
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REFORM: REFLECTED FLOWS FOR ON-SUPPORT
OFFLINE RL VIA NOISE MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning (RL) aims to learn the optimal policy from a fixed
behavior policy dataset without additional environment interaction. One com-
mon challenge that arises in this setting is the out-of-distribution (OOD) error,
which occurs when the policy leaves the training distribution. Prior methods pe-
nalize a statistical distance term to keep the policy close to the behavior policy, but
this constrains policy improvement and may not completely prevent OOD actions.
Another challenge is that the optimal policy distribution can be multimodal and
difficult to represent. Recent works apply diffusion or flow policies to address this
problem, but it is unclear how to avoid OOD errors while retaining policy expres-
siveness. We propose ReFORM, an offline RL method based on flow policies that
enforces the less restrictive support constraint by construction. ReFORM learns a
BC flow policy with a bounded source distribution to capture the support of the
action distribution, then optimizes a reflected flow that generates bounded noise
for the BC flow while keeping the support, to maximize the performance. Across
40 challenging tasks from the OGBench benchmark with datasets of varying qual-
ity and using a constant set of hyperparameters for all tasks, ReFORM dominates
all baselines with hand-tuned hyperparameters on the performance profile curves.

1 INTRODUCTION

Offline reinforcement learning (RL) trains an optimal policy from a previously collected dataset
without interacting with the environment (Levine et al., 2020). This technique is especially useful in
domains where large datasets are already available and environment interactions are expensive and
potentially unsafe (Fu et al., 2020). However, there are two major challenges. First, the lack of online
exploration makes the distribution shift especially dangerous. That is, for out-of-distribution (OOD)
actions not represented in the dataset, the learnedQ-function can produce overly optimistic estimates
that lead the policy astray (Levine et al., 2020). Second, traditional policy classes are typically
represented using a unimodal distribution such as a Gaussian (Kumar et al., 2020; Tarasov et al.,
2023), whereas more complex offline datasets and tasks can require multimodal action distributions.

Prior works attempt to address the OOD issue by keeping the learned policy close to the behavior
policy by regularizing a statistical distance to the behavior policy (Wang et al., 2018; Peng et al.,
2019; Mao et al., 2023a; Kumar et al., 2019; Wu et al., 2019). However, selecting a distance mea-
surement along with an appropriate regularization weight can be difficult depending on the task and
dataset. Perhaps the most common type of statistical distance used is the Kullback–Leibler (KL)
divergence (Wang et al., 2018; Peng et al., 2019; Wu et al., 2019; Jaques et al., 2019; Siegel et al.,
2020; Nair et al., 2020; Wang et al., 2020; Kostrikov et al., 2022; Park et al., 2025b), which can
avoid the OOD issue but can also be too restrictive and produce an overly conservative policy. For
example, if the dataset has low density on the optimal behavior, the KL divergence regularization
will encourage the learned policy to be suboptimal. Similar works (Wu et al., 2019; Kumar et al.,
2019) have considered alternative statistical distances such as the Wasserstein and MMD distances
that have been shown to improve performance on certain tasks. However, these methods do not
completely prevent OOD actions, and the need to choose a regularization weight remains a problem.

To tackle the challenge of multimodal action distributions, recent works have proposed using diffu-
sion policies (Hansen-Estruch et al., 2023a) and flow policies (Park et al., 2025b) to model complex

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

action distributions in the dataset. However, it remains unclear how to address the OOD issue with
these highly expressive function classes without hurting their expressivity.

In this work, we propose Reflected Flows for On-support offline RL via noise Manipulation
(ReFORM), an offline RL method that aims to address both above issues by constraining a flow
policy using the less restrictive support constraint. Rather than regularizing the learned policy via
a statistical distance, we only require the actions produced to stay within the support of the action
distribution of the behavior policy. ReFORM learns a behavior cloning (BC) flow policy from the
dataset, and additionally learns a reflected flow (Xie et al., 2024) noise generator that manipulates
the source distribution of the BC policy within its support. This approach enables us to realize the
support constraint by construction without regularization, therefore avoiding the need to specify any
regularization weights. In other words, our method bypasses the hyperparameter sensitivity issue by
having constant hyperparameters. To summarize our contributions:

• We propose ReFORM, a two-stage flow policy that realizes the support constraint by construc-
tion and avoids the OOD issue without constraining the policy improvement.

• We propose applying reflected flow for generating constrained multimodal noise for the BC
flow policy to deal with OOD errors while maintaining the multimodal policy.

• Extensive experiments on 40 challenging tasks with datasets of different qualities demonstrate
that, with a constant set of hyperparameters, ReFORM dominates all baselines using similar
flow policy structures with the best hand-tuned hyperparameters on the performance profile
curve.

2 RELATED WORK

Distributional shift mitigation in offline RL. A fundamental challenge of dynamic programming
methods in offline RL is the OOD action problem, where the learned policy tries to exploit erroneous
Q-values from extrapolation error (Levine et al., 2020). Consequently, many offline RL methods
have proposed to constrain or penalize the statistical distance between the learned policy and the
behavior policy, either with an additional loss term or by regressing to the estimated optimal policy,
to mitigate this distribution shift issue. Examples include using the maximum mean discrepancy
(MMD) distance (Kumar et al., 2019), Wasserstein distance (Wu et al., 2019) and KL divergence
(Wang et al., 2018; Peng et al., 2019; Wu et al., 2019; Jaques et al., 2019; Siegel et al., 2020; Nair
et al., 2020; Wang et al., 2020; Kostrikov et al., 2022; Park et al., 2025b). One key challenge with
these methods is that the amount of regularization is a hyperparameter that needs to be tuned for
each task and dataset (Park et al., 2025a;b) and can significantly affect the method’s performance.
Moreover, as argued by Kumar et al. (2019), constraining the divergence can be too restrictive in
cases where optimal actions happen with very low probability under the behavior policy. Another
family of methods uses the support of the behavior policy, either by regularizing the policy (Kumar
et al., 2019; Wu et al., 2022; Mao et al., 2023a; Zhang et al., 2023), or via regularizing theQ-function
outside the support (Kumar et al., 2020; Lyu et al., 2022; Mao et al., 2023b; Cen et al., 2024). Our
work falls in the category of enforcing support constraints on the learned policy. However, instead
of approximating the support constraint by a suitably designed regularization term, our method
enforces the support constraint by construction by optimizing in the behavior policy’s (bounded)
latent space.

Fine-tuning flow-based models for offline RL. BC methods using diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) or flow matching (Lipman et al., 2023;
Liu et al., 2022; Albergo & Vanden-Eijnden, 2022) have seen increasing use in the control and
robotics communities (Chi et al., 2023; Reuss et al., 2023; Pearce et al., 2023; Wang et al., 2023).
However, since BC aims to mimic the dataset, its performance is tied to the performance of the
behavior policy. To fix this, one can consider fine-tuning the learned flow-based model to maximize
a user-supplied reward function. Following the success of fine-tuning flow-based models for image
generation (Uehara et al., 2024; Black et al., 2024; Domingo-Enrich et al., 2024), fine-tuning has
also been applied to the offline RL setting (Hansen-Estruch et al., 2023a; Chen et al., 2024; Park
et al., 2025b; Ding & Jin, 2024; Zhang et al., 2025). However, almost all fine-tuning methods for
offline RL tackle the problem of distribution shift with an additional loss term penalizing statistical
distance from the behavior policy, with the weight of this term being a sensitive hyperparameter that
needs to be tuned for each task and dataset (Park et al., 2025b).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Latent space optimization in generative modeling. Instead of fine-tuning the flow model directly,
another line of work considers optimizing the distribution in the latent space, i.e., initial noise, of the
generative model. In the context of image generation, methods that optimize the initial noise using
either regression (Li et al., 2025; Guo et al., 2024; Zhou et al., 2024; Ahn et al., 2024; Eyring et al.,
2025) or RL (Miao et al., 2025) have found success in improving the quality of generated images. In
RL, Singh et al. (2021) explored using normalizing flows (Dinh et al., 2016) to improve exploration
in online RL. Since offline RL was not the focus of their work, they do not restrict the output of
their learned latent space policy. Consequently, the policy can output unbounded and potentially
OOD samples in the latent space, which is harmful in the offline RL setting. Recently, Zhou et al.
(2021) and Wagenmaker et al. (2025) have applied this idea to offline RL for Conditional Variational
Autoencoders (Sohn et al., 2015) and diffusion policies, respectively, but they additionally restrict
the latent space policy to a fixed action magnitude. Here, the action magnitude roughly controls how
likely the latent action is under the behavior policy, playing a similar role to the statistical distance
regularization coefficient in existing offline RL works. As we will show in Section 5, the final
performance is quite sensitive to this hyperparameter, which varies on different tasks and different
datasets. In contrast, our proposed method does not have any such hyperparameters that play a
similar role, removing the need for adapting them each time the environment or dataset changes.

3 PRELIMINARIES

Offline RL. Let ∆(X) be the set of probability distributions over space X , and denote place-
holder variables with gray. A Markov Decision Process (MDP) is defined by a tuple M =
(S,A, r, ρ0, P, γ), where S is the state space, A ⊆ Rd is the d-dimensional action space, r(s, a) :
S ×A → R is the reward function, ρ0 ∈ ∆(S) is the initial state distribution, P (s′|s, a) : S ×A →
∆(S) is the transition dynamics, and γ ∈ [0, 1] is the discount factor. Given a dataset of N trajec-
tories D = {τ1, τ2, . . . , τN} generated by some behavior policy πβ(a|s) : S → ∆(A), where τi =
(s0, a0, s1, a1, . . . , sHi

, aHi
), the goal of offline RL is to find a policy πθ(a|s) : S → ∆(A) parame-

terized by θ that maximizes the expected discounted returnR(πθ) = Eτ∼ρπθ (τ)[
∑H

h=0 γ
hr(sh, ah)],

where ρπθ (τ) = ρ0(s0)πθ(a0|s0)P (s1|s0, a0) · · ·πθ(aH |sH). Note that in the offline RL setting,
sampling in the environment with policy πθ is not allowed.

OOD actions are a key challenge in offline RL (Levine et al., 2020). Many actor-critic methods learn
the policy-conditioned state-action value function (i.e., Q-function) Q(s, a) : S × A → R. For a
policy πθ, this is defined as

Qπθ (s, a) = E

[
H∑

h=0

γhr(sh, ah) | s0 = s, a0 = a, ah ∼ πθ(sh),∀h ≥ 1

]
, (1)

corresponding to the expected discounted return obtained by applying action a from state s then
following policy πθ. For parameters ϕ, Qϕ is commonly learned with fitted Q evaluation using a
SARSA-style TD error (Rummery & Niranjan, 1994)

L(ϕ) = E(s,a,s′)∼D,a′∼πθ(s′)

[(
r(s, a) + γQπθ

ϕ̂
(s′, a′)−Qπθ

ϕ (s, a)
)2

]
, (2)

where Qπθ

ϕ̂
is a target network (e.g., with soft parameters updated by polyak averaging (Polyak &

Juditsky, 1992)). However, if the policy πθ samples OOD actions a′, the target Qπθ

ϕ̂
can produce

an erroneous OOD value and cause the learned policy to incorrectly optimize for the OOD value
(Levine et al., 2020). To address this issue, many offline RL methods regularize the statistical
distance between the learned policy and the behavior policy (e.g., with the KL divergence (Peng
et al., 2019; Fujimoto & Gu, 2021; Hansen-Estruch et al., 2023b) or Wasserstein distance (Wu et al.,
2019; Park et al., 2025b)), resulting in the following objective for policy improvement:

L(θ) = Es∼D,a∼πθ(s)

[
−Qπθ

ϕ (s, a) + αD(πθ || πβ)
]
, (3)

where D(·∥·) is some statistical distance, e.g., DKL for KL divergence or DW2 for the Wasserstein
distance. However, this regularized objective introduces an additional hyperparameter α that needs
to be hand-tuned for each experiment (Park et al., 2025a;b).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Flow matching. Flow matching (Lipman et al., 2023; Liu et al., 2022; Albergo & Vanden-Eijnden,
2022) has recently become an increasingly popular way of training flow-based generative models.
Given a target distribution p(x) ∈ ∆(Rd), flow matching learns a time-dependent velocity field
v(t, x) that transforms a simple source distribution q(x) (e.g. standard Gaussian N (0, Id)) at t = 0
to the target distribution p(x) at t = 1. The resulting flow ψ(t, x) : [0, 1] × Rd → Rd, mapping
samples from the source x ∼ q to the target ψ(1, x) ∼ p, is then the solution to the ordinary
differential equation (ODE)

d

dt
ψ(t, x) = v(ψ(t, x)), ψ(0, x) = x. (4)

Flow matching is a simple yet powerful technique alternative to denoising diffusion (Ho et al., 2020),
capable of generating complex multimodal target distributions.

4 METHOD

To solve the problem of OOD actions, at any given state s, the chosen action a should be constrained
to lie within the support supp(πβ(·|s)) := {a | πβ(a|s) > 0} of the behavior policy πβ . However,
constraining common statistical distances, such as the KL divergence or the Wasserstein distance,
theoretically leads to problems from the perspective of support constraints 1. All proofs are provided
in Appendix A.

First, constraining the KL divergence is a sufficient but not necessary condition to enforce support
constraints (Kumar et al., 2019; Mao et al., 2023a). Formally, we have the following result:
Proposition 1. Given a state s ∈ S, for any ϵ such that 0 ≤ ϵ < ∞, DKL(πθ(·|s) || πβ(·|s)) ≤ ϵ
implies supp(πθ(·|s)) ⊆ supp(πβ(·|s)). On the other hand, for anyM > 0, there exist distributions
πθ and πβ such that supp(πθ(·|s)) ⊆ supp(πβ(·|s)) but DKL(πθ(·|s) || πβ(·|s)) > M .

Proposition 1 tells us that the KL divergence constraint is more restrictive than the support constraint.
This additional restriction has been found to impede the performance improvement of πθ over πβ
(Mao et al., 2023a). While this issue can be alleviated with a small α in (3), in practice, this can
result in OOD problems due to estimation errors (Levine et al., 2020).

Wasserstein distance is another statistical distance used by previous works. However, constraining
the Wasserstein distance cannot enforce support constraints despite its strong empirical performance
in offline RL (Park et al., 2025b). Formally, we have the following result:
Proposition 2. Given a state s ∈ S, suppose that supp(πβ(·|s)) ̸= A. Then, for any ϵ > 0, there
exists a policy πθ such that supp(πθ(·|s)) ̸⊆ supp(πβ(·|s)), but DW2(πθ(·|s) || πβ(·|s)) ≤ ϵ.

Motivated by the above theoretical challenges of the KL divergence and Wasserstein distance in
addressing the issue of OOD actions, we instead consider the following support-constrained policy
optimization problem to tackle this issue directly.

max
θ

R(πθ) = Eτ∼ρπθ

[
H∑

h=0

γhr(sh, ah)

]
, (5a)

s.t. supp(πθ(·|s)) ⊆ supp(πβ(·|s)), ∀s ∈ S. (5b)

Unfortunately, enforcing the support constraint (5b) is a challenging problem since (i) accurately es-
timating the supp(πβ(·|s)) (Grover et al., 2018), and (ii) enforcing supp(πθ(·|s)) ⊆ supp(πβ(·|s))
given an estimate of supp(πβ(·|s)) (Zhang et al., 2023), are both nontrivial to solve for.

To tackle these problems, we propose learning a BC flow policy ψθ1(t, z; s) that transforms a source
distribution qBC into a state-conditioned target distribution pBC(a|s) ≈ πβ(a|s). In particular, we
use a qBC with bounded support such that supp(πβ) can be approximated by the image of supp(qBC)
under the BC flow. One benefit of this approach is that this enables learning a policy that satisfies
the support constraints by construction by taking advantage of the property that for any sample z ∈
supp(qBC) within the (bounded) source distribution’s support, ψθ1(1, z; s) ∈ supp(pBC(·|s)) ≈

1by interpreting the constant as a Lagrange multiplier, regularization with a fixed coefficient as in (3) can
be interpreted as equivalently enforcing a constraint (Levine et al., 2020)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Noise generator
flow 𝜓𝜃2

BC flow policy
𝜓𝜃1

BC flow original
source 𝑞BC

BC flow original
target 𝑝BC

BC flow manipulated
target ෤𝑝BC

BC flow manipulated
source ෤𝑞BC

𝑄-value

Samples ~𝒟

Match

Maximize

𝒰 ℬ𝑙
𝑑

BC

ReFORM

One-step
policy 𝜇෡𝜃1

Distill

Figure 1: ReFORM algorithm. The process with gray arrows indicates the BC flow policy, learned
to transform a simple source distribution qBC = U(Bd

l) to a target distribution pBC that matches the
dataset D. The blue arrows indicate the ReFORM process, where we learn a flow noise generator to
generate a manipulated source distribution q̃BC for the BC policy so that the manipulated target p̃BC

maximizes the Q value while staying inside the support (denoted in red) of the BC policy.

supp(πβ(·|s)). Hence, we propose to construct the policy πθ as the composition of some noise
generator with the BC flow ψθ1 . If the generated noise distribution q̃BC has the same support as
qBC, i.e.,

supp(q̃BC) ⊆ supp(qBC) (6)
then the pushforward of q̃BC under ψθ1 naturally satisfies the support constraints (5b). With the
support constraint (5b) satisfied by construction, solving the support-constrained policy optimization
problem (5) reduces to performing unconstrained optimization of the objective (5a).
Remark 1. This idea of outputting noise is not new. Prior works have proposed similar “noise
manipulation/steering” techniques for fine-tuning diffusion models and flow models (Li et al., 2025;
Guo et al., 2024; Miao et al., 2025; Wagenmaker et al., 2025). One key difference is that we choose
the source distribution of the flow model to be a distribution with bounded support, which enables
better approximation of the support of πβ . Moreover, we propose a different form of the noise
generator q̃BC than prior works that maintains the high expressivity of flow-based policies.

We call our method ReFORM, which we summarize in Figure 1. In the following subsections, we
elaborate on each of these components in detail.

4.1 FLOW-BASED BEHAVIOR POLICY LEARNING

ReFORM begins by learning a BC flow policy that transforms the source distribution qBC to pBC(·|s),
which approximates πβ(·|s). We choose qBC = U(Bdl), the uniform distribution over the d-
dimensional hypersphere with radius l, so that

supp(qBC) = Bdl := {z ∈ Rd | ∥z∥ ≤ l}. (7)

We discuss the choice of l in Appendix C.4. To learn the BC flow policy ψθ1 , we learn its corre-
sponding velocity field vθ1(t, z; s) : [0, 1] × Bdl × S → Rd parameterized by θ1 such that solving
the ODE (4) gives actions a = ψθ1(1, z; s) for z ∼ qBC. We apply a simple linear flow for learning
the velocity field following Park et al. (2025b) with loss

LBC(θ1) = E(s,a)∼D,z∼U(Bd
l),t∼U [0,1]

[∥∥vθ1(t, xt; s)− (a− z)
∥∥2] , (8)

where xt = (1− t)z + ta is the linear conditional probability path.

4.2 REFLECTED FLOW-BASED NOISE MANIPULATION

A key component in enforcing the support constraints as proposed above is the use of a noise gener-
ator with the same support as the BC flow-policy’s source distribution qBC. Prior works that apply

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

similar “noise manipulation” or “noise steering” techniques implement the generated noise q̃BC as a
truncated Gaussian (e.g., by clipping or squashing with tanh). However, the use of a unimodal q̃BC

severely limits the expressiveness of q̃BC and thus also that of the resulting learned policy πθ.

One way to improve the expressiveness is by replacing the Gaussian distribution with a flow-based
generative model, as has been done with the actions. We propose to do the same, but to the noise
instead. Specifically, we choose to use a flow noise generator ψθ2(t, w; s) : [0, 1] × Bd

l × S → Bd
l

and denote its associated velocity field as vθ2(t, w; s) : [0, 1]×Bd
l ×S → Rd. However, the support

of a flow-based generative model is generally unconstrained, which violates our requirement on the
support of q̃BC (6). To resolve this, we propose to use a reflected flow (Xie et al., 2024), which
can be used to guarantee that samples from ψθ2 are contained within supp(qBC) by considering the
following reflected ODE (Xie et al., 2024) instead of (4):

dψθ2(t, w; s) = vθ2(t, ψθ2(t, w; s); s)dt+ dLt, ψθ2(0, w; s) = w, (9)

where the reflection term dLt compensates the outward velocity at ∂ supp(qBC) by pushing the
motion back to supp(qBC) (Xie et al., 2024).

For convenience, let µθ1(z; s) = ψθ1(1, z; s) and µθ2(w; s) = ψθ2(1, w; s), and let µθ(w; s) =
µθ1(µθ2(w; s); s) denote their composition. We optimize the noise generator ψθ2 to maximize the
expected Q-value of the learned policy µθ with the following loss

LNG(θ2) = Es∼D,w∼U(Bd
l)

[
−Qµθ (s, µθ1(µθ2(w; s); s))

]
, (10)

noting that the parameters of the BC policy θ1 stay fixed when optimizing θ2.

We have yet to specify the reflection term dLt in (9), as many choices of dLt constrain the ODE
to remain within supp(qBC). In particular, we wish for the reflection term dLt to be robust to
numerical integration. Fortunately, supp(pBC) = Bdl being a hypersphere (7) simplifies this design.
Consider solving the normal ODE (4) using the popular Euler method:

zk+1 = zk + vθ2(k∆t, w; s)∆t, k ∈ {0, . . . , N − 1}, ψθ2(1, w; s)← zN , (11)

where N is the number of integration steps, ∆t = 1
N , and z0 = w. For the reflected case (9), we

propose modifying the Euler method (11) by performing a projection back into the hypersphere after
every Euler step. This gives us the following reflected Euler method

zk+1 = 1{ẑk+1 ∈ Bdl }ẑk+1 + (1− 1{ẑk+1 ∈ Bdl }) (ẑk+1 − ⟨vθ2(k∆t, w; s)∆t, nk+1⟩nk+1) ,
(12)

where ẑk+1 = zk + vθ2(k∆t, w; s)∆t follows the original Euler step, nk = ẑk
∥ẑk∥ , and ⟨·, ·⟩ is the

inner product. We then propose to choose dLt that is defined implicitly by the above procedure.
Note that (12) has the same complexity as (11), because (12) only contains one step projection.

For this to be a valid reflected flow, samples z from the proposed reflected Euler method (12) should
satisfy the desired support constraints z ∈ supp(qBC) = Bdl , which we formally state below.

Theorem 1. The target distribution of the noise generator stays within the support of the original
source distribution of the BC policy, i.e., supp(q̃BC) ⊆ supp(qBC).

Combining Theorem 1 with the ideas from above then allows us to formally prove that the resulting
action distribution stays within the support supp(pBC) and hence does not result in OOD actions:

Theorem 2. The manipulated target distribution p̃BC of the BC flow policy remains within the
support of the original BC policy, i.e., supp(p̃BC) ⊆ supp(pBC).

Theorem 2 guarantees that the learned policy provably avoids OOD actions without any regulariza-
tion terms. This avoids the need for costly hyperparameter tuning for each environment and dataset,
and also does not impede the potential improvement of the learned policy.

4.3 POLICY DISTILLATION

One drawback of our proposed method is that computing the gradient of the actor loss ∇θLNG

(10) requires computing the gradient ∇zµθ1 , which involves a long backpropagation through time
(BPTT) chain since µθ1 is evaluated with Euler integration. To reduce the computational burden, we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

follow Park et al. (2025b) and distill (Salimans & Ho, 2022; Geng et al., 2023; 2025) the learned BC
flow policy by learning a one-step policy µ̂θ̂1

(z; s) : Bdl ×S → A parameterized by θ̂1 that directly
maps the latent variable z to the action a with the following distillation loss:

LDistill(θ̂1) = Es∼D,z∼U(Bd
l)

[
∥µθ̂1

(z; s)− µθ1(z; s)∥2
]
. (13)

5 EXPERIMENTS

In this section, we conduct experiments to answer the following research questions. Additional
details for our implementation, environments, and algorithm hyperparameters, and full results with
more ablations are provided in Appendix C.

(Q1): How does ReFORM perform compared to other offline RL algorithms with flow policies?
(Q2): Does ReFORM avoid the OOD issue without limiting the performance improvement?
(Q3): Is it necessary for the BC policy’s source distribution to have bounded support?
(Q4): Is the reflected flow necessary for generating the targeted noise?
(Q5): How is our design of the reflection term?
(Q6): Is the distillation of the BC flow policy necessary?

5.1 SETUP

Environments. We evaluate ReFORM and the baselines on 40 tasks from the OGBench offline
RL benchmark (Park et al., 2025a) designed in 4 environments, including locomotion tasks and
manipulation tasks. We use two kinds of datasets, CLEAN and NOISY. The CLEAN dataset consists
of random environment trajectories generated by an expert policy. The NOISY dataset consists of
random trajectories generated by a highly suboptimal and noisy policy.

Baselines. We compare ReFORM with the state-of-the-art offline RL algorithms with flow policies,
including Flow Q-Learning (FQL) (Park et al., 2025b), Implicit Flow Q-Learning (IFQL) (Park
et al., 2025b), and Diffusion Steering via RL (DSRL) (Wagenmaker et al., 2025). Since FQL’s
performance highly depends on the α hyperparameter (Eq. (3)), we consider three variants of FQL:
FQL(M) uses the α∗ that is hand-tuned for each environment using the CLEAN dataset by Park
et al. (2025b), FQL(S) uses α = α∗/10, and FQL(L) uses α = 10 · α∗. IFQL is the flow
version of IDQL (Hansen-Estruch et al., 2023b) implemented in Park et al. (2025b). For DSRL, we
use the hand-tuned noise bound by Wagenmaker et al. (2025). Note that ReFORM uses the same
hyperparameters across all tasks.

Evaluation Metrics. We run each algorithm with 3 different seeds for each task and evaluate each
converged model on 32 different initial conditions. We define the normalized score for each task as
the return normalized by the minimum and maximum returns across all algorithms.

5.2 MAIN RESULTS

(Q1): ReFORM achieves the best overall performance with a constant set of hyperparame-
ters. As recommended by Agarwal et al. (2021), we plot the performance profile over all tasks
with different datasets in Figure 2. It is clear that ReFORM achieves the best performance for both
the CLEAN and NOISY datasets. For the CLEAN dataset, DSRL and FQL(M) achieve the second
and third best respective performance because their hyperparameters are specifically hand-tuned for
these environments. However, for the NOISY dataset, the performance of both DSRL and FQL(M)
drops significantly, whereas FQL(S) becomes the second-best method behind ReFORM. This high-
lights the hyperparameter sensitivity of the baseline methods. Moreover, we observe that when the
behavior policy performs poorly (i.e., on NOISY), a stronger density-based regularization impedes
the ability of the learned policy to improve (see FQL(L)).

Importantly, ReFORM achieves the highest fraction on normalized scores close to 1, indicating that
ReFORM does not limit the improvement of the learned policy as discussed in Section 4. The use of
a support constraint allows the learned policy to apply any action with the support, including ones
that have low density under the behavior policy πβ Therefore, the learned policy does not suffer
from a performance upper bound related to the behavior policy.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00

F
r
a
c
t
i
o
n

o
f

t
a
s
k
s

w
i
t
h

s
c
o
r
e
≥
τ

Dataset: Clean

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score (τ)

Dataset: Noisy

ReFORM

DSRL

FQL(S)

FQL(M)

FQL(L)

IFQL

Figure 2: Performance profile over CLEAN and NOISY datasets. For a given normalized score
τ (x-axis), the performance profile shows the probability that a given method achieves a score ≥ τ
(see Agarwal et al. (2021) for details). On the CLEAN dataset, ReFORM achieves greater scores with
higher probabilities than all other baselines. The same is true on the NOISY dataset except for a
small set of normalized scores around 0.9 where ReFORM and FQL(S) have similar probabilities
within the statistical margins.

(a) BC. (b) DSRL. (c) IFQL. (d) FQL(S). (e) FQL(M). (f) FQL(L). (g) ReFORM2.

Figure 3: Learned policy distributions with the toy example. The Q-value reaches the maximum
at the lower left and upper right corners. The red boundaries denote the estimated supp(πBC)

3.

5.3 ABLATION STUDIES

To study the functionality of each component of ReFORM, we conduct the following experiments in
a toy environment and the cube-single environment with the NOISY dataset to answer Q2-Q5. All
details can be found in Appendix C.3.3.

(Q2): ReFORM maximizes the performance while avoiding OOD. We design a toy example to
better visualize and compare the learned policies. The toy example has a 2-dimensional action space
with a Q-value that grows when approaching the lower left and the upper right corners (see Q-value
plot in Figure 1). We plot the policy distributions of BC and all algorithms in Figure 3. ReFORM
maximizes performance by reaching both corners while staying within the support of the BC policy.
DSRL collapses to a single mode in the upper right corner and remains far from the boundaries of the
support because the generated noise of DSRL is unimodal and squashed. We compare the generated
noise in more detail in Appendix C.4, Figure 16. IFQL remains similar to the BC policy because
importance sampling is less efficient for finding the maximum. FQL faces OOD error due to its use
of Wasserstein distance regularization (as discussed in Proposition 2).

(Q3): Having bounded support for the BC flow policy’s source distribution is crucial. We
investigate the effect of satisfying support constraints (and hence the necessity of using a source
distribution with bounded support) by using a Gaussian N (0, Id) with unbounded support as the
source distribution for both the BC flow policy and the flow noise generator following Wagenmaker
et al. (2025) (ReFORM(U)). Figure 4 shows that ReFORM(U) suffers from severe OOD problems
and does not learn anything. This confirms that the ability of ReFORM to satisfy support constraints
using a source distribution with bounded support is crucial to good performance.

We next change the source distribution of the flow noise generator of ReFORM(U) back to U(Bdl)
while keeping qBC = N (0, Id) for the BC flow policy. We also add the reflection term back to
the noise generator. We change l so that Bdl is the ξ-confidence level of qBC. We vary ξ within

2This plotted support slightly differs because qBC = U(Bd
l) for ReFORM, but qBC = N (0, Id) for others.

3The support estimation has some numerical errors, so a few samples of BC/IFQL can be outside.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0
Normalized Score

Gaussian(0.9)

Gaussian(0.7)

Gaussian(0.5)

Gaussian(0.3)

Gaussian(0.1)

ReFORM(U)

ReFORM

0.0 0.2 0.4 0.6 0.8 1.0
Steps ×106

–200

–150

–100

–50

R
e
w
a
r
d

ReFORM
ReFORM(tanh)
ReFORM(MLP)

ReFORM(Cube)
ReFORM(Sphere)

ReFORM(NoDistill)
ReFORM(Gaussian)

Figure 4: Ablations. Left: normalized scores of ReFORM and its variants with different source
distributions. Right: training curves of ReFORM and its variants by changing its components.

{0.1, 0.3, 0.5, 0.7, 0.9} (Gaussian(ξ)). These baselines are highly sensitive to the choice of ξ,
whereas ReFORM both avoids this additional hand-tuned hyperparameter ξ and achieves better per-
formance than the best performing Gaussian(ξ) (Figure 4).

(Q4): The reflected flow improves the quality of the generated noise. We consider replacing
the reflected flow with two three different generative models that also generate noise within the
hypersphere Bdl : a MLP noise generator (ReFORM(MLP)), and a “squashed flow” that applies a
tanh at the end (ReFORM(tanh)), and a squashed Gaussian (ReFORM(Gaussian)) similar to
DSRL. Both All baselines perform worse than ReFORM (Figure 4): the MLP and the Gaussian fails
to capture multimodal distributions, while tanh squashing suffers from gradient vanishing.

(Q5): Our design of the reflection term works the best within our considered choices. We con-
sider two other options for the reflection term. First, ReFORM(Cube) replaces our hypersphere-
shaped domain Bdl with a hypercube-shaped domain, while still applying the reflection term as
introduced in Xie et al. (2024). Second, ReFORM(Sphere) shares our hypersphere-shaped do-
main, but instead of compensating the outbound velocity, it reflects the outbound velocity back
inbound once the sample hits ∂Bdl . Figure 4 shows that these two variants cannot perform similarly
to ReFORM. We hypothesize that compensating for the outbound velocities makes the training pro-
cess more stable than reflecting the outbound velocities. We leave finding theoretical explanations
of this phenomenon to future work.

(Q6): Removing the BC flow policy distillation slightly degrades the performance of ReFORM.
We compare ReFORM with its variant ReFORM(NoDistill) by removing the distillation of the
BC flow policy. Figure 4 shows that ReFORM(NoDistill)’s performance decreases slightly
compared with ReFORM. This suggests that a longer backpropagation chain can be harmful, which
matches the observation in Park et al. (2025b).

6 CONCLUSION

We propose ReFORM for realizing the support constraint with flow policies in offline RL. ReFORM
simultaneously learns a BC flow policy that transforms a bounded uniform distribution in a hyper-
sphere to the complex action distribution that matches the behavior policy, and a flow noise gener-
ator that transforms a bounded uniform distribution to a complex noise distribution being fed into
the BC policy. With reflected flow on the noise generator, the noise generator is capable of gener-
ating complex multimodal noise while staying within the domain of the prior distribution of the BC
policy. Therefore, ReFORM avoids the OOD issues by construction, putting no further constraints
limiting the performance of the learned policy, and learns a complex multimodal policy. Our ex-
tensive experiments on 40 challenging tasks with the OGBench offline RL benchmark suggest that
ReFORM achieves the best performance with only a single set of hyperparameters, eliminating the
costly fine-tuning process of most offline RL methods. The reflected flow noise generator can also
be potentially combined with other generative-model-based policies, including diffusion policies.

Limitations. We identify several promising avenues for future work. Although our distillation
step avoids BPTT through the BC flow, training the noise generator still relies on BPTT, which
can be computationally intensive for deep models. This process can be potentially improved with
shortcut models (Espinosa-Dice et al., 2025), or by applying a pre-trained BC model and latent

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

space RL (Wagenmaker et al., 2025). Furthermore, our method ensures that the policy πθ remains
within the support of the BC policy, meaning that it inherits any potential OOD errors made by the
BC model itself; integrating behavior cloning methods with stricter support constraints, diagnosing
when the BC model generates OOD errors, or applying a pre-trained BC model could mitigate
this dependence. Moreover, the design of the reflection term is a nascent area, and exploring more
adaptive or even learned reflection terms presents an exciting direction for developing more powerful
policy improvement methods. In addition, ReFORM applies the simplest value function learning
method and actor-critic structure similar to Park et al. (2025b), which can be potentially improved
by other methods (Mao et al., 2023b; Garg et al., 2023; Liu et al., 2024; Agrawalla et al., 2025).
Finally, ReFORM learns slower than algorithms imposing statistical distance regularization when
the dataset contains expert policies due to the lack of any explicit regularization to keep the learned
policy close to the expert policy.

7 REPRODUCIBILITY STATEMENT

For better reproducibility, we provide all the proofs of theoretical results in Appendix A, and im-
plementation details, including all hyperparameters in each environment of all algorithms in Ap-
pendix C.3. The benchmark we use is open-source and published in Park et al. (2025a). We also
included the source code of our algorithm in the supplementary materials.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural informa-
tion processing systems, 34:29304–29320, 2021.

Bhavya Agrawalla, Michal Nauman, Khush Agrawal, and Aviral Kumar. floq: Training critics via
flow-matching for scaling compute in value-based rl. arXiv preprint arXiv:2509.06863, 2025.

Donghoon Ahn, Jiwon Kang, Sanghyun Lee, Jaewon Min, Minjae Kim, Wooseok Jang, Hyoungwon
Cho, Sayak Paul, SeonHwa Kim, Eunju Cha, et al. A noise is worth diffusion guidance. arXiv
preprint arXiv:2412.03895, 2024.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571, 2022.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In International Conference on Machine Learning, pp. 1577–1594. PMLR,
2023.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=YCWjhGrJFD.

Zhepeng Cen, Zuxin Liu, Zitong Wang, Yihang Yao, Henry Lam, and Ding Zhao. Learning from
sparse offline datasets via conservative density estimation. In The Twelfth International Confer-
ence on Learning Representations, 2024.

Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimiza-
tion through diffusion behavior. In The Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/forum?id=xCRr9DrolJ.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
learning. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=v8jdwkUNXb.

10

https://openreview.net/forum?id=YCWjhGrJFD
https://openreview.net/forum?id=xCRr9DrolJ
https://openreview.net/forum?id=v8jdwkUNXb

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky TQ Chen. Adjoint matching:
Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control.
arXiv preprint arXiv:2409.08861, 2024.

Nicolas Espinosa-Dice, Yiyi Zhang, Yiding Chen, Bradley Guo, Owen Oertell, Gokul Swamy,
Kianté Brantley, and Wen Sun. Scaling offline RL via efficient and expressive shortcut mod-
els. In The Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025.
URL https://openreview.net/forum?id=uVarpp7fhU.

Luca Eyring, Shyamgopal Karthik, Alexey Dosovitskiy, Nataniel Ruiz, and Zeynep Akata.
Noise hypernetworks: Amortizing test-time compute in diffusion models. arXiv preprint
arXiv:2508.09968, 2025.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl
without entropy. In International Conference on Learning Representations, 2023.

Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep equi-
librium models. Advances in Neural Information Processing Systems, 36:41914–41931, 2023.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-gan: Combining maximum likelihood and
adversarial learning in generative models. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Xiefan Guo, Jinlin Liu, Miaomiao Cui, Jiankai Li, Hongyu Yang, and Di Huang. Initno: Boosting
text-to-image diffusion models via initial noise optimization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9380–9389, 2024.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023a.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies, 2023b.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

11

https://openreview.net/forum?id=uVarpp7fhU
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179–1191, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Zeming Li, Xiangyue Liu, Xiangyu Zhang, Ping Tan, and Heung-Yeung Shum. Noisear: Autore-
gressing initial noise prior for diffusion models. arXiv preprint arXiv:2506.01337, 2025.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Tenglong Liu, Yang Li, Yixing Lan, Hao Gao, Wei Pan, and Xin Xu. Adaptive advantage-guided
policy regularization for offline reinforcement learning. In International Conference on Machine
Learning, pp. 31406–31424. PMLR, 2024.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
reinforcement learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), Advances in Neural Information Processing Systems, 2022.

Yixiu Mao, Hongchang Zhang, Chen Chen, Yi Xu, and Xiangyang Ji. Supported trust region opti-
mization for offline reinforcement learning. In International Conference on Machine Learning,
pp. 23829–23851. PMLR, 2023a.

Yixiu Mao, Hongchang Zhang, Chen Chen, Yi Xu, and Xiangyang Ji. Supported value regulariza-
tion for offline reinforcement learning. Advances in Neural Information Processing Systems, 36:
40587–40609, 2023b.

Yanting Miao, William Loh, Pacal Poupart, and Suraj Kothawade. A minimalist method for fine-
tuning text-to-image diffusion models. arXiv preprint arXiv:2506.12036, 2025.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Miłoś, and Marek Cygan. Big-
ger, regularized, optimistic: scaling for compute and sample efficient continuous control. Ad-
vances in neural information processing systems, 37:113038–113071, 2024.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. In International Conference on Learning Representations (ICLR),
2025a.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. In International Conference on
Machine Learning (ICML), 2025b.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu, Ser-
gio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating human
behaviour with diffusion models. arXiv preprint arXiv:2301.10677, 2023.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 30(4):838–855, 1992.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal conditioned imitation
learning using score-based diffusion policies. In Robotics: Science and Systems, 2023.

Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems, vol-
ume 37. University of Cambridge, Department of Engineering Cambridge, UK, 1994.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=TIdIXIpzhoI.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing
what worked: Behavioral modelling priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine.
Parrot: Data-driven behavioral priors for reinforcement learning. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
Ysuv-WOFeKR.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, 28, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
minimalist approach to offline reinforcement learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning of continuous-
time diffusion models as entropy-regularized control. arXiv preprint arXiv:2402.15194, 2024.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Andrew Wagenmaker, Mitsuhiko Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub,
Anusha Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with
latent space reinforcement learning. arXiv preprint arXiv:2506.15799, 2025.

Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted imitation
learning for batched historical data. Advances in Neural Information Processing Systems, 31,
2018.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=AHvFDPi-FA.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33:7768–7778, 2020.

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy opti-
mization for offline reinforcement learning. Advances in Neural Information Processing Systems,
35:31278–31291, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

13

https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=Ysuv-WOFeKR
https://openreview.net/forum?id=Ysuv-WOFeKR
https://openreview.net/forum?id=AHvFDPi-FA

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Tianyu Xie, Yu Zhu, Longlin Yu, Tong Yang, Ziheng Cheng, Shiyue Zhang, Xiangyu Zhang, and
Cheng Zhang. Reflected flow matching. In Proceedings of the 41st International Conference on
Machine Learning, pp. 54614–54634, 2024.

Jing Zhang, Chi Zhang, Wenjia Wang, and Bingyi Jing. Constrained policy optimization with ex-
plicit behavior density for offline reinforcement learning. Advances in Neural Information Pro-
cessing Systems, 36:5616–5630, 2023.

Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline rein-
forcement learning. In Proceedings of the International Conference on Learning Representations
(ICLR 2025), 2025.

Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline reinforce-
ment learning. In Conference on Robot Learning, pp. 1719–1735. PMLR, 2021.

Zikai Zhou, Shitong Shao, Lichen Bai, Shufei Zhang, Zhiqiang Xu, Bo Han, and Zeke Xie. Golden
noise for diffusion models: A learning framework. arXiv preprint arXiv:2411.09502, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A PROOFS

A.1 PROOF OF PROPOSITION 1

Proof. We first prove the first statement. We prove this by contradiction. Suppose supp(πθ(·|s)) ̸⊆
supp(πβ(·|s)). Then, there exists a region B = {a ∈ A | πθ(a|s) > 0, πβ(a|s) = 0} with a
non-zero measure. By the definition of the KL divergence, we have

DKL(πθ(·|s) || πβ(·|s)) =
∫
a∈B

πθ(a|s) log
πθ(a|s)
πβ(a|s)

da+

∫
a∈A\B

πθ(a|s) log
πθ(a|s)
πβ(a|s)

da,

(14)
where the first term is ∞ and the second term is finite. Therefore, we have DKL(πθ(·|s) ||
πβ(·|s)) =∞, which contradicts the condition that DKL(πθ(·|s) || πβ(·|s)) ≤ ϵ <∞.

We then prove the second statement. Consider πθ(·|s) = N (µ, 1) and πβ(·|s) = N (0, 1). We have
supp(πθ(·|s)) ⊆ supp(πβ(·|s)). The KL divergence between them is

DKL(πθ(·|s) || πβ(·|s)) =
µ2

2
. (15)

Therefore, for any M > 0, we can choose µ >
√
2M so that DKL(πθ(·|s) || πβ(·|s)) > M .

A.2 PROOF OF PROPOSITION 2

Proof. For simplicity, consider a given state s ∈ S. We define pβ(·) = πβ(·|s) and pθ(·) = πθ(·|s).
We prove by construction. We consider the optimal transport problem. First, we define a source
region within the support of pβ . Consider a small ballB1 ∈ supp(pβ) centered at a1. The probability
mass in the ball is δ =

∫
B1
pβ(a)da. Second, we define a target region. Consider another small ball

B2 ̸⊂ supp(pβ) centered at a2 with the same radius as B1. Let the distance between the two balls
be d = ∥a1 − a2∥. We define the new probability pθ such that

pθ(a) =


pβ(a), if a /∈ B1 and a /∈ B2,
0, if a ∈ B1,
pβ(a− a2 + a1), if a ∈ B2,

(16)

Then, we have supp(pθ) ̸⊆ supp(pβ). We make d ≤
√

ϵ2

δ by choosing the source region B1 close
to the boundary of supp(pβ) and the target region B2 close to B1. Then, we have

DW2(pθ || pβ)2 ≤
∫
a∈B1

∥d∥2pβ(a)da = d2
∫
a∈B1

pβ(a)da = d2δ ≤ ϵ2. (17)

Therefore, we have DW2(pθ || pβ) ≤ ϵ.

A.3 PROOF OF THEOREM 1

Proof. Remember that the source distribution of the BC flow policy is qBC = U(Bdl). We prove the
theorem by showing that zk ∈ U(Bdl) for all k ∈ {0, 1, . . . , N − 1}, which implies that z ∈ Bd

l , for
all z ∼ q̃BC. We prove this by induction.

First, we have z0 = w ∈ Bl
d because w ∼ U(Bdl). Next, we assume that zk ∈ U(Bdl). Then, we

have the following two cases:

Case 1: ∥ẑk+1∥ ≤ l. Following Eq. (12), we have zk+1 = ẑk+1 ∈ Bdl .

Case 2: ∥ẑk+1∥ > l. Following Eq. (12), we have

zk+1 = ẑk+1 − ⟨vθ2(k∆t, w; s)∆t, nk+1⟩nk+1

= (∥ẑk+1∥ − ⟨vθ2(k∆t, w; s)∆t, nk+1⟩) nk+1.
(18)

In addition, we have

⟨vθ2(k∆t, w; s)∆t, nk+1⟩ = ⟨ẑk+1 − zk, nk+1⟩ = ∥ẑk+1∥ − ⟨zk, nk+1⟩. (19)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Plugging this into the previous equation, we get,

zk+1 = ⟨zk, nk+1⟩nk+1. (20)

Hence, we get,
∥zk+1∥ = |⟨zk, nk+1⟩| ≤ ∥zk∥ ≤ l (21)

Thus our reflection ensures zk+1 ∈ Bld, ∀k. Therefore, we have z = zN ∈ Bdl , for all z ∼ q̃BC. As
a result, supp(q̃BC) ⊆ supp(qBC).

A.4 PROOF OF THEOREM 2

Proof. Let z̃ ∼ q̃BC be a sample from q̃BC. We have z̃ ∈ supp(q̃BC). Following Theorem 1, we
have supp(q̃BC) ⊆ supp(qBC). Therefore, we have z̃ ∈ supp(qBC). Now consider the original
target distribution pBC. Its support is the set of all points generated by applying the flow ψθ1 to all
points in the support of qBC, i.e.,

supp(pBC) = {ψθ1(1, z; s) | z ∈ supp(qBC)}. (22)

Since we have z̃ ∈ supp(qBC), then by definition, we have ψθ1(1, z̃; s) ∈ supp(pBC). This is true
for all z̃ ∼ q̃BC. Therefore, by the definition of the support of p̃BC, i.e.,

supp(p̃BC) = {ψθ1(1, z̃; s) | z̃ ∈ supp(q̃BC)}, (23)

we have supp(p̃BC) ⊆ supp(pBC).

B ALGORITHM DETAILS

We provide the step-by-step explanation of ReFORM in Algorithm 1, where RF(v, s, w,N) means
solving the reflected ODE (9) following the projected Euler step (12) with the velocity field v, state
s, sample from the source distribution w, and number of Euler steps N .

C EXPERIMENTS

C.1 COMPUTATION RESOURCES

The experiments are run on a 13th Gen Intel(R) Core(TM) i7-13700KF CPU with 64GB RAM and
an NVIDIA GeForce RTX 4090 GPU. The training time is around 80 minutes for 106 steps for
ReFORM.

C.2 ENVIRONMENTS

We conduct experiments on the recently published OGBench benchmark (Park et al., 2025a). We
use 4 environments (1 locomotion environment and 3 manipulation environments), 5 tasks in each
environment, with 2 different datasets, for a total 40 tasks. Since OGBench was originally designed
for offline goal-conditioned RL, we use the single-task variants ("-singletask") for OGBench tasks
to benchmark standard reward-maximizing offline RL. The reward functions in OGBench are semi-
sparse. For the locomotion task, the reward functions are always −1 for not reaching the goal and
0 for reaching the goal. Manipulation tasks usually contain several subtasks, and the rewards are
bounded by −ntask and 0, where ntask is the number of subtasks. All episodes end when the agent
achieves the goal.

In our experiments, we consider the following tasks with the CLEAN dataset, where the demonstra-
tions are randomly generated by an expert policy:

• antmaze-large-navigate-singletask-task{1,2,3,4,5}-v0
• cube-single-play-singletask-task{1,2,3,4,5}-v0
• cube-double-play-singletask-task{1,2,3,4,5}-v0
• scene-play-singletask-task{1,2,3,4,5}-v0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 ReFORM Algorithm

1: Input: Offline dataset D; total Euler number of steps N , radius l
2: Networks: Critic Qϕ(s, a); BC flow field vθ1(t, z; s); noise flow field vθ2(t, w; s); one-step BC

flow policy µθ̂1
(z; s).

3: while not converged do
4: Sample batch {(s, a, r, s′)} ∼ D
5:
6: ▷ Critic update
7: w ∼ U(Bdl)
8: z ← RF(vθ2 , s

′, w,N)
9: a′ ← µθ̂1

(z; s′)

10: Update ϕ to minimize E
[
(r + γQϕ̂(s

′, a′)−Qϕ(s, a))
2)
]

11:
12: ▷ Train vector field vθ1 in the BC flow policy µθ1
13: z ∼ U(Bdl)
14: x1 ← a
15: t ∼ U [0, 1]
16: xt ← (1− t) z + t x1
17: Update θ1 to minimize E

[
∥vθ1(t, xt; s)− (x1 − z)∥2

]
18:
19: ▷ Train one-step policy µθ̂1

20: z ∼ U(Bdl)
21: aµ1 ← µθ̂1

(z; s)

22: Update θ̂1 to minimize E
[
∥aµ1 − µθ1(z; s)∥2

]
23:
24: ▷ Train vector field vθ2 in the flow noise generator µθ2
25: w ∼ U(Bdl)
26: z ← RF(vθ2 , s, w,N)
27: aµ2 ← µθ1(z; s)
28: Update θ2 to minimize E [−Qϕ(s, a

µ2)]

We also consider the NOISY dataset, where the demonstrations are randomly generated by a highly
suboptimal and noisy policy:

• antmaze-large-explore-singletask-task{1,2,3,4,5}-v0
• cube-single-noisy-singletask-task{1,2,3,4,5}-v0
• cube-double-noisy-singletask-task{1,2,3,4,5}-v0
• scene-noisy-singletask-task{1,2,3,4,5}-v0

More details about the environment and videos of the demonstrations can be found in the OGBench
paper (Park et al., 2025a).

C.3 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

C.3.1 DETAILS OF REFORM

Flow policies. We parameterize the velocity fields of the BC flow policy vθ1 and the flow noise
generator vθ2 with MLPs. We use the Euler method to solve ODE (4) for the BC flow policy, and
the projected Euler step (12) to solve the reflected ODE (9) for the flow noise generator. 10 Euler
steps are used for both Euler integration for all environments.

Q-functions. Following the standard implementation of Q-functions in RL, we train two Q func-
tions to improve stability. Two aggregation methods are used to aggregate the two Q-values for
different environments following Park et al. (2025b). For most environments, we take the mean of

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 1: Training steps for all algorithms for each task.

Task Dataset Training step

antmaze-large-navigate-singletask-task{1,2,3,4,5}-v0 CLEAN 1× 107

antmaze-large-explore-singletask-task{1,2,3,4,5}-v0 NOISY 8× 106

cube-single-play-singletask-task{1,2,3,4,5}-v0 CLEAN 2× 106

cube-single-noisy-singletask-task{1,2,3,4,5}-v0 NOISY 3× 106

cube-double-play-singletask-task{1,2,3,4,5}-v0 CLEAN 2× 106

cube-double-noisy-singletask-task{1,2,3,4,5}-v0 NOISY 1× 106

scene-play-singletask-task1-v0 CLEAN 2× 106

scene-play-singletask-task{2,3,4,5}-v0 CLEAN 3× 106

scene-noisy-singletask-task{1,2}-v0 NOISY 1× 106

scene-noisy-singletask-task{3,4,5}-v0 NOISY 2× 106

Table 2: Common hyperparameters for all algorithms.

Hyperparameter Value

Learning rate 0.0003
Optimizer Adam (Kingma & Ba, 2015)
Maximum gradient norm 10
Target network smoothing coefficient 0.005
Discount factor γ 0.995
MLP dimensions [512, 512, 512, 512]
Nonlinearity GELU (Hendrycks & Gimpel, 2016)
Flow steps 10
Flow time sampling distribution U [0, 1]
Minibatch size 256
Clipped double Q-learning False (default), True (antmaze-large)

the two Q-values for aggregation (Ball et al., 2023; Nauman et al., 2024), except for the antmaze-
large environment, where we take the minimum of the two Q-values (Van Hasselt et al., 2016;
Fujimoto et al., 2018).

Selection of the radius of the hypersphere Bdl . As the action space for physical systems is al-
ways compact, we select the hypersphere Bdl to be the smallest hypersphere that contains the action
space, i.e., l = minl′{l′ ∈ Rd | A ⊆ Bd

l }. Note that, as the action spaceA is known and is usually a
hyperbox, in most cases, we can compute the solution easily, or, otherwise, use an overapproxima-
tion of Bdl . Therefore, this choice does not impose any limitation on our approach. We also present
experimental results of the sensitivity of ReFORM w.r.t. l in Appendix C.4.

Neural Network architectures. For all neural networks in our experiments, we use MLPs with 4
hidden layers and 512 neurons on each layer. We apply layer normalization (Ba et al., 2016) to the
Q-function networks to stabilize training.

Training and evaluation. The difficulty of tasks in OGBench can be very different. Therefore,
we use different training steps for different tasks (Table 1). For each task, we train each algorithm
with 3 different seeds and evaluate the model saved at the last epoch for 32 episodes.

C.3.2 DETAILS OF BASELINES IN MAIN RESULTS

We choose the state-of-the-art offline RL methods with flow policies as our baselines, including FQL
(Park et al., 2025b), IFQL (Hansen-Estruch et al., 2023b; Park et al., 2025b), and DSRL (Wagen-
maker et al., 2025). We implement the baselines FQL and IFQL following the original implementa-
tion provided in Park et al. (2025b), and DSRL also following the original implementation provided
in Wagenmaker et al. (2025).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 3: Environment-specific hyperparameters for FQL and DSRL.

Environment FQL(S)α FQL(M)α FQL(L)α Noise bound for DSRL

antmaze-large 1 10 100 [−1.25, 1.25]
cube-single 30 300 3000 [−0.5, 0.5]
cube-double 30 300 3000 [−1.5, 1.5]
scene 30 300 3000 [−0.75, 0.75]

0.0 0.5 1.0
IFQL

FQL(L)

FQL(M)

FQL(S)

DSRL

ReFORM

antmaze-large

0.0 0.5 1.0
IFQL

FQL(L)

FQL(M)

FQL(S)

DSRL

ReFORM

cube-single

0.0 0.5 1.0
IFQL

FQL(L)

FQL(M)

FQL(S)

DSRL

ReFORM

cube-double

0.0 0.5 1.0
IFQL

FQL(L)

FQL(M)

FQL(S)

DSRL

ReFORM

scene

Figure 5: Normalized scores with the CLEAN dataset.

C.3.3 DETAILS OF BASELINES IN ABLATION STUDIES

ReFORM(U). ReFORM(U) modifies ReFORM by changing the source distribution of both the BC
policy and the noise generator from U(Bdl) to N (0, Id). In other words, we have qNG = qBC =
N (0, Id) for ReFORM(U).

Gaussian(ξ). Gaussian(ξ)modifies ReFORM by changing the source distribution of the BC
policy from U(Bdl) to N (0, Id), then choose l so that Bdl is the ξ-confidence level of N (0, Id), i.e.,

l =
√

PPFχ2
d
(ξ), where PPFχ2

d
is the percent point function of a d-dimensional χ2 distribution.

ReFORM(MLP). ReFORM(MLP) modifies ReFORM by changing the reflected flow noise gener-
ator to an MLP noise generator f(s) : S → Bdl , which maps the state to a point within supp(qBC).

ReFORM(tanh). ReFORM(tanh) modifies ReFORM by removing the reflection term in the re-
flection ODE (9), i.e., using (11) instead of (12) when integrating the noise generator flow. Then,
after the Euler integration and getting ẑ following (11), we use tanh to squash the norm of z so that
it stays within Bdl . In other words, z = ẑ

∥ẑ∥ · tanh(∥ẑ∥) · l.

ReFORM(cube). ReFORM(cube) modifies ReFORM by changing the domain of qNG and qBC

to [−1, 1]d. Then, the reflected ODE is solved by first using the Euler integration (11) to get ẑ, and
then applying z = 1− |(ẑ + 1)mod4− 2| following Xie et al. (2024).

ReFORM(sphere). ReFORM(sphere) modifies ReFORM by changing the reflection term
from compensating the outbound velocity to “bouncing back”, like billiards.

ReFORM(NoDistill). ReFORM(NoDistill) removes the distillation part of ReFORM, i.e.,
the actor loss (10) is backpropagated through the BC flow policy instead of the one-step policy.

C.3.4 HYPERPARAMETERS

The choice of hyperparameters largely follows Park et al. (2025b). We provide the common hyper-
parameters shared for all algorithms in Table 2, and the environment-specific hyperparameters for
FQL and DSRL in Table 3. Note that all environment-specific hyperparameters for FQL(M) and
DSRL are the same as provided in their original papers (with the CLEAN dataset), which are hand-
tuned for each environment. As the baselines were not tested on the NOISY dataset in their original
papers, we use the same hyperparameters for them in the same environment with the CLEAN dataset.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0
IFQL

FQL(L)

FQL(M)

FQL(S)

DSRL

ReFORM

antmaze-large

0.0 0.5 1.0
IFQL

FQL(L)

FQL(M)

FQL(S)

DSRL

ReFORM

cube-single

0.0 0.5 1.0
IFQL

FQL(L)

FQL(M)

FQL(S)

DSRL

ReFORM

cube-double

0.0 0.5 1.0
IFQL

FQL(L)

FQL(M)

FQL(S)

DSRL

ReFORM

scene

Figure 6: Normalized scores with the NOISY dataset.

Table 4: Full results. We present full results (normalized score) on 40 OGBench tasks. The results
are averaged over 3 seeds and 32 runs per seed. The results are bolded if the algorithm achieves at
or above 95% of the best performance following Park et al. (2025a).

Task Dataset IFQL FQL(L) FQL(M) FQL(S) DSRL ReFORM

antmaze-large-navigate-singletask-task1-v0 CLEAN 0±0 51±2 96±3 1±1 85±9 65±9

antmaze-large-navigate-singletask-task2-v0 CLEAN 0±0 56±4 62±44 0±0 83±9 72±5

antmaze-large-navigate-singletask-task3-v0 CLEAN 0±0 91±6 90±7 8±11 77±9 61±2

antmaze-large-navigate-singletask-task4-v0 CLEAN 0±0 74±5 67±45 0±0 80±6 68±12

antmaze-large-navigate-singletask-task5-v0 CLEAN 2±2 61±4 76±26 6±4 86±9 90±3

antmaze-large-explore-singletask-task1-v0 NOISY 40±30 0±0 0±0 84±7 0±0 91±6

antmaze-large-explore-singletask-task2-v0 NOISY 0±0 0±0 0±0 41±13 0±0 91±6

antmaze-large-explore-singletask-task3-v0 NOISY 69±28 0±0 0±0 92±8 0±0 87±2

antmaze-large-explore-singletask-task4-v0 NOISY 36±15 0±0 0±0 56±37 0±0 5±8

antmaze-large-explore-singletask-task5-v0 NOISY 0±0 0±0 0±0 16±22 0±0 88±14

cube-single-play-singletask-task1-v0 CLEAN 40±13 47±5 86±2 57±12 60±43 97±3

cube-single-play-singletask-task2-v0 CLEAN 7±3 20±17 73±10 57±5 86±3 85±11

cube-single-play-singletask-task3-v0 CLEAN 14±5 18±1 77±6 44±35 68±21 99±1

cube-single-play-singletask-task4-v0 CLEAN 30±6 19±17 73±9 77±3 59±19 89±11

cube-single-play-singletask-task5-v0 CLEAN 43±12 25±19 85±14 73±3 61±28 97±4

cube-single-noisy-singletask-task1-v0 NOISY 46±10 12±2 68±8 95±1 31±22 99±1

cube-single-noisy-singletask-task2-v0 NOISY 53±15 2±2 71±3 97±1 45±10 100±0

cube-single-noisy-singletask-task3-v0 NOISY 68±6 5±5 54±3 98±1 3±1 98±2

cube-single-noisy-singletask-task4-v0 NOISY 40±4 2±1 63±5 94±1 31±5 100±1

cube-single-noisy-singletask-task5-v0 NOISY 37±4 3±2 72±7 96±1 61±3 99±1

cube-double-play-singletask-task1-v0 CLEAN 42±6 7±5 37±7 32±2 68±26 74±6

cube-double-play-singletask-task2-v0 CLEAN 22±10 4±1 30±3 2±3 47±33 90±12

cube-double-play-singletask-task3-v0 CLEAN 17±2 1±1 17±6 4±4 42±30 90±7

cube-double-play-singletask-task4-v0 CLEAN 30±15 11±11 25±6 4±1 30±23 90±7

cube-double-play-singletask-task5-v0 CLEAN 12±5 2±1 24±10 26±7 17±23 82±21

cube-double-noisy-singletask-task1-v0 NOISY 62±5 6±4 12±14 68±14 86±9 94±6

cube-double-noisy-singletask-task2-v0 NOISY 5±3 2±1 2±1 37±18 76±25 56±20

cube-double-noisy-singletask-task3-v0 NOISY 5±3 3±2 7±6 15±4 75±30 52±22

cube-double-noisy-singletask-task4-v0 NOISY 10±3 6±2 7±3 20±12 72±31 33±47

cube-double-noisy-singletask-task5-v0 NOISY 8±6 6±4 2±0 9±6 90±10 67±23

scene-play-singletask-task1-v0 CLEAN 99±1 69±6 98±2 23±17 94±2 95±2

scene-play-singletask-task2-v0 CLEAN 41±7 8±6 73±3 27±12 87±1 99±1

scene-play-singletask-task3-v0 CLEAN 56±2 52±4 89±1 20±15 85±2 99±1

scene-play-singletask-task4-v0 CLEAN 24±1 15±11 65±26 46±2 97±2 25±10

scene-play-singletask-task5-v0 CLEAN 80±3 65±5 76±6 22±23 92±3 99±1

scene-noisy-singletask-task1-v0 NOISY 87±9 27±11 87±1 100±0 39±43 99±1

scene-noisy-singletask-task2-v0 NOISY 40±7 1±1 23±5 95±4 15±4 61±14

scene-noisy-singletask-task3-v0 NOISY 66±3 3±3 66±4 96±3 45±15 69±3

scene-noisy-singletask-task4-v0 NOISY 57±4 5±7 53±6 88±8 25±10 71±0

scene-noisy-singletask-task5-v0 NOISY 57±21 59±1 70±2 96±1 24±17 98±2

C.4 ADDITIONAL RESULTS

Normalized scores for each environment and each dataset. We present bar plots of the in-
terquantile means (IQM) (see Agarwal et al. (2021) for details) of the normalized scores for each
algorithm in each environment with the CLEAN dataset (Figure 5) and the NOISY dataset (Figure 6).
We can observe that ReFORM consistently achieves the best or comparable results in all environ-
ments with both datasets, with a constant set of hyperparameters. DSRL and FQL(M) generally
perform the second and third best in environments with the CLEAN dataset. However, their perfor-
mance drops when the NOISY dataset is used.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00
Training Steps ×107

–1000

–750

–500

R
e
w
a
r
d

Task 1

0.00 0.25 0.50 0.75 1.00
Training Steps ×107

–1000

–800

–600

Task 2

0.00 0.25 0.50 0.75 1.00
Training Steps ×107

–1000

–500

Task 3

0.00 0.25 0.50 0.75 1.00
Training Steps ×107

–1000

–500

Task 4

0.00 0.25 0.50 0.75 1.00
Training Steps ×107

–1000

–750

–500

Task 5

ReFORM DSRL IFQL FQL(S) FQL(M) FQL(L)

Figure 7: Training curves for antmaze-large environment with the CLEAN dataset.

0.0 0.5 1.0 1.5 2.0
Training Steps ×106

–200

–100

R
e
w
a
r
d

Task 1

0.0 0.5 1.0 1.5 2.0
Training Steps ×106

–200

–100

Task 2

0.0 0.5 1.0 1.5 2.0
Training Steps ×106

–200

–100

Task 3

0.0 0.5 1.0 1.5 2.0
Training Steps ×106

–200

–100

Task 4

0.0 0.5 1.0 1.5 2.0
Training Steps ×106

–200

–100

Task 5

ReFORM DSRL IFQL FQL(S) FQL(M) FQL(L)

Figure 8: Training curves for cube-single environment with the CLEAN dataset.

0.0 0.5 1.0 1.5 2.0
Training Steps ×106

–750

–500

–250

R
e
w
a
r
d

Task 1

0.0 0.5 1.0 1.5 2.0
Training Steps ×106

–1000

–750

–500

Task 2

0.0 0.5 1.0 1.5 2.0
Training Steps ×106

–1000

–500

Task 3

0.0 0.5 1.0 1.5 2.0
Training Steps ×106

–1000

–900

–800

Task 4

0.0 0.5 1.0 1.5 2.0
Training Steps ×106

–1000

–750

–500

Task 5

ReFORM DSRL IFQL FQL(S) FQL(M) FQL(L)

Figure 9: Training curves for cube-double environment with the CLEAN dataset.

0.0 0.5 1.0 1.5 2.0
Training Steps ×106

–1000

0

R
e
w
a
r
d

Task 1

0 1 2 3
Training Steps ×106

–2000

–1000

Task 2

0 1 2 3
Training Steps ×106

–3000

–2000

–1000

Task 3

0 1 2 3
Training Steps ×106

–1500

–1000

–500

Task 4

0 1 2 3
Training Steps ×106

–2000

–1000

Task 5

ReFORM DSRL IFQL FQL(S) FQL(M) FQL(L)

Figure 10: Training curves for scene environment with the CLEAN dataset.

0 2 4 6 8
Training Steps ×106

–1000

–750

–500

R
e
w
a
r
d

Task 1

0 2 4 6 8
Training Steps ×106

–1000

–750

–500

Task 2

0 2 4 6 8
Training Steps ×106

–1000

–500

Task 3

0 2 4 6 8
Training Steps ×106

–1000

–750

–500

Task 4

0 2 4 6 8
Training Steps ×106

–1000

–750

–500

Task 5

ReFORM DSRL IFQL FQL(S) FQL(M) FQL(L)

Figure 11: Training curves for antmaze-large environment with the NOISY dataset.

0 1 2 3
Training Steps ×106

–200

–100

R
e
w
a
r
d

Task 1

0 1 2 3
Training Steps ×106

–200

–100

Task 2

0 1 2 3
Training Steps ×106

–200

–100

Task 3

0 1 2 3
Training Steps ×106

–200

–100

Task 4

0 1 2 3
Training Steps ×106

–200

–100

Task 5

ReFORM DSRL IFQL FQL(S) FQL(M) FQL(L)

Figure 12: Training curves for cube-single environment with the NOISY dataset.

Full results. We present the full per-task results of all 40 tasks in Table 4. The results are averaged
over 3 seeds and 32 runs per seed. The results are bolded if the algorithm achieves at or above 95%
of the best performance following Park et al. (2025a).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00
Training Steps ×106

–750

–500

–250

R
e
w
a
r
d

Task 1

0.00 0.25 0.50 0.75 1.00
Training Steps ×106

–1000

–750

–500

Task 2

0.00 0.25 0.50 0.75 1.00
Training Steps ×106

–1000

–800

–600
Task 3

0.00 0.25 0.50 0.75 1.00
Training Steps ×106

–1000

–800

–600

Task 4

0.00 0.25 0.50 0.75 1.00
Training Steps ×106

–1000

–800

–600

Task 5

ReFORM DSRL IFQL FQL(S) FQL(M) FQL(L)

Figure 13: Training curves for cube-double environment with the NOISY dataset.

0.00 0.25 0.50 0.75 1.00
Training Steps ×106

–2000

–1000

0

R
e
w
a
r
d

Task 1

0.00 0.25 0.50 0.75 1.00
Training Steps ×106

–2000

–1000

Task 2

0.0 0.5 1.0 1.5 2.0
Training Steps ×106

–3000

–2000

–1000

Task 3

0.0 0.5 1.0 1.5 2.0
Training Steps ×106

–2000

–1000

Task 4

0.0 0.5 1.0 1.5 2.0
Training Steps ×106

–3000

–2000

–1000

Task 5

ReFORM DSRL IFQL FQL(S) FQL(M) FQL(L)

Figure 14: Training curves for scene environment with the NOISY dataset.

0.0 0.2 0.4 0.6 0.8 1.0
Steps ×106

–200

–150

–100

–50

R
e
w
a
r
d

ReFORM
ReFORM(U)

(a) Comparing ReFORM and ReFORM(U).

0.0 0.2 0.4 0.6 0.8 1.0
Steps ×106

–200

–150

–100

–50

R
e
w
a
r
d

ReFORM
Gaussian(0.1)
Gaussian(0.3)

Gaussian(0.5)
Gaussian(0.7)
Gaussian(0.9)

(b) Comparing ReFORM and Gaussian(ξ).

Figure 15: More training curves for ablation studies. ReFORM(U) changes both qNG and qBC

from U(Bdl) to the standard Gaussian distribution and removes the reflection term. Gaussian(ξ)
keeps qNG = U(Bdl) but changes qBC to the standard Gaussian distribution. Then, the radius of the
hypersphere Bdl is chosen such that the standard Gaussian distribution has probability mass ξ in Bdl .

Training curves. We present the training curves for all tasks in all environments with both the
CLEAN dataset (Figure 7-Figure 10) and the NOISY dataset (Figure 11-Figure 14). In addition, we
present training curves corresponding to Figure 4 (left) in the main pages in Figure 15.

D4RL results. We further conduct experiments in D4RL (Fu et al., 2020) antmaze and adoit envi-
ronments to test the performance of ReFORM across different benchmarks. Although the benchmark
is different, we maintain the hyperparameters of ReFORM as those in OGBench. The results (D4RL
normalized return) are shown in Table 5, and ReFORM still consistently achieves the best or compa-
rable results. DSRL is omitted in these results because its paper (Wagenmaker et al., 2025) does not
report the best hyperparameters of DSRL in these environments.

Visual manipulation results. We also conduct experiments in OGBench (Park et al., 2025a) vi-
sual manipulation environments to test the performance of ReFORMwith higher-dimensional image-
based inputs. Similarly, we maintain the hyperparameters of ReFORM. The results (return) are
shown in Table 6, and ReFORM performs the best. DSRL is omitted because its best hyperparame-
ters in these environments are not reported in Wagenmaker et al. (2025).

Visualization of the generated noise in the toy example. For the toy example presented in Sec-
tion 5.3, it is possible to visualize the generated noises directly for ReFORM and DSRL. We visual-
ize the noises in Figure 16. We observe that the generated noise with reflected flow (ReFORM) is
more concentrated while retaining two modes, while with a Gaussian distribution squashed by tanh
(DSRL), the generated noise is unimodal and spreads out a lot.

Ablations on the radius of the hypersphere Bdl . One hyperparameter introduced in ReFORM is
the radius l of the hypersphere Bdl . As discussed in Appendix C.3, we select the smallest l such

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: D4RL results. We present the following results on environments in the D4RL Fu et al.
(2020) benchmark. The results are averaged over 3 seeds and 32 runs per seed. The results are
bolded if the algorithm achieves at or above 95% of the best performance following Park et al.
(2025a).

Environment IFQL FQL(L) FQL(M) FQL(S) ReFORM

antmaze-umaze-v2 91±7 85±4 99±1 88±13 97±0

antmaze-umaze-diverse-v2 55±28 57±10 88±5 61±26 83±3

antmaze-medium-play-v2 3±4 14±6 92±1 52±15 85±4

antmaze-medium-diverse-v2 24±34 9±4 81±13 24±30 80±4

antmaze-large-play-v2 17±21 43±10 61±21 3±4 71±4

antmaze-large-diverse-v2 28±27 55±4 85±8 8±12 69±9

pen-human-v1 65±1 48±0 59±4 31±4 64±7

pen-cloned-v1 81±8 61±7 66±5 57±6 70±6

pen-expert-v1 120±3 105±7 128±1 107±10 129±7

door-human-v1 3±1 2±1 0±0 0±0 4±1

door-cloned-v1 −0±0 0±0 3±2 0±0 1±1

door-expert-v1 89±5 104±1 105±0 102±0 104±4

Table 6: Visual manipulation results. We present the following results on visual manipulation
environments in OGBench Park et al. (2025a). The results are averaged over 3 seeds and 32 runs
per seed. The results are bolded if the algorithm achieves at or above 95% of the best performance
following Park et al. (2025a).

Task Dataset IFQL FQL(L) FQL(M) FQL(S) ReFORM

visual-cube-single-play-singletask-task1-v0 CLEAN −117±7 −150±16 −110±9 −138±19 −108±12

visual-cube-single-noisy-singletask-task1-v0 NOISY −95±2 −176±10 −103±2 −57±3 −52±7

(a) Generated noise of ReFORM. (b) Generated noise of DSRL.

Figure 16: Visualization of the generated noises in the 2-dimensional toy example.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Steps ×106

–200

–150

–100

–50

R
e
w
a
r
d

ReFORM(l =
√

d)
ReFORM(l = 0.5

√
d)

ReFORM(l = 0.25
√

d)
ReFORM(l = 2

√
d)

ReFORM(l = 4
√

d)

Figure 17: Sensitivity analysis of ReFORM w.r.t. l.

Table 7: Approximate training time of ReFORM and the baselines.

Algorithm ReFORM FQL IFQL DSRL

Training time (minutes, 106 steps) 80 40 35 55

that A ⊆ Bd
l in our implementation. In OGBench environments, the action space is [−1, 1]d, so

we choose l =
√
d. To study the sensitivity of ReFORM w.r.t. l, we conduct experiments in the

cube-single environment with the NOISY dataset, and vary l in {0.25
√
d, 0.5

√
d,
√
d, 2
√
d, 4
√
d}.

The results are shown in Figure 17, which shows no significant difference among these choices.
Therefore, ReFORM is robust w.r.t. the choice of l, and empirically l can be chosen as any number
close to the scale of the action space.

Training time. We report the training time of ReFORM and all baselines in Table 7. The table
shows that ReFORM indeed doubles the training time compared to FQL due to the 2-stage flow.
However, as shown in our experiments, FQL is sensitive to hyperparameters, and searching for
optimal hyperparameters requires significantly more runs. On the contrary, ReFORM can be used
without any hyperparameter searching.

C.5 CODE

We provide code for ReFORM in our supplementary materials.

D THE USE OF LARGE LANGUAGE MODELS

This paper uses Large Language Models to correct spelling and grammar issues.

24

	Introduction
	Related Work
	Preliminaries
	Method
	Flow-based behavior policy learning
	Reflected Flow-based Noise Manipulation
	Policy Distillation

	Experiments
	Setup
	Main results
	Ablation studies

	Conclusion
	Reproducibility statement
	Proofs
	Proof of thm: KL implies support
	Proof of thm: W2 neq support
	Proof of thm: reflectedflow
	Proof of thm: supportcnstrnt

	Algorithm Details
	Experiments
	Computation resources
	Environments
	Implementation details and hyperparameters
	Details of ReFORM
	Details of baselines in main results
	Details of baselines in ablation studies
	Hyperparameters

	Additional results
	Code

	The Use of Large Language Models

