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ABSTRACT

Offline reinforcement learning (RL) aims to learn the optimal policy from a fixed
behavior policy dataset without additional environment interaction. One com-
mon challenge that arises in this setting is the out-of-distribution (OOD) error,
which occurs when the policy leaves the training distribution. Prior methods pe-
nalize a statistical distance term to keep the policy close to the behavior policy, but
this constrains policy improvement and may not completely prevent OOD actions.
Another challenge is that the optimal policy distribution can be multimodal and
difficult to represent. Recent works apply diffusion or flow policies to address this
problem, but it is unclear how to avoid OOD errors while retaining policy expres-
siveness. We propose ReFORM, an offline RL method based on flow policies that
enforces the less restrictive support constraint by construction. ReFORM learns a
BC flow policy with a bounded source distribution to capture the support of the
action distribution, then optimizes a reflected flow that generates bounded noise
for the BC flow while keeping the support, to maximize the performance. Across
40 challenging tasks from the OGBench benchmark with datasets of varying qual-
ity and using a constant set of hyperparameters for all tasks, ReFORM dominates
all baselines with hand-tuned hyperparameters on the performance profile curves.

1 INTRODUCTION

Offline reinforcement learning (RL) trains an optimal policy from a previously collected dataset
without interacting with the environment (Levine et al., 2020). This technique is especially useful in
domains where large datasets are already available and environment interactions are expensive and
potentially unsafe (Fu et al., 2020). However, there are two major challenges. First, the lack of online
exploration makes the distribution shift especially dangerous. That is, for out-of-distribution (OOD)
actions not represented in the dataset, the learnedQ-function can produce overly optimistic estimates
that lead the policy astray (Levine et al., 2020). Second, traditional policy classes are typically
represented using a unimodal distribution such as a Gaussian (Kumar et al., 2020; Tarasov et al.,
2023), whereas more complex offline datasets and tasks can require multimodal action distributions.

Prior works attempt to address the OOD issue by keeping the learned policy close to the behavior
policy by regularizing a statistical distance to the behavior policy (Wang et al., 2018; Peng et al.,
2019; Mao et al., 2023a; Kumar et al., 2019; Wu et al., 2019). However, selecting a distance mea-
surement along with an appropriate regularization weight can be difficult depending on the task and
dataset. Perhaps the most common type of statistical distance used is the Kullback–Leibler (KL)
divergence (Wang et al., 2018; Peng et al., 2019; Wu et al., 2019; Jaques et al., 2019; Siegel et al.,
2020; Nair et al., 2020; Wang et al., 2020; Kostrikov et al., 2022; Park et al., 2025b), which can
avoid the OOD issue but can also be too restrictive and produce an overly conservative policy. For
example, if the dataset has low density on the optimal behavior, the KL divergence regularization
will encourage the learned policy to be suboptimal. Similar works (Wu et al., 2019; Kumar et al.,
2019) have considered alternative statistical distances such as the Wasserstein and MMD distances
that have been shown to improve performance on certain tasks. However, these methods do not
completely prevent OOD actions, and the need to choose a regularization weight remains a problem.

To tackle the challenge of multimodal action distributions, recent works have proposed using diffu-
sion policies (Hansen-Estruch et al., 2023a) and flow policies (Park et al., 2025b) to model complex
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action distributions in the dataset. However, it remains unclear how to address the OOD issue with
these highly expressive function classes without hurting their expressivity.

In this work, we propose Reflected Flows for On-support offline RL via noise Manipulation
(ReFORM), an offline RL method that aims to address both above issues by constraining a flow
policy using the less restrictive support constraint. Rather than regularizing the learned policy via
a statistical distance, we only require the actions produced to stay within the support of the action
distribution of the behavior policy. ReFORM learns a behavior cloning (BC) flow policy from the
dataset, and additionally learns a reflected flow (Xie et al., 2024) noise generator that manipulates
the source distribution of the BC policy within its support. This approach enables us to realize the
support constraint by construction without regularization, therefore avoiding the need to specify any
regularization weights. In other words, our method bypasses the hyperparameter sensitivity issue by
having constant hyperparameters. To summarize our contributions:

• We propose ReFORM, a two-stage flow policy that realizes the support constraint by construc-
tion and avoids the OOD issue without constraining the policy improvement.

• We propose applying reflected flow for generating constrained multimodal noise for the BC
flow policy to deal with OOD errors while maintaining the multimodal policy.

• Extensive experiments on 40 challenging tasks with datasets of different qualities demonstrate
that, with a constant set of hyperparameters, ReFORM dominates all baselines using similar
flow policy structures with the best hand-tuned hyperparameters on the performance profile
curve.

2 RELATED WORK

Distributional shift mitigation in offline RL. A fundamental challenge of dynamic programming
methods in offline RL is the OOD action problem, where the learned policy tries to exploit erroneous
Q-values from extrapolation error (Levine et al., 2020). Consequently, many offline RL methods
have proposed to constrain or penalize the statistical distance between the learned policy and the
behavior policy, either with an additional loss term or by regressing to the estimated optimal policy,
to mitigate this distribution shift issue. Examples include using the maximum mean discrepancy
(MMD) distance (Kumar et al., 2019), Wasserstein distance (Wu et al., 2019) and KL divergence
(Wang et al., 2018; Peng et al., 2019; Wu et al., 2019; Jaques et al., 2019; Siegel et al., 2020; Nair
et al., 2020; Wang et al., 2020; Kostrikov et al., 2022; Park et al., 2025b). One key challenge with
these methods is that the amount of regularization is a hyperparameter that needs to be tuned for
each task and dataset (Park et al., 2025a;b) and can significantly affect the method’s performance.
Moreover, as argued by Kumar et al. (2019), constraining the divergence can be too restrictive in
cases where optimal actions happen with very low probability under the behavior policy. Another
family of methods uses the support of the behavior policy, either by regularizing the policy (Kumar
et al., 2019; Wu et al., 2022; Mao et al., 2023a; Zhang et al., 2023), or via regularizing theQ-function
outside the support (Kumar et al., 2020; Lyu et al., 2022; Mao et al., 2023b; Cen et al., 2024). Our
work falls in the category of enforcing support constraints on the learned policy. However, instead
of approximating the support constraint by a suitably designed regularization term, our method
enforces the support constraint by construction by optimizing in the behavior policy’s (bounded)
latent space.

Fine-tuning flow-based models for offline RL. BC methods using diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) or flow matching (Lipman et al., 2023;
Liu et al., 2022; Albergo & Vanden-Eijnden, 2022) have seen increasing use in the control and
robotics communities (Chi et al., 2023; Reuss et al., 2023; Pearce et al., 2023; Wang et al., 2023).
However, since BC aims to mimic the dataset, its performance is tied to the performance of the
behavior policy. To fix this, one can consider fine-tuning the learned flow-based model to maximize
a user-supplied reward function. Following the success of fine-tuning flow-based models for image
generation (Uehara et al., 2024; Black et al., 2024; Domingo-Enrich et al., 2024), fine-tuning has
also been applied to the offline RL setting (Hansen-Estruch et al., 2023a; Chen et al., 2024; Park
et al., 2025b; Ding & Jin, 2024; Zhang et al., 2025). However, almost all fine-tuning methods for
offline RL tackle the problem of distribution shift with an additional loss term penalizing statistical
distance from the behavior policy, with the weight of this term being a sensitive hyperparameter that
needs to be tuned for each task and dataset (Park et al., 2025b).
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Latent space optimization in generative modeling. Instead of fine-tuning the flow model directly,
another line of work considers optimizing the distribution in the latent space, i.e., initial noise, of the
generative model. In the context of image generation, methods that optimize the initial noise using
either regression (Li et al., 2025; Guo et al., 2024; Zhou et al., 2024; Ahn et al., 2024; Eyring et al.,
2025) or RL (Miao et al., 2025) have found success in improving the quality of generated images. In
RL, Singh et al. (2021) explored using normalizing flows (Dinh et al., 2016) to improve exploration
in online RL. Since offline RL was not the focus of their work, they do not restrict the output of
their learned latent space policy. Consequently, the policy can output unbounded and potentially
OOD samples in the latent space, which is harmful in the offline RL setting. Recently, Zhou et al.
(2021) and Wagenmaker et al. (2025) have applied this idea to offline RL for Conditional Variational
Autoencoders (Sohn et al., 2015) and diffusion policies, respectively, but they additionally restrict
the latent space policy to a fixed action magnitude. Here, the action magnitude roughly controls how
likely the latent action is under the behavior policy, playing a similar role to the statistical distance
regularization coefficient in existing offline RL works. As we will show in Section 5, the final
performance is quite sensitive to this hyperparameter, which varies on different tasks and different
datasets. In contrast, our proposed method does not have any such hyperparameters that play a
similar role, removing the need for adapting them each time the environment or dataset changes.

3 PRELIMINARIES

Offline RL. Let ∆(X ) be the set of probability distributions over space X , and denote place-
holder variables with gray. A Markov Decision Process (MDP) is defined by a tuple M =
(S,A, r, ρ0, P, γ), where S is the state space, A ⊆ Rd is the d-dimensional action space, r(s, a) :
S ×A → R is the reward function, ρ0 ∈ ∆(S) is the initial state distribution, P (s′|s, a) : S ×A →
∆(S) is the transition dynamics, and γ ∈ [0, 1] is the discount factor. Given a dataset of N trajec-
tories D = {τ1, τ2, . . . , τN} generated by some behavior policy πβ(a|s) : S → ∆(A), where τi =
(s0, a0, s1, a1, . . . , sHi

, aHi
), the goal of offline RL is to find a policy πθ(a|s) : S → ∆(A) parame-

terized by θ that maximizes the expected discounted returnR(πθ) = Eτ∼ρπθ (τ)[
∑H

h=0 γ
hr(sh, ah)],

where ρπθ (τ) = ρ0(s0)πθ(a0|s0)P (s1|s0, a0) · · ·πθ(aH |sH). Note that in the offline RL setting,
sampling in the environment with policy πθ is not allowed.

OOD actions are a key challenge in offline RL (Levine et al., 2020). Many actor-critic methods learn
the policy-conditioned state-action value function (i.e., Q-function) Q(s, a) : S × A → R. For a
policy πθ, this is defined as

Qπθ (s, a) = E

[
H∑

h=0

γhr(sh, ah) | s0 = s, a0 = a, ah ∼ πθ(sh),∀h ≥ 1

]
, (1)

corresponding to the expected discounted return obtained by applying action a from state s then
following policy πθ. For parameters ϕ, Qϕ is commonly learned with fitted Q evaluation using a
SARSA-style TD error (Rummery & Niranjan, 1994)

L(ϕ) = E(s,a,s′)∼D,a′∼πθ(s′)

[(
r(s, a) + γQπθ

ϕ̂
(s′, a′)−Qπθ

ϕ (s, a)
)2

]
, (2)

where Qπθ

ϕ̂
is a target network (e.g., with soft parameters updated by polyak averaging (Polyak &

Juditsky, 1992)). However, if the policy πθ samples OOD actions a′, the target Qπθ

ϕ̂
can produce

an erroneous OOD value and cause the learned policy to incorrectly optimize for the OOD value
(Levine et al., 2020). To address this issue, many offline RL methods regularize the statistical
distance between the learned policy and the behavior policy (e.g., with the KL divergence (Peng
et al., 2019; Fujimoto & Gu, 2021; Hansen-Estruch et al., 2023b) or Wasserstein distance (Wu et al.,
2019; Park et al., 2025b)), resulting in the following objective for policy improvement:

L(θ) = Es∼D,a∼πθ(s)

[
−Qπθ

ϕ (s, a) + αD(πθ || πβ)
]
, (3)

where D(·∥·) is some statistical distance, e.g., DKL for KL divergence or DW2 for the Wasserstein
distance. However, this regularized objective introduces an additional hyperparameter α that needs
to be hand-tuned for each experiment (Park et al., 2025a;b).
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Flow matching. Flow matching (Lipman et al., 2023; Liu et al., 2022; Albergo & Vanden-Eijnden,
2022) has recently become an increasingly popular way of training flow-based generative models.
Given a target distribution p(x) ∈ ∆(Rd), flow matching learns a time-dependent velocity field
v(t, x) that transforms a simple source distribution q(x) (e.g. standard Gaussian N (0, Id)) at t = 0
to the target distribution p(x) at t = 1. The resulting flow ψ(t, x) : [0, 1] × Rd → Rd, mapping
samples from the source x ∼ q to the target ψ(1, x) ∼ p, is then the solution to the ordinary
differential equation (ODE)

d

dt
ψ(t, x) = v(ψ(t, x)), ψ(0, x) = x. (4)

Flow matching is a simple yet powerful technique alternative to denoising diffusion (Ho et al., 2020),
capable of generating complex multimodal target distributions.

4 METHOD

To solve the problem of OOD actions, at any given state s, the chosen action a should be constrained
to lie within the support supp(πβ(·|s)) := {a | πβ(a|s) > 0} of the behavior policy πβ . However,
constraining common statistical distances, such as the KL divergence or the Wasserstein distance,
theoretically leads to problems from the perspective of support constraints 1. All proofs are provided
in Appendix A.

First, constraining the KL divergence is a sufficient but not necessary condition to enforce support
constraints (Kumar et al., 2019; Mao et al., 2023a). Formally, we have the following result:
Proposition 1. Given a state s ∈ S, for any ϵ such that 0 ≤ ϵ < ∞, DKL(πθ(·|s) || πβ(·|s)) ≤ ϵ
implies supp(πθ(·|s)) ⊆ supp(πβ(·|s)). On the other hand, for anyM > 0, there exist distributions
πθ and πβ such that supp(πθ(·|s)) ⊆ supp(πβ(·|s)) but DKL(πθ(·|s) || πβ(·|s)) > M .

Proposition 1 tells us that the KL divergence constraint is more restrictive than the support constraint.
This additional restriction has been found to impede the performance improvement of πθ over πβ
(Mao et al., 2023a). While this issue can be alleviated with a small α in (3), in practice, this can
result in OOD problems due to estimation errors (Levine et al., 2020).

Wasserstein distance is another statistical distance used by previous works. However, constraining
the Wasserstein distance cannot enforce support constraints despite its strong empirical performance
in offline RL (Park et al., 2025b). Formally, we have the following result:
Proposition 2. Given a state s ∈ S, suppose that supp(πβ(·|s)) ̸= A. Then, for any ϵ > 0, there
exists a policy πθ such that supp(πθ(·|s)) ̸⊆ supp(πβ(·|s)), but DW2(πθ(·|s) || πβ(·|s)) ≤ ϵ.

Motivated by the above theoretical challenges of the KL divergence and Wasserstein distance in
addressing the issue of OOD actions, we instead consider the following support-constrained policy
optimization problem to tackle this issue directly.

max
θ

R(πθ) = Eτ∼ρπθ

[
H∑

h=0

γhr(sh, ah)

]
, (5a)

s.t. supp(πθ(·|s)) ⊆ supp(πβ(·|s)), ∀s ∈ S. (5b)

Unfortunately, enforcing the support constraint (5b) is a challenging problem since (i) accurately es-
timating the supp(πβ(·|s)) (Grover et al., 2018), and (ii) enforcing supp(πθ(·|s)) ⊆ supp(πβ(·|s))
given an estimate of supp(πβ(·|s)) (Zhang et al., 2023), are both nontrivial to solve for.

To tackle these problems, we propose learning a BC flow policy ψθ1(t, z; s) that transforms a source
distribution qBC into a state-conditioned target distribution pBC(a|s) ≈ πβ(a|s). In particular, we
use a qBC with bounded support such that supp(πβ) can be approximated by the image of supp(qBC)
under the BC flow. One benefit of this approach is that this enables learning a policy that satisfies
the support constraints by construction by taking advantage of the property that for any sample z ∈
supp(qBC) within the (bounded) source distribution’s support, ψθ1(1, z; s) ∈ supp(pBC(·|s)) ≈

1by interpreting the constant as a Lagrange multiplier, regularization with a fixed coefficient as in (3) can
be interpreted as equivalently enforcing a constraint (Levine et al., 2020)
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BC flow manipulated 
target ෤𝑝BC
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source ෤𝑞BC
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𝑑

BC

ReFORM

One-step 
policy 𝜇෡𝜃1

Distill

Figure 1: ReFORM algorithm. The process with gray arrows indicates the BC flow policy, learned
to transform a simple source distribution qBC = U(Bd

l ) to a target distribution pBC that matches the
dataset D. The blue arrows indicate the ReFORM process, where we learn a flow noise generator to
generate a manipulated source distribution q̃BC for the BC policy so that the manipulated target p̃BC

maximizes the Q value while staying inside the support (denoted in red) of the BC policy.

supp(πβ(·|s)). Hence, we propose to construct the policy πθ as the composition of some noise
generator with the BC flow ψθ1 . If the generated noise distribution q̃BC has the same support as
qBC, i.e.,

supp(q̃BC) ⊆ supp(qBC) (6)
then the pushforward of q̃BC under ψθ1 naturally satisfies the support constraints (5b). With the
support constraint (5b) satisfied by construction, solving the support-constrained policy optimization
problem (5) reduces to performing unconstrained optimization of the objective (5a).
Remark 1. This idea of outputting noise is not new. Prior works have proposed similar “noise
manipulation/steering” techniques for fine-tuning diffusion models and flow models (Li et al., 2025;
Guo et al., 2024; Miao et al., 2025; Wagenmaker et al., 2025). One key difference is that we choose
the source distribution of the flow model to be a distribution with bounded support, which enables
better approximation of the support of πβ . Moreover, we propose a different form of the noise
generator q̃BC than prior works that maintains the high expressivity of flow-based policies.

We call our method ReFORM, which we summarize in Figure 1. In the following subsections, we
elaborate on each of these components in detail.

4.1 FLOW-BASED BEHAVIOR POLICY LEARNING

ReFORM begins by learning a BC flow policy that transforms the source distribution qBC to pBC(·|s),
which approximates πβ(·|s). We choose qBC = U(Bdl ), the uniform distribution over the d-
dimensional hypersphere with radius l, so that

supp(qBC) = Bdl := {z ∈ Rd | ∥z∥ ≤ l}. (7)

We discuss the choice of l in Appendix C.4. To learn the BC flow policy ψθ1 , we learn its corre-
sponding velocity field vθ1(t, z; s) : [0, 1] × Bdl × S → Rd parameterized by θ1 such that solving
the ODE (4) gives actions a = ψθ1(1, z; s) for z ∼ qBC. We apply a simple linear flow for learning
the velocity field following Park et al. (2025b) with loss

LBC(θ1) = E(s,a)∼D,z∼U(Bd
l ),t∼U [0,1]

[∥∥vθ1(t, xt; s)− (a− z)
∥∥2] , (8)

where xt = (1− t)z + ta is the linear conditional probability path.

4.2 REFLECTED FLOW-BASED NOISE MANIPULATION

A key component in enforcing the support constraints as proposed above is the use of a noise gener-
ator with the same support as the BC flow-policy’s source distribution qBC. Prior works that apply
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similar “noise manipulation” or “noise steering” techniques implement the generated noise q̃BC as a
truncated Gaussian (e.g., by clipping or squashing with tanh). However, the use of a unimodal q̃BC

severely limits the expressiveness of q̃BC and thus also that of the resulting learned policy πθ.

One way to improve the expressiveness is by replacing the Gaussian distribution with a flow-based
generative model, as has been done with the actions. We propose to do the same, but to the noise
instead. Specifically, we choose to use a flow noise generator ψθ2(t, w; s) : [0, 1] × Bd

l × S → Bd
l

and denote its associated velocity field as vθ2(t, w; s) : [0, 1]×Bd
l ×S → Rd. However, the support

of a flow-based generative model is generally unconstrained, which violates our requirement on the
support of q̃BC (6). To resolve this, we propose to use a reflected flow (Xie et al., 2024), which
can be used to guarantee that samples from ψθ2 are contained within supp(qBC) by considering the
following reflected ODE (Xie et al., 2024) instead of (4):

dψθ2(t, w; s) = vθ2(t, ψθ2(t, w; s); s)dt+ dLt, ψθ2(0, w; s) = w, (9)

where the reflection term dLt compensates the outward velocity at ∂ supp(qBC) by pushing the
motion back to supp(qBC) (Xie et al., 2024).

For convenience, let µθ1(z; s) = ψθ1(1, z; s) and µθ2(w; s) = ψθ2(1, w; s), and let µθ(w; s) =
µθ1(µθ2(w; s); s) denote their composition. We optimize the noise generator ψθ2 to maximize the
expected Q-value of the learned policy µθ with the following loss

LNG(θ2) = Es∼D,w∼U(Bd
l )

[
−Qµθ (s, µθ1(µθ2(w; s); s))

]
, (10)

noting that the parameters of the BC policy θ1 stay fixed when optimizing θ2.

We have yet to specify the reflection term dLt in (9), as many choices of dLt constrain the ODE
to remain within supp(qBC). In particular, we wish for the reflection term dLt to be robust to
numerical integration. Fortunately, supp(pBC) = Bdl being a hypersphere (7) simplifies this design.
Consider solving the normal ODE (4) using the popular Euler method:

zk+1 = zk + vθ2(k∆t, w; s)∆t, k ∈ {0, . . . , N − 1}, ψθ2(1, w; s)← zN , (11)

where N is the number of integration steps, ∆t = 1
N , and z0 = w. For the reflected case (9), we

propose modifying the Euler method (11) by performing a projection back into the hypersphere after
every Euler step. This gives us the following reflected Euler method

zk+1 = 1{ẑk+1 ∈ Bdl }ẑk+1 + (1− 1{ẑk+1 ∈ Bdl }) (ẑk+1 − ⟨vθ2(k∆t, w; s)∆t, nk+1⟩nk+1) ,
(12)

where ẑk+1 = zk + vθ2(k∆t, w; s)∆t follows the original Euler step, nk = ẑk
∥ẑk∥ , and ⟨·, ·⟩ is the

inner product. We then propose to choose dLt that is defined implicitly by the above procedure.
Note that (12) has the same complexity as (11), because (12) only contains one step projection.

For this to be a valid reflected flow, samples z from the proposed reflected Euler method (12) should
satisfy the desired support constraints z ∈ supp(qBC) = Bdl , which we formally state below.

Theorem 1. The target distribution of the noise generator stays within the support of the original
source distribution of the BC policy, i.e., supp(q̃BC) ⊆ supp(qBC).

Combining Theorem 1 with the ideas from above then allows us to formally prove that the resulting
action distribution stays within the support supp(pBC) and hence does not result in OOD actions:

Theorem 2. The manipulated target distribution p̃BC of the BC flow policy remains within the
support of the original BC policy, i.e., supp(p̃BC) ⊆ supp(pBC).

Theorem 2 guarantees that the learned policy provably avoids OOD actions without any regulariza-
tion terms. This avoids the need for costly hyperparameter tuning for each environment and dataset,
and also does not impede the potential improvement of the learned policy.

4.3 POLICY DISTILLATION

One drawback of our proposed method is that computing the gradient of the actor loss ∇θLNG

(10) requires computing the gradient ∇zµθ1 , which involves a long backpropagation through time
(BPTT) chain since µθ1 is evaluated with Euler integration. To reduce the computational burden, we

6
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follow Park et al. (2025b) and distill (Salimans & Ho, 2022; Geng et al., 2023; 2025) the learned BC
flow policy by learning a one-step policy µ̂θ̂1

(z; s) : Bdl ×S → A parameterized by θ̂1 that directly
maps the latent variable z to the action a with the following distillation loss:

LDistill(θ̂1) = Es∼D,z∼U(Bd
l )

[
∥µθ̂1

(z; s)− µθ1(z; s)∥2
]
. (13)

5 EXPERIMENTS

In this section, we conduct experiments to answer the following research questions. Additional
details for our implementation, environments, and algorithm hyperparameters, and full results with
more ablations are provided in Appendix C.

(Q1): How does ReFORM perform compared to other offline RL algorithms with flow policies?
(Q2): Does ReFORM avoid the OOD issue without limiting the performance improvement?
(Q3): Is it necessary for the BC policy’s source distribution to have bounded support?
(Q4): Is the reflected flow necessary for generating the targeted noise?
(Q5): How is our design of the reflection term?
(Q6): Is the distillation of the BC flow policy necessary?

5.1 SETUP

Environments. We evaluate ReFORM and the baselines on 40 tasks from the OGBench offline
RL benchmark (Park et al., 2025a) designed in 4 environments, including locomotion tasks and
manipulation tasks. We use two kinds of datasets, CLEAN and NOISY. The CLEAN dataset consists
of random environment trajectories generated by an expert policy. The NOISY dataset consists of
random trajectories generated by a highly suboptimal and noisy policy.

Baselines. We compare ReFORM with the state-of-the-art offline RL algorithms with flow policies,
including Flow Q-Learning (FQL) (Park et al., 2025b), Implicit Flow Q-Learning (IFQL) (Park
et al., 2025b), and Diffusion Steering via RL (DSRL) (Wagenmaker et al., 2025). Since FQL’s
performance highly depends on the α hyperparameter (Eq. (3)), we consider three variants of FQL:
FQL(M) uses the α∗ that is hand-tuned for each environment using the CLEAN dataset by Park
et al. (2025b), FQL(S) uses α = α∗/10, and FQL(L) uses α = 10 · α∗. IFQL is the flow
version of IDQL (Hansen-Estruch et al., 2023b) implemented in Park et al. (2025b). For DSRL, we
use the hand-tuned noise bound by Wagenmaker et al. (2025). Note that ReFORM uses the same
hyperparameters across all tasks.

Evaluation Metrics. We run each algorithm with 3 different seeds for each task and evaluate each
converged model on 32 different initial conditions. We define the normalized score for each task as
the return normalized by the minimum and maximum returns across all algorithms.

5.2 MAIN RESULTS

(Q1): ReFORM achieves the best overall performance with a constant set of hyperparame-
ters. As recommended by Agarwal et al. (2021), we plot the performance profile over all tasks
with different datasets in Figure 2. It is clear that ReFORM achieves the best performance for both
the CLEAN and NOISY datasets. For the CLEAN dataset, DSRL and FQL(M) achieve the second
and third best respective performance because their hyperparameters are specifically hand-tuned for
these environments. However, for the NOISY dataset, the performance of both DSRL and FQL(M)
drops significantly, whereas FQL(S) becomes the second-best method behind ReFORM. This high-
lights the hyperparameter sensitivity of the baseline methods. Moreover, we observe that when the
behavior policy performs poorly (i.e., on NOISY), a stronger density-based regularization impedes
the ability of the learned policy to improve (see FQL(L)).

Importantly, ReFORM achieves the highest fraction on normalized scores close to 1, indicating that
ReFORM does not limit the improvement of the learned policy as discussed in Section 4. The use of
a support constraint allows the learned policy to apply any action with the support, including ones
that have low density under the behavior policy πβ Therefore, the learned policy does not suffer
from a performance upper bound related to the behavior policy.
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Figure 2: Performance profile over CLEAN and NOISY datasets. For a given normalized score
τ (x-axis), the performance profile shows the probability that a given method achieves a score ≥ τ
(see Agarwal et al. (2021) for details). On the CLEAN dataset, ReFORM achieves greater scores with
higher probabilities than all other baselines. The same is true on the NOISY dataset except for a
small set of normalized scores around 0.9 where ReFORM and FQL(S) have similar probabilities
within the statistical margins.

(a) BC. (b) DSRL. (c) IFQL. (d) FQL(S). (e) FQL(M). (f) FQL(L). (g) ReFORM2.

Figure 3: Learned policy distributions with the toy example. The Q-value reaches the maximum
at the lower left and upper right corners. The red boundaries denote the estimated supp(πBC)

3.

5.3 ABLATION STUDIES

To study the functionality of each component of ReFORM, we conduct the following experiments in
a toy environment and the cube-single environment with the NOISY dataset to answer Q2-Q5. All
details can be found in Appendix C.3.3.

(Q2): ReFORM maximizes the performance while avoiding OOD. We design a toy example to
better visualize and compare the learned policies. The toy example has a 2-dimensional action space
with a Q-value that grows when approaching the lower left and the upper right corners (see Q-value
plot in Figure 1). We plot the policy distributions of BC and all algorithms in Figure 3. ReFORM
maximizes performance by reaching both corners while staying within the support of the BC policy.
DSRL collapses to a single mode in the upper right corner and remains far from the boundaries of the
support because the generated noise of DSRL is unimodal and squashed. We compare the generated
noise in more detail in Appendix C.4, Figure 16. IFQL remains similar to the BC policy because
importance sampling is less efficient for finding the maximum. FQL faces OOD error due to its use
of Wasserstein distance regularization (as discussed in Proposition 2).

(Q3): Having bounded support for the BC flow policy’s source distribution is crucial. We
investigate the effect of satisfying support constraints (and hence the necessity of using a source
distribution with bounded support) by using a Gaussian N (0, Id) with unbounded support as the
source distribution for both the BC flow policy and the flow noise generator following Wagenmaker
et al. (2025) (ReFORM(U)). Figure 4 shows that ReFORM(U) suffers from severe OOD problems
and does not learn anything. This confirms that the ability of ReFORM to satisfy support constraints
using a source distribution with bounded support is crucial to good performance.

We next change the source distribution of the flow noise generator of ReFORM(U) back to U(Bdl )
while keeping qBC = N (0, Id) for the BC flow policy. We also add the reflection term back to
the noise generator. We change l so that Bdl is the ξ-confidence level of qBC. We vary ξ within

2This plotted support slightly differs because qBC = U(Bd
l ) for ReFORM, but qBC = N (0, Id) for others.

3The support estimation has some numerical errors, so a few samples of BC/IFQL can be outside.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0
Normalized Score

Gaussian(0.9)

Gaussian(0.7)

Gaussian(0.5)

Gaussian(0.3)

Gaussian(0.1)

ReFORM(U)

ReFORM

0.0 0.2 0.4 0.6 0.8 1.0
Steps ×106

–200

–150

–100

–50

R
e
w
a
r
d

ReFORM
ReFORM(tanh)
ReFORM(MLP)

ReFORM(Cube)
ReFORM(Sphere)

ReFORM(NoDistill)
ReFORM(Gaussian)

Figure 4: Ablations. Left: normalized scores of ReFORM and its variants with different source
distributions. Right: training curves of ReFORM and its variants by changing its components.

{0.1, 0.3, 0.5, 0.7, 0.9} (Gaussian(ξ)). These baselines are highly sensitive to the choice of ξ,
whereas ReFORM both avoids this additional hand-tuned hyperparameter ξ and achieves better per-
formance than the best performing Gaussian(ξ) (Figure 4).

(Q4): The reflected flow improves the quality of the generated noise. We consider replacing
the reflected flow with two three different generative models that also generate noise within the
hypersphere Bdl : a MLP noise generator (ReFORM(MLP)), and a “squashed flow” that applies a
tanh at the end (ReFORM(tanh)), and a squashed Gaussian (ReFORM(Gaussian)) similar to
DSRL. Both All baselines perform worse than ReFORM (Figure 4): the MLP and the Gaussian fails
to capture multimodal distributions, while tanh squashing suffers from gradient vanishing.

(Q5): Our design of the reflection term works the best within our considered choices. We con-
sider two other options for the reflection term. First, ReFORM(Cube) replaces our hypersphere-
shaped domain Bdl with a hypercube-shaped domain, while still applying the reflection term as
introduced in Xie et al. (2024). Second, ReFORM(Sphere) shares our hypersphere-shaped do-
main, but instead of compensating the outbound velocity, it reflects the outbound velocity back
inbound once the sample hits ∂Bdl . Figure 4 shows that these two variants cannot perform similarly
to ReFORM. We hypothesize that compensating for the outbound velocities makes the training pro-
cess more stable than reflecting the outbound velocities. We leave finding theoretical explanations
of this phenomenon to future work.

(Q6): Removing the BC flow policy distillation slightly degrades the performance of ReFORM.
We compare ReFORM with its variant ReFORM(NoDistill) by removing the distillation of the
BC flow policy. Figure 4 shows that ReFORM(NoDistill)’s performance decreases slightly
compared with ReFORM. This suggests that a longer backpropagation chain can be harmful, which
matches the observation in Park et al. (2025b).

6 CONCLUSION

We propose ReFORM for realizing the support constraint with flow policies in offline RL. ReFORM
simultaneously learns a BC flow policy that transforms a bounded uniform distribution in a hyper-
sphere to the complex action distribution that matches the behavior policy, and a flow noise gener-
ator that transforms a bounded uniform distribution to a complex noise distribution being fed into
the BC policy. With reflected flow on the noise generator, the noise generator is capable of gener-
ating complex multimodal noise while staying within the domain of the prior distribution of the BC
policy. Therefore, ReFORM avoids the OOD issues by construction, putting no further constraints
limiting the performance of the learned policy, and learns a complex multimodal policy. Our ex-
tensive experiments on 40 challenging tasks with the OGBench offline RL benchmark suggest that
ReFORM achieves the best performance with only a single set of hyperparameters, eliminating the
costly fine-tuning process of most offline RL methods. The reflected flow noise generator can also
be potentially combined with other generative-model-based policies, including diffusion policies.

Limitations. We identify several promising avenues for future work. Although our distillation
step avoids BPTT through the BC flow, training the noise generator still relies on BPTT, which
can be computationally intensive for deep models. This process can be potentially improved with
shortcut models (Espinosa-Dice et al., 2025), or by applying a pre-trained BC model and latent
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space RL (Wagenmaker et al., 2025). Furthermore, our method ensures that the policy πθ remains
within the support of the BC policy, meaning that it inherits any potential OOD errors made by the
BC model itself; integrating behavior cloning methods with stricter support constraints, diagnosing
when the BC model generates OOD errors, or applying a pre-trained BC model could mitigate
this dependence. Moreover, the design of the reflection term is a nascent area, and exploring more
adaptive or even learned reflection terms presents an exciting direction for developing more powerful
policy improvement methods. In addition, ReFORM applies the simplest value function learning
method and actor-critic structure similar to Park et al. (2025b), which can be potentially improved
by other methods (Mao et al., 2023b; Garg et al., 2023; Liu et al., 2024; Agrawalla et al., 2025).
Finally, ReFORM learns slower than algorithms imposing statistical distance regularization when
the dataset contains expert policies due to the lack of any explicit regularization to keep the learned
policy close to the expert policy.

7 REPRODUCIBILITY STATEMENT

For better reproducibility, we provide all the proofs of theoretical results in Appendix A, and im-
plementation details, including all hyperparameters in each environment of all algorithms in Ap-
pendix C.3. The benchmark we use is open-source and published in Park et al. (2025a). We also
included the source code of our algorithm in the supplementary materials.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Proof. We first prove the first statement. We prove this by contradiction. Suppose supp(πθ(·|s)) ̸⊆
supp(πβ(·|s)). Then, there exists a region B = {a ∈ A | πθ(a|s) > 0, πβ(a|s) = 0} with a
non-zero measure. By the definition of the KL divergence, we have

DKL(πθ(·|s) || πβ(·|s)) =
∫
a∈B

πθ(a|s) log
πθ(a|s)
πβ(a|s)

da+

∫
a∈A\B

πθ(a|s) log
πθ(a|s)
πβ(a|s)

da,

(14)
where the first term is ∞ and the second term is finite. Therefore, we have DKL(πθ(·|s) ||
πβ(·|s)) =∞, which contradicts the condition that DKL(πθ(·|s) || πβ(·|s)) ≤ ϵ <∞.

We then prove the second statement. Consider πθ(·|s) = N (µ, 1) and πβ(·|s) = N (0, 1). We have
supp(πθ(·|s)) ⊆ supp(πβ(·|s)). The KL divergence between them is

DKL(πθ(·|s) || πβ(·|s)) =
µ2

2
. (15)

Therefore, for any M > 0, we can choose µ >
√
2M so that DKL(πθ(·|s) || πβ(·|s)) > M .

A.2 PROOF OF PROPOSITION 2

Proof. For simplicity, consider a given state s ∈ S. We define pβ(·) = πβ(·|s) and pθ(·) = πθ(·|s).
We prove by construction. We consider the optimal transport problem. First, we define a source
region within the support of pβ . Consider a small ballB1 ∈ supp(pβ) centered at a1. The probability
mass in the ball is δ =

∫
B1
pβ(a)da. Second, we define a target region. Consider another small ball

B2 ̸⊂ supp(pβ) centered at a2 with the same radius as B1. Let the distance between the two balls
be d = ∥a1 − a2∥. We define the new probability pθ such that

pθ(a) =


pβ(a), if a /∈ B1 and a /∈ B2,
0, if a ∈ B1,
pβ(a− a2 + a1), if a ∈ B2,

(16)

Then, we have supp(pθ) ̸⊆ supp(pβ). We make d ≤
√

ϵ2

δ by choosing the source region B1 close
to the boundary of supp(pβ) and the target region B2 close to B1. Then, we have

DW2(pθ || pβ)2 ≤
∫
a∈B1

∥d∥2pβ(a)da = d2
∫
a∈B1

pβ(a)da = d2δ ≤ ϵ2. (17)

Therefore, we have DW2(pθ || pβ) ≤ ϵ.

A.3 PROOF OF THEOREM 1

Proof. Remember that the source distribution of the BC flow policy is qBC = U(Bdl ). We prove the
theorem by showing that zk ∈ U(Bdl ) for all k ∈ {0, 1, . . . , N − 1}, which implies that z ∈ Bd

l , for
all z ∼ q̃BC. We prove this by induction.

First, we have z0 = w ∈ Bl
d because w ∼ U(Bdl ). Next, we assume that zk ∈ U(Bdl ). Then, we

have the following two cases:

Case 1: ∥ẑk+1∥ ≤ l. Following Eq. (12), we have zk+1 = ẑk+1 ∈ Bdl .

Case 2: ∥ẑk+1∥ > l. Following Eq. (12), we have

zk+1 = ẑk+1 − ⟨vθ2(k∆t, w; s)∆t, nk+1⟩nk+1

= (∥ẑk+1∥ − ⟨vθ2(k∆t, w; s)∆t, nk+1⟩) nk+1.
(18)

In addition, we have

⟨vθ2(k∆t, w; s)∆t, nk+1⟩ = ⟨ẑk+1 − zk, nk+1⟩ = ∥ẑk+1∥ − ⟨zk, nk+1⟩. (19)
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Plugging this into the previous equation, we get,

zk+1 = ⟨zk, nk+1⟩nk+1. (20)

Hence, we get,
∥zk+1∥ = |⟨zk, nk+1⟩| ≤ ∥zk∥ ≤ l (21)

Thus our reflection ensures zk+1 ∈ Bld, ∀k. Therefore, we have z = zN ∈ Bdl , for all z ∼ q̃BC. As
a result, supp(q̃BC) ⊆ supp(qBC).

A.4 PROOF OF THEOREM 2

Proof. Let z̃ ∼ q̃BC be a sample from q̃BC. We have z̃ ∈ supp(q̃BC). Following Theorem 1, we
have supp(q̃BC) ⊆ supp(qBC). Therefore, we have z̃ ∈ supp(qBC). Now consider the original
target distribution pBC. Its support is the set of all points generated by applying the flow ψθ1 to all
points in the support of qBC, i.e.,

supp(pBC) = {ψθ1(1, z; s) | z ∈ supp(qBC)}. (22)

Since we have z̃ ∈ supp(qBC), then by definition, we have ψθ1(1, z̃; s) ∈ supp(pBC). This is true
for all z̃ ∼ q̃BC. Therefore, by the definition of the support of p̃BC, i.e.,

supp(p̃BC) = {ψθ1(1, z̃; s) | z̃ ∈ supp(q̃BC)}, (23)

we have supp(p̃BC) ⊆ supp(pBC).

B ALGORITHM DETAILS

We provide the step-by-step explanation of ReFORM in Algorithm 1, where RF(v, s, w,N) means
solving the reflected ODE (9) following the projected Euler step (12) with the velocity field v, state
s, sample from the source distribution w, and number of Euler steps N .

C EXPERIMENTS

C.1 COMPUTATION RESOURCES

The experiments are run on a 13th Gen Intel(R) Core(TM) i7-13700KF CPU with 64GB RAM and
an NVIDIA GeForce RTX 4090 GPU. The training time is around 80 minutes for 106 steps for
ReFORM.

C.2 ENVIRONMENTS

We conduct experiments on the recently published OGBench benchmark (Park et al., 2025a). We
use 4 environments (1 locomotion environment and 3 manipulation environments), 5 tasks in each
environment, with 2 different datasets, for a total 40 tasks. Since OGBench was originally designed
for offline goal-conditioned RL, we use the single-task variants ("-singletask") for OGBench tasks
to benchmark standard reward-maximizing offline RL. The reward functions in OGBench are semi-
sparse. For the locomotion task, the reward functions are always −1 for not reaching the goal and
0 for reaching the goal. Manipulation tasks usually contain several subtasks, and the rewards are
bounded by −ntask and 0, where ntask is the number of subtasks. All episodes end when the agent
achieves the goal.

In our experiments, we consider the following tasks with the CLEAN dataset, where the demonstra-
tions are randomly generated by an expert policy:

• antmaze-large-navigate-singletask-task{1,2,3,4,5}-v0
• cube-single-play-singletask-task{1,2,3,4,5}-v0
• cube-double-play-singletask-task{1,2,3,4,5}-v0
• scene-play-singletask-task{1,2,3,4,5}-v0
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Algorithm 1 ReFORM Algorithm

1: Input: Offline dataset D; total Euler number of steps N , radius l
2: Networks: Critic Qϕ(s, a); BC flow field vθ1(t, z; s); noise flow field vθ2(t, w; s); one-step BC

flow policy µθ̂1
(z; s).

3: while not converged do
4: Sample batch {(s, a, r, s′)} ∼ D
5:
6: ▷ Critic update
7: w ∼ U(Bdl )
8: z ← RF(vθ2 , s

′, w,N)
9: a′ ← µθ̂1

(z; s′)

10: Update ϕ to minimize E
[
(r + γQϕ̂(s

′, a′)−Qϕ(s, a))
2)
]

11:
12: ▷ Train vector field vθ1 in the BC flow policy µθ1
13: z ∼ U(Bdl )
14: x1 ← a
15: t ∼ U [0, 1]
16: xt ← (1− t) z + t x1
17: Update θ1 to minimize E

[
∥vθ1(t, xt; s)− (x1 − z)∥2

]
18:
19: ▷ Train one-step policy µθ̂1

20: z ∼ U(Bdl )
21: aµ1 ← µθ̂1

(z; s)

22: Update θ̂1 to minimize E
[
∥aµ1 − µθ1(z; s)∥2

]
23:
24: ▷ Train vector field vθ2 in the flow noise generator µθ2
25: w ∼ U(Bdl )
26: z ← RF(vθ2 , s, w,N)
27: aµ2 ← µθ1(z; s)
28: Update θ2 to minimize E [−Qϕ(s, a

µ2)]

We also consider the NOISY dataset, where the demonstrations are randomly generated by a highly
suboptimal and noisy policy:

• antmaze-large-explore-singletask-task{1,2,3,4,5}-v0
• cube-single-noisy-singletask-task{1,2,3,4,5}-v0
• cube-double-noisy-singletask-task{1,2,3,4,5}-v0
• scene-noisy-singletask-task{1,2,3,4,5}-v0

More details about the environment and videos of the demonstrations can be found in the OGBench
paper (Park et al., 2025a).

C.3 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

C.3.1 DETAILS OF REFORM

Flow policies. We parameterize the velocity fields of the BC flow policy vθ1 and the flow noise
generator vθ2 with MLPs. We use the Euler method to solve ODE (4) for the BC flow policy, and
the projected Euler step (12) to solve the reflected ODE (9) for the flow noise generator. 10 Euler
steps are used for both Euler integration for all environments.

Q-functions. Following the standard implementation of Q-functions in RL, we train two Q func-
tions to improve stability. Two aggregation methods are used to aggregate the two Q-values for
different environments following Park et al. (2025b). For most environments, we take the mean of
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Table 1: Training steps for all algorithms for each task.

Task Dataset Training step

antmaze-large-navigate-singletask-task{1,2,3,4,5}-v0 CLEAN 1× 107

antmaze-large-explore-singletask-task{1,2,3,4,5}-v0 NOISY 8× 106

cube-single-play-singletask-task{1,2,3,4,5}-v0 CLEAN 2× 106

cube-single-noisy-singletask-task{1,2,3,4,5}-v0 NOISY 3× 106

cube-double-play-singletask-task{1,2,3,4,5}-v0 CLEAN 2× 106

cube-double-noisy-singletask-task{1,2,3,4,5}-v0 NOISY 1× 106

scene-play-singletask-task1-v0 CLEAN 2× 106

scene-play-singletask-task{2,3,4,5}-v0 CLEAN 3× 106

scene-noisy-singletask-task{1,2}-v0 NOISY 1× 106

scene-noisy-singletask-task{3,4,5}-v0 NOISY 2× 106

Table 2: Common hyperparameters for all algorithms.

Hyperparameter Value

Learning rate 0.0003
Optimizer Adam (Kingma & Ba, 2015)
Maximum gradient norm 10
Target network smoothing coefficient 0.005
Discount factor γ 0.995
MLP dimensions [512, 512, 512, 512]
Nonlinearity GELU (Hendrycks & Gimpel, 2016)
Flow steps 10
Flow time sampling distribution U [0, 1]
Minibatch size 256
Clipped double Q-learning False (default), True (antmaze-large)

the two Q-values for aggregation (Ball et al., 2023; Nauman et al., 2024), except for the antmaze-
large environment, where we take the minimum of the two Q-values (Van Hasselt et al., 2016;
Fujimoto et al., 2018).

Selection of the radius of the hypersphere Bdl . As the action space for physical systems is al-
ways compact, we select the hypersphere Bdl to be the smallest hypersphere that contains the action
space, i.e., l = minl′{l′ ∈ Rd | A ⊆ Bd

l }. Note that, as the action spaceA is known and is usually a
hyperbox, in most cases, we can compute the solution easily, or, otherwise, use an overapproxima-
tion of Bdl . Therefore, this choice does not impose any limitation on our approach. We also present
experimental results of the sensitivity of ReFORM w.r.t. l in Appendix C.4.

Neural Network architectures. For all neural networks in our experiments, we use MLPs with 4
hidden layers and 512 neurons on each layer. We apply layer normalization (Ba et al., 2016) to the
Q-function networks to stabilize training.

Training and evaluation. The difficulty of tasks in OGBench can be very different. Therefore,
we use different training steps for different tasks (Table 1). For each task, we train each algorithm
with 3 different seeds and evaluate the model saved at the last epoch for 32 episodes.

C.3.2 DETAILS OF BASELINES IN MAIN RESULTS

We choose the state-of-the-art offline RL methods with flow policies as our baselines, including FQL
(Park et al., 2025b), IFQL (Hansen-Estruch et al., 2023b; Park et al., 2025b), and DSRL (Wagen-
maker et al., 2025). We implement the baselines FQL and IFQL following the original implementa-
tion provided in Park et al. (2025b), and DSRL also following the original implementation provided
in Wagenmaker et al. (2025).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 3: Environment-specific hyperparameters for FQL and DSRL.

Environment FQL(S)α FQL(M)α FQL(L)α Noise bound for DSRL

antmaze-large 1 10 100 [−1.25, 1.25]
cube-single 30 300 3000 [−0.5, 0.5]
cube-double 30 300 3000 [−1.5, 1.5]
scene 30 300 3000 [−0.75, 0.75]

0.0 0.5 1.0
IFQL

FQL(L)

FQL(M)

FQL(S)

DSRL

ReFORM

antmaze-large

0.0 0.5 1.0
IFQL
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FQL(M)

FQL(S)

DSRL

ReFORM

cube-single

0.0 0.5 1.0
IFQL

FQL(L)

FQL(M)

FQL(S)

DSRL

ReFORM

cube-double

0.0 0.5 1.0
IFQL

FQL(L)
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FQL(S)

DSRL

ReFORM

scene

Figure 5: Normalized scores with the CLEAN dataset.

C.3.3 DETAILS OF BASELINES IN ABLATION STUDIES

ReFORM(U). ReFORM(U) modifies ReFORM by changing the source distribution of both the BC
policy and the noise generator from U(Bdl ) to N (0, Id). In other words, we have qNG = qBC =
N (0, Id) for ReFORM(U).

Gaussian(ξ). Gaussian(ξ)modifies ReFORM by changing the source distribution of the BC
policy from U(Bdl ) to N (0, Id), then choose l so that Bdl is the ξ-confidence level of N (0, Id), i.e.,

l =
√

PPFχ2
d
(ξ), where PPFχ2

d
is the percent point function of a d-dimensional χ2 distribution.

ReFORM(MLP). ReFORM(MLP) modifies ReFORM by changing the reflected flow noise gener-
ator to an MLP noise generator f(s) : S → Bdl , which maps the state to a point within supp(qBC).

ReFORM(tanh). ReFORM(tanh) modifies ReFORM by removing the reflection term in the re-
flection ODE (9), i.e., using (11) instead of (12) when integrating the noise generator flow. Then,
after the Euler integration and getting ẑ following (11), we use tanh to squash the norm of z so that
it stays within Bdl . In other words, z = ẑ

∥ẑ∥ · tanh(∥ẑ∥) · l.

ReFORM(cube). ReFORM(cube) modifies ReFORM by changing the domain of qNG and qBC

to [−1, 1]d. Then, the reflected ODE is solved by first using the Euler integration (11) to get ẑ, and
then applying z = 1− |(ẑ + 1)mod4− 2| following Xie et al. (2024).

ReFORM(sphere). ReFORM(sphere) modifies ReFORM by changing the reflection term
from compensating the outbound velocity to “bouncing back”, like billiards.

ReFORM(NoDistill). ReFORM(NoDistill) removes the distillation part of ReFORM, i.e.,
the actor loss (10) is backpropagated through the BC flow policy instead of the one-step policy.

C.3.4 HYPERPARAMETERS

The choice of hyperparameters largely follows Park et al. (2025b). We provide the common hyper-
parameters shared for all algorithms in Table 2, and the environment-specific hyperparameters for
FQL and DSRL in Table 3. Note that all environment-specific hyperparameters for FQL(M) and
DSRL are the same as provided in their original papers (with the CLEAN dataset), which are hand-
tuned for each environment. As the baselines were not tested on the NOISY dataset in their original
papers, we use the same hyperparameters for them in the same environment with the CLEAN dataset.
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Figure 6: Normalized scores with the NOISY dataset.

Table 4: Full results. We present full results (normalized score) on 40 OGBench tasks. The results
are averaged over 3 seeds and 32 runs per seed. The results are bolded if the algorithm achieves at
or above 95% of the best performance following Park et al. (2025a).

Task Dataset IFQL FQL(L) FQL(M) FQL(S) DSRL ReFORM

antmaze-large-navigate-singletask-task1-v0 CLEAN 0±0 51±2 96±3 1±1 85±9 65±9

antmaze-large-navigate-singletask-task2-v0 CLEAN 0±0 56±4 62±44 0±0 83±9 72±5

antmaze-large-navigate-singletask-task3-v0 CLEAN 0±0 91±6 90±7 8±11 77±9 61±2

antmaze-large-navigate-singletask-task4-v0 CLEAN 0±0 74±5 67±45 0±0 80±6 68±12

antmaze-large-navigate-singletask-task5-v0 CLEAN 2±2 61±4 76±26 6±4 86±9 90±3

antmaze-large-explore-singletask-task1-v0 NOISY 40±30 0±0 0±0 84±7 0±0 91±6

antmaze-large-explore-singletask-task2-v0 NOISY 0±0 0±0 0±0 41±13 0±0 91±6

antmaze-large-explore-singletask-task3-v0 NOISY 69±28 0±0 0±0 92±8 0±0 87±2

antmaze-large-explore-singletask-task4-v0 NOISY 36±15 0±0 0±0 56±37 0±0 5±8

antmaze-large-explore-singletask-task5-v0 NOISY 0±0 0±0 0±0 16±22 0±0 88±14

cube-single-play-singletask-task1-v0 CLEAN 40±13 47±5 86±2 57±12 60±43 97±3

cube-single-play-singletask-task2-v0 CLEAN 7±3 20±17 73±10 57±5 86±3 85±11

cube-single-play-singletask-task3-v0 CLEAN 14±5 18±1 77±6 44±35 68±21 99±1

cube-single-play-singletask-task4-v0 CLEAN 30±6 19±17 73±9 77±3 59±19 89±11

cube-single-play-singletask-task5-v0 CLEAN 43±12 25±19 85±14 73±3 61±28 97±4

cube-single-noisy-singletask-task1-v0 NOISY 46±10 12±2 68±8 95±1 31±22 99±1

cube-single-noisy-singletask-task2-v0 NOISY 53±15 2±2 71±3 97±1 45±10 100±0

cube-single-noisy-singletask-task3-v0 NOISY 68±6 5±5 54±3 98±1 3±1 98±2

cube-single-noisy-singletask-task4-v0 NOISY 40±4 2±1 63±5 94±1 31±5 100±1

cube-single-noisy-singletask-task5-v0 NOISY 37±4 3±2 72±7 96±1 61±3 99±1

cube-double-play-singletask-task1-v0 CLEAN 42±6 7±5 37±7 32±2 68±26 74±6

cube-double-play-singletask-task2-v0 CLEAN 22±10 4±1 30±3 2±3 47±33 90±12

cube-double-play-singletask-task3-v0 CLEAN 17±2 1±1 17±6 4±4 42±30 90±7

cube-double-play-singletask-task4-v0 CLEAN 30±15 11±11 25±6 4±1 30±23 90±7

cube-double-play-singletask-task5-v0 CLEAN 12±5 2±1 24±10 26±7 17±23 82±21

cube-double-noisy-singletask-task1-v0 NOISY 62±5 6±4 12±14 68±14 86±9 94±6

cube-double-noisy-singletask-task2-v0 NOISY 5±3 2±1 2±1 37±18 76±25 56±20

cube-double-noisy-singletask-task3-v0 NOISY 5±3 3±2 7±6 15±4 75±30 52±22

cube-double-noisy-singletask-task4-v0 NOISY 10±3 6±2 7±3 20±12 72±31 33±47

cube-double-noisy-singletask-task5-v0 NOISY 8±6 6±4 2±0 9±6 90±10 67±23

scene-play-singletask-task1-v0 CLEAN 99±1 69±6 98±2 23±17 94±2 95±2

scene-play-singletask-task2-v0 CLEAN 41±7 8±6 73±3 27±12 87±1 99±1

scene-play-singletask-task3-v0 CLEAN 56±2 52±4 89±1 20±15 85±2 99±1

scene-play-singletask-task4-v0 CLEAN 24±1 15±11 65±26 46±2 97±2 25±10

scene-play-singletask-task5-v0 CLEAN 80±3 65±5 76±6 22±23 92±3 99±1

scene-noisy-singletask-task1-v0 NOISY 87±9 27±11 87±1 100±0 39±43 99±1

scene-noisy-singletask-task2-v0 NOISY 40±7 1±1 23±5 95±4 15±4 61±14

scene-noisy-singletask-task3-v0 NOISY 66±3 3±3 66±4 96±3 45±15 69±3

scene-noisy-singletask-task4-v0 NOISY 57±4 5±7 53±6 88±8 25±10 71±0

scene-noisy-singletask-task5-v0 NOISY 57±21 59±1 70±2 96±1 24±17 98±2

C.4 ADDITIONAL RESULTS

Normalized scores for each environment and each dataset. We present bar plots of the in-
terquantile means (IQM) (see Agarwal et al. (2021) for details) of the normalized scores for each
algorithm in each environment with the CLEAN dataset (Figure 5) and the NOISY dataset (Figure 6).
We can observe that ReFORM consistently achieves the best or comparable results in all environ-
ments with both datasets, with a constant set of hyperparameters. DSRL and FQL(M) generally
perform the second and third best in environments with the CLEAN dataset. However, their perfor-
mance drops when the NOISY dataset is used.
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Figure 7: Training curves for antmaze-large environment with the CLEAN dataset.
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Figure 8: Training curves for cube-single environment with the CLEAN dataset.
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Figure 9: Training curves for cube-double environment with the CLEAN dataset.
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Figure 10: Training curves for scene environment with the CLEAN dataset.
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Figure 11: Training curves for antmaze-large environment with the NOISY dataset.
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Figure 12: Training curves for cube-single environment with the NOISY dataset.

Full results. We present the full per-task results of all 40 tasks in Table 4. The results are averaged
over 3 seeds and 32 runs per seed. The results are bolded if the algorithm achieves at or above 95%
of the best performance following Park et al. (2025a).
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Figure 13: Training curves for cube-double environment with the NOISY dataset.
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Figure 14: Training curves for scene environment with the NOISY dataset.
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Figure 15: More training curves for ablation studies. ReFORM(U) changes both qNG and qBC

from U(Bdl ) to the standard Gaussian distribution and removes the reflection term. Gaussian(ξ)
keeps qNG = U(Bdl ) but changes qBC to the standard Gaussian distribution. Then, the radius of the
hypersphere Bdl is chosen such that the standard Gaussian distribution has probability mass ξ in Bdl .

Training curves. We present the training curves for all tasks in all environments with both the
CLEAN dataset (Figure 7-Figure 10) and the NOISY dataset (Figure 11-Figure 14). In addition, we
present training curves corresponding to Figure 4 (left) in the main pages in Figure 15.

D4RL results. We further conduct experiments in D4RL (Fu et al., 2020) antmaze and adoit envi-
ronments to test the performance of ReFORM across different benchmarks. Although the benchmark
is different, we maintain the hyperparameters of ReFORM as those in OGBench. The results (D4RL
normalized return) are shown in Table 5, and ReFORM still consistently achieves the best or compa-
rable results. DSRL is omitted in these results because its paper (Wagenmaker et al., 2025) does not
report the best hyperparameters of DSRL in these environments.

Visual manipulation results. We also conduct experiments in OGBench (Park et al., 2025a) vi-
sual manipulation environments to test the performance of ReFORMwith higher-dimensional image-
based inputs. Similarly, we maintain the hyperparameters of ReFORM. The results (return) are
shown in Table 6, and ReFORM performs the best. DSRL is omitted because its best hyperparame-
ters in these environments are not reported in Wagenmaker et al. (2025).

Visualization of the generated noise in the toy example. For the toy example presented in Sec-
tion 5.3, it is possible to visualize the generated noises directly for ReFORM and DSRL. We visual-
ize the noises in Figure 16. We observe that the generated noise with reflected flow (ReFORM) is
more concentrated while retaining two modes, while with a Gaussian distribution squashed by tanh
(DSRL), the generated noise is unimodal and spreads out a lot.

Ablations on the radius of the hypersphere Bdl . One hyperparameter introduced in ReFORM is
the radius l of the hypersphere Bdl . As discussed in Appendix C.3, we select the smallest l such
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Table 5: D4RL results. We present the following results on environments in the D4RL Fu et al.
(2020) benchmark. The results are averaged over 3 seeds and 32 runs per seed. The results are
bolded if the algorithm achieves at or above 95% of the best performance following Park et al.
(2025a).

Environment IFQL FQL(L) FQL(M) FQL(S) ReFORM

antmaze-umaze-v2 91±7 85±4 99±1 88±13 97±0

antmaze-umaze-diverse-v2 55±28 57±10 88±5 61±26 83±3

antmaze-medium-play-v2 3±4 14±6 92±1 52±15 85±4

antmaze-medium-diverse-v2 24±34 9±4 81±13 24±30 80±4

antmaze-large-play-v2 17±21 43±10 61±21 3±4 71±4

antmaze-large-diverse-v2 28±27 55±4 85±8 8±12 69±9

pen-human-v1 65±1 48±0 59±4 31±4 64±7

pen-cloned-v1 81±8 61±7 66±5 57±6 70±6

pen-expert-v1 120±3 105±7 128±1 107±10 129±7

door-human-v1 3±1 2±1 0±0 0±0 4±1

door-cloned-v1 −0±0 0±0 3±2 0±0 1±1

door-expert-v1 89±5 104±1 105±0 102±0 104±4

Table 6: Visual manipulation results. We present the following results on visual manipulation
environments in OGBench Park et al. (2025a). The results are averaged over 3 seeds and 32 runs
per seed. The results are bolded if the algorithm achieves at or above 95% of the best performance
following Park et al. (2025a).

Task Dataset IFQL FQL(L) FQL(M) FQL(S) ReFORM

visual-cube-single-play-singletask-task1-v0 CLEAN −117±7 −150±16 −110±9 −138±19 −108±12

visual-cube-single-noisy-singletask-task1-v0 NOISY −95±2 −176±10 −103±2 −57±3 −52±7

(a) Generated noise of ReFORM. (b) Generated noise of DSRL.

Figure 16: Visualization of the generated noises in the 2-dimensional toy example.
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Figure 17: Sensitivity analysis of ReFORM w.r.t. l.

Table 7: Approximate training time of ReFORM and the baselines.

Algorithm ReFORM FQL IFQL DSRL

Training time (minutes, 106 steps) 80 40 35 55

that A ⊆ Bd
l in our implementation. In OGBench environments, the action space is [−1, 1]d, so

we choose l =
√
d. To study the sensitivity of ReFORM w.r.t. l, we conduct experiments in the

cube-single environment with the NOISY dataset, and vary l in {0.25
√
d, 0.5

√
d,
√
d, 2
√
d, 4
√
d}.

The results are shown in Figure 17, which shows no significant difference among these choices.
Therefore, ReFORM is robust w.r.t. the choice of l, and empirically l can be chosen as any number
close to the scale of the action space.

Training time. We report the training time of ReFORM and all baselines in Table 7. The table
shows that ReFORM indeed doubles the training time compared to FQL due to the 2-stage flow.
However, as shown in our experiments, FQL is sensitive to hyperparameters, and searching for
optimal hyperparameters requires significantly more runs. On the contrary, ReFORM can be used
without any hyperparameter searching.

C.5 CODE

We provide code for ReFORM in our supplementary materials.

D THE USE OF LARGE LANGUAGE MODELS

This paper uses Large Language Models to correct spelling and grammar issues.
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