus PMPNN scRMSD on our test set. Each scatter point repre-
sents a protein with the shading giving the length. We also plot the dividing line of equal scRMSD
for the two models for ease of comparison.

For both models, scRMSD tends to cluster around 1 to 2 scRMSD. There are test proteins for which
PMPNN achieves a lower scRMSD and also cases protein for which Multiflow acheives the lower
scRMSD.

Crossmodal modulation. We next investigate how modulating the CTMC stochasticity of the se-
quence affects the structural properties of sampled proteins. Fig. 11 shows that varying the stochas-
ticity level η results in a change of the secondary structure composition (Kabsch & Sander, 1983)
of the sampled proteins. This is an example of the flexibility our multimodal framework provides to
tune properties between data modalities at inference time.

57

Under review at the GEM workshop, ICLR 2024

0 10 20 40 100
CTMC Stochasticity

0.66

0.68

0.70

%
 H

e
lix

0.11

0.13

0.15

%
 S

tr
a
n
d

Figure 11: Multiflow structural properties. Average proportion of residues that are part of an
alpha helix or beta strand versus the CTMC stochasticity level. Proportions of helices or strands can
be desirable based on the family of proteins to generate (Vinothkumar & Henderson, 2010). Error
bars show the standard error.

M FURTHER IMPACT

In this paper we work to advance general purpose generative modeling techniques, specifically those
used for modeling discrete and multimodal data. We apply these techniques to the task of protein
generation. Improving protein modeling capabilities can have wide ranging societal impacts and care
must be taken to ensure these impacts are positive. For example, improved modeling capabilities
can help design better enzymes and drug candidates that can then go on to improve the lives of
many people. Conversely, these general purpose techniques could also be misused to design toxic
substances. To mitigate these risks, we do not present any specific methods to apply Multiflow to
tasks that could be easily adjusted to the design of harmful substances without expert knowledge.

58

	Introduction
	Multimodal Protein Generative Model
	Related Work
	Experiments
	Discussion
	Organization of Appendix
	CTMC Background
	Continuous Time Markov Chains.
	Kolmogorov equation

	Discrete Flow Models
	A Flow Model for Sampling Discrete Data
	Sampling
	Training

	Choice of Rate Matrix
	DFMs Recipe

	Proofs
	Proof of Proposition C.1
	Proof of Proposition C.2
	Proof of Proposition C.3
	Proof of Proposition C.4
	Masking Interpolant
	Uniform Interpolant
	Discussion

	Analysis of Training Objective
	Introduction to CTMC path measures
	Derivation of LELBO

	Decomposition of LELBO
	Objective for the Masking Interpolant

	Discussion of Related Work
	Multidimensional Data
	Training
	Sampling
	Detailed Balance

	Implementation Details
	Masking Example
	Detailed Balance
	Purity Sampling

	Uniform Example
	Detailed Balance

	General Case
	Detailed Balance

	CTMC Sampling Methods
	Comparison with Discrete Diffusion Models
	Continuous Time Discrete Diffusion Models
	Discrete Time Discrete Diffusion Models

	Text Experiment Details
	Stochasticity Sweep
	Example Text Generations

	Protein Generation Experiment Details
	Experimental Details
	Additional Multiflow Results
	Uniform Conditional Flow Ablation
	Forward and Inverse Folding Experiments
	Forward Folding Results
	Inverse Folding Results

	Further Impact

